mirror of
https://github.com/ziglang/zig.git
synced 2024-11-16 09:03:12 +00:00
894 lines
28 KiB
C++
894 lines
28 KiB
C++
//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
// Main internal TSan header file.
|
|
//
|
|
// Ground rules:
|
|
// - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
|
|
// function-scope locals)
|
|
// - All functions/classes/etc reside in namespace __tsan, except for those
|
|
// declared in tsan_interface.h.
|
|
// - Platform-specific files should be used instead of ifdefs (*).
|
|
// - No system headers included in header files (*).
|
|
// - Platform specific headres included only into platform-specific files (*).
|
|
//
|
|
// (*) Except when inlining is critical for performance.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef TSAN_RTL_H
|
|
#define TSAN_RTL_H
|
|
|
|
#include "sanitizer_common/sanitizer_allocator.h"
|
|
#include "sanitizer_common/sanitizer_allocator_internal.h"
|
|
#include "sanitizer_common/sanitizer_asm.h"
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
|
|
#include "sanitizer_common/sanitizer_libignore.h"
|
|
#include "sanitizer_common/sanitizer_suppressions.h"
|
|
#include "sanitizer_common/sanitizer_thread_registry.h"
|
|
#include "sanitizer_common/sanitizer_vector.h"
|
|
#include "tsan_clock.h"
|
|
#include "tsan_defs.h"
|
|
#include "tsan_flags.h"
|
|
#include "tsan_mman.h"
|
|
#include "tsan_sync.h"
|
|
#include "tsan_trace.h"
|
|
#include "tsan_report.h"
|
|
#include "tsan_platform.h"
|
|
#include "tsan_mutexset.h"
|
|
#include "tsan_ignoreset.h"
|
|
#include "tsan_stack_trace.h"
|
|
|
|
#if SANITIZER_WORDSIZE != 64
|
|
# error "ThreadSanitizer is supported only on 64-bit platforms"
|
|
#endif
|
|
|
|
namespace __tsan {
|
|
|
|
#if !SANITIZER_GO
|
|
struct MapUnmapCallback;
|
|
#if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
|
|
|
|
struct AP32 {
|
|
static const uptr kSpaceBeg = 0;
|
|
static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
|
|
static const uptr kMetadataSize = 0;
|
|
typedef __sanitizer::CompactSizeClassMap SizeClassMap;
|
|
static const uptr kRegionSizeLog = 20;
|
|
using AddressSpaceView = LocalAddressSpaceView;
|
|
typedef __tsan::MapUnmapCallback MapUnmapCallback;
|
|
static const uptr kFlags = 0;
|
|
};
|
|
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
|
|
#else
|
|
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
|
|
static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
|
|
static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
|
|
static const uptr kMetadataSize = 0;
|
|
typedef DefaultSizeClassMap SizeClassMap;
|
|
typedef __tsan::MapUnmapCallback MapUnmapCallback;
|
|
static const uptr kFlags = 0;
|
|
using AddressSpaceView = LocalAddressSpaceView;
|
|
};
|
|
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
|
|
#endif
|
|
typedef CombinedAllocator<PrimaryAllocator> Allocator;
|
|
typedef Allocator::AllocatorCache AllocatorCache;
|
|
Allocator *allocator();
|
|
#endif
|
|
|
|
void TsanCheckFailed(const char *file, int line, const char *cond,
|
|
u64 v1, u64 v2);
|
|
|
|
const u64 kShadowRodata = (u64)-1; // .rodata shadow marker
|
|
|
|
// FastState (from most significant bit):
|
|
// ignore : 1
|
|
// tid : kTidBits
|
|
// unused : -
|
|
// history_size : 3
|
|
// epoch : kClkBits
|
|
class FastState {
|
|
public:
|
|
FastState(u64 tid, u64 epoch) {
|
|
x_ = tid << kTidShift;
|
|
x_ |= epoch;
|
|
DCHECK_EQ(tid, this->tid());
|
|
DCHECK_EQ(epoch, this->epoch());
|
|
DCHECK_EQ(GetIgnoreBit(), false);
|
|
}
|
|
|
|
explicit FastState(u64 x)
|
|
: x_(x) {
|
|
}
|
|
|
|
u64 raw() const {
|
|
return x_;
|
|
}
|
|
|
|
u64 tid() const {
|
|
u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
|
|
return res;
|
|
}
|
|
|
|
u64 TidWithIgnore() const {
|
|
u64 res = x_ >> kTidShift;
|
|
return res;
|
|
}
|
|
|
|
u64 epoch() const {
|
|
u64 res = x_ & ((1ull << kClkBits) - 1);
|
|
return res;
|
|
}
|
|
|
|
void IncrementEpoch() {
|
|
u64 old_epoch = epoch();
|
|
x_ += 1;
|
|
DCHECK_EQ(old_epoch + 1, epoch());
|
|
(void)old_epoch;
|
|
}
|
|
|
|
void SetIgnoreBit() { x_ |= kIgnoreBit; }
|
|
void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
|
|
bool GetIgnoreBit() const { return (s64)x_ < 0; }
|
|
|
|
void SetHistorySize(int hs) {
|
|
CHECK_GE(hs, 0);
|
|
CHECK_LE(hs, 7);
|
|
x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
|
|
}
|
|
|
|
ALWAYS_INLINE
|
|
int GetHistorySize() const {
|
|
return (int)((x_ >> kHistoryShift) & kHistoryMask);
|
|
}
|
|
|
|
void ClearHistorySize() {
|
|
SetHistorySize(0);
|
|
}
|
|
|
|
ALWAYS_INLINE
|
|
u64 GetTracePos() const {
|
|
const int hs = GetHistorySize();
|
|
// When hs == 0, the trace consists of 2 parts.
|
|
const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
|
|
return epoch() & mask;
|
|
}
|
|
|
|
private:
|
|
friend class Shadow;
|
|
static const int kTidShift = 64 - kTidBits - 1;
|
|
static const u64 kIgnoreBit = 1ull << 63;
|
|
static const u64 kFreedBit = 1ull << 63;
|
|
static const u64 kHistoryShift = kClkBits;
|
|
static const u64 kHistoryMask = 7;
|
|
u64 x_;
|
|
};
|
|
|
|
// Shadow (from most significant bit):
|
|
// freed : 1
|
|
// tid : kTidBits
|
|
// is_atomic : 1
|
|
// is_read : 1
|
|
// size_log : 2
|
|
// addr0 : 3
|
|
// epoch : kClkBits
|
|
class Shadow : public FastState {
|
|
public:
|
|
explicit Shadow(u64 x)
|
|
: FastState(x) {
|
|
}
|
|
|
|
explicit Shadow(const FastState &s)
|
|
: FastState(s.x_) {
|
|
ClearHistorySize();
|
|
}
|
|
|
|
void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
|
|
DCHECK_EQ((x_ >> kClkBits) & 31, 0);
|
|
DCHECK_LE(addr0, 7);
|
|
DCHECK_LE(kAccessSizeLog, 3);
|
|
x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
|
|
DCHECK_EQ(kAccessSizeLog, size_log());
|
|
DCHECK_EQ(addr0, this->addr0());
|
|
}
|
|
|
|
void SetWrite(unsigned kAccessIsWrite) {
|
|
DCHECK_EQ(x_ & kReadBit, 0);
|
|
if (!kAccessIsWrite)
|
|
x_ |= kReadBit;
|
|
DCHECK_EQ(kAccessIsWrite, IsWrite());
|
|
}
|
|
|
|
void SetAtomic(bool kIsAtomic) {
|
|
DCHECK(!IsAtomic());
|
|
if (kIsAtomic)
|
|
x_ |= kAtomicBit;
|
|
DCHECK_EQ(IsAtomic(), kIsAtomic);
|
|
}
|
|
|
|
bool IsAtomic() const {
|
|
return x_ & kAtomicBit;
|
|
}
|
|
|
|
bool IsZero() const {
|
|
return x_ == 0;
|
|
}
|
|
|
|
static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
|
|
u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
|
|
DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
|
|
return shifted_xor == 0;
|
|
}
|
|
|
|
static ALWAYS_INLINE
|
|
bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
|
|
u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
|
|
return masked_xor == 0;
|
|
}
|
|
|
|
static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
|
|
unsigned kS2AccessSize) {
|
|
bool res = false;
|
|
u64 diff = s1.addr0() - s2.addr0();
|
|
if ((s64)diff < 0) { // s1.addr0 < s2.addr0
|
|
// if (s1.addr0() + size1) > s2.addr0()) return true;
|
|
if (s1.size() > -diff)
|
|
res = true;
|
|
} else {
|
|
// if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
|
|
if (kS2AccessSize > diff)
|
|
res = true;
|
|
}
|
|
DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
|
|
DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
|
|
return res;
|
|
}
|
|
|
|
u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
|
|
u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
|
|
bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
|
|
bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
|
|
|
|
// The idea behind the freed bit is as follows.
|
|
// When the memory is freed (or otherwise unaccessible) we write to the shadow
|
|
// values with tid/epoch related to the free and the freed bit set.
|
|
// During memory accesses processing the freed bit is considered
|
|
// as msb of tid. So any access races with shadow with freed bit set
|
|
// (it is as if write from a thread with which we never synchronized before).
|
|
// This allows us to detect accesses to freed memory w/o additional
|
|
// overheads in memory access processing and at the same time restore
|
|
// tid/epoch of free.
|
|
void MarkAsFreed() {
|
|
x_ |= kFreedBit;
|
|
}
|
|
|
|
bool IsFreed() const {
|
|
return x_ & kFreedBit;
|
|
}
|
|
|
|
bool GetFreedAndReset() {
|
|
bool res = x_ & kFreedBit;
|
|
x_ &= ~kFreedBit;
|
|
return res;
|
|
}
|
|
|
|
bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
|
|
bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
|
|
| (u64(kIsAtomic) << kAtomicShift));
|
|
DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
|
|
return v;
|
|
}
|
|
|
|
bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
|
|
bool v = ((x_ >> kReadShift) & 3)
|
|
<= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
|
|
DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
|
|
(IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
|
|
return v;
|
|
}
|
|
|
|
bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
|
|
bool v = ((x_ >> kReadShift) & 3)
|
|
>= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
|
|
DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
|
|
(IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
|
|
return v;
|
|
}
|
|
|
|
private:
|
|
static const u64 kReadShift = 5 + kClkBits;
|
|
static const u64 kReadBit = 1ull << kReadShift;
|
|
static const u64 kAtomicShift = 6 + kClkBits;
|
|
static const u64 kAtomicBit = 1ull << kAtomicShift;
|
|
|
|
u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
|
|
|
|
static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
|
|
if (s1.addr0() == s2.addr0()) return true;
|
|
if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
|
|
return true;
|
|
if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
|
|
return true;
|
|
return false;
|
|
}
|
|
};
|
|
|
|
struct ThreadSignalContext;
|
|
|
|
struct JmpBuf {
|
|
uptr sp;
|
|
int int_signal_send;
|
|
bool in_blocking_func;
|
|
uptr in_signal_handler;
|
|
uptr *shadow_stack_pos;
|
|
};
|
|
|
|
// A Processor represents a physical thread, or a P for Go.
|
|
// It is used to store internal resources like allocate cache, and does not
|
|
// participate in race-detection logic (invisible to end user).
|
|
// In C++ it is tied to an OS thread just like ThreadState, however ideally
|
|
// it should be tied to a CPU (this way we will have fewer allocator caches).
|
|
// In Go it is tied to a P, so there are significantly fewer Processor's than
|
|
// ThreadState's (which are tied to Gs).
|
|
// A ThreadState must be wired with a Processor to handle events.
|
|
struct Processor {
|
|
ThreadState *thr; // currently wired thread, or nullptr
|
|
#if !SANITIZER_GO
|
|
AllocatorCache alloc_cache;
|
|
InternalAllocatorCache internal_alloc_cache;
|
|
#endif
|
|
DenseSlabAllocCache block_cache;
|
|
DenseSlabAllocCache sync_cache;
|
|
DenseSlabAllocCache clock_cache;
|
|
DDPhysicalThread *dd_pt;
|
|
};
|
|
|
|
#if !SANITIZER_GO
|
|
// ScopedGlobalProcessor temporary setups a global processor for the current
|
|
// thread, if it does not have one. Intended for interceptors that can run
|
|
// at the very thread end, when we already destroyed the thread processor.
|
|
struct ScopedGlobalProcessor {
|
|
ScopedGlobalProcessor();
|
|
~ScopedGlobalProcessor();
|
|
};
|
|
#endif
|
|
|
|
// This struct is stored in TLS.
|
|
struct ThreadState {
|
|
FastState fast_state;
|
|
// Synch epoch represents the threads's epoch before the last synchronization
|
|
// action. It allows to reduce number of shadow state updates.
|
|
// For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
|
|
// if we are processing write to X from the same thread at epoch=200,
|
|
// we do nothing, because both writes happen in the same 'synch epoch'.
|
|
// That is, if another memory access does not race with the former write,
|
|
// it does not race with the latter as well.
|
|
// QUESTION: can we can squeeze this into ThreadState::Fast?
|
|
// E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
|
|
// taken by epoch between synchs.
|
|
// This way we can save one load from tls.
|
|
u64 fast_synch_epoch;
|
|
// Technically `current` should be a separate THREADLOCAL variable;
|
|
// but it is placed here in order to share cache line with previous fields.
|
|
ThreadState* current;
|
|
// This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
|
|
// We do not distinguish beteween ignoring reads and writes
|
|
// for better performance.
|
|
int ignore_reads_and_writes;
|
|
int ignore_sync;
|
|
int suppress_reports;
|
|
// Go does not support ignores.
|
|
#if !SANITIZER_GO
|
|
IgnoreSet mop_ignore_set;
|
|
IgnoreSet sync_ignore_set;
|
|
#endif
|
|
// C/C++ uses fixed size shadow stack embed into Trace.
|
|
// Go uses malloc-allocated shadow stack with dynamic size.
|
|
uptr *shadow_stack;
|
|
uptr *shadow_stack_end;
|
|
uptr *shadow_stack_pos;
|
|
u64 *racy_shadow_addr;
|
|
u64 racy_state[2];
|
|
MutexSet mset;
|
|
ThreadClock clock;
|
|
#if !SANITIZER_GO
|
|
Vector<JmpBuf> jmp_bufs;
|
|
int ignore_interceptors;
|
|
#endif
|
|
#if TSAN_COLLECT_STATS
|
|
u64 stat[StatCnt];
|
|
#endif
|
|
const int tid;
|
|
const int unique_id;
|
|
bool in_symbolizer;
|
|
bool in_ignored_lib;
|
|
bool is_inited;
|
|
bool is_dead;
|
|
bool is_freeing;
|
|
bool is_vptr_access;
|
|
const uptr stk_addr;
|
|
const uptr stk_size;
|
|
const uptr tls_addr;
|
|
const uptr tls_size;
|
|
ThreadContext *tctx;
|
|
|
|
#if SANITIZER_DEBUG && !SANITIZER_GO
|
|
InternalDeadlockDetector internal_deadlock_detector;
|
|
#endif
|
|
DDLogicalThread *dd_lt;
|
|
|
|
// Current wired Processor, or nullptr. Required to handle any events.
|
|
Processor *proc1;
|
|
#if !SANITIZER_GO
|
|
Processor *proc() { return proc1; }
|
|
#else
|
|
Processor *proc();
|
|
#endif
|
|
|
|
atomic_uintptr_t in_signal_handler;
|
|
ThreadSignalContext *signal_ctx;
|
|
|
|
#if !SANITIZER_GO
|
|
u32 last_sleep_stack_id;
|
|
ThreadClock last_sleep_clock;
|
|
#endif
|
|
|
|
// Set in regions of runtime that must be signal-safe and fork-safe.
|
|
// If set, malloc must not be called.
|
|
int nomalloc;
|
|
|
|
const ReportDesc *current_report;
|
|
|
|
explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
|
|
unsigned reuse_count,
|
|
uptr stk_addr, uptr stk_size,
|
|
uptr tls_addr, uptr tls_size);
|
|
};
|
|
|
|
#if !SANITIZER_GO
|
|
#if SANITIZER_MAC || SANITIZER_ANDROID
|
|
ThreadState *cur_thread();
|
|
void set_cur_thread(ThreadState *thr);
|
|
void cur_thread_finalize();
|
|
INLINE void cur_thread_init() { }
|
|
#else
|
|
__attribute__((tls_model("initial-exec")))
|
|
extern THREADLOCAL char cur_thread_placeholder[];
|
|
INLINE ThreadState *cur_thread() {
|
|
return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
|
|
}
|
|
INLINE void cur_thread_init() {
|
|
ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
|
|
if (UNLIKELY(!thr->current))
|
|
thr->current = thr;
|
|
}
|
|
INLINE void set_cur_thread(ThreadState *thr) {
|
|
reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
|
|
}
|
|
INLINE void cur_thread_finalize() { }
|
|
#endif // SANITIZER_MAC || SANITIZER_ANDROID
|
|
#endif // SANITIZER_GO
|
|
|
|
class ThreadContext : public ThreadContextBase {
|
|
public:
|
|
explicit ThreadContext(int tid);
|
|
~ThreadContext();
|
|
ThreadState *thr;
|
|
u32 creation_stack_id;
|
|
SyncClock sync;
|
|
// Epoch at which the thread had started.
|
|
// If we see an event from the thread stamped by an older epoch,
|
|
// the event is from a dead thread that shared tid with this thread.
|
|
u64 epoch0;
|
|
u64 epoch1;
|
|
|
|
// Override superclass callbacks.
|
|
void OnDead() override;
|
|
void OnJoined(void *arg) override;
|
|
void OnFinished() override;
|
|
void OnStarted(void *arg) override;
|
|
void OnCreated(void *arg) override;
|
|
void OnReset() override;
|
|
void OnDetached(void *arg) override;
|
|
};
|
|
|
|
struct RacyStacks {
|
|
MD5Hash hash[2];
|
|
bool operator==(const RacyStacks &other) const {
|
|
if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
|
|
return true;
|
|
if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
|
|
return true;
|
|
return false;
|
|
}
|
|
};
|
|
|
|
struct RacyAddress {
|
|
uptr addr_min;
|
|
uptr addr_max;
|
|
};
|
|
|
|
struct FiredSuppression {
|
|
ReportType type;
|
|
uptr pc_or_addr;
|
|
Suppression *supp;
|
|
};
|
|
|
|
struct Context {
|
|
Context();
|
|
|
|
bool initialized;
|
|
#if !SANITIZER_GO
|
|
bool after_multithreaded_fork;
|
|
#endif
|
|
|
|
MetaMap metamap;
|
|
|
|
Mutex report_mtx;
|
|
int nreported;
|
|
int nmissed_expected;
|
|
atomic_uint64_t last_symbolize_time_ns;
|
|
|
|
void *background_thread;
|
|
atomic_uint32_t stop_background_thread;
|
|
|
|
ThreadRegistry *thread_registry;
|
|
|
|
Mutex racy_mtx;
|
|
Vector<RacyStacks> racy_stacks;
|
|
Vector<RacyAddress> racy_addresses;
|
|
// Number of fired suppressions may be large enough.
|
|
Mutex fired_suppressions_mtx;
|
|
InternalMmapVector<FiredSuppression> fired_suppressions;
|
|
DDetector *dd;
|
|
|
|
ClockAlloc clock_alloc;
|
|
|
|
Flags flags;
|
|
|
|
u64 stat[StatCnt];
|
|
u64 int_alloc_cnt[MBlockTypeCount];
|
|
u64 int_alloc_siz[MBlockTypeCount];
|
|
};
|
|
|
|
extern Context *ctx; // The one and the only global runtime context.
|
|
|
|
ALWAYS_INLINE Flags *flags() {
|
|
return &ctx->flags;
|
|
}
|
|
|
|
struct ScopedIgnoreInterceptors {
|
|
ScopedIgnoreInterceptors() {
|
|
#if !SANITIZER_GO
|
|
cur_thread()->ignore_interceptors++;
|
|
#endif
|
|
}
|
|
|
|
~ScopedIgnoreInterceptors() {
|
|
#if !SANITIZER_GO
|
|
cur_thread()->ignore_interceptors--;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
const char *GetObjectTypeFromTag(uptr tag);
|
|
const char *GetReportHeaderFromTag(uptr tag);
|
|
uptr TagFromShadowStackFrame(uptr pc);
|
|
|
|
class ScopedReportBase {
|
|
public:
|
|
void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, StackTrace stack,
|
|
const MutexSet *mset);
|
|
void AddStack(StackTrace stack, bool suppressable = false);
|
|
void AddThread(const ThreadContext *tctx, bool suppressable = false);
|
|
void AddThread(int unique_tid, bool suppressable = false);
|
|
void AddUniqueTid(int unique_tid);
|
|
void AddMutex(const SyncVar *s);
|
|
u64 AddMutex(u64 id);
|
|
void AddLocation(uptr addr, uptr size);
|
|
void AddSleep(u32 stack_id);
|
|
void SetCount(int count);
|
|
|
|
const ReportDesc *GetReport() const;
|
|
|
|
protected:
|
|
ScopedReportBase(ReportType typ, uptr tag);
|
|
~ScopedReportBase();
|
|
|
|
private:
|
|
ReportDesc *rep_;
|
|
// Symbolizer makes lots of intercepted calls. If we try to process them,
|
|
// at best it will cause deadlocks on internal mutexes.
|
|
ScopedIgnoreInterceptors ignore_interceptors_;
|
|
|
|
void AddDeadMutex(u64 id);
|
|
|
|
ScopedReportBase(const ScopedReportBase &) = delete;
|
|
void operator=(const ScopedReportBase &) = delete;
|
|
};
|
|
|
|
class ScopedReport : public ScopedReportBase {
|
|
public:
|
|
explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
|
|
~ScopedReport();
|
|
|
|
private:
|
|
ScopedErrorReportLock lock_;
|
|
};
|
|
|
|
ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
|
|
void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
|
|
MutexSet *mset, uptr *tag = nullptr);
|
|
|
|
// The stack could look like:
|
|
// <start> | <main> | <foo> | tag | <bar>
|
|
// This will extract the tag and keep:
|
|
// <start> | <main> | <foo> | <bar>
|
|
template<typename StackTraceTy>
|
|
void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
|
|
if (stack->size < 2) return;
|
|
uptr possible_tag_pc = stack->trace[stack->size - 2];
|
|
uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
|
|
if (possible_tag == kExternalTagNone) return;
|
|
stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
|
|
stack->size -= 1;
|
|
if (tag) *tag = possible_tag;
|
|
}
|
|
|
|
template<typename StackTraceTy>
|
|
void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
|
|
uptr *tag = nullptr) {
|
|
uptr size = thr->shadow_stack_pos - thr->shadow_stack;
|
|
uptr start = 0;
|
|
if (size + !!toppc > kStackTraceMax) {
|
|
start = size + !!toppc - kStackTraceMax;
|
|
size = kStackTraceMax - !!toppc;
|
|
}
|
|
stack->Init(&thr->shadow_stack[start], size, toppc);
|
|
ExtractTagFromStack(stack, tag);
|
|
}
|
|
|
|
#define GET_STACK_TRACE_FATAL(thr, pc) \
|
|
VarSizeStackTrace stack; \
|
|
ObtainCurrentStack(thr, pc, &stack); \
|
|
stack.ReverseOrder();
|
|
|
|
#if TSAN_COLLECT_STATS
|
|
void StatAggregate(u64 *dst, u64 *src);
|
|
void StatOutput(u64 *stat);
|
|
#endif
|
|
|
|
void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
|
|
#if TSAN_COLLECT_STATS
|
|
thr->stat[typ] += n;
|
|
#endif
|
|
}
|
|
void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
|
|
#if TSAN_COLLECT_STATS
|
|
thr->stat[typ] = n;
|
|
#endif
|
|
}
|
|
|
|
void MapShadow(uptr addr, uptr size);
|
|
void MapThreadTrace(uptr addr, uptr size, const char *name);
|
|
void DontNeedShadowFor(uptr addr, uptr size);
|
|
void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
|
|
void InitializeShadowMemory();
|
|
void InitializeInterceptors();
|
|
void InitializeLibIgnore();
|
|
void InitializeDynamicAnnotations();
|
|
|
|
void ForkBefore(ThreadState *thr, uptr pc);
|
|
void ForkParentAfter(ThreadState *thr, uptr pc);
|
|
void ForkChildAfter(ThreadState *thr, uptr pc);
|
|
|
|
void ReportRace(ThreadState *thr);
|
|
bool OutputReport(ThreadState *thr, const ScopedReport &srep);
|
|
bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
|
|
bool IsExpectedReport(uptr addr, uptr size);
|
|
void PrintMatchedBenignRaces();
|
|
|
|
#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
|
|
# define DPrintf Printf
|
|
#else
|
|
# define DPrintf(...)
|
|
#endif
|
|
|
|
#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
|
|
# define DPrintf2 Printf
|
|
#else
|
|
# define DPrintf2(...)
|
|
#endif
|
|
|
|
u32 CurrentStackId(ThreadState *thr, uptr pc);
|
|
ReportStack *SymbolizeStackId(u32 stack_id);
|
|
void PrintCurrentStack(ThreadState *thr, uptr pc);
|
|
void PrintCurrentStackSlow(uptr pc); // uses libunwind
|
|
|
|
void Initialize(ThreadState *thr);
|
|
void MaybeSpawnBackgroundThread();
|
|
int Finalize(ThreadState *thr);
|
|
|
|
void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
|
|
void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
|
|
|
|
void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
|
|
int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
|
|
void MemoryAccessImpl(ThreadState *thr, uptr addr,
|
|
int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
|
|
u64 *shadow_mem, Shadow cur);
|
|
void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
|
|
uptr size, bool is_write);
|
|
void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
|
|
uptr size, uptr step, bool is_write);
|
|
void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
|
|
int size, bool kAccessIsWrite, bool kIsAtomic);
|
|
|
|
const int kSizeLog1 = 0;
|
|
const int kSizeLog2 = 1;
|
|
const int kSizeLog4 = 2;
|
|
const int kSizeLog8 = 3;
|
|
|
|
void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
|
|
uptr addr, int kAccessSizeLog) {
|
|
MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
|
|
}
|
|
|
|
void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
|
|
uptr addr, int kAccessSizeLog) {
|
|
MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
|
|
}
|
|
|
|
void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
|
|
uptr addr, int kAccessSizeLog) {
|
|
MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
|
|
}
|
|
|
|
void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
|
|
uptr addr, int kAccessSizeLog) {
|
|
MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
|
|
}
|
|
|
|
void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
|
|
void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
|
|
void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
|
|
void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
|
|
uptr size);
|
|
|
|
void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack = true);
|
|
void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
|
|
void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack = true);
|
|
void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
|
|
|
|
void FuncEntry(ThreadState *thr, uptr pc);
|
|
void FuncExit(ThreadState *thr);
|
|
|
|
int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
|
|
void ThreadStart(ThreadState *thr, int tid, tid_t os_id,
|
|
ThreadType thread_type);
|
|
void ThreadFinish(ThreadState *thr);
|
|
int ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
|
|
void ThreadJoin(ThreadState *thr, uptr pc, int tid);
|
|
void ThreadDetach(ThreadState *thr, uptr pc, int tid);
|
|
void ThreadFinalize(ThreadState *thr);
|
|
void ThreadSetName(ThreadState *thr, const char *name);
|
|
int ThreadCount(ThreadState *thr);
|
|
void ProcessPendingSignals(ThreadState *thr);
|
|
void ThreadNotJoined(ThreadState *thr, uptr pc, int tid, uptr uid);
|
|
|
|
Processor *ProcCreate();
|
|
void ProcDestroy(Processor *proc);
|
|
void ProcWire(Processor *proc, ThreadState *thr);
|
|
void ProcUnwire(Processor *proc, ThreadState *thr);
|
|
|
|
// Note: the parameter is called flagz, because flags is already taken
|
|
// by the global function that returns flags.
|
|
void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
|
|
void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
|
|
void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
|
|
void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
|
|
int rec = 1);
|
|
int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
|
|
void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
|
|
void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
|
|
void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
|
|
void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
|
|
void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
|
|
void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
|
|
|
|
void Acquire(ThreadState *thr, uptr pc, uptr addr);
|
|
// AcquireGlobal synchronizes the current thread with all other threads.
|
|
// In terms of happens-before relation, it draws a HB edge from all threads
|
|
// (where they happen to execute right now) to the current thread. We use it to
|
|
// handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
|
|
// right before executing finalizers. This provides a coarse, but simple
|
|
// approximation of the actual required synchronization.
|
|
void AcquireGlobal(ThreadState *thr, uptr pc);
|
|
void Release(ThreadState *thr, uptr pc, uptr addr);
|
|
void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
|
|
void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
|
|
void AfterSleep(ThreadState *thr, uptr pc);
|
|
void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
|
|
void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
|
|
void ReleaseStoreAcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
|
|
void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
|
|
void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
|
|
|
|
// The hacky call uses custom calling convention and an assembly thunk.
|
|
// It is considerably faster that a normal call for the caller
|
|
// if it is not executed (it is intended for slow paths from hot functions).
|
|
// The trick is that the call preserves all registers and the compiler
|
|
// does not treat it as a call.
|
|
// If it does not work for you, use normal call.
|
|
#if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
|
|
// The caller may not create the stack frame for itself at all,
|
|
// so we create a reserve stack frame for it (1024b must be enough).
|
|
#define HACKY_CALL(f) \
|
|
__asm__ __volatile__("sub $1024, %%rsp;" \
|
|
CFI_INL_ADJUST_CFA_OFFSET(1024) \
|
|
".hidden " #f "_thunk;" \
|
|
"call " #f "_thunk;" \
|
|
"add $1024, %%rsp;" \
|
|
CFI_INL_ADJUST_CFA_OFFSET(-1024) \
|
|
::: "memory", "cc");
|
|
#else
|
|
#define HACKY_CALL(f) f()
|
|
#endif
|
|
|
|
void TraceSwitch(ThreadState *thr);
|
|
uptr TraceTopPC(ThreadState *thr);
|
|
uptr TraceSize();
|
|
uptr TraceParts();
|
|
Trace *ThreadTrace(int tid);
|
|
|
|
extern "C" void __tsan_trace_switch();
|
|
void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
|
|
EventType typ, u64 addr) {
|
|
if (!kCollectHistory)
|
|
return;
|
|
DCHECK_GE((int)typ, 0);
|
|
DCHECK_LE((int)typ, 7);
|
|
DCHECK_EQ(GetLsb(addr, kEventPCBits), addr);
|
|
StatInc(thr, StatEvents);
|
|
u64 pos = fs.GetTracePos();
|
|
if (UNLIKELY((pos % kTracePartSize) == 0)) {
|
|
#if !SANITIZER_GO
|
|
HACKY_CALL(__tsan_trace_switch);
|
|
#else
|
|
TraceSwitch(thr);
|
|
#endif
|
|
}
|
|
Event *trace = (Event*)GetThreadTrace(fs.tid());
|
|
Event *evp = &trace[pos];
|
|
Event ev = (u64)addr | ((u64)typ << kEventPCBits);
|
|
*evp = ev;
|
|
}
|
|
|
|
#if !SANITIZER_GO
|
|
uptr ALWAYS_INLINE HeapEnd() {
|
|
return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
|
|
}
|
|
#endif
|
|
|
|
ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
|
|
void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
|
|
void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
|
|
|
|
// These need to match __tsan_switch_to_fiber_* flags defined in
|
|
// tsan_interface.h. See documentation there as well.
|
|
enum FiberSwitchFlags {
|
|
FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
|
|
};
|
|
|
|
} // namespace __tsan
|
|
|
|
#endif // TSAN_RTL_H
|