zig/lib/std/elf.zig
Andrew Kelley 1ba3fc90be link.Elf: eliminate an O(N^2) algorithm in flush()
Make shared_objects a StringArrayHashMap so that deduping does not
need to happen in flush. That deduping code also was using an O(N^2)
algorithm, which is not allowed in this codebase. There is another
violation of this rule in resolveSymbols but this commit does not
address it.

This required reworking shared object parsing, breaking it into
independent components so that we could access soname earlier.

Shared object parsing had a few problems that I noticed and fixed in
this commit:
* Many instances of incorrect use of align(1).
* `shnum * @sizeOf(elf.Elf64_Shdr)` can overflow based on user data.
* `@divExact` can cause illegal behavior based on user data.
* Strange versyms logic that wasn't present in mold nor lld. The logic
  was not commented and there is no git blame information in ziglang/zig
  nor kubkon/zld. I changed it to match mold and lld instead.
* Use of ArrayList for slices of memory that are never resized.
* finding DT_VERDEFNUM in a different loop than finding DT_SONAME.
  Ultimately I think we should follow mold's lead and ignore this
  integer, relying on null termination instead.
* Doing logic based on VER_FLG_BASE rather than ignoring it like mold
  and LLD do. No comment explaining why the behavior is different.
* Mutating the original ELF symbols rather than only storing the mangled
  name on the new Symbol struct.

I noticed something that I didn't try to address in this commit: Symbol
stores a lot of redundant information that is already present in the ELF
symbols. I suspect that the codebase could benefit from reworking Symbol
to not store redundant information.

Additionally:
* Add some type safety to std.elf.
* Eliminate 1-3 file system reads for determining the kind of input
  files, by taking advantage of file name extension and handling error
  codes properly.
* Move more error handling methods to link.Diags and make them
  infallible and thread-safe
* Make the data dependencies obvious in the parameters of
  parseSharedObject. It's now clear that the first two steps (Header and
  Parsed) can be done during the main Compilation pipeline, rather than
  waiting for flush().
2024-10-12 10:44:17 -07:00

2394 lines
65 KiB
Zig

//! Executable and Linkable Format.
const std = @import("std.zig");
const math = std.math;
const mem = std.mem;
const assert = std.debug.assert;
const native_endian = @import("builtin").target.cpu.arch.endian();
pub const AT_NULL = 0;
pub const AT_IGNORE = 1;
pub const AT_EXECFD = 2;
pub const AT_PHDR = 3;
pub const AT_PHENT = 4;
pub const AT_PHNUM = 5;
pub const AT_PAGESZ = 6;
pub const AT_BASE = 7;
pub const AT_FLAGS = 8;
pub const AT_ENTRY = 9;
pub const AT_NOTELF = 10;
pub const AT_UID = 11;
pub const AT_EUID = 12;
pub const AT_GID = 13;
pub const AT_EGID = 14;
pub const AT_CLKTCK = 17;
pub const AT_PLATFORM = 15;
pub const AT_HWCAP = 16;
pub const AT_FPUCW = 18;
pub const AT_DCACHEBSIZE = 19;
pub const AT_ICACHEBSIZE = 20;
pub const AT_UCACHEBSIZE = 21;
pub const AT_IGNOREPPC = 22;
pub const AT_SECURE = 23;
pub const AT_BASE_PLATFORM = 24;
pub const AT_RANDOM = 25;
pub const AT_HWCAP2 = 26;
pub const AT_EXECFN = 31;
pub const AT_SYSINFO = 32;
pub const AT_SYSINFO_EHDR = 33;
pub const AT_L1I_CACHESHAPE = 34;
pub const AT_L1D_CACHESHAPE = 35;
pub const AT_L2_CACHESHAPE = 36;
pub const AT_L3_CACHESHAPE = 37;
pub const AT_L1I_CACHESIZE = 40;
pub const AT_L1I_CACHEGEOMETRY = 41;
pub const AT_L1D_CACHESIZE = 42;
pub const AT_L1D_CACHEGEOMETRY = 43;
pub const AT_L2_CACHESIZE = 44;
pub const AT_L2_CACHEGEOMETRY = 45;
pub const AT_L3_CACHESIZE = 46;
pub const AT_L3_CACHEGEOMETRY = 47;
pub const DT_NULL = 0;
pub const DT_NEEDED = 1;
pub const DT_PLTRELSZ = 2;
pub const DT_PLTGOT = 3;
pub const DT_HASH = 4;
pub const DT_STRTAB = 5;
pub const DT_SYMTAB = 6;
pub const DT_RELA = 7;
pub const DT_RELASZ = 8;
pub const DT_RELAENT = 9;
pub const DT_STRSZ = 10;
pub const DT_SYMENT = 11;
pub const DT_INIT = 12;
pub const DT_FINI = 13;
pub const DT_SONAME = 14;
pub const DT_RPATH = 15;
pub const DT_SYMBOLIC = 16;
pub const DT_REL = 17;
pub const DT_RELSZ = 18;
pub const DT_RELENT = 19;
pub const DT_PLTREL = 20;
pub const DT_DEBUG = 21;
pub const DT_TEXTREL = 22;
pub const DT_JMPREL = 23;
pub const DT_BIND_NOW = 24;
pub const DT_INIT_ARRAY = 25;
pub const DT_FINI_ARRAY = 26;
pub const DT_INIT_ARRAYSZ = 27;
pub const DT_FINI_ARRAYSZ = 28;
pub const DT_RUNPATH = 29;
pub const DT_FLAGS = 30;
pub const DT_ENCODING = 32;
pub const DT_PREINIT_ARRAY = 32;
pub const DT_PREINIT_ARRAYSZ = 33;
pub const DT_SYMTAB_SHNDX = 34;
pub const DT_RELRSZ = 35;
pub const DT_RELR = 36;
pub const DT_RELRENT = 37;
pub const DT_NUM = 38;
pub const DT_LOOS = 0x6000000d;
pub const DT_HIOS = 0x6ffff000;
pub const DT_LOPROC = 0x70000000;
pub const DT_HIPROC = 0x7fffffff;
pub const DT_PROCNUM = DT_MIPS_NUM;
pub const DT_VALRNGLO = 0x6ffffd00;
pub const DT_GNU_PRELINKED = 0x6ffffdf5;
pub const DT_GNU_CONFLICTSZ = 0x6ffffdf6;
pub const DT_GNU_LIBLISTSZ = 0x6ffffdf7;
pub const DT_CHECKSUM = 0x6ffffdf8;
pub const DT_PLTPADSZ = 0x6ffffdf9;
pub const DT_MOVEENT = 0x6ffffdfa;
pub const DT_MOVESZ = 0x6ffffdfb;
pub const DT_FEATURE_1 = 0x6ffffdfc;
pub const DT_POSFLAG_1 = 0x6ffffdfd;
pub const DT_SYMINSZ = 0x6ffffdfe;
pub const DT_SYMINENT = 0x6ffffdff;
pub const DT_VALRNGHI = 0x6ffffdff;
pub const DT_VALNUM = 12;
pub const DT_ADDRRNGLO = 0x6ffffe00;
pub const DT_GNU_HASH = 0x6ffffef5;
pub const DT_TLSDESC_PLT = 0x6ffffef6;
pub const DT_TLSDESC_GOT = 0x6ffffef7;
pub const DT_GNU_CONFLICT = 0x6ffffef8;
pub const DT_GNU_LIBLIST = 0x6ffffef9;
pub const DT_CONFIG = 0x6ffffefa;
pub const DT_DEPAUDIT = 0x6ffffefb;
pub const DT_AUDIT = 0x6ffffefc;
pub const DT_PLTPAD = 0x6ffffefd;
pub const DT_MOVETAB = 0x6ffffefe;
pub const DT_SYMINFO = 0x6ffffeff;
pub const DT_ADDRRNGHI = 0x6ffffeff;
pub const DT_ADDRNUM = 11;
pub const DT_VERSYM = 0x6ffffff0;
pub const DT_RELACOUNT = 0x6ffffff9;
pub const DT_RELCOUNT = 0x6ffffffa;
pub const DT_FLAGS_1 = 0x6ffffffb;
pub const DT_VERDEF = 0x6ffffffc;
pub const DT_VERDEFNUM = 0x6ffffffd;
pub const DT_VERNEED = 0x6ffffffe;
pub const DT_VERNEEDNUM = 0x6fffffff;
pub const DT_VERSIONTAGNUM = 16;
pub const DT_AUXILIARY = 0x7ffffffd;
pub const DT_FILTER = 0x7fffffff;
pub const DT_EXTRANUM = 3;
pub const DT_SPARC_REGISTER = 0x70000001;
pub const DT_SPARC_NUM = 2;
pub const DT_MIPS_RLD_VERSION = 0x70000001;
pub const DT_MIPS_TIME_STAMP = 0x70000002;
pub const DT_MIPS_ICHECKSUM = 0x70000003;
pub const DT_MIPS_IVERSION = 0x70000004;
pub const DT_MIPS_FLAGS = 0x70000005;
pub const DT_MIPS_BASE_ADDRESS = 0x70000006;
pub const DT_MIPS_MSYM = 0x70000007;
pub const DT_MIPS_CONFLICT = 0x70000008;
pub const DT_MIPS_LIBLIST = 0x70000009;
pub const DT_MIPS_LOCAL_GOTNO = 0x7000000a;
pub const DT_MIPS_CONFLICTNO = 0x7000000b;
pub const DT_MIPS_LIBLISTNO = 0x70000010;
pub const DT_MIPS_SYMTABNO = 0x70000011;
pub const DT_MIPS_UNREFEXTNO = 0x70000012;
pub const DT_MIPS_GOTSYM = 0x70000013;
pub const DT_MIPS_HIPAGENO = 0x70000014;
pub const DT_MIPS_RLD_MAP = 0x70000016;
pub const DT_MIPS_DELTA_CLASS = 0x70000017;
pub const DT_MIPS_DELTA_CLASS_NO = 0x70000018;
pub const DT_MIPS_DELTA_INSTANCE = 0x70000019;
pub const DT_MIPS_DELTA_INSTANCE_NO = 0x7000001a;
pub const DT_MIPS_DELTA_RELOC = 0x7000001b;
pub const DT_MIPS_DELTA_RELOC_NO = 0x7000001c;
pub const DT_MIPS_DELTA_SYM = 0x7000001d;
pub const DT_MIPS_DELTA_SYM_NO = 0x7000001e;
pub const DT_MIPS_DELTA_CLASSSYM = 0x70000020;
pub const DT_MIPS_DELTA_CLASSSYM_NO = 0x70000021;
pub const DT_MIPS_CXX_FLAGS = 0x70000022;
pub const DT_MIPS_PIXIE_INIT = 0x70000023;
pub const DT_MIPS_SYMBOL_LIB = 0x70000024;
pub const DT_MIPS_LOCALPAGE_GOTIDX = 0x70000025;
pub const DT_MIPS_LOCAL_GOTIDX = 0x70000026;
pub const DT_MIPS_HIDDEN_GOTIDX = 0x70000027;
pub const DT_MIPS_PROTECTED_GOTIDX = 0x70000028;
pub const DT_MIPS_OPTIONS = 0x70000029;
pub const DT_MIPS_INTERFACE = 0x7000002a;
pub const DT_MIPS_DYNSTR_ALIGN = 0x7000002b;
pub const DT_MIPS_INTERFACE_SIZE = 0x7000002c;
pub const DT_MIPS_RLD_TEXT_RESOLVE_ADDR = 0x7000002d;
pub const DT_MIPS_PERF_SUFFIX = 0x7000002e;
pub const DT_MIPS_COMPACT_SIZE = 0x7000002f;
pub const DT_MIPS_GP_VALUE = 0x70000030;
pub const DT_MIPS_AUX_DYNAMIC = 0x70000031;
pub const DT_MIPS_PLTGOT = 0x70000032;
pub const DT_MIPS_RWPLT = 0x70000034;
pub const DT_MIPS_RLD_MAP_REL = 0x70000035;
pub const DT_MIPS_NUM = 0x36;
pub const DT_ALPHA_PLTRO = (DT_LOPROC + 0);
pub const DT_ALPHA_NUM = 1;
pub const DT_PPC_GOT = (DT_LOPROC + 0);
pub const DT_PPC_OPT = (DT_LOPROC + 1);
pub const DT_PPC_NUM = 2;
pub const DT_PPC64_GLINK = (DT_LOPROC + 0);
pub const DT_PPC64_OPD = (DT_LOPROC + 1);
pub const DT_PPC64_OPDSZ = (DT_LOPROC + 2);
pub const DT_PPC64_OPT = (DT_LOPROC + 3);
pub const DT_PPC64_NUM = 4;
pub const DT_IA_64_PLT_RESERVE = (DT_LOPROC + 0);
pub const DT_IA_64_NUM = 1;
pub const DT_NIOS2_GP = 0x70000002;
pub const DF_ORIGIN = 0x00000001;
pub const DF_SYMBOLIC = 0x00000002;
pub const DF_TEXTREL = 0x00000004;
pub const DF_BIND_NOW = 0x00000008;
pub const DF_STATIC_TLS = 0x00000010;
pub const DF_1_NOW = 0x00000001;
pub const DF_1_GLOBAL = 0x00000002;
pub const DF_1_GROUP = 0x00000004;
pub const DF_1_NODELETE = 0x00000008;
pub const DF_1_LOADFLTR = 0x00000010;
pub const DF_1_INITFIRST = 0x00000020;
pub const DF_1_NOOPEN = 0x00000040;
pub const DF_1_ORIGIN = 0x00000080;
pub const DF_1_DIRECT = 0x00000100;
pub const DF_1_TRANS = 0x00000200;
pub const DF_1_INTERPOSE = 0x00000400;
pub const DF_1_NODEFLIB = 0x00000800;
pub const DF_1_NODUMP = 0x00001000;
pub const DF_1_CONFALT = 0x00002000;
pub const DF_1_ENDFILTEE = 0x00004000;
pub const DF_1_DISPRELDNE = 0x00008000;
pub const DF_1_DISPRELPND = 0x00010000;
pub const DF_1_NODIRECT = 0x00020000;
pub const DF_1_IGNMULDEF = 0x00040000;
pub const DF_1_NOKSYMS = 0x00080000;
pub const DF_1_NOHDR = 0x00100000;
pub const DF_1_EDITED = 0x00200000;
pub const DF_1_NORELOC = 0x00400000;
pub const DF_1_SYMINTPOSE = 0x00800000;
pub const DF_1_GLOBAUDIT = 0x01000000;
pub const DF_1_SINGLETON = 0x02000000;
pub const DF_1_STUB = 0x04000000;
pub const DF_1_PIE = 0x08000000;
pub const Versym = packed struct(u16) {
VERSION: u15,
HIDDEN: bool,
pub const LOCAL: Versym = @bitCast(@intFromEnum(VER_NDX.LOCAL));
pub const GLOBAL: Versym = @bitCast(@intFromEnum(VER_NDX.GLOBAL));
};
pub const VER_NDX = enum(u16) {
/// Symbol is local
LOCAL = 0,
/// Symbol is global
GLOBAL = 1,
/// Beginning of reserved entries
LORESERVE = 0xff00,
/// Symbol is to be eliminated
ELIMINATE = 0xff01,
UNSPECIFIED = 0xffff,
_,
};
/// Version definition of the file itself
pub const VER_FLG_BASE = 1;
/// Weak version identifier
pub const VER_FLG_WEAK = 2;
/// Program header table entry unused
pub const PT_NULL = 0;
/// Loadable program segment
pub const PT_LOAD = 1;
/// Dynamic linking information
pub const PT_DYNAMIC = 2;
/// Program interpreter
pub const PT_INTERP = 3;
/// Auxiliary information
pub const PT_NOTE = 4;
/// Reserved
pub const PT_SHLIB = 5;
/// Entry for header table itself
pub const PT_PHDR = 6;
/// Thread-local storage segment
pub const PT_TLS = 7;
/// Number of defined types
pub const PT_NUM = 8;
/// Start of OS-specific
pub const PT_LOOS = 0x60000000;
/// GCC .eh_frame_hdr segment
pub const PT_GNU_EH_FRAME = 0x6474e550;
/// Indicates stack executability
pub const PT_GNU_STACK = 0x6474e551;
/// Read-only after relocation
pub const PT_GNU_RELRO = 0x6474e552;
pub const PT_LOSUNW = 0x6ffffffa;
/// Sun specific segment
pub const PT_SUNWBSS = 0x6ffffffa;
/// Stack segment
pub const PT_SUNWSTACK = 0x6ffffffb;
pub const PT_HISUNW = 0x6fffffff;
/// End of OS-specific
pub const PT_HIOS = 0x6fffffff;
/// Start of processor-specific
pub const PT_LOPROC = 0x70000000;
/// End of processor-specific
pub const PT_HIPROC = 0x7fffffff;
/// Section header table entry unused
pub const SHT_NULL = 0;
/// Program data
pub const SHT_PROGBITS = 1;
/// Symbol table
pub const SHT_SYMTAB = 2;
/// String table
pub const SHT_STRTAB = 3;
/// Relocation entries with addends
pub const SHT_RELA = 4;
/// Symbol hash table
pub const SHT_HASH = 5;
/// Dynamic linking information
pub const SHT_DYNAMIC = 6;
/// Notes
pub const SHT_NOTE = 7;
/// Program space with no data (bss)
pub const SHT_NOBITS = 8;
/// Relocation entries, no addends
pub const SHT_REL = 9;
/// Reserved
pub const SHT_SHLIB = 10;
/// Dynamic linker symbol table
pub const SHT_DYNSYM = 11;
/// Array of constructors
pub const SHT_INIT_ARRAY = 14;
/// Array of destructors
pub const SHT_FINI_ARRAY = 15;
/// Array of pre-constructors
pub const SHT_PREINIT_ARRAY = 16;
/// Section group
pub const SHT_GROUP = 17;
/// Extended section indices
pub const SHT_SYMTAB_SHNDX = 18;
/// Start of OS-specific
pub const SHT_LOOS = 0x60000000;
/// LLVM address-significance table
pub const SHT_LLVM_ADDRSIG = 0x6fff4c03;
/// GNU hash table
pub const SHT_GNU_HASH = 0x6ffffff6;
/// GNU version definition table
pub const SHT_GNU_VERDEF = 0x6ffffffd;
/// GNU needed versions table
pub const SHT_GNU_VERNEED = 0x6ffffffe;
/// GNU symbol version table
pub const SHT_GNU_VERSYM = 0x6fffffff;
/// End of OS-specific
pub const SHT_HIOS = 0x6fffffff;
/// Start of processor-specific
pub const SHT_LOPROC = 0x70000000;
/// Unwind information
pub const SHT_X86_64_UNWIND = 0x70000001;
/// End of processor-specific
pub const SHT_HIPROC = 0x7fffffff;
/// Start of application-specific
pub const SHT_LOUSER = 0x80000000;
/// End of application-specific
pub const SHT_HIUSER = 0xffffffff;
// Note type for .note.gnu.build_id
pub const NT_GNU_BUILD_ID = 3;
/// Local symbol
pub const STB_LOCAL = 0;
/// Global symbol
pub const STB_GLOBAL = 1;
/// Weak symbol
pub const STB_WEAK = 2;
/// Number of defined types
pub const STB_NUM = 3;
/// Start of OS-specific
pub const STB_LOOS = 10;
/// Unique symbol
pub const STB_GNU_UNIQUE = 10;
/// End of OS-specific
pub const STB_HIOS = 12;
/// Start of processor-specific
pub const STB_LOPROC = 13;
/// End of processor-specific
pub const STB_HIPROC = 15;
pub const STB_MIPS_SPLIT_COMMON = 13;
/// Symbol type is unspecified
pub const STT_NOTYPE = 0;
/// Symbol is a data object
pub const STT_OBJECT = 1;
/// Symbol is a code object
pub const STT_FUNC = 2;
/// Symbol associated with a section
pub const STT_SECTION = 3;
/// Symbol's name is file name
pub const STT_FILE = 4;
/// Symbol is a common data object
pub const STT_COMMON = 5;
/// Symbol is thread-local data object
pub const STT_TLS = 6;
/// Number of defined types
pub const STT_NUM = 7;
/// Start of OS-specific
pub const STT_LOOS = 10;
/// Symbol is indirect code object
pub const STT_GNU_IFUNC = 10;
/// End of OS-specific
pub const STT_HIOS = 12;
/// Start of processor-specific
pub const STT_LOPROC = 13;
/// End of processor-specific
pub const STT_HIPROC = 15;
pub const STT_SPARC_REGISTER = 13;
pub const STT_PARISC_MILLICODE = 13;
pub const STT_HP_OPAQUE = (STT_LOOS + 0x1);
pub const STT_HP_STUB = (STT_LOOS + 0x2);
pub const STT_ARM_TFUNC = STT_LOPROC;
pub const STT_ARM_16BIT = STT_HIPROC;
pub const MAGIC = "\x7fELF";
/// File types
pub const ET = enum(u16) {
/// No file type
NONE = 0,
/// Relocatable file
REL = 1,
/// Executable file
EXEC = 2,
/// Shared object file
DYN = 3,
/// Core file
CORE = 4,
/// Beginning of OS-specific codes
pub const LOOS = 0xfe00;
/// End of OS-specific codes
pub const HIOS = 0xfeff;
/// Beginning of processor-specific codes
pub const LOPROC = 0xff00;
/// End of processor-specific codes
pub const HIPROC = 0xffff;
};
/// All integers are native endian.
pub const Header = struct {
is_64: bool,
endian: std.builtin.Endian,
os_abi: OSABI,
abi_version: u8,
type: ET,
machine: EM,
entry: u64,
phoff: u64,
shoff: u64,
phentsize: u16,
phnum: u16,
shentsize: u16,
shnum: u16,
shstrndx: u16,
pub fn program_header_iterator(self: Header, parse_source: anytype) ProgramHeaderIterator(@TypeOf(parse_source)) {
return ProgramHeaderIterator(@TypeOf(parse_source)){
.elf_header = self,
.parse_source = parse_source,
};
}
pub fn section_header_iterator(self: Header, parse_source: anytype) SectionHeaderIterator(@TypeOf(parse_source)) {
return SectionHeaderIterator(@TypeOf(parse_source)){
.elf_header = self,
.parse_source = parse_source,
};
}
pub fn read(parse_source: anytype) !Header {
var hdr_buf: [@sizeOf(Elf64_Ehdr)]u8 align(@alignOf(Elf64_Ehdr)) = undefined;
try parse_source.seekableStream().seekTo(0);
try parse_source.reader().readNoEof(&hdr_buf);
return Header.parse(&hdr_buf);
}
pub fn parse(hdr_buf: *align(@alignOf(Elf64_Ehdr)) const [@sizeOf(Elf64_Ehdr)]u8) !Header {
const hdr32 = @as(*const Elf32_Ehdr, @ptrCast(hdr_buf));
const hdr64 = @as(*const Elf64_Ehdr, @ptrCast(hdr_buf));
if (!mem.eql(u8, hdr32.e_ident[0..4], MAGIC)) return error.InvalidElfMagic;
if (hdr32.e_ident[EI_VERSION] != 1) return error.InvalidElfVersion;
const is_64 = switch (hdr32.e_ident[EI_CLASS]) {
ELFCLASS32 => false,
ELFCLASS64 => true,
else => return error.InvalidElfClass,
};
const endian: std.builtin.Endian = switch (hdr32.e_ident[EI_DATA]) {
ELFDATA2LSB => .little,
ELFDATA2MSB => .big,
else => return error.InvalidElfEndian,
};
const need_bswap = endian != native_endian;
const os_abi: OSABI = @enumFromInt(hdr32.e_ident[EI_OSABI]);
// The meaning of this value depends on `os_abi` so just make it available as `u8`.
const abi_version = hdr32.e_ident[EI_ABIVERSION];
const @"type" = if (need_bswap) blk: {
const value = @intFromEnum(hdr32.e_type);
break :blk @as(ET, @enumFromInt(@byteSwap(value)));
} else hdr32.e_type;
const machine = if (need_bswap) blk: {
const value = @intFromEnum(hdr32.e_machine);
break :blk @as(EM, @enumFromInt(@byteSwap(value)));
} else hdr32.e_machine;
return @as(Header, .{
.is_64 = is_64,
.endian = endian,
.os_abi = os_abi,
.abi_version = abi_version,
.type = @"type",
.machine = machine,
.entry = int(is_64, need_bswap, hdr32.e_entry, hdr64.e_entry),
.phoff = int(is_64, need_bswap, hdr32.e_phoff, hdr64.e_phoff),
.shoff = int(is_64, need_bswap, hdr32.e_shoff, hdr64.e_shoff),
.phentsize = int(is_64, need_bswap, hdr32.e_phentsize, hdr64.e_phentsize),
.phnum = int(is_64, need_bswap, hdr32.e_phnum, hdr64.e_phnum),
.shentsize = int(is_64, need_bswap, hdr32.e_shentsize, hdr64.e_shentsize),
.shnum = int(is_64, need_bswap, hdr32.e_shnum, hdr64.e_shnum),
.shstrndx = int(is_64, need_bswap, hdr32.e_shstrndx, hdr64.e_shstrndx),
});
}
};
pub fn ProgramHeaderIterator(comptime ParseSource: anytype) type {
return struct {
elf_header: Header,
parse_source: ParseSource,
index: usize = 0,
pub fn next(self: *@This()) !?Elf64_Phdr {
if (self.index >= self.elf_header.phnum) return null;
defer self.index += 1;
if (self.elf_header.is_64) {
var phdr: Elf64_Phdr = undefined;
const offset = self.elf_header.phoff + @sizeOf(@TypeOf(phdr)) * self.index;
try self.parse_source.seekableStream().seekTo(offset);
try self.parse_source.reader().readNoEof(mem.asBytes(&phdr));
// ELF endianness matches native endianness.
if (self.elf_header.endian == native_endian) return phdr;
// Convert fields to native endianness.
mem.byteSwapAllFields(Elf64_Phdr, &phdr);
return phdr;
}
var phdr: Elf32_Phdr = undefined;
const offset = self.elf_header.phoff + @sizeOf(@TypeOf(phdr)) * self.index;
try self.parse_source.seekableStream().seekTo(offset);
try self.parse_source.reader().readNoEof(mem.asBytes(&phdr));
// ELF endianness does NOT match native endianness.
if (self.elf_header.endian != native_endian) {
// Convert fields to native endianness.
mem.byteSwapAllFields(Elf32_Phdr, &phdr);
}
// Convert 32-bit header to 64-bit.
return Elf64_Phdr{
.p_type = phdr.p_type,
.p_offset = phdr.p_offset,
.p_vaddr = phdr.p_vaddr,
.p_paddr = phdr.p_paddr,
.p_filesz = phdr.p_filesz,
.p_memsz = phdr.p_memsz,
.p_flags = phdr.p_flags,
.p_align = phdr.p_align,
};
}
};
}
pub fn SectionHeaderIterator(comptime ParseSource: anytype) type {
return struct {
elf_header: Header,
parse_source: ParseSource,
index: usize = 0,
pub fn next(self: *@This()) !?Elf64_Shdr {
if (self.index >= self.elf_header.shnum) return null;
defer self.index += 1;
if (self.elf_header.is_64) {
var shdr: Elf64_Shdr = undefined;
const offset = self.elf_header.shoff + @sizeOf(@TypeOf(shdr)) * self.index;
try self.parse_source.seekableStream().seekTo(offset);
try self.parse_source.reader().readNoEof(mem.asBytes(&shdr));
// ELF endianness matches native endianness.
if (self.elf_header.endian == native_endian) return shdr;
// Convert fields to native endianness.
mem.byteSwapAllFields(Elf64_Shdr, &shdr);
return shdr;
}
var shdr: Elf32_Shdr = undefined;
const offset = self.elf_header.shoff + @sizeOf(@TypeOf(shdr)) * self.index;
try self.parse_source.seekableStream().seekTo(offset);
try self.parse_source.reader().readNoEof(mem.asBytes(&shdr));
// ELF endianness does NOT match native endianness.
if (self.elf_header.endian != native_endian) {
// Convert fields to native endianness.
mem.byteSwapAllFields(Elf32_Shdr, &shdr);
}
// Convert 32-bit header to 64-bit.
return Elf64_Shdr{
.sh_name = shdr.sh_name,
.sh_type = shdr.sh_type,
.sh_flags = shdr.sh_flags,
.sh_addr = shdr.sh_addr,
.sh_offset = shdr.sh_offset,
.sh_size = shdr.sh_size,
.sh_link = shdr.sh_link,
.sh_info = shdr.sh_info,
.sh_addralign = shdr.sh_addralign,
.sh_entsize = shdr.sh_entsize,
};
}
};
}
fn int(is_64: bool, need_bswap: bool, int_32: anytype, int_64: anytype) @TypeOf(int_64) {
if (is_64) {
if (need_bswap) {
return @byteSwap(int_64);
} else {
return int_64;
}
} else {
return int32(need_bswap, int_32, @TypeOf(int_64));
}
}
fn int32(need_bswap: bool, int_32: anytype, comptime Int64: anytype) Int64 {
if (need_bswap) {
return @byteSwap(int_32);
} else {
return int_32;
}
}
pub const ELFCLASSNONE = 0;
pub const ELFCLASS32 = 1;
pub const ELFCLASS64 = 2;
pub const ELFCLASSNUM = 3;
pub const ELFDATANONE = 0;
pub const ELFDATA2LSB = 1;
pub const ELFDATA2MSB = 2;
pub const ELFDATANUM = 3;
pub const EI_CLASS = 4;
pub const EI_DATA = 5;
pub const EI_VERSION = 6;
pub const EI_OSABI = 7;
pub const EI_ABIVERSION = 8;
pub const EI_PAD = 9;
pub const EI_NIDENT = 16;
pub const Half = u16;
pub const Word = u32;
pub const Sword = i32;
pub const Elf32_Xword = u64;
pub const Elf32_Sxword = i64;
pub const Elf64_Xword = u64;
pub const Elf64_Sxword = i64;
pub const Elf32_Addr = u32;
pub const Elf64_Addr = u64;
pub const Elf32_Off = u32;
pub const Elf64_Off = u64;
pub const Elf32_Section = u16;
pub const Elf64_Section = u16;
pub const Elf32_Ehdr = extern struct {
e_ident: [EI_NIDENT]u8,
e_type: ET,
e_machine: EM,
e_version: Word,
e_entry: Elf32_Addr,
e_phoff: Elf32_Off,
e_shoff: Elf32_Off,
e_flags: Word,
e_ehsize: Half,
e_phentsize: Half,
e_phnum: Half,
e_shentsize: Half,
e_shnum: Half,
e_shstrndx: Half,
};
pub const Elf64_Ehdr = extern struct {
e_ident: [EI_NIDENT]u8,
e_type: ET,
e_machine: EM,
e_version: Word,
e_entry: Elf64_Addr,
e_phoff: Elf64_Off,
e_shoff: Elf64_Off,
e_flags: Word,
e_ehsize: Half,
e_phentsize: Half,
e_phnum: Half,
e_shentsize: Half,
e_shnum: Half,
e_shstrndx: Half,
};
pub const Elf32_Phdr = extern struct {
p_type: Word,
p_offset: Elf32_Off,
p_vaddr: Elf32_Addr,
p_paddr: Elf32_Addr,
p_filesz: Word,
p_memsz: Word,
p_flags: Word,
p_align: Word,
};
pub const Elf64_Phdr = extern struct {
p_type: Word,
p_flags: Word,
p_offset: Elf64_Off,
p_vaddr: Elf64_Addr,
p_paddr: Elf64_Addr,
p_filesz: Elf64_Xword,
p_memsz: Elf64_Xword,
p_align: Elf64_Xword,
};
pub const Elf32_Shdr = extern struct {
sh_name: Word,
sh_type: Word,
sh_flags: Word,
sh_addr: Elf32_Addr,
sh_offset: Elf32_Off,
sh_size: Word,
sh_link: Word,
sh_info: Word,
sh_addralign: Word,
sh_entsize: Word,
};
pub const Elf64_Shdr = extern struct {
sh_name: Word,
sh_type: Word,
sh_flags: Elf64_Xword,
sh_addr: Elf64_Addr,
sh_offset: Elf64_Off,
sh_size: Elf64_Xword,
sh_link: Word,
sh_info: Word,
sh_addralign: Elf64_Xword,
sh_entsize: Elf64_Xword,
};
pub const Elf32_Chdr = extern struct {
ch_type: COMPRESS,
ch_size: Word,
ch_addralign: Word,
};
pub const Elf64_Chdr = extern struct {
ch_type: COMPRESS,
ch_reserved: Word = 0,
ch_size: Elf64_Xword,
ch_addralign: Elf64_Xword,
};
pub const Elf32_Sym = extern struct {
st_name: Word,
st_value: Elf32_Addr,
st_size: Word,
st_info: u8,
st_other: u8,
st_shndx: Elf32_Section,
pub inline fn st_type(self: @This()) u4 {
return @truncate(self.st_info);
}
pub inline fn st_bind(self: @This()) u4 {
return @truncate(self.st_info >> 4);
}
};
pub const Elf64_Sym = extern struct {
st_name: Word,
st_info: u8,
st_other: u8,
st_shndx: Elf64_Section,
st_value: Elf64_Addr,
st_size: Elf64_Xword,
pub inline fn st_type(self: @This()) u4 {
return @truncate(self.st_info);
}
pub inline fn st_bind(self: @This()) u4 {
return @truncate(self.st_info >> 4);
}
};
pub const Elf32_Syminfo = extern struct {
si_boundto: Half,
si_flags: Half,
};
pub const Elf64_Syminfo = extern struct {
si_boundto: Half,
si_flags: Half,
};
pub const Elf32_Rel = extern struct {
r_offset: Elf32_Addr,
r_info: Word,
pub inline fn r_sym(self: @This()) u24 {
return @truncate(self.r_info >> 8);
}
pub inline fn r_type(self: @This()) u8 {
return @truncate(self.r_info);
}
};
pub const Elf64_Rel = extern struct {
r_offset: Elf64_Addr,
r_info: Elf64_Xword,
pub inline fn r_sym(self: @This()) u32 {
return @truncate(self.r_info >> 32);
}
pub inline fn r_type(self: @This()) u32 {
return @truncate(self.r_info);
}
};
pub const Elf32_Rela = extern struct {
r_offset: Elf32_Addr,
r_info: Word,
r_addend: Sword,
pub inline fn r_sym(self: @This()) u24 {
return @truncate(self.r_info >> 8);
}
pub inline fn r_type(self: @This()) u8 {
return @truncate(self.r_info);
}
};
pub const Elf64_Rela = extern struct {
r_offset: Elf64_Addr,
r_info: Elf64_Xword,
r_addend: Elf64_Sxword,
pub inline fn r_sym(self: @This()) u32 {
return @truncate(self.r_info >> 32);
}
pub inline fn r_type(self: @This()) u32 {
return @truncate(self.r_info);
}
};
pub const Elf32_Relr = Word;
pub const Elf64_Relr = Elf64_Xword;
pub const Elf32_Dyn = extern struct {
d_tag: Sword,
d_val: Elf32_Addr,
};
pub const Elf64_Dyn = extern struct {
d_tag: Elf64_Sxword,
d_val: Elf64_Addr,
};
pub const Verdef = extern struct {
version: Half,
flags: Half,
ndx: VER_NDX,
cnt: Half,
hash: Word,
aux: Word,
next: Word,
};
pub const Verdaux = extern struct {
name: Word,
next: Word,
};
pub const Elf32_Verneed = extern struct {
vn_version: Half,
vn_cnt: Half,
vn_file: Word,
vn_aux: Word,
vn_next: Word,
};
pub const Elf64_Verneed = extern struct {
vn_version: Half,
vn_cnt: Half,
vn_file: Word,
vn_aux: Word,
vn_next: Word,
};
pub const Vernaux = extern struct {
hash: Word,
flags: Half,
other: Half,
name: Word,
next: Word,
};
pub const Elf32_auxv_t = extern struct {
a_type: u32,
a_un: extern union {
a_val: u32,
},
};
pub const Elf64_auxv_t = extern struct {
a_type: u64,
a_un: extern union {
a_val: u64,
},
};
pub const Elf32_Nhdr = extern struct {
n_namesz: Word,
n_descsz: Word,
n_type: Word,
};
pub const Elf64_Nhdr = extern struct {
n_namesz: Word,
n_descsz: Word,
n_type: Word,
};
pub const Elf32_Move = extern struct {
m_value: Elf32_Xword,
m_info: Word,
m_poffset: Word,
m_repeat: Half,
m_stride: Half,
};
pub const Elf64_Move = extern struct {
m_value: Elf64_Xword,
m_info: Elf64_Xword,
m_poffset: Elf64_Xword,
m_repeat: Half,
m_stride: Half,
};
pub const Elf32_gptab = extern union {
gt_header: extern struct {
gt_current_g_value: Word,
gt_unused: Word,
},
gt_entry: extern struct {
gt_g_value: Word,
gt_bytes: Word,
},
};
pub const Elf32_RegInfo = extern struct {
ri_gprmask: Word,
ri_cprmask: [4]Word,
ri_gp_value: Sword,
};
pub const Elf_Options = extern struct {
kind: u8,
size: u8,
section: Elf32_Section,
info: Word,
};
pub const Elf_Options_Hw = extern struct {
hwp_flags1: Word,
hwp_flags2: Word,
};
pub const Elf32_Lib = extern struct {
l_name: Word,
l_time_stamp: Word,
l_checksum: Word,
l_version: Word,
l_flags: Word,
};
pub const Elf64_Lib = extern struct {
l_name: Word,
l_time_stamp: Word,
l_checksum: Word,
l_version: Word,
l_flags: Word,
};
pub const Elf32_Conflict = Elf32_Addr;
pub const Elf_MIPS_ABIFlags_v0 = extern struct {
version: Half,
isa_level: u8,
isa_rev: u8,
gpr_size: u8,
cpr1_size: u8,
cpr2_size: u8,
fp_abi: u8,
isa_ext: Word,
ases: Word,
flags1: Word,
flags2: Word,
};
comptime {
assert(@sizeOf(Elf32_Ehdr) == 52);
assert(@sizeOf(Elf64_Ehdr) == 64);
assert(@sizeOf(Elf32_Phdr) == 32);
assert(@sizeOf(Elf64_Phdr) == 56);
assert(@sizeOf(Elf32_Shdr) == 40);
assert(@sizeOf(Elf64_Shdr) == 64);
}
pub const Auxv = switch (@sizeOf(usize)) {
4 => Elf32_auxv_t,
8 => Elf64_auxv_t,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Ehdr = switch (@sizeOf(usize)) {
4 => Elf32_Ehdr,
8 => Elf64_Ehdr,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Phdr = switch (@sizeOf(usize)) {
4 => Elf32_Phdr,
8 => Elf64_Phdr,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Dyn = switch (@sizeOf(usize)) {
4 => Elf32_Dyn,
8 => Elf64_Dyn,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Rel = switch (@sizeOf(usize)) {
4 => Elf32_Rel,
8 => Elf64_Rel,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Rela = switch (@sizeOf(usize)) {
4 => Elf32_Rela,
8 => Elf64_Rela,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Relr = switch (@sizeOf(usize)) {
4 => Elf32_Relr,
8 => Elf64_Relr,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Shdr = switch (@sizeOf(usize)) {
4 => Elf32_Shdr,
8 => Elf64_Shdr,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Chdr = switch (@sizeOf(usize)) {
4 => Elf32_Chdr,
8 => Elf64_Chdr,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Sym = switch (@sizeOf(usize)) {
4 => Elf32_Sym,
8 => Elf64_Sym,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Addr = switch (@sizeOf(usize)) {
4 => Elf32_Addr,
8 => Elf64_Addr,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const OSABI = enum(u8) {
/// UNIX System V ABI
NONE = 0,
/// HP-UX operating system
HPUX = 1,
/// NetBSD
NETBSD = 2,
/// GNU (Hurd/Linux)
GNU = 3,
/// Solaris
SOLARIS = 6,
/// AIX
AIX = 7,
/// IRIX
IRIX = 8,
/// FreeBSD
FREEBSD = 9,
/// TRU64 UNIX
TRU64 = 10,
/// Novell Modesto
MODESTO = 11,
/// OpenBSD
OPENBSD = 12,
/// OpenVMS
OPENVMS = 13,
/// Hewlett-Packard Non-Stop Kernel
NSK = 14,
/// AROS
AROS = 15,
/// FenixOS
FENIXOS = 16,
/// Nuxi CloudABI
CLOUDABI = 17,
/// Stratus Technologies OpenVOS
OPENVOS = 18,
/// NVIDIA CUDA architecture
CUDA = 51,
/// AMD HSA Runtime
AMDGPU_HSA = 64,
/// AMD PAL Runtime
AMDGPU_PAL = 65,
/// AMD Mesa3D Runtime
AMDGPU_MESA3D = 66,
/// ARM
ARM = 97,
/// Standalone (embedded) application
STANDALONE = 255,
_,
};
/// Machine architectures.
///
/// See current registered ELF machine architectures at:
/// http://www.sco.com/developers/gabi/latest/ch4.eheader.html
pub const EM = enum(u16) {
/// No machine
NONE = 0,
/// AT&T WE 32100
M32 = 1,
/// SUN SPARC
SPARC = 2,
/// Intel 80386
@"386" = 3,
/// Motorola m68k family
@"68K" = 4,
/// Motorola m88k family
@"88K" = 5,
/// Intel MCU
IAMCU = 6,
/// Intel 80860
@"860" = 7,
/// MIPS R3000 (officially, big-endian only)
MIPS = 8,
/// IBM System/370
S370 = 9,
/// MIPS R3000 (and R4000) little-endian, Oct 4 1993 Draft (deprecated)
MIPS_RS3_LE = 10,
/// Old version of Sparc v9, from before the ABI (deprecated)
OLD_SPARCV9 = 11,
/// SPU Mark II
SPU_2 = 13,
/// HPPA
PARISC = 15,
/// Fujitsu VPP500 (also old version of PowerPC; deprecated)
VPP500 = 17,
/// Sun's "v8plus"
SPARC32PLUS = 18,
/// Intel 80960
@"960" = 19,
/// PowerPC
PPC = 20,
/// 64-bit PowerPC
PPC64 = 21,
/// IBM S/390
S390 = 22,
/// Sony/Toshiba/IBM SPU
SPU = 23,
/// NEC V800 series
V800 = 36,
/// Fujitsu FR20
FR20 = 37,
/// TRW RH32
RH32 = 38,
/// Motorola M*Core, aka RCE (also Fujitsu MMA)
MCORE = 39,
/// ARM
ARM = 40,
/// Digital Alpha
OLD_ALPHA = 41,
/// Renesas (formerly Hitachi) / SuperH SH
SH = 42,
/// SPARC v9 64-bit
SPARCV9 = 43,
/// Siemens Tricore embedded processor
TRICORE = 44,
/// ARC Cores
ARC = 45,
/// Renesas (formerly Hitachi) H8/300
H8_300 = 46,
/// Renesas (formerly Hitachi) H8/300H
H8_300H = 47,
/// Renesas (formerly Hitachi) H8S
H8S = 48,
/// Renesas (formerly Hitachi) H8/500
H8_500 = 49,
/// Intel IA-64 Processor
IA_64 = 50,
/// Stanford MIPS-X
MIPS_X = 51,
/// Motorola Coldfire
COLDFIRE = 52,
/// Motorola M68HC12
@"68HC12" = 53,
/// Fujitsu Multimedia Accelerator
MMA = 54,
/// Siemens PCP
PCP = 55,
/// Sony nCPU embedded RISC processor
NCPU = 56,
/// Denso NDR1 microprocessor
NDR1 = 57,
/// Motorola Star*Core processor
STARCORE = 58,
/// Toyota ME16 processor
ME16 = 59,
/// STMicroelectronics ST100 processor
ST100 = 60,
/// Advanced Logic Corp. TinyJ embedded processor
TINYJ = 61,
/// Advanced Micro Devices X86-64 processor
X86_64 = 62,
/// Sony DSP Processor
PDSP = 63,
/// Digital Equipment Corp. PDP-10
PDP10 = 64,
/// Digital Equipment Corp. PDP-11
PDP11 = 65,
/// Siemens FX66 microcontroller
FX66 = 66,
/// STMicroelectronics ST9+ 8/16 bit microcontroller
ST9PLUS = 67,
/// STMicroelectronics ST7 8-bit microcontroller
ST7 = 68,
/// Motorola MC68HC16 Microcontroller
@"68HC16" = 69,
/// Motorola MC68HC11 Microcontroller
@"68HC11" = 70,
/// Motorola MC68HC08 Microcontroller
@"68HC08" = 71,
/// Motorola MC68HC05 Microcontroller
@"68HC05" = 72,
/// Silicon Graphics SVx
SVX = 73,
/// STMicroelectronics ST19 8-bit cpu
ST19 = 74,
/// Digital VAX
VAX = 75,
/// Axis Communications 32-bit embedded processor
CRIS = 76,
/// Infineon Technologies 32-bit embedded cpu
JAVELIN = 77,
/// Element 14 64-bit DSP processor
FIREPATH = 78,
/// LSI Logic's 16-bit DSP processor
ZSP = 79,
/// Donald Knuth's educational 64-bit processor
MMIX = 80,
/// Harvard's machine-independent format
HUANY = 81,
/// SiTera Prism
PRISM = 82,
/// Atmel AVR 8-bit microcontroller
AVR = 83,
/// Fujitsu FR30
FR30 = 84,
/// Mitsubishi D10V
D10V = 85,
/// Mitsubishi D30V
D30V = 86,
/// Renesas V850 (formerly NEC V850)
V850 = 87,
/// Renesas M32R (formerly Mitsubishi M32R)
M32R = 88,
/// Matsushita MN10300
MN10300 = 89,
/// Matsushita MN10200
MN10200 = 90,
/// picoJava
PJ = 91,
/// OpenRISC 1000 32-bit embedded processor
OR1K = 92,
/// ARC International ARCompact processor
ARC_COMPACT = 93,
/// Tensilica Xtensa Architecture
XTENSA = 94,
/// Alphamosaic VideoCore processor (also old Sunplus S+core7 backend magic number)
VIDEOCORE = 95,
/// Thompson Multimedia General Purpose Processor
TMM_GPP = 96,
/// National Semiconductor 32000 series
NS32K = 97,
/// Tenor Network TPC processor
TPC = 98,
/// Trebia SNP 1000 processor (also old value for picoJava; deprecated)
SNP1K = 99,
/// STMicroelectronics ST200 microcontroller
ST200 = 100,
/// Ubicom IP2022 micro controller
IP2K = 101,
/// MAX Processor
MAX = 102,
/// National Semiconductor CompactRISC
CR = 103,
/// Fujitsu F2MC16
F2MC16 = 104,
/// TI msp430 micro controller
MSP430 = 105,
/// ADI Blackfin
BLACKFIN = 106,
/// S1C33 Family of Seiko Epson processors
SE_C33 = 107,
/// Sharp embedded microprocessor
SEP = 108,
/// Arca RISC Microprocessor
ARCA = 109,
/// Microprocessor series from PKU-Unity Ltd. and MPRC of Peking University
UNICORE = 110,
/// eXcess: 16/32/64-bit configurable embedded CPU
EXCESS = 111,
/// Icera Semiconductor Inc. Deep Execution Processor
DXP = 112,
/// Altera Nios II soft-core processor
ALTERA_NIOS2 = 113,
/// National Semiconductor CRX
CRX = 114,
/// Motorola XGATE embedded processor (also old value for National Semiconductor CompactRISC; deprecated)
XGATE = 115,
/// Infineon C16x/XC16x processor
C166 = 116,
/// Renesas M16C series microprocessors
M16C = 117,
/// Microchip Technology dsPIC30F Digital Signal Controller
DSPIC30F = 118,
/// Freescale Communication Engine RISC core
CE = 119,
/// Renesas M32C series microprocessors
M32C = 120,
/// Altium TSK3000 core
TSK3000 = 131,
/// Freescale RS08 embedded processor
RS08 = 132,
/// Analog Devices SHARC family of 32-bit DSP processors
SHARC = 133,
/// Cyan Technology eCOG2 microprocessor
ECOG2 = 134,
/// Sunplus S+core (and S+core7) RISC processor
SCORE = 135,
/// New Japan Radio (NJR) 24-bit DSP Processor
DSP24 = 136,
/// Broadcom VideoCore III processor
VIDEOCORE3 = 137,
/// RISC processor for Lattice FPGA architecture
LATTICEMICO32 = 138,
/// Seiko Epson C17 family
SE_C17 = 139,
/// Texas Instruments TMS320C6000 DSP family
TI_C6000 = 140,
/// Texas Instruments TMS320C2000 DSP family
TI_C2000 = 141,
/// Texas Instruments TMS320C55x DSP family
TI_C5500 = 142,
/// Texas Instruments Programmable Realtime Unit
TI_PRU = 144,
/// STMicroelectronics 64bit VLIW Data Signal Processor
MMDSP_PLUS = 160,
/// Cypress M8C microprocessor
CYPRESS_M8C = 161,
/// Renesas R32C series microprocessors
R32C = 162,
/// NXP Semiconductors TriMedia architecture family
TRIMEDIA = 163,
/// QUALCOMM DSP6 Processor
QDSP6 = 164,
/// Intel 8051 and variants
@"8051" = 165,
/// STMicroelectronics STxP7x family
STXP7X = 166,
/// Andes Technology compact code size embedded RISC processor family
NDS32 = 167,
/// Cyan Technology eCOG1X family
ECOG1X = 168,
/// Dallas Semiconductor MAXQ30 Core Micro-controllers
MAXQ30 = 169,
/// New Japan Radio (NJR) 16-bit DSP Processor
XIMO16 = 170,
/// M2000 Reconfigurable RISC Microprocessor
MANIK = 171,
/// Cray Inc. NV2 vector architecture
CRAYNV2 = 172,
/// Renesas RX family
RX = 173,
/// Imagination Technologies Meta processor architecture
METAG = 174,
/// MCST Elbrus general purpose hardware architecture
MCST_ELBRUS = 175,
/// Cyan Technology eCOG16 family
ECOG16 = 176,
/// National Semiconductor CompactRISC 16-bit processor
CR16 = 177,
/// Freescale Extended Time Processing Unit
ETPU = 178,
/// Infineon Technologies SLE9X core
SLE9X = 179,
/// Intel L10M
L10M = 180,
/// Intel K10M
K10M = 181,
/// ARM 64-bit architecture
AARCH64 = 183,
/// Atmel Corporation 32-bit microprocessor family
AVR32 = 185,
/// STMicroeletronics STM8 8-bit microcontroller
STM8 = 186,
/// Tilera TILE64 multicore architecture family
TILE64 = 187,
/// Tilera TILEPro multicore architecture family
TILEPRO = 188,
/// Xilinx MicroBlaze 32-bit RISC soft processor core
MICROBLAZE = 189,
/// NVIDIA CUDA architecture
CUDA = 190,
/// Tilera TILE-Gx multicore architecture family
TILEGX = 191,
/// CloudShield architecture family
CLOUDSHIELD = 192,
/// KIPO-KAIST Core-A 1st generation processor family
COREA_1ST = 193,
/// KIPO-KAIST Core-A 2nd generation processor family
COREA_2ND = 194,
/// Synopsys ARCompact V2
ARC_COMPACT2 = 195,
/// Open8 8-bit RISC soft processor core
OPEN8 = 196,
/// Renesas RL78 family
RL78 = 197,
/// Broadcom VideoCore V processor
VIDEOCORE5 = 198,
/// Renesas 78K0R
@"78K0R" = 199,
/// Freescale 56800EX Digital Signal Controller (DSC)
@"56800EX" = 200,
/// Beyond BA1 CPU architecture
BA1 = 201,
/// Beyond BA2 CPU architecture
BA2 = 202,
/// XMOS xCORE processor family
XCORE = 203,
/// Microchip 8-bit PIC(r) family
MCHP_PIC = 204,
/// Intel Graphics Technology
INTELGT = 205,
/// KM211 KM32 32-bit processor
KM32 = 210,
/// KM211 KMX32 32-bit processor
KMX32 = 211,
/// KM211 KMX16 16-bit processor
KMX16 = 212,
/// KM211 KMX8 8-bit processor
KMX8 = 213,
/// KM211 KVARC processor
KVARC = 214,
/// Paneve CDP architecture family
CDP = 215,
/// Cognitive Smart Memory Processor
COGE = 216,
/// Bluechip Systems CoolEngine
COOL = 217,
/// Nanoradio Optimized RISC
NORC = 218,
/// CSR Kalimba architecture family
CSR_KALIMBA = 219,
/// Zilog Z80
Z80 = 220,
/// Controls and Data Services VISIUMcore processor
VISIUM = 221,
/// FTDI Chip FT32 high performance 32-bit RISC architecture
FT32 = 222,
/// Moxie processor family
MOXIE = 223,
/// AMD GPU architecture
AMDGPU = 224,
/// RISC-V
RISCV = 243,
/// Lanai 32-bit processor
LANAI = 244,
/// CEVA Processor Architecture Family
CEVA = 245,
/// CEVA X2 Processor Family
CEVA_X2 = 246,
/// Linux BPF - in-kernel virtual machine
BPF = 247,
/// Graphcore Intelligent Processing Unit
GRAPHCORE_IPU = 248,
/// Imagination Technologies
IMG1 = 249,
/// Netronome Flow Processor
NFP = 250,
/// NEC Vector Engine
VE = 251,
/// C-SKY processor family
CSKY = 252,
/// Synopsys ARCv2.3 64-bit
ARC_COMPACT3_64 = 253,
/// MOS Technology MCS 6502 processor
MCS6502 = 254,
/// Synopsys ARCv2.3 32-bit
ARC_COMPACT3 = 255,
/// Kalray VLIW core of the MPPA processor family
KVX = 256,
/// WDC 65816/65C816
@"65816" = 257,
/// LoongArch
LOONGARCH = 258,
/// ChipON KungFu32
KF32 = 259,
/// LAPIS nX-U16/U8
U16_U8CORE = 260,
/// Tachyum
TACHYUM = 261,
/// NXP 56800EF Digital Signal Controller (DSC)
@"56800EF" = 262,
/// AVR
AVR_OLD = 0x1057,
/// MSP430
MSP430_OLD = 0x1059,
/// Morpho MT
MT = 0x2530,
/// FR30
CYGNUS_FR30 = 0x3330,
/// WebAssembly (as used by LLVM)
WEBASSEMBLY = 0x4157,
/// Infineon Technologies 16-bit microcontroller with C166-V2 core
XC16X = 0x4688,
/// Freescale S12Z
S12Z = 0x4def,
/// DLX
DLX = 0x5aa5,
/// FRV
CYGNUS_FRV = 0x5441,
/// D10V
CYGNUS_D10V = 0x7650,
/// D30V
CYGNUS_D30V = 0x7676,
/// Ubicom IP2xxx
IP2K_OLD = 0x8217,
/// Cygnus PowerPC ELF
CYGNUS_POWERPC = 0x9025,
/// Alpha
ALPHA = 0x9026,
/// Cygnus M32R ELF
CYGNUS_M32R = 0x9041,
/// V850
CYGNUS_V850 = 0x9080,
/// Old S/390
S390_OLD = 0xa390,
/// Old unofficial value for Xtensa
XTENSA_OLD = 0xabc7,
/// Xstormy16
XSTORMY16 = 0xad45,
/// MN10300
CYGNUS_MN10300 = 0xbeef,
/// MN10200
CYGNUS_MN10200 = 0xdead,
/// Renesas M32C and M16C
M32C_OLD = 0xfeb0,
/// Vitesse IQ2000
IQ2000 = 0xfeba,
/// NIOS
NIOS32 = 0xfebb,
/// Toshiba MeP
CYGNUS_MEP = 0xf00d,
/// Old unofficial value for Moxie
MOXIE_OLD = 0xfeed,
/// Old MicroBlaze
MICROBLAZE_OLD = 0xbaab,
/// Adapteva's Epiphany architecture
ADAPTEVA_EPIPHANY = 0x1223,
/// Parallax Propeller (P1)
/// This value is an unofficial ELF value used in: https://github.com/parallaxinc/propgcc
PROPELLER = 0x5072,
/// Parallax Propeller 2 (P2)
/// This value is an unofficial ELF value used in: https://github.com/ne75/llvm-project
PROPELLER2 = 300,
_,
};
pub const GRP_COMDAT = 1;
/// Section data should be writable during execution.
pub const SHF_WRITE = 0x1;
/// Section occupies memory during program execution.
pub const SHF_ALLOC = 0x2;
/// Section contains executable machine instructions.
pub const SHF_EXECINSTR = 0x4;
/// The data in this section may be merged.
pub const SHF_MERGE = 0x10;
/// The data in this section is null-terminated strings.
pub const SHF_STRINGS = 0x20;
/// A field in this section holds a section header table index.
pub const SHF_INFO_LINK = 0x40;
/// Adds special ordering requirements for link editors.
pub const SHF_LINK_ORDER = 0x80;
/// This section requires special OS-specific processing to avoid incorrect
/// behavior.
pub const SHF_OS_NONCONFORMING = 0x100;
/// This section is a member of a section group.
pub const SHF_GROUP = 0x200;
/// This section holds Thread-Local Storage.
pub const SHF_TLS = 0x400;
/// Identifies a section containing compressed data.
pub const SHF_COMPRESSED = 0x800;
/// Not to be GCed by the linker
pub const SHF_GNU_RETAIN = 0x200000;
/// This section is excluded from the final executable or shared library.
pub const SHF_EXCLUDE = 0x80000000;
/// Start of target-specific flags.
pub const SHF_MASKOS = 0x0ff00000;
/// Bits indicating processor-specific flags.
pub const SHF_MASKPROC = 0xf0000000;
/// All sections with the "d" flag are grouped together by the linker to form
/// the data section and the dp register is set to the start of the section by
/// the boot code.
pub const XCORE_SHF_DP_SECTION = 0x10000000;
/// All sections with the "c" flag are grouped together by the linker to form
/// the constant pool and the cp register is set to the start of the constant
/// pool by the boot code.
pub const XCORE_SHF_CP_SECTION = 0x20000000;
/// If an object file section does not have this flag set, then it may not hold
/// more than 2GB and can be freely referred to in objects using smaller code
/// models. Otherwise, only objects using larger code models can refer to them.
/// For example, a medium code model object can refer to data in a section that
/// sets this flag besides being able to refer to data in a section that does
/// not set it; likewise, a small code model object can refer only to code in a
/// section that does not set this flag.
pub const SHF_X86_64_LARGE = 0x10000000;
/// All sections with the GPREL flag are grouped into a global data area
/// for faster accesses
pub const SHF_HEX_GPREL = 0x10000000;
/// Section contains text/data which may be replicated in other sections.
/// Linker must retain only one copy.
pub const SHF_MIPS_NODUPES = 0x01000000;
/// Linker must generate implicit hidden weak names.
pub const SHF_MIPS_NAMES = 0x02000000;
/// Section data local to process.
pub const SHF_MIPS_LOCAL = 0x04000000;
/// Do not strip this section.
pub const SHF_MIPS_NOSTRIP = 0x08000000;
/// Section must be part of global data area.
pub const SHF_MIPS_GPREL = 0x10000000;
/// This section should be merged.
pub const SHF_MIPS_MERGE = 0x20000000;
/// Address size to be inferred from section entry size.
pub const SHF_MIPS_ADDR = 0x40000000;
/// Section data is string data by default.
pub const SHF_MIPS_STRING = 0x80000000;
/// Make code section unreadable when in execute-only mode
pub const SHF_ARM_PURECODE = 0x2000000;
/// Execute
pub const PF_X = 1;
/// Write
pub const PF_W = 2;
/// Read
pub const PF_R = 4;
/// Bits for operating system-specific semantics.
pub const PF_MASKOS = 0x0ff00000;
/// Bits for processor-specific semantics.
pub const PF_MASKPROC = 0xf0000000;
/// Undefined section
pub const SHN_UNDEF = 0;
/// Start of reserved indices
pub const SHN_LORESERVE = 0xff00;
/// Start of processor-specific
pub const SHN_LOPROC = 0xff00;
/// End of processor-specific
pub const SHN_HIPROC = 0xff1f;
pub const SHN_LIVEPATCH = 0xff20;
/// Associated symbol is absolute
pub const SHN_ABS = 0xfff1;
/// Associated symbol is common
pub const SHN_COMMON = 0xfff2;
/// End of reserved indices
pub const SHN_HIRESERVE = 0xffff;
// Legal values for ch_type (compression algorithm).
pub const COMPRESS = enum(u32) {
ZLIB = 1,
ZSTD = 2,
LOOS = 0x60000000,
HIOS = 0x6fffffff,
LOPROC = 0x70000000,
HIPROC = 0x7fffffff,
_,
};
/// AMD x86-64 relocations.
pub const R_X86_64 = enum(u32) {
/// No reloc
NONE = 0,
/// Direct 64 bit
@"64" = 1,
/// PC relative 32 bit signed
PC32 = 2,
/// 32 bit GOT entry
GOT32 = 3,
/// 32 bit PLT address
PLT32 = 4,
/// Copy symbol at runtime
COPY = 5,
/// Create GOT entry
GLOB_DAT = 6,
/// Create PLT entry
JUMP_SLOT = 7,
/// Adjust by program base
RELATIVE = 8,
/// 32 bit signed PC relative offset to GOT
GOTPCREL = 9,
/// Direct 32 bit zero extended
@"32" = 10,
/// Direct 32 bit sign extended
@"32S" = 11,
/// Direct 16 bit zero extended
@"16" = 12,
/// 16 bit sign extended pc relative
PC16 = 13,
/// Direct 8 bit sign extended
@"8" = 14,
/// 8 bit sign extended pc relative
PC8 = 15,
/// ID of module containing symbol
DTPMOD64 = 16,
/// Offset in module's TLS block
DTPOFF64 = 17,
/// Offset in initial TLS block
TPOFF64 = 18,
/// 32 bit signed PC relative offset to two GOT entries for GD symbol
TLSGD = 19,
/// 32 bit signed PC relative offset to two GOT entries for LD symbol
TLSLD = 20,
/// Offset in TLS block
DTPOFF32 = 21,
/// 32 bit signed PC relative offset to GOT entry for IE symbol
GOTTPOFF = 22,
/// Offset in initial TLS block
TPOFF32 = 23,
/// PC relative 64 bit
PC64 = 24,
/// 64 bit offset to GOT
GOTOFF64 = 25,
/// 32 bit signed pc relative offset to GOT
GOTPC32 = 26,
/// 64 bit GOT entry offset
GOT64 = 27,
/// 64 bit PC relative offset to GOT entry
GOTPCREL64 = 28,
/// 64 bit PC relative offset to GOT
GOTPC64 = 29,
/// Like GOT64, says PLT entry needed
GOTPLT64 = 30,
/// 64-bit GOT relative offset to PLT entry
PLTOFF64 = 31,
/// Size of symbol plus 32-bit addend
SIZE32 = 32,
/// Size of symbol plus 64-bit addend
SIZE64 = 33,
/// GOT offset for TLS descriptor
GOTPC32_TLSDESC = 34,
/// Marker for call through TLS descriptor
TLSDESC_CALL = 35,
/// TLS descriptor
TLSDESC = 36,
/// Adjust indirectly by program base
IRELATIVE = 37,
/// 64-bit adjust by program base
RELATIVE64 = 38,
/// 39 Reserved was PC32_BND
/// 40 Reserved was PLT32_BND
/// Load from 32 bit signed pc relative offset to GOT entry without REX prefix, relaxable
GOTPCRELX = 41,
/// Load from 32 bit signed PC relative offset to GOT entry with REX prefix, relaxable
REX_GOTPCRELX = 42,
_,
};
/// AArch64 relocations.
pub const R_AARCH64 = enum(u32) {
/// No relocation.
NONE = 0,
/// ILP32 AArch64 relocs.
/// Direct 32 bit.
P32_ABS32 = 1,
/// Copy symbol at runtime.
P32_COPY = 180,
/// Create GOT entry.
P32_GLOB_DAT = 181,
/// Create PLT entry.
P32_JUMP_SLOT = 182,
/// Adjust by program base.
P32_RELATIVE = 183,
/// Module number, 32 bit.
P32_TLS_DTPMOD = 184,
/// Module-relative offset, 32 bit.
P32_TLS_DTPREL = 185,
/// TP-relative offset, 32 bit.
P32_TLS_TPREL = 186,
/// TLS Descriptor.
P32_TLSDESC = 187,
/// STT_GNU_IFUNC relocation.
P32_IRELATIVE = 188,
/// LP64 AArch64 relocs.
/// Direct 64 bit.
ABS64 = 257,
/// Direct 32 bit.
ABS32 = 258,
/// Direct 16-bit.
ABS16 = 259,
/// PC-relative 64-bit.
PREL64 = 260,
/// PC-relative 32-bit.
PREL32 = 261,
/// PC-relative 16-bit.
PREL16 = 262,
/// Dir. MOVZ imm. from bits 15:0.
MOVW_UABS_G0 = 263,
/// Likewise for MOVK; no check.
MOVW_UABS_G0_NC = 264,
/// Dir. MOVZ imm. from bits 31:16.
MOVW_UABS_G1 = 265,
/// Likewise for MOVK; no check.
MOVW_UABS_G1_NC = 266,
/// Dir. MOVZ imm. from bits 47:32.
MOVW_UABS_G2 = 267,
/// Likewise for MOVK; no check.
MOVW_UABS_G2_NC = 268,
/// Dir. MOV{K,Z} imm. from 63:48.
MOVW_UABS_G3 = 269,
/// Dir. MOV{N,Z} imm. from 15:0.
MOVW_SABS_G0 = 270,
/// Dir. MOV{N,Z} imm. from 31:16.
MOVW_SABS_G1 = 271,
/// Dir. MOV{N,Z} imm. from 47:32.
MOVW_SABS_G2 = 272,
/// PC-rel. LD imm. from bits 20:2.
LD_PREL_LO19 = 273,
/// PC-rel. ADR imm. from bits 20:0.
ADR_PREL_LO21 = 274,
/// Page-rel. ADRP imm. from 32:12.
ADR_PREL_PG_HI21 = 275,
/// Likewise; no overflow check.
ADR_PREL_PG_HI21_NC = 276,
/// Dir. ADD imm. from bits 11:0.
ADD_ABS_LO12_NC = 277,
/// Likewise for LD/ST; no check.
LDST8_ABS_LO12_NC = 278,
/// PC-rel. TBZ/TBNZ imm. from 15:2.
TSTBR14 = 279,
/// PC-rel. cond. br. imm. from 20:2.
CONDBR19 = 280,
/// PC-rel. B imm. from bits 27:2.
JUMP26 = 282,
/// Likewise for CALL.
CALL26 = 283,
/// Dir. ADD imm. from bits 11:1.
LDST16_ABS_LO12_NC = 284,
/// Likewise for bits 11:2.
LDST32_ABS_LO12_NC = 285,
/// Likewise for bits 11:3.
LDST64_ABS_LO12_NC = 286,
/// PC-rel. MOV{N,Z} imm. from 15:0.
MOVW_PREL_G0 = 287,
/// Likewise for MOVK; no check.
MOVW_PREL_G0_NC = 288,
/// PC-rel. MOV{N,Z} imm. from 31:16.
MOVW_PREL_G1 = 289,
/// Likewise for MOVK; no check.
MOVW_PREL_G1_NC = 290,
/// PC-rel. MOV{N,Z} imm. from 47:32.
MOVW_PREL_G2 = 291,
/// Likewise for MOVK; no check.
MOVW_PREL_G2_NC = 292,
/// PC-rel. MOV{N,Z} imm. from 63:48.
MOVW_PREL_G3 = 293,
/// Dir. ADD imm. from bits 11:4.
LDST128_ABS_LO12_NC = 299,
/// GOT-rel. off. MOV{N,Z} imm. 15:0.
MOVW_GOTOFF_G0 = 300,
/// Likewise for MOVK; no check.
MOVW_GOTOFF_G0_NC = 301,
/// GOT-rel. o. MOV{N,Z} imm. 31:16.
MOVW_GOTOFF_G1 = 302,
/// Likewise for MOVK; no check.
MOVW_GOTOFF_G1_NC = 303,
/// GOT-rel. o. MOV{N,Z} imm. 47:32.
MOVW_GOTOFF_G2 = 304,
/// Likewise for MOVK; no check.
MOVW_GOTOFF_G2_NC = 305,
/// GOT-rel. o. MOV{N,Z} imm. 63:48.
MOVW_GOTOFF_G3 = 306,
/// GOT-relative 64-bit.
GOTREL64 = 307,
/// GOT-relative 32-bit.
GOTREL32 = 308,
/// PC-rel. GOT off. load imm. 20:2.
GOT_LD_PREL19 = 309,
/// GOT-rel. off. LD/ST imm. 14:3.
LD64_GOTOFF_LO15 = 310,
/// P-page-rel. GOT off. ADRP 32:12.
ADR_GOT_PAGE = 311,
/// Dir. GOT off. LD/ST imm. 11:3.
LD64_GOT_LO12_NC = 312,
/// GOT-page-rel. GOT off. LD/ST 14:3
LD64_GOTPAGE_LO15 = 313,
/// PC-relative ADR imm. 20:0.
TLSGD_ADR_PREL21 = 512,
/// page-rel. ADRP imm. 32:12.
TLSGD_ADR_PAGE21 = 513,
/// direct ADD imm. from 11:0.
TLSGD_ADD_LO12_NC = 514,
/// GOT-rel. MOV{N,Z} 31:16.
TLSGD_MOVW_G1 = 515,
/// GOT-rel. MOVK imm. 15:0.
TLSGD_MOVW_G0_NC = 516,
/// Like 512; local dynamic model.
TLSLD_ADR_PREL21 = 517,
/// Like 513; local dynamic model.
TLSLD_ADR_PAGE21 = 518,
/// Like 514; local dynamic model.
TLSLD_ADD_LO12_NC = 519,
/// Like 515; local dynamic model.
TLSLD_MOVW_G1 = 520,
/// Like 516; local dynamic model.
TLSLD_MOVW_G0_NC = 521,
/// TLS PC-rel. load imm. 20:2.
TLSLD_LD_PREL19 = 522,
/// TLS DTP-rel. MOV{N,Z} 47:32.
TLSLD_MOVW_DTPREL_G2 = 523,
/// TLS DTP-rel. MOV{N,Z} 31:16.
TLSLD_MOVW_DTPREL_G1 = 524,
/// Likewise; MOVK; no check.
TLSLD_MOVW_DTPREL_G1_NC = 525,
/// TLS DTP-rel. MOV{N,Z} 15:0.
TLSLD_MOVW_DTPREL_G0 = 526,
/// Likewise; MOVK; no check.
TLSLD_MOVW_DTPREL_G0_NC = 527,
/// DTP-rel. ADD imm. from 23:12.
TLSLD_ADD_DTPREL_HI12 = 528,
/// DTP-rel. ADD imm. from 11:0.
TLSLD_ADD_DTPREL_LO12 = 529,
/// Likewise; no ovfl. check.
TLSLD_ADD_DTPREL_LO12_NC = 530,
/// DTP-rel. LD/ST imm. 11:0.
TLSLD_LDST8_DTPREL_LO12 = 531,
/// Likewise; no check.
TLSLD_LDST8_DTPREL_LO12_NC = 532,
/// DTP-rel. LD/ST imm. 11:1.
TLSLD_LDST16_DTPREL_LO12 = 533,
/// Likewise; no check.
TLSLD_LDST16_DTPREL_LO12_NC = 534,
/// DTP-rel. LD/ST imm. 11:2.
TLSLD_LDST32_DTPREL_LO12 = 535,
/// Likewise; no check.
TLSLD_LDST32_DTPREL_LO12_NC = 536,
/// DTP-rel. LD/ST imm. 11:3.
TLSLD_LDST64_DTPREL_LO12 = 537,
/// Likewise; no check.
TLSLD_LDST64_DTPREL_LO12_NC = 538,
/// GOT-rel. MOV{N,Z} 31:16.
TLSIE_MOVW_GOTTPREL_G1 = 539,
/// GOT-rel. MOVK 15:0.
TLSIE_MOVW_GOTTPREL_G0_NC = 540,
/// Page-rel. ADRP 32:12.
TLSIE_ADR_GOTTPREL_PAGE21 = 541,
/// Direct LD off. 11:3.
TLSIE_LD64_GOTTPREL_LO12_NC = 542,
/// PC-rel. load imm. 20:2.
TLSIE_LD_GOTTPREL_PREL19 = 543,
/// TLS TP-rel. MOV{N,Z} 47:32.
TLSLE_MOVW_TPREL_G2 = 544,
/// TLS TP-rel. MOV{N,Z} 31:16.
TLSLE_MOVW_TPREL_G1 = 545,
/// Likewise; MOVK; no check.
TLSLE_MOVW_TPREL_G1_NC = 546,
/// TLS TP-rel. MOV{N,Z} 15:0.
TLSLE_MOVW_TPREL_G0 = 547,
/// Likewise; MOVK; no check.
TLSLE_MOVW_TPREL_G0_NC = 548,
/// TP-rel. ADD imm. 23:12.
TLSLE_ADD_TPREL_HI12 = 549,
/// TP-rel. ADD imm. 11:0.
TLSLE_ADD_TPREL_LO12 = 550,
/// Likewise; no ovfl. check.
TLSLE_ADD_TPREL_LO12_NC = 551,
/// TP-rel. LD/ST off. 11:0.
TLSLE_LDST8_TPREL_LO12 = 552,
/// Likewise; no ovfl. check.
TLSLE_LDST8_TPREL_LO12_NC = 553,
/// TP-rel. LD/ST off. 11:1.
TLSLE_LDST16_TPREL_LO12 = 554,
/// Likewise; no check.
TLSLE_LDST16_TPREL_LO12_NC = 555,
/// TP-rel. LD/ST off. 11:2.
TLSLE_LDST32_TPREL_LO12 = 556,
/// Likewise; no check.
TLSLE_LDST32_TPREL_LO12_NC = 557,
/// TP-rel. LD/ST off. 11:3.
TLSLE_LDST64_TPREL_LO12 = 558,
/// Likewise; no check.
TLSLE_LDST64_TPREL_LO12_NC = 559,
/// PC-rel. load immediate 20:2.
TLSDESC_LD_PREL19 = 560,
/// PC-rel. ADR immediate 20:0.
TLSDESC_ADR_PREL21 = 561,
/// Page-rel. ADRP imm. 32:12.
TLSDESC_ADR_PAGE21 = 562,
/// Direct LD off. from 11:3.
TLSDESC_LD64_LO12 = 563,
/// Direct ADD imm. from 11:0.
TLSDESC_ADD_LO12 = 564,
/// GOT-rel. MOV{N,Z} imm. 31:16.
TLSDESC_OFF_G1 = 565,
/// GOT-rel. MOVK imm. 15:0; no ck.
TLSDESC_OFF_G0_NC = 566,
/// Relax LDR.
TLSDESC_LDR = 567,
/// Relax ADD.
TLSDESC_ADD = 568,
/// Relax BLR.
TLSDESC_CALL = 569,
/// TP-rel. LD/ST off. 11:4.
TLSLE_LDST128_TPREL_LO12 = 570,
/// Likewise; no check.
TLSLE_LDST128_TPREL_LO12_NC = 571,
/// DTP-rel. LD/ST imm. 11:4.
TLSLD_LDST128_DTPREL_LO12 = 572,
/// Likewise; no check.
TLSLD_LDST128_DTPREL_LO12_NC = 573,
/// Copy symbol at runtime.
COPY = 1024,
/// Create GOT entry.
GLOB_DAT = 1025,
/// Create PLT entry.
JUMP_SLOT = 1026,
/// Adjust by program base.
RELATIVE = 1027,
/// Module number, 64 bit.
TLS_DTPMOD = 1028,
/// Module-relative offset, 64 bit.
TLS_DTPREL = 1029,
/// TP-relative offset, 64 bit.
TLS_TPREL = 1030,
/// TLS Descriptor.
TLSDESC = 1031,
/// STT_GNU_IFUNC relocation.
IRELATIVE = 1032,
_,
};
/// RISC-V relocations.
pub const R_RISCV = enum(u32) {
NONE = 0,
@"32" = 1,
@"64" = 2,
RELATIVE = 3,
COPY = 4,
JUMP_SLOT = 5,
TLS_DTPMOD32 = 6,
TLS_DTPMOD64 = 7,
TLS_DTPREL32 = 8,
TLS_DTPREL64 = 9,
TLS_TPREL32 = 10,
TLS_TPREL64 = 11,
TLSDESC = 12,
BRANCH = 16,
JAL = 17,
CALL = 18,
CALL_PLT = 19,
GOT_HI20 = 20,
TLS_GOT_HI20 = 21,
TLS_GD_HI20 = 22,
PCREL_HI20 = 23,
PCREL_LO12_I = 24,
PCREL_LO12_S = 25,
HI20 = 26,
LO12_I = 27,
LO12_S = 28,
TPREL_HI20 = 29,
TPREL_LO12_I = 30,
TPREL_LO12_S = 31,
TPREL_ADD = 32,
ADD8 = 33,
ADD16 = 34,
ADD32 = 35,
ADD64 = 36,
SUB8 = 37,
SUB16 = 38,
SUB32 = 39,
SUB64 = 40,
GNU_VTINHERIT = 41,
GNU_VTENTRY = 42,
ALIGN = 43,
RVC_BRANCH = 44,
RVC_JUMP = 45,
RVC_LUI = 46,
GPREL_I = 47,
GPREL_S = 48,
TPREL_I = 49,
TPREL_S = 50,
RELAX = 51,
SUB6 = 52,
SET6 = 53,
SET8 = 54,
SET16 = 55,
SET32 = 56,
@"32_PCREL" = 57,
IRELATIVE = 58,
PLT32 = 59,
SET_ULEB128 = 60,
SUB_ULEB128 = 61,
_,
};
/// PowerPC64 relocations.
pub const R_PPC64 = enum(u32) {
NONE = 0,
ADDR32 = 1,
ADDR24 = 2,
ADDR16 = 3,
ADDR16_LO = 4,
ADDR16_HI = 5,
ADDR16_HA = 6,
ADDR14 = 7,
ADDR14_BRTAKEN = 8,
ADDR14_BRNTAKEN = 9,
REL24 = 10,
REL14 = 11,
REL14_BRTAKEN = 12,
REL14_BRNTAKEN = 13,
GOT16 = 14,
GOT16_LO = 15,
GOT16_HI = 16,
GOT16_HA = 17,
COPY = 19,
GLOB_DAT = 20,
JMP_SLOT = 21,
RELATIVE = 22,
REL32 = 26,
PLT16_LO = 29,
PLT16_HI = 30,
PLT16_HA = 31,
ADDR64 = 38,
ADDR16_HIGHER = 39,
ADDR16_HIGHERA = 40,
ADDR16_HIGHEST = 41,
ADDR16_HIGHESTA = 42,
REL64 = 44,
TOC16 = 47,
TOC16_LO = 48,
TOC16_HI = 49,
TOC16_HA = 50,
TOC = 51,
ADDR16_DS = 56,
ADDR16_LO_DS = 57,
GOT16_DS = 58,
GOT16_LO_DS = 59,
PLT16_LO_DS = 60,
TOC16_DS = 63,
TOC16_LO_DS = 64,
TLS = 67,
DTPMOD64 = 68,
TPREL16 = 69,
TPREL16_LO = 70,
TPREL16_HI = 71,
TPREL16_HA = 72,
TPREL64 = 73,
DTPREL16 = 74,
DTPREL16_LO = 75,
DTPREL16_HI = 76,
DTPREL16_HA = 77,
DTPREL64 = 78,
GOT_TLSGD16 = 79,
GOT_TLSGD16_LO = 80,
GOT_TLSGD16_HI = 81,
GOT_TLSGD16_HA = 82,
GOT_TLSLD16 = 83,
GOT_TLSLD16_LO = 84,
GOT_TLSLD16_HI = 85,
GOT_TLSLD16_HA = 86,
GOT_TPREL16_DS = 87,
GOT_TPREL16_LO_DS = 88,
GOT_TPREL16_HI = 89,
GOT_TPREL16_HA = 90,
GOT_DTPREL16_DS = 91,
GOT_DTPREL16_LO_DS = 92,
GOT_DTPREL16_HI = 93,
GOT_DTPREL16_HA = 94,
TPREL16_DS = 95,
TPREL16_LO_DS = 96,
TPREL16_HIGHER = 97,
TPREL16_HIGHERA = 98,
TPREL16_HIGHEST = 99,
TPREL16_HIGHESTA = 100,
DTPREL16_DS = 101,
DTPREL16_LO_DS = 102,
DTPREL16_HIGHER = 103,
DTPREL16_HIGHERA = 104,
DTPREL16_HIGHEST = 105,
DTPREL16_HIGHESTA = 106,
TLSGD = 107,
TLSLD = 108,
ADDR16_HIGH = 110,
ADDR16_HIGHA = 111,
TPREL16_HIGH = 112,
TPREL16_HIGHA = 113,
DTPREL16_HIGH = 114,
DTPREL16_HIGHA = 115,
REL24_NOTOC = 116,
PLTSEQ = 119,
PLTCALL = 120,
PLTSEQ_NOTOC = 121,
PLTCALL_NOTOC = 122,
PCREL_OPT = 123,
PCREL34 = 132,
GOT_PCREL34 = 133,
PLT_PCREL34 = 134,
PLT_PCREL34_NOTOC = 135,
TPREL34 = 146,
DTPREL34 = 147,
GOT_TLSGD_PCREL34 = 148,
GOT_TLSLD_PCREL34 = 149,
GOT_TPREL_PCREL34 = 150,
IRELATIVE = 248,
REL16 = 249,
REL16_LO = 250,
REL16_HI = 251,
REL16_HA = 252,
_,
};
pub const STV = enum(u2) {
DEFAULT = 0,
INTERNAL = 1,
HIDDEN = 2,
PROTECTED = 3,
};
pub const ar_hdr = extern struct {
/// Member file name, sometimes / terminated.
ar_name: [16]u8,
/// File date, decimal seconds since Epoch.
ar_date: [12]u8,
/// User ID, in ASCII format.
ar_uid: [6]u8,
/// Group ID, in ASCII format.
ar_gid: [6]u8,
/// File mode, in ASCII octal.
ar_mode: [8]u8,
/// File size, in ASCII decimal.
ar_size: [10]u8,
/// Always contains ARFMAG.
ar_fmag: [2]u8,
pub fn date(self: ar_hdr) std.fmt.ParseIntError!u64 {
const value = mem.trimRight(u8, &self.ar_date, &[_]u8{0x20});
return std.fmt.parseInt(u64, value, 10);
}
pub fn size(self: ar_hdr) std.fmt.ParseIntError!u32 {
const value = mem.trimRight(u8, &self.ar_size, &[_]u8{0x20});
return std.fmt.parseInt(u32, value, 10);
}
pub fn isStrtab(self: ar_hdr) bool {
return mem.eql(u8, &self.ar_name, STRNAME);
}
pub fn isSymtab(self: ar_hdr) bool {
return mem.eql(u8, &self.ar_name, SYMNAME);
}
pub fn isSymtab64(self: ar_hdr) bool {
return mem.eql(u8, &self.ar_name, SYM64NAME);
}
pub fn isSymdef(self: ar_hdr) bool {
return mem.eql(u8, &self.ar_name, SYMDEFNAME);
}
pub fn isSymdefSorted(self: ar_hdr) bool {
return mem.eql(u8, &self.ar_name, SYMDEFSORTEDNAME);
}
pub fn name(self: *const ar_hdr) ?[]const u8 {
const value = &self.ar_name;
if (value[0] == '/') return null;
const sentinel = mem.indexOfScalar(u8, value, '/') orelse value.len;
return value[0..sentinel];
}
pub fn nameOffset(self: ar_hdr) std.fmt.ParseIntError!?u32 {
const value = &self.ar_name;
if (value[0] != '/') return null;
const trimmed = mem.trimRight(u8, value, &[_]u8{0x20});
return try std.fmt.parseInt(u32, trimmed[1..], 10);
}
};
fn genSpecialMemberName(comptime name: []const u8) *const [16]u8 {
assert(name.len <= 16);
const padding = 16 - name.len;
return name ++ &[_]u8{0x20} ** padding;
}
// Archive files start with the ARMAG identifying string. Then follows a
// `struct ar_hdr', and as many bytes of member file data as its `ar_size'
// member indicates, for each member file.
/// String that begins an archive file.
pub const ARMAG = "!<arch>\n";
/// String in ar_fmag at the end of each header.
pub const ARFMAG = "`\n";
/// 32-bit symtab identifier
pub const SYMNAME = genSpecialMemberName("/");
/// Strtab identifier
pub const STRNAME = genSpecialMemberName("//");
/// 64-bit symtab identifier
pub const SYM64NAME = genSpecialMemberName("/SYM64/");
pub const SYMDEFNAME = genSpecialMemberName("__.SYMDEF");
pub const SYMDEFSORTEDNAME = genSpecialMemberName("__.SYMDEF SORTED");