zig/lib/std/crypto/hkdf.zig
Jacob Young fe93332ba2 x86_64: implement enough to pass unicode tests
* implement vector comparison
 * implement reduce for bool vectors
 * fix `@memcpy` bug
 * enable passing std tests
2023-10-23 22:42:18 -04:00

91 lines
3.4 KiB
Zig

const std = @import("../std.zig");
const assert = std.debug.assert;
const hmac = std.crypto.auth.hmac;
const mem = std.mem;
/// HKDF-SHA256
pub const HkdfSha256 = Hkdf(hmac.sha2.HmacSha256);
/// HKDF-SHA512
pub const HkdfSha512 = Hkdf(hmac.sha2.HmacSha512);
/// The Hkdf construction takes some source of initial keying material and
/// derives one or more uniform keys from it.
pub fn Hkdf(comptime Hmac: type) type {
return struct {
/// Length of a master key, in bytes.
pub const prk_length = Hmac.mac_length;
/// Return a master key from a salt and initial keying material.
pub fn extract(salt: []const u8, ikm: []const u8) [prk_length]u8 {
var prk: [prk_length]u8 = undefined;
Hmac.create(&prk, ikm, salt);
return prk;
}
/// Initialize the creation of a master key from a salt
/// and keying material that can be added later, possibly in chunks.
/// Example:
/// ```
/// var prk: [hkdf.prk_length]u8 = undefined;
/// var hkdf = HkdfSha256.extractInit(salt);
/// hkdf.update(ikm1);
/// hkdf.update(ikm2);
/// hkdf.final(&prk);
/// ```
pub fn extractInit(salt: []const u8) Hmac {
return Hmac.init(salt);
}
/// Derive a subkey from a master key `prk` and a subkey description `ctx`.
pub fn expand(out: []u8, ctx: []const u8, prk: [prk_length]u8) void {
assert(out.len <= prk_length * 255); // output size is too large for the Hkdf construction
var i: usize = 0;
var counter = [1]u8{1};
while (i + prk_length <= out.len) : (i += prk_length) {
var st = Hmac.init(&prk);
if (i != 0) {
st.update(out[i - prk_length ..][0..prk_length]);
}
st.update(ctx);
st.update(&counter);
st.final(out[i..][0..prk_length]);
counter[0] +%= 1;
assert(counter[0] != 1);
}
const left = out.len % prk_length;
if (left > 0) {
var st = Hmac.init(&prk);
if (i != 0) {
st.update(out[i - prk_length ..][0..prk_length]);
}
st.update(ctx);
st.update(&counter);
var tmp: [prk_length]u8 = undefined;
st.final(tmp[0..prk_length]);
@memcpy(out[i..][0..left], tmp[0..left]);
}
}
};
}
const htest = @import("test.zig");
test "Hkdf" {
const ikm = [_]u8{0x0b} ** 22;
const salt = [_]u8{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c };
const context = [_]u8{ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9 };
const kdf = HkdfSha256;
const prk = kdf.extract(&salt, &ikm);
try htest.assertEqual("077709362c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5", &prk);
var out: [42]u8 = undefined;
kdf.expand(&out, &context, prk);
try htest.assertEqual("3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b887185865", &out);
var hkdf = kdf.extractInit(&salt);
hkdf.update(&ikm);
var prk2: [kdf.prk_length]u8 = undefined;
hkdf.final(&prk2);
try htest.assertEqual("077709362c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5", &prk2);
}