zig/lib/std/segmented_list.zig
mlugg 0fe3fd01dd
std: update std.builtin.Type fields to follow naming conventions
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.

This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
2024-08-28 08:39:59 +01:00

532 lines
20 KiB
Zig

const std = @import("std.zig");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const Allocator = std.mem.Allocator;
// Imagine that `fn at(self: *Self, index: usize) &T` is a customer asking for a box
// from a warehouse, based on a flat array, boxes ordered from 0 to N - 1.
// But the warehouse actually stores boxes in shelves of increasing powers of 2 sizes.
// So when the customer requests a box index, we have to translate it to shelf index
// and box index within that shelf. Illustration:
//
// customer indexes:
// shelf 0: 0
// shelf 1: 1 2
// shelf 2: 3 4 5 6
// shelf 3: 7 8 9 10 11 12 13 14
// shelf 4: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// shelf 5: 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
// ...
//
// warehouse indexes:
// shelf 0: 0
// shelf 1: 0 1
// shelf 2: 0 1 2 3
// shelf 3: 0 1 2 3 4 5 6 7
// shelf 4: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// shelf 5: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// ...
//
// With this arrangement, here are the equations to get the shelf index and
// box index based on customer box index:
//
// shelf_index = floor(log2(customer_index + 1))
// shelf_count = ceil(log2(box_count + 1))
// box_index = customer_index + 1 - 2 ** shelf
// shelf_size = 2 ** shelf_index
//
// Now we complicate it a little bit further by adding a preallocated shelf, which must be
// a power of 2:
// prealloc=4
//
// customer indexes:
// prealloc: 0 1 2 3
// shelf 0: 4 5 6 7 8 9 10 11
// shelf 1: 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// shelf 2: 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
// ...
//
// warehouse indexes:
// prealloc: 0 1 2 3
// shelf 0: 0 1 2 3 4 5 6 7
// shelf 1: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// shelf 2: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// ...
//
// Now the equations are:
//
// shelf_index = floor(log2(customer_index + prealloc)) - log2(prealloc) - 1
// shelf_count = ceil(log2(box_count + prealloc)) - log2(prealloc) - 1
// box_index = customer_index + prealloc - 2 ** (log2(prealloc) + 1 + shelf)
// shelf_size = prealloc * 2 ** (shelf_index + 1)
/// This is a stack data structure where pointers to indexes have the same lifetime as the data structure
/// itself, unlike ArrayList where append() invalidates all existing element pointers.
/// The tradeoff is that elements are not guaranteed to be contiguous. For that, use ArrayList.
/// Note however that most elements are contiguous, making this data structure cache-friendly.
///
/// Because it never has to copy elements from an old location to a new location, it does not require
/// its elements to be copyable, and it avoids wasting memory when backed by an ArenaAllocator.
/// Note that the append() and pop() convenience methods perform a copy, but you can instead use
/// addOne(), at(), setCapacity(), and shrinkCapacity() to avoid copying items.
///
/// This data structure has O(1) append and O(1) pop.
///
/// It supports preallocated elements, making it especially well suited when the expected maximum
/// size is small. `prealloc_item_count` must be 0, or a power of 2.
pub fn SegmentedList(comptime T: type, comptime prealloc_item_count: usize) type {
return struct {
const Self = @This();
const ShelfIndex = std.math.Log2Int(usize);
const prealloc_exp: ShelfIndex = blk: {
// we don't use the prealloc_exp constant when prealloc_item_count is 0
// but lazy-init may still be triggered by other code so supply a value
if (prealloc_item_count == 0) {
break :blk 0;
} else {
assert(std.math.isPowerOfTwo(prealloc_item_count));
const value = std.math.log2_int(usize, prealloc_item_count);
break :blk value;
}
};
prealloc_segment: [prealloc_item_count]T = undefined,
dynamic_segments: [][*]T = &[_][*]T{},
len: usize = 0,
pub const prealloc_count = prealloc_item_count;
fn AtType(comptime SelfType: type) type {
if (@typeInfo(SelfType).pointer.is_const) {
return *const T;
} else {
return *T;
}
}
pub fn deinit(self: *Self, allocator: Allocator) void {
self.freeShelves(allocator, @as(ShelfIndex, @intCast(self.dynamic_segments.len)), 0);
allocator.free(self.dynamic_segments);
self.* = undefined;
}
pub fn at(self: anytype, i: usize) AtType(@TypeOf(self)) {
assert(i < self.len);
return self.uncheckedAt(i);
}
pub fn count(self: Self) usize {
return self.len;
}
pub fn append(self: *Self, allocator: Allocator, item: T) Allocator.Error!void {
const new_item_ptr = try self.addOne(allocator);
new_item_ptr.* = item;
}
pub fn appendSlice(self: *Self, allocator: Allocator, items: []const T) Allocator.Error!void {
for (items) |item| {
try self.append(allocator, item);
}
}
pub fn pop(self: *Self) ?T {
if (self.len == 0) return null;
const index = self.len - 1;
const result = uncheckedAt(self, index).*;
self.len = index;
return result;
}
pub fn addOne(self: *Self, allocator: Allocator) Allocator.Error!*T {
const new_length = self.len + 1;
try self.growCapacity(allocator, new_length);
const result = uncheckedAt(self, self.len);
self.len = new_length;
return result;
}
/// Reduce length to `new_len`.
/// Invalidates pointers for the elements at index new_len and beyond.
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
assert(new_len <= self.len);
self.len = new_len;
}
/// Invalidates all element pointers.
pub fn clearRetainingCapacity(self: *Self) void {
self.len = 0;
}
/// Invalidates all element pointers.
pub fn clearAndFree(self: *Self, allocator: Allocator) void {
self.setCapacity(allocator, 0) catch unreachable;
self.len = 0;
}
/// Grows or shrinks capacity to match usage.
/// TODO update this and related methods to match the conventions set by ArrayList
pub fn setCapacity(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
if (prealloc_item_count != 0) {
if (new_capacity <= @as(usize, 1) << (prealloc_exp + @as(ShelfIndex, @intCast(self.dynamic_segments.len)))) {
return self.shrinkCapacity(allocator, new_capacity);
}
}
return self.growCapacity(allocator, new_capacity);
}
/// Only grows capacity, or retains current capacity.
pub fn growCapacity(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
const new_cap_shelf_count = shelfCount(new_capacity);
const old_shelf_count = @as(ShelfIndex, @intCast(self.dynamic_segments.len));
if (new_cap_shelf_count <= old_shelf_count) return;
const new_dynamic_segments = try allocator.alloc([*]T, new_cap_shelf_count);
errdefer allocator.free(new_dynamic_segments);
var i: ShelfIndex = 0;
while (i < old_shelf_count) : (i += 1) {
new_dynamic_segments[i] = self.dynamic_segments[i];
}
errdefer while (i > old_shelf_count) : (i -= 1) {
allocator.free(new_dynamic_segments[i][0..shelfSize(i)]);
};
while (i < new_cap_shelf_count) : (i += 1) {
new_dynamic_segments[i] = (try allocator.alloc(T, shelfSize(i))).ptr;
}
allocator.free(self.dynamic_segments);
self.dynamic_segments = new_dynamic_segments;
}
/// Only shrinks capacity or retains current capacity.
/// It may fail to reduce the capacity in which case the capacity will remain unchanged.
pub fn shrinkCapacity(self: *Self, allocator: Allocator, new_capacity: usize) void {
if (new_capacity <= prealloc_item_count) {
const len = @as(ShelfIndex, @intCast(self.dynamic_segments.len));
self.freeShelves(allocator, len, 0);
allocator.free(self.dynamic_segments);
self.dynamic_segments = &[_][*]T{};
return;
}
const new_cap_shelf_count = shelfCount(new_capacity);
const old_shelf_count = @as(ShelfIndex, @intCast(self.dynamic_segments.len));
assert(new_cap_shelf_count <= old_shelf_count);
if (new_cap_shelf_count == old_shelf_count) return;
// freeShelves() must be called before resizing the dynamic
// segments, but we don't know if resizing the dynamic segments
// will work until we try it. So we must allocate a fresh memory
// buffer in order to reduce capacity.
const new_dynamic_segments = allocator.alloc([*]T, new_cap_shelf_count) catch return;
self.freeShelves(allocator, old_shelf_count, new_cap_shelf_count);
if (allocator.resize(self.dynamic_segments, new_cap_shelf_count)) {
// We didn't need the new memory allocation after all.
self.dynamic_segments = self.dynamic_segments[0..new_cap_shelf_count];
allocator.free(new_dynamic_segments);
} else {
// Good thing we allocated that new memory slice.
@memcpy(new_dynamic_segments, self.dynamic_segments[0..new_cap_shelf_count]);
allocator.free(self.dynamic_segments);
self.dynamic_segments = new_dynamic_segments;
}
}
pub fn shrink(self: *Self, new_len: usize) void {
assert(new_len <= self.len);
// TODO take advantage of the new realloc semantics
self.len = new_len;
}
pub fn writeToSlice(self: *Self, dest: []T, start: usize) void {
const end = start + dest.len;
assert(end <= self.len);
var i = start;
if (end <= prealloc_item_count) {
const src = self.prealloc_segment[i..end];
@memcpy(dest[i - start ..][0..src.len], src);
return;
} else if (i < prealloc_item_count) {
const src = self.prealloc_segment[i..];
@memcpy(dest[i - start ..][0..src.len], src);
i = prealloc_item_count;
}
while (i < end) {
const shelf_index = shelfIndex(i);
const copy_start = boxIndex(i, shelf_index);
const copy_end = @min(shelfSize(shelf_index), copy_start + end - i);
const src = self.dynamic_segments[shelf_index][copy_start..copy_end];
@memcpy(dest[i - start ..][0..src.len], src);
i += (copy_end - copy_start);
}
}
pub fn uncheckedAt(self: anytype, index: usize) AtType(@TypeOf(self)) {
if (index < prealloc_item_count) {
return &self.prealloc_segment[index];
}
const shelf_index = shelfIndex(index);
const box_index = boxIndex(index, shelf_index);
return &self.dynamic_segments[shelf_index][box_index];
}
fn shelfCount(box_count: usize) ShelfIndex {
if (prealloc_item_count == 0) {
return log2_int_ceil(usize, box_count + 1);
}
return log2_int_ceil(usize, box_count + prealloc_item_count) - prealloc_exp - 1;
}
fn shelfSize(shelf_index: ShelfIndex) usize {
if (prealloc_item_count == 0) {
return @as(usize, 1) << shelf_index;
}
return @as(usize, 1) << (shelf_index + (prealloc_exp + 1));
}
fn shelfIndex(list_index: usize) ShelfIndex {
if (prealloc_item_count == 0) {
return std.math.log2_int(usize, list_index + 1);
}
return std.math.log2_int(usize, list_index + prealloc_item_count) - prealloc_exp - 1;
}
fn boxIndex(list_index: usize, shelf_index: ShelfIndex) usize {
if (prealloc_item_count == 0) {
return (list_index + 1) - (@as(usize, 1) << shelf_index);
}
return list_index + prealloc_item_count - (@as(usize, 1) << ((prealloc_exp + 1) + shelf_index));
}
fn freeShelves(self: *Self, allocator: Allocator, from_count: ShelfIndex, to_count: ShelfIndex) void {
var i = from_count;
while (i != to_count) {
i -= 1;
allocator.free(self.dynamic_segments[i][0..shelfSize(i)]);
}
}
pub const Iterator = BaseIterator(*Self, *T);
pub const ConstIterator = BaseIterator(*const Self, *const T);
fn BaseIterator(comptime SelfType: type, comptime ElementPtr: type) type {
return struct {
list: SelfType,
index: usize,
box_index: usize,
shelf_index: ShelfIndex,
shelf_size: usize,
pub fn next(it: *@This()) ?ElementPtr {
if (it.index >= it.list.len) return null;
if (it.index < prealloc_item_count) {
const ptr = &it.list.prealloc_segment[it.index];
it.index += 1;
if (it.index == prealloc_item_count) {
it.box_index = 0;
it.shelf_index = 0;
it.shelf_size = prealloc_item_count * 2;
}
return ptr;
}
const ptr = &it.list.dynamic_segments[it.shelf_index][it.box_index];
it.index += 1;
it.box_index += 1;
if (it.box_index == it.shelf_size) {
it.shelf_index += 1;
it.box_index = 0;
it.shelf_size *= 2;
}
return ptr;
}
pub fn prev(it: *@This()) ?ElementPtr {
if (it.index == 0) return null;
it.index -= 1;
if (it.index < prealloc_item_count) return &it.list.prealloc_segment[it.index];
if (it.box_index == 0) {
it.shelf_index -= 1;
it.shelf_size /= 2;
it.box_index = it.shelf_size - 1;
} else {
it.box_index -= 1;
}
return &it.list.dynamic_segments[it.shelf_index][it.box_index];
}
pub fn peek(it: *@This()) ?ElementPtr {
if (it.index >= it.list.len)
return null;
if (it.index < prealloc_item_count)
return &it.list.prealloc_segment[it.index];
return &it.list.dynamic_segments[it.shelf_index][it.box_index];
}
pub fn set(it: *@This(), index: usize) void {
it.index = index;
if (index < prealloc_item_count) return;
it.shelf_index = shelfIndex(index);
it.box_index = boxIndex(index, it.shelf_index);
it.shelf_size = shelfSize(it.shelf_index);
}
};
}
pub fn iterator(self: *Self, start_index: usize) Iterator {
var it = Iterator{
.list = self,
.index = undefined,
.shelf_index = undefined,
.box_index = undefined,
.shelf_size = undefined,
};
it.set(start_index);
return it;
}
pub fn constIterator(self: *const Self, start_index: usize) ConstIterator {
var it = ConstIterator{
.list = self,
.index = undefined,
.shelf_index = undefined,
.box_index = undefined,
.shelf_size = undefined,
};
it.set(start_index);
return it;
}
};
}
test "basic usage" {
try testSegmentedList(0);
try testSegmentedList(1);
try testSegmentedList(2);
try testSegmentedList(4);
try testSegmentedList(8);
try testSegmentedList(16);
}
fn testSegmentedList(comptime prealloc: usize) !void {
var list = SegmentedList(i32, prealloc){};
defer list.deinit(testing.allocator);
{
var i: usize = 0;
while (i < 100) : (i += 1) {
try list.append(testing.allocator, @as(i32, @intCast(i + 1)));
try testing.expect(list.len == i + 1);
}
}
{
var i: usize = 0;
while (i < 100) : (i += 1) {
try testing.expect(list.at(i).* == @as(i32, @intCast(i + 1)));
}
}
{
var it = list.iterator(0);
var x: i32 = 0;
while (it.next()) |item| {
x += 1;
try testing.expect(item.* == x);
}
try testing.expect(x == 100);
while (it.prev()) |item| : (x -= 1) {
try testing.expect(item.* == x);
}
try testing.expect(x == 0);
}
{
var it = list.constIterator(0);
var x: i32 = 0;
while (it.next()) |item| {
x += 1;
try testing.expect(item.* == x);
}
try testing.expect(x == 100);
while (it.prev()) |item| : (x -= 1) {
try testing.expect(item.* == x);
}
try testing.expect(x == 0);
}
try testing.expect(list.pop().? == 100);
try testing.expect(list.len == 99);
try list.appendSlice(testing.allocator, &[_]i32{ 1, 2, 3 });
try testing.expect(list.len == 102);
try testing.expect(list.pop().? == 3);
try testing.expect(list.pop().? == 2);
try testing.expect(list.pop().? == 1);
try testing.expect(list.len == 99);
try list.appendSlice(testing.allocator, &[_]i32{});
try testing.expect(list.len == 99);
{
var i: i32 = 99;
while (list.pop()) |item| : (i -= 1) {
try testing.expect(item == i);
list.shrinkCapacity(testing.allocator, list.len);
}
}
{
var control: [100]i32 = undefined;
var dest: [100]i32 = undefined;
var i: i32 = 0;
while (i < 100) : (i += 1) {
try list.append(testing.allocator, i + 1);
control[@as(usize, @intCast(i))] = i + 1;
}
@memset(dest[0..], 0);
list.writeToSlice(dest[0..], 0);
try testing.expect(mem.eql(i32, control[0..], dest[0..]));
@memset(dest[0..], 0);
list.writeToSlice(dest[50..], 50);
try testing.expect(mem.eql(i32, control[50..], dest[50..]));
}
try list.setCapacity(testing.allocator, 0);
}
test "clearRetainingCapacity" {
var list = SegmentedList(i32, 1){};
defer list.deinit(testing.allocator);
try list.appendSlice(testing.allocator, &[_]i32{ 4, 5 });
list.clearRetainingCapacity();
try list.append(testing.allocator, 6);
try testing.expect(list.at(0).* == 6);
try testing.expect(list.len == 1);
list.clearRetainingCapacity();
try testing.expect(list.len == 0);
}
/// TODO look into why this std.math function was changed in
/// fc9430f56798a53f9393a697f4ccd6bf9981b970.
fn log2_int_ceil(comptime T: type, x: T) std.math.Log2Int(T) {
assert(x != 0);
const log2_val = std.math.log2_int(T, x);
if (@as(T, 1) << log2_val == x)
return log2_val;
return log2_val + 1;
}