zig/lib/tsan/tsan_platform_mac.cpp
Andrew Kelley 8219d92987 stage2: fix Cache deadlock and build more of TSAN
* rename is_compiler_rt_or_libc to skip_linker_dependencies
   and set it to `true` for all sub-Compilations. I believe
   this resolves the deadlock we were experiencing on Drone
   CI and on some users' computers. I will remove the CI workaround in
   a follow-up commit.
 * enabling TSAN automatically causes the Compilation to link against
   libc++ even if not requested, because TSAN depends on libc++.
 * add -fno-rtti flags where appropriate when building TSAN objects.
   Thanks Firefox317 for pointing this out.
 * TSAN support: resolve all the undefined symbols. We are still seeing
   a dependency on __gcc_personality_v0 but will resolve this one in a
   follow-up commit.
 * static libs do not try to build libc++ or libc++abi.
2020-12-24 01:18:48 -07:00

325 lines
12 KiB
C++

//===-- tsan_platform_mac.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Mac-specific code.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_MAC
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_posix.h"
#include "sanitizer_common/sanitizer_procmaps.h"
#include "sanitizer_common/sanitizer_ptrauth.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "tsan_flags.h"
#include <mach/mach.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include <sched.h>
namespace __tsan {
#if !SANITIZER_GO
static void *SignalSafeGetOrAllocate(uptr *dst, uptr size) {
atomic_uintptr_t *a = (atomic_uintptr_t *)dst;
void *val = (void *)atomic_load_relaxed(a);
atomic_signal_fence(memory_order_acquire); // Turns the previous load into
// acquire wrt signals.
if (UNLIKELY(val == nullptr)) {
val = (void *)internal_mmap(nullptr, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
CHECK(val);
void *cmp = nullptr;
if (!atomic_compare_exchange_strong(a, (uintptr_t *)&cmp, (uintptr_t)val,
memory_order_acq_rel)) {
internal_munmap(val, size);
val = cmp;
}
}
return val;
}
// On OS X, accessing TLVs via __thread or manually by using pthread_key_* is
// problematic, because there are several places where interceptors are called
// when TLVs are not accessible (early process startup, thread cleanup, ...).
// The following provides a "poor man's TLV" implementation, where we use the
// shadow memory of the pointer returned by pthread_self() to store a pointer to
// the ThreadState object. The main thread's ThreadState is stored separately
// in a static variable, because we need to access it even before the
// shadow memory is set up.
static uptr main_thread_identity = 0;
ALIGNED(64) static char main_thread_state[sizeof(ThreadState)];
static ThreadState *main_thread_state_loc = (ThreadState *)main_thread_state;
// We cannot use pthread_self() before libpthread has been initialized. Our
// current heuristic for guarding this is checking `main_thread_identity` which
// is only assigned in `__tsan::InitializePlatform`.
static ThreadState **cur_thread_location() {
if (main_thread_identity == 0)
return &main_thread_state_loc;
uptr thread_identity = (uptr)pthread_self();
if (thread_identity == main_thread_identity)
return &main_thread_state_loc;
return (ThreadState **)MemToShadow(thread_identity);
}
ThreadState *cur_thread() {
return (ThreadState *)SignalSafeGetOrAllocate(
(uptr *)cur_thread_location(), sizeof(ThreadState));
}
void set_cur_thread(ThreadState *thr) {
*cur_thread_location() = thr;
}
// TODO(kuba.brecka): This is not async-signal-safe. In particular, we call
// munmap first and then clear `fake_tls`; if we receive a signal in between,
// handler will try to access the unmapped ThreadState.
void cur_thread_finalize() {
ThreadState **thr_state_loc = cur_thread_location();
if (thr_state_loc == &main_thread_state_loc) {
// Calling dispatch_main() or xpc_main() actually invokes pthread_exit to
// exit the main thread. Let's keep the main thread's ThreadState.
return;
}
internal_munmap(*thr_state_loc, sizeof(ThreadState));
*thr_state_loc = nullptr;
}
#endif
void FlushShadowMemory() {
}
static void RegionMemUsage(uptr start, uptr end, uptr *res, uptr *dirty) {
vm_address_t address = start;
vm_address_t end_address = end;
uptr resident_pages = 0;
uptr dirty_pages = 0;
while (address < end_address) {
vm_size_t vm_region_size;
mach_msg_type_number_t count = VM_REGION_EXTENDED_INFO_COUNT;
vm_region_extended_info_data_t vm_region_info;
mach_port_t object_name;
kern_return_t ret = vm_region_64(
mach_task_self(), &address, &vm_region_size, VM_REGION_EXTENDED_INFO,
(vm_region_info_t)&vm_region_info, &count, &object_name);
if (ret != KERN_SUCCESS) break;
resident_pages += vm_region_info.pages_resident;
dirty_pages += vm_region_info.pages_dirtied;
address += vm_region_size;
}
*res = resident_pages * GetPageSizeCached();
*dirty = dirty_pages * GetPageSizeCached();
}
void WriteMemoryProfile(char *buf, uptr buf_size, uptr nthread, uptr nlive) {
uptr shadow_res, shadow_dirty;
uptr meta_res, meta_dirty;
uptr trace_res, trace_dirty;
RegionMemUsage(ShadowBeg(), ShadowEnd(), &shadow_res, &shadow_dirty);
RegionMemUsage(MetaShadowBeg(), MetaShadowEnd(), &meta_res, &meta_dirty);
RegionMemUsage(TraceMemBeg(), TraceMemEnd(), &trace_res, &trace_dirty);
#if !SANITIZER_GO
uptr low_res, low_dirty;
uptr high_res, high_dirty;
uptr heap_res, heap_dirty;
RegionMemUsage(LoAppMemBeg(), LoAppMemEnd(), &low_res, &low_dirty);
RegionMemUsage(HiAppMemBeg(), HiAppMemEnd(), &high_res, &high_dirty);
RegionMemUsage(HeapMemBeg(), HeapMemEnd(), &heap_res, &heap_dirty);
#else // !SANITIZER_GO
uptr app_res, app_dirty;
RegionMemUsage(AppMemBeg(), AppMemEnd(), &app_res, &app_dirty);
#endif
StackDepotStats *stacks = StackDepotGetStats();
internal_snprintf(buf, buf_size,
"shadow (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n"
"meta (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n"
"traces (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n"
#if !SANITIZER_GO
"low app (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n"
"high app (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n"
"heap (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n"
#else // !SANITIZER_GO
"app (0x%016zx-0x%016zx): resident %zd kB, dirty %zd kB\n"
#endif
"stacks: %zd unique IDs, %zd kB allocated\n"
"threads: %zd total, %zd live\n"
"------------------------------\n",
ShadowBeg(), ShadowEnd(), shadow_res / 1024, shadow_dirty / 1024,
MetaShadowBeg(), MetaShadowEnd(), meta_res / 1024, meta_dirty / 1024,
TraceMemBeg(), TraceMemEnd(), trace_res / 1024, trace_dirty / 1024,
#if !SANITIZER_GO
LoAppMemBeg(), LoAppMemEnd(), low_res / 1024, low_dirty / 1024,
HiAppMemBeg(), HiAppMemEnd(), high_res / 1024, high_dirty / 1024,
HeapMemBeg(), HeapMemEnd(), heap_res / 1024, heap_dirty / 1024,
#else // !SANITIZER_GO
AppMemBeg(), AppMemEnd(), app_res / 1024, app_dirty / 1024,
#endif
stacks->n_uniq_ids, stacks->allocated / 1024,
nthread, nlive);
}
#if !SANITIZER_GO
void InitializeShadowMemoryPlatform() { }
// On OS X, GCD worker threads are created without a call to pthread_create. We
// need to properly register these threads with ThreadCreate and ThreadStart.
// These threads don't have a parent thread, as they are created "spuriously".
// We're using a libpthread API that notifies us about a newly created thread.
// The `thread == pthread_self()` check indicates this is actually a worker
// thread. If it's just a regular thread, this hook is called on the parent
// thread.
typedef void (*pthread_introspection_hook_t)(unsigned int event,
pthread_t thread, void *addr,
size_t size);
extern "C" pthread_introspection_hook_t pthread_introspection_hook_install(
pthread_introspection_hook_t hook);
static const uptr PTHREAD_INTROSPECTION_THREAD_CREATE = 1;
static const uptr PTHREAD_INTROSPECTION_THREAD_TERMINATE = 3;
static pthread_introspection_hook_t prev_pthread_introspection_hook;
static void my_pthread_introspection_hook(unsigned int event, pthread_t thread,
void *addr, size_t size) {
if (event == PTHREAD_INTROSPECTION_THREAD_CREATE) {
if (thread == pthread_self()) {
// The current thread is a newly created GCD worker thread.
ThreadState *thr = cur_thread();
Processor *proc = ProcCreate();
ProcWire(proc, thr);
ThreadState *parent_thread_state = nullptr; // No parent.
int tid = ThreadCreate(parent_thread_state, 0, (uptr)thread, true);
CHECK_NE(tid, 0);
ThreadStart(thr, tid, GetTid(), ThreadType::Worker);
}
} else if (event == PTHREAD_INTROSPECTION_THREAD_TERMINATE) {
if (thread == pthread_self()) {
ThreadState *thr = cur_thread();
if (thr->tctx) {
DestroyThreadState();
}
}
}
if (prev_pthread_introspection_hook != nullptr)
prev_pthread_introspection_hook(event, thread, addr, size);
}
#endif
void InitializePlatformEarly() {
#if defined(__aarch64__)
uptr max_vm = GetMaxUserVirtualAddress() + 1;
if (max_vm != Mapping::kHiAppMemEnd) {
Printf("ThreadSanitizer: unsupported vm address limit %p, expected %p.\n",
max_vm, Mapping::kHiAppMemEnd);
Die();
}
#endif
}
static uptr longjmp_xor_key = 0;
void InitializePlatform() {
DisableCoreDumperIfNecessary();
#if !SANITIZER_GO
CheckAndProtect();
CHECK_EQ(main_thread_identity, 0);
main_thread_identity = (uptr)pthread_self();
prev_pthread_introspection_hook =
pthread_introspection_hook_install(&my_pthread_introspection_hook);
#endif
if (GetMacosAlignedVersion() >= MacosVersion(10, 14)) {
// Libsystem currently uses a process-global key; this might change.
const unsigned kTLSLongjmpXorKeySlot = 0x7;
longjmp_xor_key = (uptr)pthread_getspecific(kTLSLongjmpXorKeySlot);
}
}
#ifdef __aarch64__
# define LONG_JMP_SP_ENV_SLOT \
((GetMacosAlignedVersion() >= MacosVersion(10, 14)) ? 12 : 13)
#else
# define LONG_JMP_SP_ENV_SLOT 2
#endif
uptr ExtractLongJmpSp(uptr *env) {
uptr mangled_sp = env[LONG_JMP_SP_ENV_SLOT];
uptr sp = mangled_sp ^ longjmp_xor_key;
sp = (uptr)ptrauth_auth_data((void *)sp, ptrauth_key_asdb,
ptrauth_string_discriminator("sp"));
return sp;
}
#if !SANITIZER_GO
void ImitateTlsWrite(ThreadState *thr, uptr tls_addr, uptr tls_size) {
// The pointer to the ThreadState object is stored in the shadow memory
// of the tls.
uptr tls_end = tls_addr + tls_size;
uptr thread_identity = (uptr)pthread_self();
if (thread_identity == main_thread_identity) {
MemoryRangeImitateWrite(thr, /*pc=*/2, tls_addr, tls_size);
} else {
uptr thr_state_start = thread_identity;
uptr thr_state_end = thr_state_start + sizeof(uptr);
CHECK_GE(thr_state_start, tls_addr);
CHECK_LE(thr_state_start, tls_addr + tls_size);
CHECK_GE(thr_state_end, tls_addr);
CHECK_LE(thr_state_end, tls_addr + tls_size);
MemoryRangeImitateWrite(thr, /*pc=*/2, tls_addr,
thr_state_start - tls_addr);
MemoryRangeImitateWrite(thr, /*pc=*/2, thr_state_end,
tls_end - thr_state_end);
}
}
#endif
#if !SANITIZER_GO
// Note: this function runs with async signals enabled,
// so it must not touch any tsan state.
int call_pthread_cancel_with_cleanup(int(*fn)(void *c, void *m,
void *abstime), void *c, void *m, void *abstime,
void(*cleanup)(void *arg), void *arg) {
// pthread_cleanup_push/pop are hardcore macros mess.
// We can't intercept nor call them w/o including pthread.h.
int res;
pthread_cleanup_push(cleanup, arg);
res = fn(c, m, abstime);
pthread_cleanup_pop(0);
return res;
}
#endif
} // namespace __tsan
#endif // SANITIZER_MAC