mirror of
https://github.com/ziglang/zig.git
synced 2024-11-15 16:45:27 +00:00
1861036f3b
release/17.x branch, commit 8f4dd44097c9ae25dd203d5ac87f3b48f854bba8
1304 lines
32 KiB
C++
Vendored
1304 lines
32 KiB
C++
Vendored
/*===---- __clang_hip_math.h - Device-side HIP math support ----------------===
|
|
*
|
|
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
* See https://llvm.org/LICENSE.txt for license information.
|
|
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
*
|
|
*===-----------------------------------------------------------------------===
|
|
*/
|
|
#ifndef __CLANG_HIP_MATH_H__
|
|
#define __CLANG_HIP_MATH_H__
|
|
|
|
#if !defined(__HIP__) && !defined(__OPENMP_AMDGCN__)
|
|
#error "This file is for HIP and OpenMP AMDGCN device compilation only."
|
|
#endif
|
|
|
|
#if !defined(__HIPCC_RTC__)
|
|
#if defined(__cplusplus)
|
|
#include <algorithm>
|
|
#endif
|
|
#include <limits.h>
|
|
#include <stdint.h>
|
|
#ifdef __OPENMP_AMDGCN__
|
|
#include <omp.h>
|
|
#endif
|
|
#endif // !defined(__HIPCC_RTC__)
|
|
|
|
#pragma push_macro("__DEVICE__")
|
|
|
|
#ifdef __OPENMP_AMDGCN__
|
|
#define __DEVICE__ static inline __attribute__((always_inline, nothrow))
|
|
#else
|
|
#define __DEVICE__ static __device__ inline __attribute__((always_inline))
|
|
#endif
|
|
|
|
// A few functions return bool type starting only in C++11.
|
|
#pragma push_macro("__RETURN_TYPE")
|
|
#ifdef __OPENMP_AMDGCN__
|
|
#define __RETURN_TYPE int
|
|
#else
|
|
#if defined(__cplusplus)
|
|
#define __RETURN_TYPE bool
|
|
#else
|
|
#define __RETURN_TYPE int
|
|
#endif
|
|
#endif // __OPENMP_AMDGCN__
|
|
|
|
#if defined (__cplusplus) && __cplusplus < 201103L
|
|
// emulate static_assert on type sizes
|
|
template<bool>
|
|
struct __compare_result{};
|
|
template<>
|
|
struct __compare_result<true> {
|
|
static const __device__ bool valid;
|
|
};
|
|
|
|
__DEVICE__
|
|
void __suppress_unused_warning(bool b){};
|
|
template <unsigned int S, unsigned int T>
|
|
__DEVICE__ void __static_assert_equal_size() {
|
|
__suppress_unused_warning(__compare_result<S == T>::valid);
|
|
}
|
|
|
|
#define __static_assert_type_size_equal(A, B) \
|
|
__static_assert_equal_size<A,B>()
|
|
|
|
#else
|
|
#define __static_assert_type_size_equal(A,B) \
|
|
static_assert((A) == (B), "")
|
|
|
|
#endif
|
|
|
|
__DEVICE__
|
|
uint64_t __make_mantissa_base8(const char *__tagp __attribute__((nonnull))) {
|
|
uint64_t __r = 0;
|
|
while (*__tagp != '\0') {
|
|
char __tmp = *__tagp;
|
|
|
|
if (__tmp >= '0' && __tmp <= '7')
|
|
__r = (__r * 8u) + __tmp - '0';
|
|
else
|
|
return 0;
|
|
|
|
++__tagp;
|
|
}
|
|
|
|
return __r;
|
|
}
|
|
|
|
__DEVICE__
|
|
uint64_t __make_mantissa_base10(const char *__tagp __attribute__((nonnull))) {
|
|
uint64_t __r = 0;
|
|
while (*__tagp != '\0') {
|
|
char __tmp = *__tagp;
|
|
|
|
if (__tmp >= '0' && __tmp <= '9')
|
|
__r = (__r * 10u) + __tmp - '0';
|
|
else
|
|
return 0;
|
|
|
|
++__tagp;
|
|
}
|
|
|
|
return __r;
|
|
}
|
|
|
|
__DEVICE__
|
|
uint64_t __make_mantissa_base16(const char *__tagp __attribute__((nonnull))) {
|
|
uint64_t __r = 0;
|
|
while (*__tagp != '\0') {
|
|
char __tmp = *__tagp;
|
|
|
|
if (__tmp >= '0' && __tmp <= '9')
|
|
__r = (__r * 16u) + __tmp - '0';
|
|
else if (__tmp >= 'a' && __tmp <= 'f')
|
|
__r = (__r * 16u) + __tmp - 'a' + 10;
|
|
else if (__tmp >= 'A' && __tmp <= 'F')
|
|
__r = (__r * 16u) + __tmp - 'A' + 10;
|
|
else
|
|
return 0;
|
|
|
|
++__tagp;
|
|
}
|
|
|
|
return __r;
|
|
}
|
|
|
|
__DEVICE__
|
|
uint64_t __make_mantissa(const char *__tagp __attribute__((nonnull))) {
|
|
if (*__tagp == '0') {
|
|
++__tagp;
|
|
|
|
if (*__tagp == 'x' || *__tagp == 'X')
|
|
return __make_mantissa_base16(__tagp);
|
|
else
|
|
return __make_mantissa_base8(__tagp);
|
|
}
|
|
|
|
return __make_mantissa_base10(__tagp);
|
|
}
|
|
|
|
// BEGIN FLOAT
|
|
#if defined(__cplusplus)
|
|
__DEVICE__
|
|
int abs(int __x) {
|
|
int __sgn = __x >> (sizeof(int) * CHAR_BIT - 1);
|
|
return (__x ^ __sgn) - __sgn;
|
|
}
|
|
__DEVICE__
|
|
long labs(long __x) {
|
|
long __sgn = __x >> (sizeof(long) * CHAR_BIT - 1);
|
|
return (__x ^ __sgn) - __sgn;
|
|
}
|
|
__DEVICE__
|
|
long long llabs(long long __x) {
|
|
long long __sgn = __x >> (sizeof(long long) * CHAR_BIT - 1);
|
|
return (__x ^ __sgn) - __sgn;
|
|
}
|
|
#endif
|
|
|
|
__DEVICE__
|
|
float acosf(float __x) { return __ocml_acos_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float acoshf(float __x) { return __ocml_acosh_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float asinf(float __x) { return __ocml_asin_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float asinhf(float __x) { return __ocml_asinh_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float atan2f(float __x, float __y) { return __ocml_atan2_f32(__x, __y); }
|
|
|
|
__DEVICE__
|
|
float atanf(float __x) { return __ocml_atan_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float atanhf(float __x) { return __ocml_atanh_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float cbrtf(float __x) { return __ocml_cbrt_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float ceilf(float __x) { return __builtin_ceilf(__x); }
|
|
|
|
__DEVICE__
|
|
float copysignf(float __x, float __y) { return __builtin_copysignf(__x, __y); }
|
|
|
|
__DEVICE__
|
|
float cosf(float __x) { return __ocml_cos_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float coshf(float __x) { return __ocml_cosh_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float cospif(float __x) { return __ocml_cospi_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float cyl_bessel_i0f(float __x) { return __ocml_i0_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float cyl_bessel_i1f(float __x) { return __ocml_i1_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float erfcf(float __x) { return __ocml_erfc_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float erfcinvf(float __x) { return __ocml_erfcinv_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float erfcxf(float __x) { return __ocml_erfcx_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float erff(float __x) { return __ocml_erf_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float erfinvf(float __x) { return __ocml_erfinv_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float exp10f(float __x) { return __ocml_exp10_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float exp2f(float __x) { return __builtin_exp2f(__x); }
|
|
|
|
__DEVICE__
|
|
float expf(float __x) { return __builtin_expf(__x); }
|
|
|
|
__DEVICE__
|
|
float expm1f(float __x) { return __ocml_expm1_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float fabsf(float __x) { return __builtin_fabsf(__x); }
|
|
|
|
__DEVICE__
|
|
float fdimf(float __x, float __y) { return __ocml_fdim_f32(__x, __y); }
|
|
|
|
__DEVICE__
|
|
float fdividef(float __x, float __y) { return __x / __y; }
|
|
|
|
__DEVICE__
|
|
float floorf(float __x) { return __builtin_floorf(__x); }
|
|
|
|
__DEVICE__
|
|
float fmaf(float __x, float __y, float __z) {
|
|
return __builtin_fmaf(__x, __y, __z);
|
|
}
|
|
|
|
__DEVICE__
|
|
float fmaxf(float __x, float __y) { return __builtin_fmaxf(__x, __y); }
|
|
|
|
__DEVICE__
|
|
float fminf(float __x, float __y) { return __builtin_fminf(__x, __y); }
|
|
|
|
__DEVICE__
|
|
float fmodf(float __x, float __y) { return __ocml_fmod_f32(__x, __y); }
|
|
|
|
__DEVICE__
|
|
float frexpf(float __x, int *__nptr) {
|
|
return __builtin_frexpf(__x, __nptr);
|
|
}
|
|
|
|
__DEVICE__
|
|
float hypotf(float __x, float __y) { return __ocml_hypot_f32(__x, __y); }
|
|
|
|
__DEVICE__
|
|
int ilogbf(float __x) { return __ocml_ilogb_f32(__x); }
|
|
|
|
__DEVICE__
|
|
__RETURN_TYPE __finitef(float __x) { return __builtin_isfinite(__x); }
|
|
|
|
__DEVICE__
|
|
__RETURN_TYPE __isinff(float __x) { return __builtin_isinf(__x); }
|
|
|
|
__DEVICE__
|
|
__RETURN_TYPE __isnanf(float __x) { return __builtin_isnan(__x); }
|
|
|
|
__DEVICE__
|
|
float j0f(float __x) { return __ocml_j0_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float j1f(float __x) { return __ocml_j1_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float jnf(int __n, float __x) { // TODO: we could use Ahmes multiplication
|
|
// and the Miller & Brown algorithm
|
|
// for linear recurrences to get O(log n) steps, but it's unclear if
|
|
// it'd be beneficial in this case.
|
|
if (__n == 0)
|
|
return j0f(__x);
|
|
if (__n == 1)
|
|
return j1f(__x);
|
|
|
|
float __x0 = j0f(__x);
|
|
float __x1 = j1f(__x);
|
|
for (int __i = 1; __i < __n; ++__i) {
|
|
float __x2 = (2 * __i) / __x * __x1 - __x0;
|
|
__x0 = __x1;
|
|
__x1 = __x2;
|
|
}
|
|
|
|
return __x1;
|
|
}
|
|
|
|
__DEVICE__
|
|
float ldexpf(float __x, int __e) { return __builtin_amdgcn_ldexpf(__x, __e); }
|
|
|
|
__DEVICE__
|
|
float lgammaf(float __x) { return __ocml_lgamma_f32(__x); }
|
|
|
|
__DEVICE__
|
|
long long int llrintf(float __x) { return __builtin_rintf(__x); }
|
|
|
|
__DEVICE__
|
|
long long int llroundf(float __x) { return __builtin_roundf(__x); }
|
|
|
|
__DEVICE__
|
|
float log10f(float __x) { return __builtin_log10f(__x); }
|
|
|
|
__DEVICE__
|
|
float log1pf(float __x) { return __ocml_log1p_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float log2f(float __x) { return __builtin_log2f(__x); }
|
|
|
|
__DEVICE__
|
|
float logbf(float __x) { return __ocml_logb_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float logf(float __x) { return __builtin_logf(__x); }
|
|
|
|
__DEVICE__
|
|
long int lrintf(float __x) { return __builtin_rintf(__x); }
|
|
|
|
__DEVICE__
|
|
long int lroundf(float __x) { return __builtin_roundf(__x); }
|
|
|
|
__DEVICE__
|
|
float modff(float __x, float *__iptr) {
|
|
float __tmp;
|
|
#ifdef __OPENMP_AMDGCN__
|
|
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
|
|
#endif
|
|
float __r =
|
|
__ocml_modf_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
|
|
*__iptr = __tmp;
|
|
return __r;
|
|
}
|
|
|
|
__DEVICE__
|
|
float nanf(const char *__tagp __attribute__((nonnull))) {
|
|
union {
|
|
float val;
|
|
struct ieee_float {
|
|
unsigned int mantissa : 22;
|
|
unsigned int quiet : 1;
|
|
unsigned int exponent : 8;
|
|
unsigned int sign : 1;
|
|
} bits;
|
|
} __tmp;
|
|
__static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits));
|
|
|
|
__tmp.bits.sign = 0u;
|
|
__tmp.bits.exponent = ~0u;
|
|
__tmp.bits.quiet = 1u;
|
|
__tmp.bits.mantissa = __make_mantissa(__tagp);
|
|
|
|
return __tmp.val;
|
|
}
|
|
|
|
__DEVICE__
|
|
float nearbyintf(float __x) { return __builtin_nearbyintf(__x); }
|
|
|
|
__DEVICE__
|
|
float nextafterf(float __x, float __y) {
|
|
return __ocml_nextafter_f32(__x, __y);
|
|
}
|
|
|
|
__DEVICE__
|
|
float norm3df(float __x, float __y, float __z) {
|
|
return __ocml_len3_f32(__x, __y, __z);
|
|
}
|
|
|
|
__DEVICE__
|
|
float norm4df(float __x, float __y, float __z, float __w) {
|
|
return __ocml_len4_f32(__x, __y, __z, __w);
|
|
}
|
|
|
|
__DEVICE__
|
|
float normcdff(float __x) { return __ocml_ncdf_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float normcdfinvf(float __x) { return __ocml_ncdfinv_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float normf(int __dim,
|
|
const float *__a) { // TODO: placeholder until OCML adds support.
|
|
float __r = 0;
|
|
while (__dim--) {
|
|
__r += __a[0] * __a[0];
|
|
++__a;
|
|
}
|
|
|
|
return __ocml_sqrt_f32(__r);
|
|
}
|
|
|
|
__DEVICE__
|
|
float powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
|
|
|
|
__DEVICE__
|
|
float powif(float __x, int __y) { return __ocml_pown_f32(__x, __y); }
|
|
|
|
__DEVICE__
|
|
float rcbrtf(float __x) { return __ocml_rcbrt_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float remainderf(float __x, float __y) {
|
|
return __ocml_remainder_f32(__x, __y);
|
|
}
|
|
|
|
__DEVICE__
|
|
float remquof(float __x, float __y, int *__quo) {
|
|
int __tmp;
|
|
#ifdef __OPENMP_AMDGCN__
|
|
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
|
|
#endif
|
|
float __r = __ocml_remquo_f32(
|
|
__x, __y, (__attribute__((address_space(5))) int *)&__tmp);
|
|
*__quo = __tmp;
|
|
|
|
return __r;
|
|
}
|
|
|
|
__DEVICE__
|
|
float rhypotf(float __x, float __y) { return __ocml_rhypot_f32(__x, __y); }
|
|
|
|
__DEVICE__
|
|
float rintf(float __x) { return __builtin_rintf(__x); }
|
|
|
|
__DEVICE__
|
|
float rnorm3df(float __x, float __y, float __z) {
|
|
return __ocml_rlen3_f32(__x, __y, __z);
|
|
}
|
|
|
|
__DEVICE__
|
|
float rnorm4df(float __x, float __y, float __z, float __w) {
|
|
return __ocml_rlen4_f32(__x, __y, __z, __w);
|
|
}
|
|
|
|
__DEVICE__
|
|
float rnormf(int __dim,
|
|
const float *__a) { // TODO: placeholder until OCML adds support.
|
|
float __r = 0;
|
|
while (__dim--) {
|
|
__r += __a[0] * __a[0];
|
|
++__a;
|
|
}
|
|
|
|
return __ocml_rsqrt_f32(__r);
|
|
}
|
|
|
|
__DEVICE__
|
|
float roundf(float __x) { return __builtin_roundf(__x); }
|
|
|
|
__DEVICE__
|
|
float rsqrtf(float __x) { return __ocml_rsqrt_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float scalblnf(float __x, long int __n) {
|
|
return (__n < INT_MAX) ? __builtin_amdgcn_ldexpf(__x, __n)
|
|
: __ocml_scalb_f32(__x, __n);
|
|
}
|
|
|
|
__DEVICE__
|
|
float scalbnf(float __x, int __n) { return __builtin_amdgcn_ldexpf(__x, __n); }
|
|
|
|
__DEVICE__
|
|
__RETURN_TYPE __signbitf(float __x) { return __builtin_signbitf(__x); }
|
|
|
|
__DEVICE__
|
|
void sincosf(float __x, float *__sinptr, float *__cosptr) {
|
|
float __tmp;
|
|
#ifdef __OPENMP_AMDGCN__
|
|
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
|
|
#endif
|
|
*__sinptr =
|
|
__ocml_sincos_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
|
|
*__cosptr = __tmp;
|
|
}
|
|
|
|
__DEVICE__
|
|
void sincospif(float __x, float *__sinptr, float *__cosptr) {
|
|
float __tmp;
|
|
#ifdef __OPENMP_AMDGCN__
|
|
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
|
|
#endif
|
|
*__sinptr = __ocml_sincospi_f32(
|
|
__x, (__attribute__((address_space(5))) float *)&__tmp);
|
|
*__cosptr = __tmp;
|
|
}
|
|
|
|
__DEVICE__
|
|
float sinf(float __x) { return __ocml_sin_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float sinhf(float __x) { return __ocml_sinh_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float sinpif(float __x) { return __ocml_sinpi_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float sqrtf(float __x) { return __ocml_sqrt_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float tanf(float __x) { return __ocml_tan_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float tanhf(float __x) { return __ocml_tanh_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float tgammaf(float __x) { return __ocml_tgamma_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float truncf(float __x) { return __builtin_truncf(__x); }
|
|
|
|
__DEVICE__
|
|
float y0f(float __x) { return __ocml_y0_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float y1f(float __x) { return __ocml_y1_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float ynf(int __n, float __x) { // TODO: we could use Ahmes multiplication
|
|
// and the Miller & Brown algorithm
|
|
// for linear recurrences to get O(log n) steps, but it's unclear if
|
|
// it'd be beneficial in this case. Placeholder until OCML adds
|
|
// support.
|
|
if (__n == 0)
|
|
return y0f(__x);
|
|
if (__n == 1)
|
|
return y1f(__x);
|
|
|
|
float __x0 = y0f(__x);
|
|
float __x1 = y1f(__x);
|
|
for (int __i = 1; __i < __n; ++__i) {
|
|
float __x2 = (2 * __i) / __x * __x1 - __x0;
|
|
__x0 = __x1;
|
|
__x1 = __x2;
|
|
}
|
|
|
|
return __x1;
|
|
}
|
|
|
|
// BEGIN INTRINSICS
|
|
|
|
__DEVICE__
|
|
float __cosf(float __x) { return __ocml_native_cos_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float __exp10f(float __x) { return __ocml_native_exp10_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float __expf(float __x) { return __ocml_native_exp_f32(__x); }
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
float __fadd_rd(float __x, float __y) { return __ocml_add_rtn_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fadd_rn(float __x, float __y) { return __ocml_add_rte_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fadd_ru(float __x, float __y) { return __ocml_add_rtp_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fadd_rz(float __x, float __y) { return __ocml_add_rtz_f32(__x, __y); }
|
|
#else
|
|
__DEVICE__
|
|
float __fadd_rn(float __x, float __y) { return __x + __y; }
|
|
#endif
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
float __fdiv_rd(float __x, float __y) { return __ocml_div_rtn_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fdiv_rn(float __x, float __y) { return __ocml_div_rte_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fdiv_ru(float __x, float __y) { return __ocml_div_rtp_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fdiv_rz(float __x, float __y) { return __ocml_div_rtz_f32(__x, __y); }
|
|
#else
|
|
__DEVICE__
|
|
float __fdiv_rn(float __x, float __y) { return __x / __y; }
|
|
#endif
|
|
|
|
__DEVICE__
|
|
float __fdividef(float __x, float __y) { return __x / __y; }
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
float __fmaf_rd(float __x, float __y, float __z) {
|
|
return __ocml_fma_rtn_f32(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
float __fmaf_rn(float __x, float __y, float __z) {
|
|
return __ocml_fma_rte_f32(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
float __fmaf_ru(float __x, float __y, float __z) {
|
|
return __ocml_fma_rtp_f32(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
float __fmaf_rz(float __x, float __y, float __z) {
|
|
return __ocml_fma_rtz_f32(__x, __y, __z);
|
|
}
|
|
#else
|
|
__DEVICE__
|
|
float __fmaf_rn(float __x, float __y, float __z) {
|
|
return __builtin_fmaf(__x, __y, __z);
|
|
}
|
|
#endif
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
float __fmul_rd(float __x, float __y) { return __ocml_mul_rtn_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fmul_rn(float __x, float __y) { return __ocml_mul_rte_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fmul_ru(float __x, float __y) { return __ocml_mul_rtp_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fmul_rz(float __x, float __y) { return __ocml_mul_rtz_f32(__x, __y); }
|
|
#else
|
|
__DEVICE__
|
|
float __fmul_rn(float __x, float __y) { return __x * __y; }
|
|
#endif
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
float __frcp_rd(float __x) { return __ocml_div_rtn_f32(1.0f, __x); }
|
|
__DEVICE__
|
|
float __frcp_rn(float __x) { return __ocml_div_rte_f32(1.0f, __x); }
|
|
__DEVICE__
|
|
float __frcp_ru(float __x) { return __ocml_div_rtp_f32(1.0f, __x); }
|
|
__DEVICE__
|
|
float __frcp_rz(float __x) { return __ocml_div_rtz_f32(1.0f, __x); }
|
|
#else
|
|
__DEVICE__
|
|
float __frcp_rn(float __x) { return 1.0f / __x; }
|
|
#endif
|
|
|
|
__DEVICE__
|
|
float __frsqrt_rn(float __x) { return __builtin_amdgcn_rsqf(__x); }
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
float __fsqrt_rd(float __x) { return __ocml_sqrt_rtn_f32(__x); }
|
|
__DEVICE__
|
|
float __fsqrt_rn(float __x) { return __ocml_sqrt_rte_f32(__x); }
|
|
__DEVICE__
|
|
float __fsqrt_ru(float __x) { return __ocml_sqrt_rtp_f32(__x); }
|
|
__DEVICE__
|
|
float __fsqrt_rz(float __x) { return __ocml_sqrt_rtz_f32(__x); }
|
|
#else
|
|
__DEVICE__
|
|
float __fsqrt_rn(float __x) { return __ocml_native_sqrt_f32(__x); }
|
|
#endif
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
float __fsub_rd(float __x, float __y) { return __ocml_sub_rtn_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fsub_rn(float __x, float __y) { return __ocml_sub_rte_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fsub_ru(float __x, float __y) { return __ocml_sub_rtp_f32(__x, __y); }
|
|
__DEVICE__
|
|
float __fsub_rz(float __x, float __y) { return __ocml_sub_rtz_f32(__x, __y); }
|
|
#else
|
|
__DEVICE__
|
|
float __fsub_rn(float __x, float __y) { return __x - __y; }
|
|
#endif
|
|
|
|
__DEVICE__
|
|
float __log10f(float __x) { return __ocml_native_log10_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float __log2f(float __x) { return __ocml_native_log2_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float __logf(float __x) { return __ocml_native_log_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float __powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
|
|
|
|
__DEVICE__
|
|
float __saturatef(float __x) { return (__x < 0) ? 0 : ((__x > 1) ? 1 : __x); }
|
|
|
|
__DEVICE__
|
|
void __sincosf(float __x, float *__sinptr, float *__cosptr) {
|
|
*__sinptr = __ocml_native_sin_f32(__x);
|
|
*__cosptr = __ocml_native_cos_f32(__x);
|
|
}
|
|
|
|
__DEVICE__
|
|
float __sinf(float __x) { return __ocml_native_sin_f32(__x); }
|
|
|
|
__DEVICE__
|
|
float __tanf(float __x) { return __ocml_tan_f32(__x); }
|
|
// END INTRINSICS
|
|
// END FLOAT
|
|
|
|
// BEGIN DOUBLE
|
|
__DEVICE__
|
|
double acos(double __x) { return __ocml_acos_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double acosh(double __x) { return __ocml_acosh_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double asin(double __x) { return __ocml_asin_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double asinh(double __x) { return __ocml_asinh_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double atan(double __x) { return __ocml_atan_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double atan2(double __x, double __y) { return __ocml_atan2_f64(__x, __y); }
|
|
|
|
__DEVICE__
|
|
double atanh(double __x) { return __ocml_atanh_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double cbrt(double __x) { return __ocml_cbrt_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double ceil(double __x) { return __builtin_ceil(__x); }
|
|
|
|
__DEVICE__
|
|
double copysign(double __x, double __y) {
|
|
return __builtin_copysign(__x, __y);
|
|
}
|
|
|
|
__DEVICE__
|
|
double cos(double __x) { return __ocml_cos_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double cosh(double __x) { return __ocml_cosh_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double cospi(double __x) { return __ocml_cospi_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double cyl_bessel_i0(double __x) { return __ocml_i0_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double cyl_bessel_i1(double __x) { return __ocml_i1_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double erf(double __x) { return __ocml_erf_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double erfc(double __x) { return __ocml_erfc_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double erfcinv(double __x) { return __ocml_erfcinv_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double erfcx(double __x) { return __ocml_erfcx_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double erfinv(double __x) { return __ocml_erfinv_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double exp(double __x) { return __ocml_exp_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double exp10(double __x) { return __ocml_exp10_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double exp2(double __x) { return __ocml_exp2_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double expm1(double __x) { return __ocml_expm1_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double fabs(double __x) { return __builtin_fabs(__x); }
|
|
|
|
__DEVICE__
|
|
double fdim(double __x, double __y) { return __ocml_fdim_f64(__x, __y); }
|
|
|
|
__DEVICE__
|
|
double floor(double __x) { return __builtin_floor(__x); }
|
|
|
|
__DEVICE__
|
|
double fma(double __x, double __y, double __z) {
|
|
return __builtin_fma(__x, __y, __z);
|
|
}
|
|
|
|
__DEVICE__
|
|
double fmax(double __x, double __y) { return __builtin_fmax(__x, __y); }
|
|
|
|
__DEVICE__
|
|
double fmin(double __x, double __y) { return __builtin_fmin(__x, __y); }
|
|
|
|
__DEVICE__
|
|
double fmod(double __x, double __y) { return __ocml_fmod_f64(__x, __y); }
|
|
|
|
__DEVICE__
|
|
double frexp(double __x, int *__nptr) {
|
|
return __builtin_frexp(__x, __nptr);
|
|
}
|
|
|
|
__DEVICE__
|
|
double hypot(double __x, double __y) { return __ocml_hypot_f64(__x, __y); }
|
|
|
|
__DEVICE__
|
|
int ilogb(double __x) { return __ocml_ilogb_f64(__x); }
|
|
|
|
__DEVICE__
|
|
__RETURN_TYPE __finite(double __x) { return __builtin_isfinite(__x); }
|
|
|
|
__DEVICE__
|
|
__RETURN_TYPE __isinf(double __x) { return __builtin_isinf(__x); }
|
|
|
|
__DEVICE__
|
|
__RETURN_TYPE __isnan(double __x) { return __builtin_isnan(__x); }
|
|
|
|
__DEVICE__
|
|
double j0(double __x) { return __ocml_j0_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double j1(double __x) { return __ocml_j1_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double jn(int __n, double __x) { // TODO: we could use Ahmes multiplication
|
|
// and the Miller & Brown algorithm
|
|
// for linear recurrences to get O(log n) steps, but it's unclear if
|
|
// it'd be beneficial in this case. Placeholder until OCML adds
|
|
// support.
|
|
if (__n == 0)
|
|
return j0(__x);
|
|
if (__n == 1)
|
|
return j1(__x);
|
|
|
|
double __x0 = j0(__x);
|
|
double __x1 = j1(__x);
|
|
for (int __i = 1; __i < __n; ++__i) {
|
|
double __x2 = (2 * __i) / __x * __x1 - __x0;
|
|
__x0 = __x1;
|
|
__x1 = __x2;
|
|
}
|
|
return __x1;
|
|
}
|
|
|
|
__DEVICE__
|
|
double ldexp(double __x, int __e) { return __builtin_amdgcn_ldexp(__x, __e); }
|
|
|
|
__DEVICE__
|
|
double lgamma(double __x) { return __ocml_lgamma_f64(__x); }
|
|
|
|
__DEVICE__
|
|
long long int llrint(double __x) { return __builtin_rint(__x); }
|
|
|
|
__DEVICE__
|
|
long long int llround(double __x) { return __builtin_round(__x); }
|
|
|
|
__DEVICE__
|
|
double log(double __x) { return __ocml_log_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double log10(double __x) { return __ocml_log10_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double log1p(double __x) { return __ocml_log1p_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double log2(double __x) { return __ocml_log2_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double logb(double __x) { return __ocml_logb_f64(__x); }
|
|
|
|
__DEVICE__
|
|
long int lrint(double __x) { return __builtin_rint(__x); }
|
|
|
|
__DEVICE__
|
|
long int lround(double __x) { return __builtin_round(__x); }
|
|
|
|
__DEVICE__
|
|
double modf(double __x, double *__iptr) {
|
|
double __tmp;
|
|
#ifdef __OPENMP_AMDGCN__
|
|
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
|
|
#endif
|
|
double __r =
|
|
__ocml_modf_f64(__x, (__attribute__((address_space(5))) double *)&__tmp);
|
|
*__iptr = __tmp;
|
|
|
|
return __r;
|
|
}
|
|
|
|
__DEVICE__
|
|
double nan(const char *__tagp) {
|
|
#if !_WIN32
|
|
union {
|
|
double val;
|
|
struct ieee_double {
|
|
uint64_t mantissa : 51;
|
|
uint32_t quiet : 1;
|
|
uint32_t exponent : 11;
|
|
uint32_t sign : 1;
|
|
} bits;
|
|
} __tmp;
|
|
__static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits));
|
|
|
|
__tmp.bits.sign = 0u;
|
|
__tmp.bits.exponent = ~0u;
|
|
__tmp.bits.quiet = 1u;
|
|
__tmp.bits.mantissa = __make_mantissa(__tagp);
|
|
|
|
return __tmp.val;
|
|
#else
|
|
__static_assert_type_size_equal(sizeof(uint64_t), sizeof(double));
|
|
uint64_t __val = __make_mantissa(__tagp);
|
|
__val |= 0xFFF << 51;
|
|
return *reinterpret_cast<double *>(&__val);
|
|
#endif
|
|
}
|
|
|
|
__DEVICE__
|
|
double nearbyint(double __x) { return __builtin_nearbyint(__x); }
|
|
|
|
__DEVICE__
|
|
double nextafter(double __x, double __y) {
|
|
return __ocml_nextafter_f64(__x, __y);
|
|
}
|
|
|
|
__DEVICE__
|
|
double norm(int __dim,
|
|
const double *__a) { // TODO: placeholder until OCML adds support.
|
|
double __r = 0;
|
|
while (__dim--) {
|
|
__r += __a[0] * __a[0];
|
|
++__a;
|
|
}
|
|
|
|
return __ocml_sqrt_f64(__r);
|
|
}
|
|
|
|
__DEVICE__
|
|
double norm3d(double __x, double __y, double __z) {
|
|
return __ocml_len3_f64(__x, __y, __z);
|
|
}
|
|
|
|
__DEVICE__
|
|
double norm4d(double __x, double __y, double __z, double __w) {
|
|
return __ocml_len4_f64(__x, __y, __z, __w);
|
|
}
|
|
|
|
__DEVICE__
|
|
double normcdf(double __x) { return __ocml_ncdf_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double normcdfinv(double __x) { return __ocml_ncdfinv_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double pow(double __x, double __y) { return __ocml_pow_f64(__x, __y); }
|
|
|
|
__DEVICE__
|
|
double powi(double __x, int __y) { return __ocml_pown_f64(__x, __y); }
|
|
|
|
__DEVICE__
|
|
double rcbrt(double __x) { return __ocml_rcbrt_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double remainder(double __x, double __y) {
|
|
return __ocml_remainder_f64(__x, __y);
|
|
}
|
|
|
|
__DEVICE__
|
|
double remquo(double __x, double __y, int *__quo) {
|
|
int __tmp;
|
|
#ifdef __OPENMP_AMDGCN__
|
|
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
|
|
#endif
|
|
double __r = __ocml_remquo_f64(
|
|
__x, __y, (__attribute__((address_space(5))) int *)&__tmp);
|
|
*__quo = __tmp;
|
|
|
|
return __r;
|
|
}
|
|
|
|
__DEVICE__
|
|
double rhypot(double __x, double __y) { return __ocml_rhypot_f64(__x, __y); }
|
|
|
|
__DEVICE__
|
|
double rint(double __x) { return __builtin_rint(__x); }
|
|
|
|
__DEVICE__
|
|
double rnorm(int __dim,
|
|
const double *__a) { // TODO: placeholder until OCML adds support.
|
|
double __r = 0;
|
|
while (__dim--) {
|
|
__r += __a[0] * __a[0];
|
|
++__a;
|
|
}
|
|
|
|
return __ocml_rsqrt_f64(__r);
|
|
}
|
|
|
|
__DEVICE__
|
|
double rnorm3d(double __x, double __y, double __z) {
|
|
return __ocml_rlen3_f64(__x, __y, __z);
|
|
}
|
|
|
|
__DEVICE__
|
|
double rnorm4d(double __x, double __y, double __z, double __w) {
|
|
return __ocml_rlen4_f64(__x, __y, __z, __w);
|
|
}
|
|
|
|
__DEVICE__
|
|
double round(double __x) { return __builtin_round(__x); }
|
|
|
|
__DEVICE__
|
|
double rsqrt(double __x) { return __ocml_rsqrt_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double scalbln(double __x, long int __n) {
|
|
return (__n < INT_MAX) ? __builtin_amdgcn_ldexp(__x, __n)
|
|
: __ocml_scalb_f64(__x, __n);
|
|
}
|
|
__DEVICE__
|
|
double scalbn(double __x, int __n) { return __builtin_amdgcn_ldexp(__x, __n); }
|
|
|
|
__DEVICE__
|
|
__RETURN_TYPE __signbit(double __x) { return __builtin_signbit(__x); }
|
|
|
|
__DEVICE__
|
|
double sin(double __x) { return __ocml_sin_f64(__x); }
|
|
|
|
__DEVICE__
|
|
void sincos(double __x, double *__sinptr, double *__cosptr) {
|
|
double __tmp;
|
|
#ifdef __OPENMP_AMDGCN__
|
|
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
|
|
#endif
|
|
*__sinptr = __ocml_sincos_f64(
|
|
__x, (__attribute__((address_space(5))) double *)&__tmp);
|
|
*__cosptr = __tmp;
|
|
}
|
|
|
|
__DEVICE__
|
|
void sincospi(double __x, double *__sinptr, double *__cosptr) {
|
|
double __tmp;
|
|
#ifdef __OPENMP_AMDGCN__
|
|
#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
|
|
#endif
|
|
*__sinptr = __ocml_sincospi_f64(
|
|
__x, (__attribute__((address_space(5))) double *)&__tmp);
|
|
*__cosptr = __tmp;
|
|
}
|
|
|
|
__DEVICE__
|
|
double sinh(double __x) { return __ocml_sinh_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double sinpi(double __x) { return __ocml_sinpi_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double sqrt(double __x) { return __ocml_sqrt_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double tan(double __x) { return __ocml_tan_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double tanh(double __x) { return __ocml_tanh_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double tgamma(double __x) { return __ocml_tgamma_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double trunc(double __x) { return __builtin_trunc(__x); }
|
|
|
|
__DEVICE__
|
|
double y0(double __x) { return __ocml_y0_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double y1(double __x) { return __ocml_y1_f64(__x); }
|
|
|
|
__DEVICE__
|
|
double yn(int __n, double __x) { // TODO: we could use Ahmes multiplication
|
|
// and the Miller & Brown algorithm
|
|
// for linear recurrences to get O(log n) steps, but it's unclear if
|
|
// it'd be beneficial in this case. Placeholder until OCML adds
|
|
// support.
|
|
if (__n == 0)
|
|
return y0(__x);
|
|
if (__n == 1)
|
|
return y1(__x);
|
|
|
|
double __x0 = y0(__x);
|
|
double __x1 = y1(__x);
|
|
for (int __i = 1; __i < __n; ++__i) {
|
|
double __x2 = (2 * __i) / __x * __x1 - __x0;
|
|
__x0 = __x1;
|
|
__x1 = __x2;
|
|
}
|
|
|
|
return __x1;
|
|
}
|
|
|
|
// BEGIN INTRINSICS
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
double __dadd_rd(double __x, double __y) {
|
|
return __ocml_add_rtn_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __dadd_rn(double __x, double __y) {
|
|
return __ocml_add_rte_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __dadd_ru(double __x, double __y) {
|
|
return __ocml_add_rtp_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __dadd_rz(double __x, double __y) {
|
|
return __ocml_add_rtz_f64(__x, __y);
|
|
}
|
|
#else
|
|
__DEVICE__
|
|
double __dadd_rn(double __x, double __y) { return __x + __y; }
|
|
#endif
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
double __ddiv_rd(double __x, double __y) {
|
|
return __ocml_div_rtn_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __ddiv_rn(double __x, double __y) {
|
|
return __ocml_div_rte_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __ddiv_ru(double __x, double __y) {
|
|
return __ocml_div_rtp_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __ddiv_rz(double __x, double __y) {
|
|
return __ocml_div_rtz_f64(__x, __y);
|
|
}
|
|
#else
|
|
__DEVICE__
|
|
double __ddiv_rn(double __x, double __y) { return __x / __y; }
|
|
#endif
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
double __dmul_rd(double __x, double __y) {
|
|
return __ocml_mul_rtn_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __dmul_rn(double __x, double __y) {
|
|
return __ocml_mul_rte_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __dmul_ru(double __x, double __y) {
|
|
return __ocml_mul_rtp_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __dmul_rz(double __x, double __y) {
|
|
return __ocml_mul_rtz_f64(__x, __y);
|
|
}
|
|
#else
|
|
__DEVICE__
|
|
double __dmul_rn(double __x, double __y) { return __x * __y; }
|
|
#endif
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
double __drcp_rd(double __x) { return __ocml_div_rtn_f64(1.0, __x); }
|
|
__DEVICE__
|
|
double __drcp_rn(double __x) { return __ocml_div_rte_f64(1.0, __x); }
|
|
__DEVICE__
|
|
double __drcp_ru(double __x) { return __ocml_div_rtp_f64(1.0, __x); }
|
|
__DEVICE__
|
|
double __drcp_rz(double __x) { return __ocml_div_rtz_f64(1.0, __x); }
|
|
#else
|
|
__DEVICE__
|
|
double __drcp_rn(double __x) { return 1.0 / __x; }
|
|
#endif
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
double __dsqrt_rd(double __x) { return __ocml_sqrt_rtn_f64(__x); }
|
|
__DEVICE__
|
|
double __dsqrt_rn(double __x) { return __ocml_sqrt_rte_f64(__x); }
|
|
__DEVICE__
|
|
double __dsqrt_ru(double __x) { return __ocml_sqrt_rtp_f64(__x); }
|
|
__DEVICE__
|
|
double __dsqrt_rz(double __x) { return __ocml_sqrt_rtz_f64(__x); }
|
|
#else
|
|
__DEVICE__
|
|
double __dsqrt_rn(double __x) { return __ocml_sqrt_f64(__x); }
|
|
#endif
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
double __dsub_rd(double __x, double __y) {
|
|
return __ocml_sub_rtn_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __dsub_rn(double __x, double __y) {
|
|
return __ocml_sub_rte_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __dsub_ru(double __x, double __y) {
|
|
return __ocml_sub_rtp_f64(__x, __y);
|
|
}
|
|
__DEVICE__
|
|
double __dsub_rz(double __x, double __y) {
|
|
return __ocml_sub_rtz_f64(__x, __y);
|
|
}
|
|
#else
|
|
__DEVICE__
|
|
double __dsub_rn(double __x, double __y) { return __x - __y; }
|
|
#endif
|
|
|
|
#if defined OCML_BASIC_ROUNDED_OPERATIONS
|
|
__DEVICE__
|
|
double __fma_rd(double __x, double __y, double __z) {
|
|
return __ocml_fma_rtn_f64(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
double __fma_rn(double __x, double __y, double __z) {
|
|
return __ocml_fma_rte_f64(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
double __fma_ru(double __x, double __y, double __z) {
|
|
return __ocml_fma_rtp_f64(__x, __y, __z);
|
|
}
|
|
__DEVICE__
|
|
double __fma_rz(double __x, double __y, double __z) {
|
|
return __ocml_fma_rtz_f64(__x, __y, __z);
|
|
}
|
|
#else
|
|
__DEVICE__
|
|
double __fma_rn(double __x, double __y, double __z) {
|
|
return __builtin_fma(__x, __y, __z);
|
|
}
|
|
#endif
|
|
// END INTRINSICS
|
|
// END DOUBLE
|
|
|
|
// C only macros
|
|
#if !defined(__cplusplus) && __STDC_VERSION__ >= 201112L
|
|
#define isfinite(__x) _Generic((__x), float : __finitef, double : __finite)(__x)
|
|
#define isinf(__x) _Generic((__x), float : __isinff, double : __isinf)(__x)
|
|
#define isnan(__x) _Generic((__x), float : __isnanf, double : __isnan)(__x)
|
|
#define signbit(__x) \
|
|
_Generic((__x), float : __signbitf, double : __signbit)(__x)
|
|
#endif // !defined(__cplusplus) && __STDC_VERSION__ >= 201112L
|
|
|
|
#if defined(__cplusplus)
|
|
template <class T> __DEVICE__ T min(T __arg1, T __arg2) {
|
|
return (__arg1 < __arg2) ? __arg1 : __arg2;
|
|
}
|
|
|
|
template <class T> __DEVICE__ T max(T __arg1, T __arg2) {
|
|
return (__arg1 > __arg2) ? __arg1 : __arg2;
|
|
}
|
|
|
|
__DEVICE__ int min(int __arg1, int __arg2) {
|
|
return (__arg1 < __arg2) ? __arg1 : __arg2;
|
|
}
|
|
__DEVICE__ int max(int __arg1, int __arg2) {
|
|
return (__arg1 > __arg2) ? __arg1 : __arg2;
|
|
}
|
|
|
|
__DEVICE__
|
|
float max(float __x, float __y) { return __builtin_fmaxf(__x, __y); }
|
|
|
|
__DEVICE__
|
|
double max(double __x, double __y) { return __builtin_fmax(__x, __y); }
|
|
|
|
__DEVICE__
|
|
float min(float __x, float __y) { return __builtin_fminf(__x, __y); }
|
|
|
|
__DEVICE__
|
|
double min(double __x, double __y) { return __builtin_fmin(__x, __y); }
|
|
|
|
#if !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__)
|
|
__host__ inline static int min(int __arg1, int __arg2) {
|
|
return std::min(__arg1, __arg2);
|
|
}
|
|
|
|
__host__ inline static int max(int __arg1, int __arg2) {
|
|
return std::max(__arg1, __arg2);
|
|
}
|
|
#endif // !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__)
|
|
#endif
|
|
|
|
#pragma pop_macro("__DEVICE__")
|
|
#pragma pop_macro("__RETURN_TYPE")
|
|
|
|
#endif // __CLANG_HIP_MATH_H__
|