zig/lib/std/array_list.zig

2278 lines
86 KiB
Zig

const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const math = std.math;
const Allocator = mem.Allocator;
/// A contiguous, growable list of items in memory.
/// This is a wrapper around an array of T values. Initialize with `init`.
///
/// This struct internally stores a `std.mem.Allocator` for memory management.
/// To manually specify an allocator with each function call see `ArrayListUnmanaged`.
pub fn ArrayList(comptime T: type) type {
return ArrayListAligned(T, null);
}
/// A contiguous, growable list of arbitrarily aligned items in memory.
/// This is a wrapper around an array of T values aligned to `alignment`-byte
/// addresses. If the specified alignment is `null`, then `@alignOf(T)` is used.
/// Initialize with `init`.
///
/// This struct internally stores a `std.mem.Allocator` for memory management.
/// To manually specify an allocator with each function call see `ArrayListAlignedUnmanaged`.
pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
if (alignment) |a| {
if (a == @alignOf(T)) {
return ArrayListAligned(T, null);
}
}
return struct {
const Self = @This();
/// Contents of the list. This field is intended to be accessed
/// directly.
///
/// Pointers to elements in this slice are invalidated by various
/// functions of this ArrayList in accordance with the respective
/// documentation. In all cases, "invalidated" means that the memory
/// has been passed to this allocator's resize or free function.
items: Slice,
/// How many T values this list can hold without allocating
/// additional memory.
capacity: usize,
allocator: Allocator,
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
pub fn SentinelSlice(comptime s: T) type {
return if (alignment) |a| ([:s]align(a) T) else [:s]T;
}
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn init(allocator: Allocator) Self {
return Self{
.items = &[_]T{},
.capacity = 0,
.allocator = allocator,
};
}
/// Initialize with capacity to hold `num` elements.
/// The resulting capacity will equal `num` exactly.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self {
var self = Self.init(allocator);
try self.ensureTotalCapacityPrecise(num);
return self;
}
/// Release all allocated memory.
pub fn deinit(self: Self) void {
if (@sizeOf(T) > 0) {
self.allocator.free(self.allocatedSlice());
}
}
/// ArrayList takes ownership of the passed in slice. The slice must have been
/// allocated with `allocator`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn fromOwnedSlice(allocator: Allocator, slice: Slice) Self {
return Self{
.items = slice,
.capacity = slice.len,
.allocator = allocator,
};
}
/// ArrayList takes ownership of the passed in slice. The slice must have been
/// allocated with `allocator`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn fromOwnedSliceSentinel(allocator: Allocator, comptime sentinel: T, slice: [:sentinel]T) Self {
return Self{
.items = slice,
.capacity = slice.len + 1,
.allocator = allocator,
};
}
/// Initializes an ArrayListUnmanaged with the `items` and `capacity` fields
/// of this ArrayList. Empties this ArrayList.
pub fn moveToUnmanaged(self: *Self) ArrayListAlignedUnmanaged(T, alignment) {
const allocator = self.allocator;
const result = .{ .items = self.items, .capacity = self.capacity };
self.* = init(allocator);
return result;
}
/// The caller owns the returned memory. Empties this ArrayList,
/// Its capacity is cleared, making deinit() safe but unnecessary to call.
pub fn toOwnedSlice(self: *Self) Allocator.Error!Slice {
const allocator = self.allocator;
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, self.items.len)) {
const result = self.items;
self.* = init(allocator);
return result;
}
const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
@memcpy(new_memory, self.items);
@memset(self.items, undefined);
self.clearAndFree();
return new_memory;
}
/// The caller owns the returned memory. Empties this ArrayList.
pub fn toOwnedSliceSentinel(self: *Self, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
// This addition can never overflow because `self.items` can never occupy the whole address space
try self.ensureTotalCapacityPrecise(self.items.len + 1);
self.appendAssumeCapacity(sentinel);
const result = try self.toOwnedSlice();
return result[0 .. result.len - 1 :sentinel];
}
/// Creates a copy of this ArrayList, using the same allocator.
pub fn clone(self: Self) Allocator.Error!Self {
var cloned = try Self.initCapacity(self.allocator, self.capacity);
cloned.appendSliceAssumeCapacity(self.items);
return cloned;
}
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If `i` is equal to the length of the list this operation is equivalent to append.
/// This operation is O(N).
/// Invalidates element pointers if additional memory is needed.
/// Asserts that the index is in bounds or equal to the length.
pub fn insert(self: *Self, i: usize, item: T) Allocator.Error!void {
const dst = try self.addManyAt(i, 1);
dst[0] = item;
}
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If `i` is equal to the length of the list this operation is
/// equivalent to appendAssumeCapacity.
/// This operation is O(N).
/// Asserts that there is enough capacity for the new item.
/// Asserts that the index is in bounds or equal to the length.
pub fn insertAssumeCapacity(self: *Self, i: usize, item: T) void {
assert(self.items.len < self.capacity);
self.items.len += 1;
mem.copyBackwards(T, self.items[i + 1 .. self.items.len], self.items[i .. self.items.len - 1]);
self.items[i] = item;
}
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accommodate the new elements.
/// Asserts that the index is in bounds or equal to the length.
pub fn addManyAt(self: *Self, index: usize, count: usize) Allocator.Error![]T {
const new_len = try addOrOom(self.items.len, count);
if (self.capacity >= new_len)
return addManyAtAssumeCapacity(self, index, count);
// Here we avoid copying allocated but unused bytes by
// attempting a resize in place, and falling back to allocating
// a new buffer and doing our own copy. With a realloc() call,
// the allocator implementation would pointlessly copy our
// extra capacity.
const new_capacity = growCapacity(self.capacity, new_len);
const old_memory = self.allocatedSlice();
if (self.allocator.resize(old_memory, new_capacity)) {
self.capacity = new_capacity;
return addManyAtAssumeCapacity(self, index, count);
}
// Make a new allocation, avoiding `ensureTotalCapacity` in order
// to avoid extra memory copies.
const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity);
const to_move = self.items[index..];
@memcpy(new_memory[0..index], self.items[0..index]);
@memcpy(new_memory[index + count ..][0..to_move.len], to_move);
self.allocator.free(old_memory);
self.items = new_memory[0..new_len];
self.capacity = new_memory.len;
// The inserted elements at `new_memory[index..][0..count]` have
// already been set to `undefined` by memory allocation.
return new_memory[index..][0..count];
}
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Asserts that there is enough capacity for the new elements.
/// Invalidates pre-existing pointers to elements at and after `index`, but
/// does not invalidate any before that.
/// Asserts that the index is in bounds or equal to the length.
pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
const new_len = self.items.len + count;
assert(self.capacity >= new_len);
const to_move = self.items[index..];
self.items.len = new_len;
mem.copyBackwards(T, self.items[index + count ..], to_move);
const result = self.items[index..][0..count];
@memset(result, undefined);
return result;
}
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
/// This operation is O(N).
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accommodate the new elements.
/// Asserts that the index is in bounds or equal to the length.
pub fn insertSlice(
self: *Self,
index: usize,
items: []const T,
) Allocator.Error!void {
const dst = try self.addManyAt(index, items.len);
@memcpy(dst, items);
}
/// Grows or shrinks the list as necessary.
/// Invalidates element pointers if additional capacity is allocated.
/// Asserts that the range is in bounds.
pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: []const T) Allocator.Error!void {
var unmanaged = self.moveToUnmanaged();
defer self.* = unmanaged.toManaged(self.allocator);
return unmanaged.replaceRange(self.allocator, start, len, new_items);
}
/// Grows or shrinks the list as necessary.
/// Never invalidates element pointers.
/// Asserts the capacity is enough for additional items.
pub fn replaceRangeAssumeCapacity(self: *Self, start: usize, len: usize, new_items: []const T) void {
var unmanaged = self.moveToUnmanaged();
defer self.* = unmanaged.toManaged(self.allocator);
return unmanaged.replaceRangeAssumeCapacity(start, len, new_items);
}
/// Extends the list by 1 element. Allocates more memory as necessary.
/// Invalidates element pointers if additional memory is needed.
pub fn append(self: *Self, item: T) Allocator.Error!void {
const new_item_ptr = try self.addOne();
new_item_ptr.* = item;
}
/// Extends the list by 1 element.
/// Never invalidates element pointers.
/// Asserts that the list can hold one additional item.
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
}
/// Remove the element at index `i`, shift elements after index
/// `i` forward, and return the removed element.
/// Invalidates element pointers to end of list.
/// This operation is O(N).
/// This preserves item order. Use `swapRemove` if order preservation is not important.
/// Asserts that the index is in bounds.
/// Asserts that the list is not empty.
pub fn orderedRemove(self: *Self, i: usize) T {
const old_item = self.items[i];
self.replaceRangeAssumeCapacity(i, 1, &.{});
return old_item;
}
/// Removes the element at the specified index and returns it.
/// The empty slot is filled from the end of the list.
/// This operation is O(1).
/// This may not preserve item order. Use `orderedRemove` if you need to preserve order.
/// Asserts that the list is not empty.
/// Asserts that the index is in bounds.
pub fn swapRemove(self: *Self, i: usize) T {
if (self.items.len - 1 == i) return self.pop();
const old_item = self.items[i];
self.items[i] = self.pop();
return old_item;
}
/// Append the slice of items to the list. Allocates more
/// memory as necessary.
/// Invalidates element pointers if additional memory is needed.
pub fn appendSlice(self: *Self, items: []const T) Allocator.Error!void {
try self.ensureUnusedCapacity(items.len);
self.appendSliceAssumeCapacity(items);
}
/// Append the slice of items to the list.
/// Never invalidates element pointers.
/// Asserts that the list can hold the additional items.
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(self.items[old_len..][0..items.len], items);
}
/// Append an unaligned slice of items to the list. Allocates more
/// memory as necessary. Only call this function if calling
/// `appendSlice` instead would be a compile error.
/// Invalidates element pointers if additional memory is needed.
pub fn appendUnalignedSlice(self: *Self, items: []align(1) const T) Allocator.Error!void {
try self.ensureUnusedCapacity(items.len);
self.appendUnalignedSliceAssumeCapacity(items);
}
/// Append the slice of items to the list.
/// Never invalidates element pointers.
/// This function is only needed when calling
/// `appendSliceAssumeCapacity` instead would be a compile error due to the
/// alignment of the `items` parameter.
/// Asserts that the list can hold the additional items.
pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(self.items[old_len..][0..items.len], items);
}
pub const Writer = if (T != u8)
@compileError("The Writer interface is only defined for ArrayList(u8) " ++
"but the given type is ArrayList(" ++ @typeName(T) ++ ")")
else
std.io.Writer(*Self, Allocator.Error, appendWrite);
/// Initializes a Writer which will append to the list.
pub fn writer(self: *Self) Writer {
return .{ .context = self };
}
/// Same as `append` except it returns the number of bytes written, which is always the same
/// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
/// Invalidates element pointers if additional memory is needed.
fn appendWrite(self: *Self, m: []const u8) Allocator.Error!usize {
try self.appendSlice(m);
return m.len;
}
pub const FixedWriter = std.io.Writer(*Self, Allocator.Error, appendWriteFixed);
/// Initializes a Writer which will append to the list but will return
/// `error.OutOfMemory` rather than increasing capacity.
pub fn fixedWriter(self: *Self) FixedWriter {
return .{ .context = self };
}
/// The purpose of this function existing is to match `std.io.Writer` API.
fn appendWriteFixed(self: *Self, m: []const u8) error{OutOfMemory}!usize {
const available_capacity = self.capacity - self.items.len;
if (m.len > available_capacity)
return error.OutOfMemory;
self.appendSliceAssumeCapacity(m);
return m.len;
}
/// Append a value to the list `n` times.
/// Allocates more memory as necessary.
/// Invalidates element pointers if additional memory is needed.
/// The function is inline so that a comptime-known `value` parameter will
/// have a more optimal memset codegen in case it has a repeated byte pattern.
pub inline fn appendNTimes(self: *Self, value: T, n: usize) Allocator.Error!void {
const old_len = self.items.len;
try self.resize(try addOrOom(old_len, n));
@memset(self.items[old_len..self.items.len], value);
}
/// Append a value to the list `n` times.
/// Never invalidates element pointers.
/// The function is inline so that a comptime-known `value` parameter will
/// have a more optimal memset codegen in case it has a repeated byte pattern.
/// Asserts that the list can hold the additional items.
pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const new_len = self.items.len + n;
assert(new_len <= self.capacity);
@memset(self.items.ptr[self.items.len..new_len], value);
self.items.len = new_len;
}
/// Adjust the list length to `new_len`.
/// Additional elements contain the value `undefined`.
/// Invalidates element pointers if additional memory is needed.
pub fn resize(self: *Self, new_len: usize) Allocator.Error!void {
try self.ensureTotalCapacity(new_len);
self.items.len = new_len;
}
/// Reduce allocated capacity to `new_len`.
/// May invalidate element pointers.
/// Asserts that the new length is less than or equal to the previous length.
pub fn shrinkAndFree(self: *Self, new_len: usize) void {
var unmanaged = self.moveToUnmanaged();
unmanaged.shrinkAndFree(self.allocator, new_len);
self.* = unmanaged.toManaged(self.allocator);
}
/// Reduce length to `new_len`.
/// Invalidates element pointers for the elements `items[new_len..]`.
/// Asserts that the new length is less than or equal to the previous length.
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
self.items.len = new_len;
}
/// Invalidates all element pointers.
pub fn clearRetainingCapacity(self: *Self) void {
self.items.len = 0;
}
/// Invalidates all element pointers.
pub fn clearAndFree(self: *Self) void {
self.allocator.free(self.allocatedSlice());
self.items.len = 0;
self.capacity = 0;
}
/// If the current capacity is less than `new_capacity`, this function will
/// modify the array so that it can hold at least `new_capacity` items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureTotalCapacity(self: *Self, new_capacity: usize) Allocator.Error!void {
if (@sizeOf(T) == 0) {
self.capacity = math.maxInt(usize);
return;
}
if (self.capacity >= new_capacity) return;
const better_capacity = growCapacity(self.capacity, new_capacity);
return self.ensureTotalCapacityPrecise(better_capacity);
}
/// If the current capacity is less than `new_capacity`, this function will
/// modify the array so that it can hold exactly `new_capacity` items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureTotalCapacityPrecise(self: *Self, new_capacity: usize) Allocator.Error!void {
if (@sizeOf(T) == 0) {
self.capacity = math.maxInt(usize);
return;
}
if (self.capacity >= new_capacity) return;
// Here we avoid copying allocated but unused bytes by
// attempting a resize in place, and falling back to allocating
// a new buffer and doing our own copy. With a realloc() call,
// the allocator implementation would pointlessly copy our
// extra capacity.
const old_memory = self.allocatedSlice();
if (self.allocator.resize(old_memory, new_capacity)) {
self.capacity = new_capacity;
} else {
const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity);
@memcpy(new_memory[0..self.items.len], self.items);
self.allocator.free(old_memory);
self.items.ptr = new_memory.ptr;
self.capacity = new_memory.len;
}
}
/// Modify the array so that it can hold at least `additional_count` **more** items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) Allocator.Error!void {
return self.ensureTotalCapacity(try addOrOom(self.items.len, additional_count));
}
/// Increases the array's length to match the full capacity that is already allocated.
/// The new elements have `undefined` values.
/// Never invalidates element pointers.
pub fn expandToCapacity(self: *Self) void {
self.items.len = self.capacity;
}
/// Increase length by 1, returning pointer to the new item.
/// The returned pointer becomes invalid when the list resized.
pub fn addOne(self: *Self) Allocator.Error!*T {
// This can never overflow because `self.items` can never occupy the whole address space
const newlen = self.items.len + 1;
try self.ensureTotalCapacity(newlen);
return self.addOneAssumeCapacity();
}
/// Increase length by 1, returning pointer to the new item.
/// The returned pointer becomes invalid when the list is resized.
/// Never invalidates element pointers.
/// Asserts that the list can hold one additional item.
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.items.len < self.capacity);
self.items.len += 1;
return &self.items[self.items.len - 1];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// The returned pointer becomes invalid when the list is resized.
/// Resizes list if `self.capacity` is not large enough.
pub fn addManyAsArray(self: *Self, comptime n: usize) Allocator.Error!*[n]T {
const prev_len = self.items.len;
try self.resize(try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// Never invalidates element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// Asserts that the list can hold the additional items.
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements.
/// The returned pointer becomes invalid when the list is resized.
/// Resizes list if `self.capacity` is not large enough.
pub fn addManyAsSlice(self: *Self, n: usize) Allocator.Error![]T {
const prev_len = self.items.len;
try self.resize(try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements.
/// Never invalidates element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// Asserts that the list can hold the additional items.
pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Remove and return the last element from the list.
/// Invalidates element pointers to the removed element.
/// Asserts that the list is not empty.
pub fn pop(self: *Self) T {
const val = self.items[self.items.len - 1];
self.items.len -= 1;
return val;
}
/// Remove and return the last element from the list, or
/// return `null` if list is empty.
/// Invalidates element pointers to the removed element, if any.
pub fn popOrNull(self: *Self) ?T {
if (self.items.len == 0) return null;
return self.pop();
}
/// Returns a slice of all the items plus the extra capacity, whose memory
/// contents are `undefined`.
pub fn allocatedSlice(self: Self) Slice {
// `items.len` is the length, not the capacity.
return self.items.ptr[0..self.capacity];
}
/// Returns a slice of only the extra capacity after items.
/// This can be useful for writing directly into an ArrayList.
/// Note that such an operation must be followed up with a direct
/// modification of `self.items.len`.
pub fn unusedCapacitySlice(self: Self) []T {
return self.allocatedSlice()[self.items.len..];
}
/// Returns the last element from the list.
/// Asserts that the list is not empty.
pub fn getLast(self: Self) T {
const val = self.items[self.items.len - 1];
return val;
}
/// Returns the last element from the list, or `null` if list is empty.
pub fn getLastOrNull(self: Self) ?T {
if (self.items.len == 0) return null;
return self.getLast();
}
};
}
/// An ArrayList, but the allocator is passed as a parameter to the relevant functions
/// rather than stored in the struct itself. The same allocator must be used throughout
/// the entire lifetime of an ArrayListUnmanaged. Initialize directly or with
/// `initCapacity`, and deinitialize with `deinit` or use `toOwnedSlice`.
pub fn ArrayListUnmanaged(comptime T: type) type {
return ArrayListAlignedUnmanaged(T, null);
}
/// A contiguous, growable list of arbitrarily aligned items in memory.
/// This is a wrapper around an array of T values aligned to `alignment`-byte
/// addresses. If the specified alignment is `null`, then `@alignOf(T)` is used.
///
/// Functions that potentially allocate memory accept an `Allocator` parameter.
/// Initialize directly or with `initCapacity`, and deinitialize with `deinit`
/// or use `toOwnedSlice`.
///
/// Default initialization of this struct is deprecated; use `.empty` instead.
pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type {
if (alignment) |a| {
if (a == @alignOf(T)) {
return ArrayListAlignedUnmanaged(T, null);
}
}
return struct {
const Self = @This();
/// Contents of the list. This field is intended to be accessed
/// directly.
///
/// Pointers to elements in this slice are invalidated by various
/// functions of this ArrayList in accordance with the respective
/// documentation. In all cases, "invalidated" means that the memory
/// has been passed to an allocator's resize or free function.
items: Slice = &[_]T{},
/// How many T values this list can hold without allocating
/// additional memory.
capacity: usize = 0,
/// An ArrayList containing no elements.
pub const empty: Self = .{
.items = &.{},
.capacity = 0,
};
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
pub fn SentinelSlice(comptime s: T) type {
return if (alignment) |a| ([:s]align(a) T) else [:s]T;
}
/// Initialize with capacity to hold `num` elements.
/// The resulting capacity will equal `num` exactly.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self {
var self = Self{};
try self.ensureTotalCapacityPrecise(allocator, num);
return self;
}
/// Initialize with externally-managed memory. The buffer determines the
/// capacity, and the length is set to zero.
/// When initialized this way, all functions that accept an Allocator
/// argument cause illegal behavior.
pub fn initBuffer(buffer: Slice) Self {
return .{
.items = buffer[0..0],
.capacity = buffer.len,
};
}
/// Release all allocated memory.
pub fn deinit(self: *Self, allocator: Allocator) void {
allocator.free(self.allocatedSlice());
self.* = undefined;
}
/// Convert this list into an analogous memory-managed one.
/// The returned list has ownership of the underlying memory.
pub fn toManaged(self: *Self, allocator: Allocator) ArrayListAligned(T, alignment) {
return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator };
}
/// ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been
/// allocated with `allocator`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn fromOwnedSlice(slice: Slice) Self {
return Self{
.items = slice,
.capacity = slice.len,
};
}
/// ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been
/// allocated with `allocator`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn fromOwnedSliceSentinel(comptime sentinel: T, slice: [:sentinel]T) Self {
return Self{
.items = slice,
.capacity = slice.len + 1,
};
}
/// The caller owns the returned memory. Empties this ArrayList.
/// Its capacity is cleared, making deinit() safe but unnecessary to call.
pub fn toOwnedSlice(self: *Self, allocator: Allocator) Allocator.Error!Slice {
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, self.items.len)) {
const result = self.items;
self.* = .empty;
return result;
}
const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
@memcpy(new_memory, self.items);
@memset(self.items, undefined);
self.clearAndFree(allocator);
return new_memory;
}
/// The caller owns the returned memory. ArrayList becomes empty.
pub fn toOwnedSliceSentinel(self: *Self, allocator: Allocator, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
// This addition can never overflow because `self.items` can never occupy the whole address space
try self.ensureTotalCapacityPrecise(allocator, self.items.len + 1);
self.appendAssumeCapacity(sentinel);
const result = try self.toOwnedSlice(allocator);
return result[0 .. result.len - 1 :sentinel];
}
/// Creates a copy of this ArrayList.
pub fn clone(self: Self, allocator: Allocator) Allocator.Error!Self {
var cloned = try Self.initCapacity(allocator, self.capacity);
cloned.appendSliceAssumeCapacity(self.items);
return cloned;
}
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If `i` is equal to the length of the list this operation is equivalent to append.
/// This operation is O(N).
/// Invalidates element pointers if additional memory is needed.
/// Asserts that the index is in bounds or equal to the length.
pub fn insert(self: *Self, allocator: Allocator, i: usize, item: T) Allocator.Error!void {
const dst = try self.addManyAt(allocator, i, 1);
dst[0] = item;
}
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If in` is equal to the length of the list this operation is equivalent to append.
/// This operation is O(N).
/// Asserts that the list has capacity for one additional item.
/// Asserts that the index is in bounds or equal to the length.
pub fn insertAssumeCapacity(self: *Self, i: usize, item: T) void {
assert(self.items.len < self.capacity);
self.items.len += 1;
mem.copyBackwards(T, self.items[i + 1 .. self.items.len], self.items[i .. self.items.len - 1]);
self.items[i] = item;
}
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accommodate the new elements.
/// Asserts that the index is in bounds or equal to the length.
pub fn addManyAt(
self: *Self,
allocator: Allocator,
index: usize,
count: usize,
) Allocator.Error![]T {
var managed = self.toManaged(allocator);
defer self.* = managed.moveToUnmanaged();
return managed.addManyAt(index, count);
}
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Invalidates pre-existing pointers to elements at and after `index`, but
/// does not invalidate any before that.
/// Asserts that the list has capacity for the additional items.
/// Asserts that the index is in bounds or equal to the length.
pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
const new_len = self.items.len + count;
assert(self.capacity >= new_len);
const to_move = self.items[index..];
self.items.len = new_len;
mem.copyBackwards(T, self.items[index + count ..], to_move);
const result = self.items[index..][0..count];
@memset(result, undefined);
return result;
}
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
/// This operation is O(N).
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accommodate the new elements.
/// Asserts that the index is in bounds or equal to the length.
pub fn insertSlice(
self: *Self,
allocator: Allocator,
index: usize,
items: []const T,
) Allocator.Error!void {
const dst = try self.addManyAt(
allocator,
index,
items.len,
);
@memcpy(dst, items);
}
/// Grows or shrinks the list as necessary.
/// Invalidates element pointers if additional capacity is allocated.
/// Asserts that the range is in bounds.
pub fn replaceRange(
self: *Self,
allocator: Allocator,
start: usize,
len: usize,
new_items: []const T,
) Allocator.Error!void {
const after_range = start + len;
const range = self.items[start..after_range];
if (range.len < new_items.len) {
const first = new_items[0..range.len];
const rest = new_items[range.len..];
@memcpy(range[0..first.len], first);
try self.insertSlice(allocator, after_range, rest);
} else {
self.replaceRangeAssumeCapacity(start, len, new_items);
}
}
/// Grows or shrinks the list as necessary.
/// Never invalidates element pointers.
/// Asserts the capacity is enough for additional items.
pub fn replaceRangeAssumeCapacity(self: *Self, start: usize, len: usize, new_items: []const T) void {
const after_range = start + len;
const range = self.items[start..after_range];
if (range.len == new_items.len)
@memcpy(range[0..new_items.len], new_items)
else if (range.len < new_items.len) {
const first = new_items[0..range.len];
const rest = new_items[range.len..];
@memcpy(range[0..first.len], first);
const dst = self.addManyAtAssumeCapacity(after_range, rest.len);
@memcpy(dst, rest);
} else {
const extra = range.len - new_items.len;
@memcpy(range[0..new_items.len], new_items);
std.mem.copyForwards(
T,
self.items[after_range - extra ..],
self.items[after_range..],
);
@memset(self.items[self.items.len - extra ..], undefined);
self.items.len -= extra;
}
}
/// Extend the list by 1 element. Allocates more memory as necessary.
/// Invalidates element pointers if additional memory is needed.
pub fn append(self: *Self, allocator: Allocator, item: T) Allocator.Error!void {
const new_item_ptr = try self.addOne(allocator);
new_item_ptr.* = item;
}
/// Extend the list by 1 element.
/// Never invalidates element pointers.
/// Asserts that the list can hold one additional item.
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
}
/// Remove the element at index `i` from the list and return its value.
/// Invalidates pointers to the last element.
/// This operation is O(N).
/// Asserts that the list is not empty.
/// Asserts that the index is in bounds.
pub fn orderedRemove(self: *Self, i: usize) T {
const old_item = self.items[i];
self.replaceRangeAssumeCapacity(i, 1, &.{});
return old_item;
}
/// Removes the element at the specified index and returns it.
/// The empty slot is filled from the end of the list.
/// Invalidates pointers to last element.
/// This operation is O(1).
/// Asserts that the list is not empty.
/// Asserts that the index is in bounds.
pub fn swapRemove(self: *Self, i: usize) T {
if (self.items.len - 1 == i) return self.pop();
const old_item = self.items[i];
self.items[i] = self.pop();
return old_item;
}
/// Append the slice of items to the list. Allocates more
/// memory as necessary.
/// Invalidates element pointers if additional memory is needed.
pub fn appendSlice(self: *Self, allocator: Allocator, items: []const T) Allocator.Error!void {
try self.ensureUnusedCapacity(allocator, items.len);
self.appendSliceAssumeCapacity(items);
}
/// Append the slice of items to the list.
/// Asserts that the list can hold the additional items.
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(self.items[old_len..][0..items.len], items);
}
/// Append the slice of items to the list. Allocates more
/// memory as necessary. Only call this function if a call to `appendSlice` instead would
/// be a compile error.
/// Invalidates element pointers if additional memory is needed.
pub fn appendUnalignedSlice(self: *Self, allocator: Allocator, items: []align(1) const T) Allocator.Error!void {
try self.ensureUnusedCapacity(allocator, items.len);
self.appendUnalignedSliceAssumeCapacity(items);
}
/// Append an unaligned slice of items to the list.
/// Only call this function if a call to `appendSliceAssumeCapacity`
/// instead would be a compile error.
/// Asserts that the list can hold the additional items.
pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(self.items[old_len..][0..items.len], items);
}
pub const WriterContext = struct {
self: *Self,
allocator: Allocator,
};
pub const Writer = if (T != u8)
@compileError("The Writer interface is only defined for ArrayList(u8) " ++
"but the given type is ArrayList(" ++ @typeName(T) ++ ")")
else
std.io.Writer(WriterContext, Allocator.Error, appendWrite);
/// Initializes a Writer which will append to the list.
pub fn writer(self: *Self, allocator: Allocator) Writer {
return .{ .context = .{ .self = self, .allocator = allocator } };
}
/// Same as `append` except it returns the number of bytes written,
/// which is always the same as `m.len`. The purpose of this function
/// existing is to match `std.io.Writer` API.
/// Invalidates element pointers if additional memory is needed.
fn appendWrite(context: WriterContext, m: []const u8) Allocator.Error!usize {
try context.self.appendSlice(context.allocator, m);
return m.len;
}
pub const FixedWriter = std.io.Writer(*Self, Allocator.Error, appendWriteFixed);
/// Initializes a Writer which will append to the list but will return
/// `error.OutOfMemory` rather than increasing capacity.
pub fn fixedWriter(self: *Self) FixedWriter {
return .{ .context = self };
}
/// The purpose of this function existing is to match `std.io.Writer` API.
fn appendWriteFixed(self: *Self, m: []const u8) error{OutOfMemory}!usize {
const available_capacity = self.capacity - self.items.len;
if (m.len > available_capacity)
return error.OutOfMemory;
self.appendSliceAssumeCapacity(m);
return m.len;
}
/// Append a value to the list `n` times.
/// Allocates more memory as necessary.
/// Invalidates element pointers if additional memory is needed.
/// The function is inline so that a comptime-known `value` parameter will
/// have a more optimal memset codegen in case it has a repeated byte pattern.
pub inline fn appendNTimes(self: *Self, allocator: Allocator, value: T, n: usize) Allocator.Error!void {
const old_len = self.items.len;
try self.resize(allocator, try addOrOom(old_len, n));
@memset(self.items[old_len..self.items.len], value);
}
/// Append a value to the list `n` times.
/// Never invalidates element pointers.
/// The function is inline so that a comptime-known `value` parameter will
/// have better memset codegen in case it has a repeated byte pattern.
/// Asserts that the list can hold the additional items.
pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const new_len = self.items.len + n;
assert(new_len <= self.capacity);
@memset(self.items.ptr[self.items.len..new_len], value);
self.items.len = new_len;
}
/// Adjust the list length to `new_len`.
/// Additional elements contain the value `undefined`.
/// Invalidates element pointers if additional memory is needed.
pub fn resize(self: *Self, allocator: Allocator, new_len: usize) Allocator.Error!void {
try self.ensureTotalCapacity(allocator, new_len);
self.items.len = new_len;
}
/// Reduce allocated capacity to `new_len`.
/// May invalidate element pointers.
/// Asserts that the new length is less than or equal to the previous length.
pub fn shrinkAndFree(self: *Self, allocator: Allocator, new_len: usize) void {
assert(new_len <= self.items.len);
if (@sizeOf(T) == 0) {
self.items.len = new_len;
return;
}
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, new_len)) {
self.capacity = new_len;
self.items.len = new_len;
return;
}
const new_memory = allocator.alignedAlloc(T, alignment, new_len) catch |e| switch (e) {
error.OutOfMemory => {
// No problem, capacity is still correct then.
self.items.len = new_len;
return;
},
};
@memcpy(new_memory, self.items[0..new_len]);
allocator.free(old_memory);
self.items = new_memory;
self.capacity = new_memory.len;
}
/// Reduce length to `new_len`.
/// Invalidates pointers to elements `items[new_len..]`.
/// Keeps capacity the same.
/// Asserts that the new length is less than or equal to the previous length.
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
self.items.len = new_len;
}
/// Invalidates all element pointers.
pub fn clearRetainingCapacity(self: *Self) void {
self.items.len = 0;
}
/// Invalidates all element pointers.
pub fn clearAndFree(self: *Self, allocator: Allocator) void {
allocator.free(self.allocatedSlice());
self.items.len = 0;
self.capacity = 0;
}
/// If the current capacity is less than `new_capacity`, this function will
/// modify the array so that it can hold at least `new_capacity` items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureTotalCapacity(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
if (self.capacity >= new_capacity) return;
const better_capacity = growCapacity(self.capacity, new_capacity);
return self.ensureTotalCapacityPrecise(allocator, better_capacity);
}
/// If the current capacity is less than `new_capacity`, this function will
/// modify the array so that it can hold exactly `new_capacity` items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureTotalCapacityPrecise(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
if (@sizeOf(T) == 0) {
self.capacity = math.maxInt(usize);
return;
}
if (self.capacity >= new_capacity) return;
// Here we avoid copying allocated but unused bytes by
// attempting a resize in place, and falling back to allocating
// a new buffer and doing our own copy. With a realloc() call,
// the allocator implementation would pointlessly copy our
// extra capacity.
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, new_capacity)) {
self.capacity = new_capacity;
} else {
const new_memory = try allocator.alignedAlloc(T, alignment, new_capacity);
@memcpy(new_memory[0..self.items.len], self.items);
allocator.free(old_memory);
self.items.ptr = new_memory.ptr;
self.capacity = new_memory.len;
}
}
/// Modify the array so that it can hold at least `additional_count` **more** items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureUnusedCapacity(
self: *Self,
allocator: Allocator,
additional_count: usize,
) Allocator.Error!void {
return self.ensureTotalCapacity(allocator, try addOrOom(self.items.len, additional_count));
}
/// Increases the array's length to match the full capacity that is already allocated.
/// The new elements have `undefined` values.
/// Never invalidates element pointers.
pub fn expandToCapacity(self: *Self) void {
self.items.len = self.capacity;
}
/// Increase length by 1, returning pointer to the new item.
/// The returned element pointer becomes invalid when the list is resized.
pub fn addOne(self: *Self, allocator: Allocator) Allocator.Error!*T {
// This can never overflow because `self.items` can never occupy the whole address space
const newlen = self.items.len + 1;
try self.ensureTotalCapacity(allocator, newlen);
return self.addOneAssumeCapacity();
}
/// Increase length by 1, returning pointer to the new item.
/// Never invalidates element pointers.
/// The returned element pointer becomes invalid when the list is resized.
/// Asserts that the list can hold one additional item.
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.items.len < self.capacity);
self.items.len += 1;
return &self.items[self.items.len - 1];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// The returned pointer becomes invalid when the list is resized.
pub fn addManyAsArray(self: *Self, allocator: Allocator, comptime n: usize) Allocator.Error!*[n]T {
const prev_len = self.items.len;
try self.resize(allocator, try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// Never invalidates element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// Asserts that the list can hold the additional items.
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements.
/// The returned pointer becomes invalid when the list is resized.
/// Resizes list if `self.capacity` is not large enough.
pub fn addManyAsSlice(self: *Self, allocator: Allocator, n: usize) Allocator.Error![]T {
const prev_len = self.items.len;
try self.resize(allocator, try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements.
/// Never invalidates element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// Asserts that the list can hold the additional items.
pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Remove and return the last element from the list.
/// Invalidates pointers to last element.
/// Asserts that the list is not empty.
pub fn pop(self: *Self) T {
const val = self.items[self.items.len - 1];
self.items.len -= 1;
return val;
}
/// Remove and return the last element from the list.
/// If the list is empty, returns `null`.
/// Invalidates pointers to last element.
pub fn popOrNull(self: *Self) ?T {
if (self.items.len == 0) return null;
return self.pop();
}
/// Returns a slice of all the items plus the extra capacity, whose memory
/// contents are `undefined`.
pub fn allocatedSlice(self: Self) Slice {
return self.items.ptr[0..self.capacity];
}
/// Returns a slice of only the extra capacity after items.
/// This can be useful for writing directly into an ArrayList.
/// Note that such an operation must be followed up with a direct
/// modification of `self.items.len`.
pub fn unusedCapacitySlice(self: Self) []T {
return self.allocatedSlice()[self.items.len..];
}
/// Return the last element from the list.
/// Asserts that the list is not empty.
pub fn getLast(self: Self) T {
const val = self.items[self.items.len - 1];
return val;
}
/// Return the last element from the list, or
/// return `null` if list is empty.
pub fn getLastOrNull(self: Self) ?T {
if (self.items.len == 0) return null;
return self.getLast();
}
};
}
/// Called when memory growth is necessary. Returns a capacity larger than
/// minimum that grows super-linearly.
fn growCapacity(current: usize, minimum: usize) usize {
var new = current;
while (true) {
new +|= new / 2 + 8;
if (new >= minimum)
return new;
}
}
/// Integer addition returning `error.OutOfMemory` on overflow.
fn addOrOom(a: usize, b: usize) error{OutOfMemory}!usize {
const result, const overflow = @addWithOverflow(a, b);
if (overflow != 0) return error.OutOfMemory;
return result;
}
test "init" {
{
var list = ArrayList(i32).init(testing.allocator);
defer list.deinit();
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity == 0);
}
{
const list: ArrayListUnmanaged(i32) = .empty;
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity == 0);
}
}
test "initCapacity" {
const a = testing.allocator;
{
var list = try ArrayList(i8).initCapacity(a, 200);
defer list.deinit();
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity >= 200);
}
{
var list = try ArrayListUnmanaged(i8).initCapacity(a, 200);
defer list.deinit(a);
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity >= 200);
}
}
test "clone" {
const a = testing.allocator;
{
var array = ArrayList(i32).init(a);
try array.append(-1);
try array.append(3);
try array.append(5);
const cloned = try array.clone();
defer cloned.deinit();
try testing.expectEqualSlices(i32, array.items, cloned.items);
try testing.expectEqual(array.allocator, cloned.allocator);
try testing.expect(cloned.capacity >= array.capacity);
array.deinit();
try testing.expectEqual(@as(i32, -1), cloned.items[0]);
try testing.expectEqual(@as(i32, 3), cloned.items[1]);
try testing.expectEqual(@as(i32, 5), cloned.items[2]);
}
{
var array: ArrayListUnmanaged(i32) = .empty;
try array.append(a, -1);
try array.append(a, 3);
try array.append(a, 5);
var cloned = try array.clone(a);
defer cloned.deinit(a);
try testing.expectEqualSlices(i32, array.items, cloned.items);
try testing.expect(cloned.capacity >= array.capacity);
array.deinit(a);
try testing.expectEqual(@as(i32, -1), cloned.items[0]);
try testing.expectEqual(@as(i32, 3), cloned.items[1]);
try testing.expectEqual(@as(i32, 5), cloned.items[2]);
}
}
test "basic" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
{
var i: usize = 0;
while (i < 10) : (i += 1) {
list.append(@as(i32, @intCast(i + 1))) catch unreachable;
}
}
{
var i: usize = 0;
while (i < 10) : (i += 1) {
try testing.expect(list.items[i] == @as(i32, @intCast(i + 1)));
}
}
for (list.items, 0..) |v, i| {
try testing.expect(v == @as(i32, @intCast(i + 1)));
}
try testing.expect(list.pop() == 10);
try testing.expect(list.items.len == 9);
list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 3);
try testing.expect(list.pop() == 2);
try testing.expect(list.pop() == 1);
try testing.expect(list.items.len == 9);
var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 };
list.appendUnalignedSlice(&unaligned) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 6);
try testing.expect(list.pop() == 5);
try testing.expect(list.pop() == 4);
try testing.expect(list.items.len == 9);
list.appendSlice(&[_]i32{}) catch unreachable;
try testing.expect(list.items.len == 9);
// can only set on indices < self.items.len
list.items[7] = 33;
list.items[8] = 42;
try testing.expect(list.pop() == 42);
try testing.expect(list.pop() == 33);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
{
var i: usize = 0;
while (i < 10) : (i += 1) {
list.append(a, @as(i32, @intCast(i + 1))) catch unreachable;
}
}
{
var i: usize = 0;
while (i < 10) : (i += 1) {
try testing.expect(list.items[i] == @as(i32, @intCast(i + 1)));
}
}
for (list.items, 0..) |v, i| {
try testing.expect(v == @as(i32, @intCast(i + 1)));
}
try testing.expect(list.pop() == 10);
try testing.expect(list.items.len == 9);
list.appendSlice(a, &[_]i32{ 1, 2, 3 }) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 3);
try testing.expect(list.pop() == 2);
try testing.expect(list.pop() == 1);
try testing.expect(list.items.len == 9);
var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 };
list.appendUnalignedSlice(a, &unaligned) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 6);
try testing.expect(list.pop() == 5);
try testing.expect(list.pop() == 4);
try testing.expect(list.items.len == 9);
list.appendSlice(a, &[_]i32{}) catch unreachable;
try testing.expect(list.items.len == 9);
// can only set on indices < self.items.len
list.items[7] = 33;
list.items[8] = 42;
try testing.expect(list.pop() == 42);
try testing.expect(list.pop() == 33);
}
}
test "appendNTimes" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendNTimes(2, 10);
try testing.expectEqual(@as(usize, 10), list.items.len);
for (list.items) |element| {
try testing.expectEqual(@as(i32, 2), element);
}
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendNTimes(a, 2, 10);
try testing.expectEqual(@as(usize, 10), list.items.len);
for (list.items) |element| {
try testing.expectEqual(@as(i32, 2), element);
}
}
}
test "appendNTimes with failing allocator" {
const a = testing.failing_allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10));
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try testing.expectError(error.OutOfMemory, list.appendNTimes(a, 2, 10));
}
}
test "orderedRemove" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.append(5);
try list.append(6);
try list.append(7);
//remove from middle
try testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
try testing.expectEqual(@as(i32, 5), list.items[3]);
try testing.expectEqual(@as(usize, 6), list.items.len);
//remove from end
try testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
try testing.expectEqual(@as(usize, 5), list.items.len);
//remove from front
try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
try testing.expectEqual(@as(i32, 2), list.items[0]);
try testing.expectEqual(@as(usize, 4), list.items.len);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.append(a, 5);
try list.append(a, 6);
try list.append(a, 7);
//remove from middle
try testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
try testing.expectEqual(@as(i32, 5), list.items[3]);
try testing.expectEqual(@as(usize, 6), list.items.len);
//remove from end
try testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
try testing.expectEqual(@as(usize, 5), list.items.len);
//remove from front
try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
try testing.expectEqual(@as(i32, 2), list.items[0]);
try testing.expectEqual(@as(usize, 4), list.items.len);
}
{
// remove last item
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
try testing.expectEqual(@as(usize, 0), list.items.len);
}
{
// remove last item
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.append(a, 1);
try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
try testing.expectEqual(@as(usize, 0), list.items.len);
}
}
test "swapRemove" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.append(5);
try list.append(6);
try list.append(7);
//remove from middle
try testing.expect(list.swapRemove(3) == 4);
try testing.expect(list.items[3] == 7);
try testing.expect(list.items.len == 6);
//remove from end
try testing.expect(list.swapRemove(5) == 6);
try testing.expect(list.items.len == 5);
//remove from front
try testing.expect(list.swapRemove(0) == 1);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items.len == 4);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.append(a, 5);
try list.append(a, 6);
try list.append(a, 7);
//remove from middle
try testing.expect(list.swapRemove(3) == 4);
try testing.expect(list.items[3] == 7);
try testing.expect(list.items.len == 6);
//remove from end
try testing.expect(list.swapRemove(5) == 6);
try testing.expect(list.items.len == 5);
//remove from front
try testing.expect(list.swapRemove(0) == 1);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items.len == 4);
}
}
test "insert" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.insert(0, 1);
try list.append(2);
try list.insert(2, 3);
try list.insert(0, 5);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items[1] == 1);
try testing.expect(list.items[2] == 2);
try testing.expect(list.items[3] == 3);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.insert(a, 0, 1);
try list.append(a, 2);
try list.insert(a, 2, 3);
try list.insert(a, 0, 5);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items[1] == 1);
try testing.expect(list.items[2] == 2);
try testing.expect(list.items[3] == 3);
}
}
test "insertSlice" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.insertSlice(1, &[_]i32{ 9, 8 });
try testing.expect(list.items[0] == 1);
try testing.expect(list.items[1] == 9);
try testing.expect(list.items[2] == 8);
try testing.expect(list.items[3] == 2);
try testing.expect(list.items[4] == 3);
try testing.expect(list.items[5] == 4);
const items = [_]i32{1};
try list.insertSlice(0, items[0..0]);
try testing.expect(list.items.len == 6);
try testing.expect(list.items[0] == 1);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.insertSlice(a, 1, &[_]i32{ 9, 8 });
try testing.expect(list.items[0] == 1);
try testing.expect(list.items[1] == 9);
try testing.expect(list.items[2] == 8);
try testing.expect(list.items[3] == 2);
try testing.expect(list.items[4] == 3);
try testing.expect(list.items[5] == 4);
const items = [_]i32{1};
try list.insertSlice(a, 0, items[0..0]);
try testing.expect(list.items.len == 6);
try testing.expect(list.items[0] == 1);
}
}
test "ArrayList.replaceRange" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(1, 0, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(1, 1, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(
i32,
&[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
list.items,
);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(1, 2, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(1, 3, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(1, 4, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
}
}
test "ArrayList.replaceRangeAssumeCapacity" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 0, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 1, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(
i32,
&[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
list.items,
);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 2, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 3, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
}
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 4, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
}
}
test "ArrayListUnmanaged.replaceRange" {
const a = testing.allocator;
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(a, 1, 0, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(a, 1, 1, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(
i32,
&[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
list.items,
);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(a, 1, 2, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(a, 1, 3, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
try list.replaceRange(a, 1, 4, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
}
}
test "ArrayListUnmanaged.replaceRangeAssumeCapacity" {
const a = testing.allocator;
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 0, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 1, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(
i32,
&[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
list.items,
);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 2, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 3, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });
list.replaceRangeAssumeCapacity(1, 4, &[_]i32{ 0, 0, 0 });
try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
}
}
const Item = struct {
integer: i32,
sub_items: ArrayList(Item),
};
const ItemUnmanaged = struct {
integer: i32,
sub_items: ArrayListUnmanaged(ItemUnmanaged),
};
test "ArrayList(T) of struct T" {
const a = std.testing.allocator;
{
var root = Item{ .integer = 1, .sub_items = .init(a) };
defer root.sub_items.deinit();
try root.sub_items.append(Item{ .integer = 42, .sub_items = .init(a) });
try testing.expect(root.sub_items.items[0].integer == 42);
}
{
var root = ItemUnmanaged{ .integer = 1, .sub_items = .empty };
defer root.sub_items.deinit(a);
try root.sub_items.append(a, ItemUnmanaged{ .integer = 42, .sub_items = .empty });
try testing.expect(root.sub_items.items[0].integer == 42);
}
}
test "ArrayList(u8) implements writer" {
const a = testing.allocator;
{
var buffer = ArrayList(u8).init(a);
defer buffer.deinit();
const x: i32 = 42;
const y: i32 = 1234;
try buffer.writer().print("x: {}\ny: {}\n", .{ x, y });
try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
}
{
var list = ArrayListAligned(u8, 2).init(a);
defer list.deinit();
const writer = list.writer();
try writer.writeAll("a");
try writer.writeAll("bc");
try writer.writeAll("d");
try writer.writeAll("efg");
try testing.expectEqualSlices(u8, list.items, "abcdefg");
}
}
test "ArrayListUnmanaged(u8) implements writer" {
const a = testing.allocator;
{
var buffer: ArrayListUnmanaged(u8) = .empty;
defer buffer.deinit(a);
const x: i32 = 42;
const y: i32 = 1234;
try buffer.writer(a).print("x: {}\ny: {}\n", .{ x, y });
try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
}
{
var list: ArrayListAlignedUnmanaged(u8, 2) = .empty;
defer list.deinit(a);
const writer = list.writer(a);
try writer.writeAll("a");
try writer.writeAll("bc");
try writer.writeAll("d");
try writer.writeAll("efg");
try testing.expectEqualSlices(u8, list.items, "abcdefg");
}
}
test "shrink still sets length when resizing is disabled" {
var failing_allocator = testing.FailingAllocator.init(testing.allocator, .{ .resize_fail_index = 0 });
const a = failing_allocator.allocator();
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
list.shrinkAndFree(1);
try testing.expect(list.items.len == 1);
}
{
var list: ArrayListUnmanaged(i32) = .empty;
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
list.shrinkAndFree(a, 1);
try testing.expect(list.items.len == 1);
}
}
test "shrinkAndFree with a copy" {
var failing_allocator = testing.FailingAllocator.init(testing.allocator, .{ .resize_fail_index = 0 });
const a = failing_allocator.allocator();
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendNTimes(3, 16);
list.shrinkAndFree(4);
try testing.expect(mem.eql(i32, list.items, &.{ 3, 3, 3, 3 }));
}
test "addManyAsArray" {
const a = std.testing.allocator;
{
var list = ArrayList(u8).init(a);
defer list.deinit();
(try list.addManyAsArray(4)).* = "aoeu".*;
try list.ensureTotalCapacity(8);
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
try testing.expectEqualSlices(u8, list.items, "aoeuasdf");
}
{
var list: ArrayListUnmanaged(u8) = .empty;
defer list.deinit(a);
(try list.addManyAsArray(a, 4)).* = "aoeu".*;
try list.ensureTotalCapacity(a, 8);
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
try testing.expectEqualSlices(u8, list.items, "aoeuasdf");
}
}
test "growing memory preserves contents" {
// Shrink the list after every insertion to ensure that a memory growth
// will be triggered in the next operation.
const a = std.testing.allocator;
{
var list = ArrayList(u8).init(a);
defer list.deinit();
(try list.addManyAsArray(4)).* = "abcd".*;
list.shrinkAndFree(4);
try list.appendSlice("efgh");
try testing.expectEqualSlices(u8, list.items, "abcdefgh");
list.shrinkAndFree(8);
try list.insertSlice(4, "ijkl");
try testing.expectEqualSlices(u8, list.items, "abcdijklefgh");
}
{
var list: ArrayListUnmanaged(u8) = .empty;
defer list.deinit(a);
(try list.addManyAsArray(a, 4)).* = "abcd".*;
list.shrinkAndFree(a, 4);
try list.appendSlice(a, "efgh");
try testing.expectEqualSlices(u8, list.items, "abcdefgh");
list.shrinkAndFree(a, 8);
try list.insertSlice(a, 4, "ijkl");
try testing.expectEqualSlices(u8, list.items, "abcdijklefgh");
}
}
test "fromOwnedSlice" {
const a = testing.allocator;
{
var orig_list = ArrayList(u8).init(a);
defer orig_list.deinit();
try orig_list.appendSlice("foobar");
const slice = try orig_list.toOwnedSlice();
var list = ArrayList(u8).fromOwnedSlice(a, slice);
defer list.deinit();
try testing.expectEqualStrings(list.items, "foobar");
}
{
var list = ArrayList(u8).init(a);
defer list.deinit();
try list.appendSlice("foobar");
const slice = try list.toOwnedSlice();
var unmanaged = ArrayListUnmanaged(u8).fromOwnedSlice(slice);
defer unmanaged.deinit(a);
try testing.expectEqualStrings(unmanaged.items, "foobar");
}
}
test "fromOwnedSliceSentinel" {
const a = testing.allocator;
{
var orig_list = ArrayList(u8).init(a);
defer orig_list.deinit();
try orig_list.appendSlice("foobar");
const sentinel_slice = try orig_list.toOwnedSliceSentinel(0);
var list = ArrayList(u8).fromOwnedSliceSentinel(a, 0, sentinel_slice);
defer list.deinit();
try testing.expectEqualStrings(list.items, "foobar");
}
{
var list = ArrayList(u8).init(a);
defer list.deinit();
try list.appendSlice("foobar");
const sentinel_slice = try list.toOwnedSliceSentinel(0);
var unmanaged = ArrayListUnmanaged(u8).fromOwnedSliceSentinel(0, sentinel_slice);
defer unmanaged.deinit(a);
try testing.expectEqualStrings(unmanaged.items, "foobar");
}
}
test "toOwnedSliceSentinel" {
const a = testing.allocator;
{
var list = ArrayList(u8).init(a);
defer list.deinit();
try list.appendSlice("foobar");
const result = try list.toOwnedSliceSentinel(0);
defer a.free(result);
try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0));
}
{
var list: ArrayListUnmanaged(u8) = .empty;
defer list.deinit(a);
try list.appendSlice(a, "foobar");
const result = try list.toOwnedSliceSentinel(a, 0);
defer a.free(result);
try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0));
}
}
test "accepts unaligned slices" {
const a = testing.allocator;
{
var list = std.ArrayListAligned(u8, 8).init(a);
defer list.deinit();
try list.appendSlice(&.{ 0, 1, 2, 3 });
try list.insertSlice(2, &.{ 4, 5, 6, 7 });
try list.replaceRange(1, 3, &.{ 8, 9 });
try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
}
{
var list: std.ArrayListAlignedUnmanaged(u8, 8) = .empty;
defer list.deinit(a);
try list.appendSlice(a, &.{ 0, 1, 2, 3 });
try list.insertSlice(a, 2, &.{ 4, 5, 6, 7 });
try list.replaceRange(a, 1, 3, &.{ 8, 9 });
try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
}
}
test "ArrayList(u0)" {
// An ArrayList on zero-sized types should not need to allocate
const a = testing.failing_allocator;
var list = ArrayList(u0).init(a);
defer list.deinit();
try list.append(0);
try list.append(0);
try list.append(0);
try testing.expectEqual(list.items.len, 3);
var count: usize = 0;
for (list.items) |x| {
try testing.expectEqual(x, 0);
count += 1;
}
try testing.expectEqual(count, 3);
}
test "ArrayList(?u32).popOrNull()" {
const a = testing.allocator;
var list = ArrayList(?u32).init(a);
defer list.deinit();
try list.append(null);
try list.append(1);
try list.append(2);
try testing.expectEqual(list.items.len, 3);
try testing.expect(list.popOrNull().? == @as(u32, 2));
try testing.expect(list.popOrNull().? == @as(u32, 1));
try testing.expect(list.popOrNull().? == null);
try testing.expect(list.popOrNull() == null);
}
test "ArrayList(u32).getLast()" {
const a = testing.allocator;
var list = ArrayList(u32).init(a);
defer list.deinit();
try list.append(2);
const const_list = list;
try testing.expectEqual(const_list.getLast(), 2);
}
test "ArrayList(u32).getLastOrNull()" {
const a = testing.allocator;
var list = ArrayList(u32).init(a);
defer list.deinit();
try testing.expectEqual(list.getLastOrNull(), null);
try list.append(2);
const const_list = list;
try testing.expectEqual(const_list.getLastOrNull().?, 2);
}
test "return OutOfMemory when capacity would exceed maximum usize integer value" {
const a = testing.allocator;
const new_item: u32 = 42;
const items = &.{ 42, 43 };
{
var list: ArrayListUnmanaged(u32) = .{
.items = undefined,
.capacity = math.maxInt(usize) - 1,
};
list.items.len = math.maxInt(usize) - 1;
try testing.expectError(error.OutOfMemory, list.appendSlice(a, items));
try testing.expectError(error.OutOfMemory, list.appendNTimes(a, new_item, 2));
try testing.expectError(error.OutOfMemory, list.appendUnalignedSlice(a, &.{ new_item, new_item }));
try testing.expectError(error.OutOfMemory, list.addManyAt(a, 0, 2));
try testing.expectError(error.OutOfMemory, list.addManyAsArray(a, 2));
try testing.expectError(error.OutOfMemory, list.addManyAsSlice(a, 2));
try testing.expectError(error.OutOfMemory, list.insertSlice(a, 0, items));
try testing.expectError(error.OutOfMemory, list.ensureUnusedCapacity(a, 2));
}
{
var list: ArrayList(u32) = .{
.items = undefined,
.capacity = math.maxInt(usize) - 1,
.allocator = a,
};
list.items.len = math.maxInt(usize) - 1;
try testing.expectError(error.OutOfMemory, list.appendSlice(items));
try testing.expectError(error.OutOfMemory, list.appendNTimes(new_item, 2));
try testing.expectError(error.OutOfMemory, list.appendUnalignedSlice(&.{ new_item, new_item }));
try testing.expectError(error.OutOfMemory, list.addManyAt(0, 2));
try testing.expectError(error.OutOfMemory, list.addManyAsArray(2));
try testing.expectError(error.OutOfMemory, list.addManyAsSlice(2));
try testing.expectError(error.OutOfMemory, list.insertSlice(0, items));
try testing.expectError(error.OutOfMemory, list.ensureUnusedCapacity(2));
}
}
test "ArrayListAligned with non-native alignment compiles unusedCapabitySlice" {
var list = ArrayListAligned(u8, 4).init(testing.allocator);
defer list.deinit();
try list.appendNTimes(1, 4);
_ = list.unusedCapacitySlice();
}