zig/lib/std/time.zig
Alex Rønne Petersen f35015575e
std.time: Use clock_nanosleep() to implement sleep() on Linux.
This fixes the function for riscv32 where the old nanosleep() is not available.
clock_nanosleep() has been available since Linux 2.6 and glibc 2.1 anyway.
2024-09-06 20:03:12 +02:00

378 lines
14 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const math = std.math;
const windows = std.os.windows;
const posix = std.posix;
pub const epoch = @import("time/epoch.zig");
/// Spurious wakeups are possible and no precision of timing is guaranteed.
pub fn sleep(nanoseconds: u64) void {
if (builtin.os.tag == .windows) {
const big_ms_from_ns = nanoseconds / ns_per_ms;
const ms = math.cast(windows.DWORD, big_ms_from_ns) orelse math.maxInt(windows.DWORD);
windows.kernel32.Sleep(ms);
return;
}
if (builtin.os.tag == .wasi) {
const w = std.os.wasi;
const userdata: w.userdata_t = 0x0123_45678;
const clock: w.subscription_clock_t = .{
.id = .MONOTONIC,
.timeout = nanoseconds,
.precision = 0,
.flags = 0,
};
const in: w.subscription_t = .{
.userdata = userdata,
.u = .{
.tag = .CLOCK,
.u = .{ .clock = clock },
},
};
var event: w.event_t = undefined;
var nevents: usize = undefined;
_ = w.poll_oneoff(&in, &event, 1, &nevents);
return;
}
if (builtin.os.tag == .uefi) {
const boot_services = std.os.uefi.system_table.boot_services.?;
const us_from_ns = nanoseconds / ns_per_us;
const us = math.cast(usize, us_from_ns) orelse math.maxInt(usize);
_ = boot_services.stall(us);
return;
}
const s = nanoseconds / ns_per_s;
const ns = nanoseconds % ns_per_s;
// Newer kernel ports don't have old `nanosleep()` and `clock_nanosleep()` has been around
// since Linux 2.6 and glibc 2.1 anyway.
if (builtin.os.tag == .linux) {
const linux = std.os.linux;
var req: linux.timespec = .{
.sec = std.math.cast(linux.time_t, s) orelse std.math.maxInt(linux.time_t),
.nsec = std.math.cast(linux.time_t, ns) orelse std.math.maxInt(linux.time_t),
};
var rem: linux.timespec = undefined;
while (true) {
switch (linux.E.init(linux.clock_nanosleep(.MONOTONIC, .{ .ABSTIME = false }, &req, &rem))) {
.SUCCESS => return,
.INTR => {
req = rem;
continue;
},
.FAULT,
.INVAL,
.OPNOTSUPP,
=> unreachable,
else => return,
}
}
}
posix.nanosleep(s, ns);
}
test sleep {
sleep(1);
}
/// Get a calendar timestamp, in seconds, relative to UTC 1970-01-01.
/// Precision of timing depends on the hardware and operating system.
/// The return value is signed because it is possible to have a date that is
/// before the epoch.
/// See `posix.clock_gettime` for a POSIX timestamp.
pub fn timestamp() i64 {
return @divFloor(milliTimestamp(), ms_per_s);
}
/// Get a calendar timestamp, in milliseconds, relative to UTC 1970-01-01.
/// Precision of timing depends on the hardware and operating system.
/// The return value is signed because it is possible to have a date that is
/// before the epoch.
/// See `posix.clock_gettime` for a POSIX timestamp.
pub fn milliTimestamp() i64 {
return @as(i64, @intCast(@divFloor(nanoTimestamp(), ns_per_ms)));
}
/// Get a calendar timestamp, in microseconds, relative to UTC 1970-01-01.
/// Precision of timing depends on the hardware and operating system.
/// The return value is signed because it is possible to have a date that is
/// before the epoch.
/// See `posix.clock_gettime` for a POSIX timestamp.
pub fn microTimestamp() i64 {
return @as(i64, @intCast(@divFloor(nanoTimestamp(), ns_per_us)));
}
/// Get a calendar timestamp, in nanoseconds, relative to UTC 1970-01-01.
/// Precision of timing depends on the hardware and operating system.
/// On Windows this has a maximum granularity of 100 nanoseconds.
/// The return value is signed because it is possible to have a date that is
/// before the epoch.
/// See `posix.clock_gettime` for a POSIX timestamp.
pub fn nanoTimestamp() i128 {
switch (builtin.os.tag) {
.windows => {
// FileTime has a granularity of 100 nanoseconds and uses the NTFS/Windows epoch,
// which is 1601-01-01.
const epoch_adj = epoch.windows * (ns_per_s / 100);
var ft: windows.FILETIME = undefined;
windows.kernel32.GetSystemTimeAsFileTime(&ft);
const ft64 = (@as(u64, ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
return @as(i128, @as(i64, @bitCast(ft64)) + epoch_adj) * 100;
},
.wasi => {
var ns: std.os.wasi.timestamp_t = undefined;
const err = std.os.wasi.clock_time_get(.REALTIME, 1, &ns);
assert(err == .SUCCESS);
return ns;
},
.uefi => {
var value: std.os.uefi.Time = undefined;
const status = std.os.uefi.system_table.runtime_services.getTime(&value, null);
assert(status == .Success);
return value.toEpoch();
},
else => {
var ts: posix.timespec = undefined;
posix.clock_gettime(.REALTIME, &ts) catch |err| switch (err) {
error.UnsupportedClock, error.Unexpected => return 0, // "Precision of timing depends on hardware and OS".
};
return (@as(i128, ts.sec) * ns_per_s) + ts.nsec;
},
}
}
test milliTimestamp {
const margin = ns_per_ms * 50;
const time_0 = milliTimestamp();
sleep(ns_per_ms);
const time_1 = milliTimestamp();
const interval = time_1 - time_0;
try testing.expect(interval > 0);
// Tests should not depend on timings: skip test if outside margin.
if (!(interval < margin)) return error.SkipZigTest;
}
// Divisions of a nanosecond.
pub const ns_per_us = 1000;
pub const ns_per_ms = 1000 * ns_per_us;
pub const ns_per_s = 1000 * ns_per_ms;
pub const ns_per_min = 60 * ns_per_s;
pub const ns_per_hour = 60 * ns_per_min;
pub const ns_per_day = 24 * ns_per_hour;
pub const ns_per_week = 7 * ns_per_day;
// Divisions of a microsecond.
pub const us_per_ms = 1000;
pub const us_per_s = 1000 * us_per_ms;
pub const us_per_min = 60 * us_per_s;
pub const us_per_hour = 60 * us_per_min;
pub const us_per_day = 24 * us_per_hour;
pub const us_per_week = 7 * us_per_day;
// Divisions of a millisecond.
pub const ms_per_s = 1000;
pub const ms_per_min = 60 * ms_per_s;
pub const ms_per_hour = 60 * ms_per_min;
pub const ms_per_day = 24 * ms_per_hour;
pub const ms_per_week = 7 * ms_per_day;
// Divisions of a second.
pub const s_per_min = 60;
pub const s_per_hour = s_per_min * 60;
pub const s_per_day = s_per_hour * 24;
pub const s_per_week = s_per_day * 7;
/// An Instant represents a timestamp with respect to the currently
/// executing program that ticks during suspend and can be used to
/// record elapsed time unlike `nanoTimestamp`.
///
/// It tries to sample the system's fastest and most precise timer available.
/// It also tries to be monotonic, but this is not a guarantee due to OS/hardware bugs.
/// If you need monotonic readings for elapsed time, consider `Timer` instead.
pub const Instant = struct {
timestamp: if (is_posix) posix.timespec else u64,
// true if we should use clock_gettime()
const is_posix = switch (builtin.os.tag) {
.windows, .uefi, .wasi => false,
else => true,
};
/// Queries the system for the current moment of time as an Instant.
/// This is not guaranteed to be monotonic or steadily increasing, but for
/// most implementations it is.
/// Returns `error.Unsupported` when a suitable clock is not detected.
pub fn now() error{Unsupported}!Instant {
const clock_id = switch (builtin.os.tag) {
.windows => {
// QPC on windows doesn't fail on >= XP/2000 and includes time suspended.
return Instant{ .timestamp = windows.QueryPerformanceCounter() };
},
.wasi => {
var ns: std.os.wasi.timestamp_t = undefined;
const rc = std.os.wasi.clock_time_get(.MONOTONIC, 1, &ns);
if (rc != .SUCCESS) return error.Unsupported;
return .{ .timestamp = ns };
},
.uefi => {
var value: std.os.uefi.Time = undefined;
const status = std.os.uefi.system_table.runtime_services.getTime(&value, null);
if (status != .Success) return error.Unsupported;
return Instant{ .timestamp = value.toEpoch() };
},
// On darwin, use UPTIME_RAW instead of MONOTONIC as it ticks while
// suspended.
.macos, .ios, .tvos, .watchos, .visionos => posix.CLOCK.UPTIME_RAW,
// On freebsd derivatives, use MONOTONIC_FAST as currently there's
// no precision tradeoff.
.freebsd, .dragonfly => posix.CLOCK.MONOTONIC_FAST,
// On linux, use BOOTTIME instead of MONOTONIC as it ticks while
// suspended.
.linux => posix.CLOCK.BOOTTIME,
// On other posix systems, MONOTONIC is generally the fastest and
// ticks while suspended.
else => posix.CLOCK.MONOTONIC,
};
var ts: posix.timespec = undefined;
posix.clock_gettime(clock_id, &ts) catch return error.Unsupported;
return .{ .timestamp = ts };
}
/// Quickly compares two instances between each other.
pub fn order(self: Instant, other: Instant) std.math.Order {
// windows and wasi timestamps are in u64 which is easily comparible
if (!is_posix) {
return std.math.order(self.timestamp, other.timestamp);
}
var ord = std.math.order(self.timestamp.sec, other.timestamp.sec);
if (ord == .eq) {
ord = std.math.order(self.timestamp.nsec, other.timestamp.nsec);
}
return ord;
}
/// Returns elapsed time in nanoseconds since the `earlier` Instant.
/// This assumes that the `earlier` Instant represents a moment in time before or equal to `self`.
/// This also assumes that the time that has passed between both Instants fits inside a u64 (~585 yrs).
pub fn since(self: Instant, earlier: Instant) u64 {
if (builtin.os.tag == .windows) {
// We don't need to cache QPF as it's internally just a memory read to KUSER_SHARED_DATA
// (a read-only page of info updated and mapped by the kernel to all processes):
// https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/ns-ntddk-kuser_shared_data
// https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/ntexapi_x/kuser_shared_data/index.htm
const qpc = self.timestamp - earlier.timestamp;
const qpf = windows.QueryPerformanceFrequency();
// 10Mhz (1 qpc tick every 100ns) is a common enough QPF value that we can optimize on it.
// https://github.com/microsoft/STL/blob/785143a0c73f030238ef618890fd4d6ae2b3a3a0/stl/inc/chrono#L694-L701
const common_qpf = 10_000_000;
if (qpf == common_qpf) {
return qpc * (ns_per_s / common_qpf);
}
// Convert to ns using fixed point.
const scale = @as(u64, std.time.ns_per_s << 32) / @as(u32, @intCast(qpf));
const result = (@as(u96, qpc) * scale) >> 32;
return @as(u64, @truncate(result));
}
// WASI timestamps are directly in nanoseconds
if (builtin.os.tag == .wasi) {
return self.timestamp - earlier.timestamp;
}
// Convert timespec diff to ns
const seconds = @as(u64, @intCast(self.timestamp.sec - earlier.timestamp.sec));
const elapsed = (seconds * ns_per_s) + @as(u32, @intCast(self.timestamp.nsec));
return elapsed - @as(u32, @intCast(earlier.timestamp.nsec));
}
};
/// A monotonic, high performance timer.
///
/// Timer.start() is used to initialize the timer
/// and gives the caller an opportunity to check for the existence of a supported clock.
/// Once a supported clock is discovered,
/// it is assumed that it will be available for the duration of the Timer's use.
///
/// Monotonicity is ensured by saturating on the most previous sample.
/// This means that while timings reported are monotonic,
/// they're not guaranteed to tick at a steady rate as this is up to the underlying system.
pub const Timer = struct {
started: Instant,
previous: Instant,
pub const Error = error{TimerUnsupported};
/// Initialize the timer by querying for a supported clock.
/// Returns `error.TimerUnsupported` when such a clock is unavailable.
/// This should only fail in hostile environments such as linux seccomp misuse.
pub fn start() Error!Timer {
const current = Instant.now() catch return error.TimerUnsupported;
return Timer{ .started = current, .previous = current };
}
/// Reads the timer value since start or the last reset in nanoseconds.
pub fn read(self: *Timer) u64 {
const current = self.sample();
return current.since(self.started);
}
/// Resets the timer value to 0/now.
pub fn reset(self: *Timer) void {
const current = self.sample();
self.started = current;
}
/// Returns the current value of the timer in nanoseconds, then resets it.
pub fn lap(self: *Timer) u64 {
const current = self.sample();
defer self.started = current;
return current.since(self.started);
}
/// Returns an Instant sampled at the callsite that is
/// guaranteed to be monotonic with respect to the timer's starting point.
fn sample(self: *Timer) Instant {
const current = Instant.now() catch unreachable;
if (current.order(self.previous) == .gt) {
self.previous = current;
}
return self.previous;
}
};
test Timer {
const margin = ns_per_ms * 150;
var timer = try Timer.start();
sleep(10 * ns_per_ms);
const time_0 = timer.read();
try testing.expect(time_0 > 0);
// Tests should not depend on timings: skip test if outside margin.
if (!(time_0 < margin)) return error.SkipZigTest;
const time_1 = timer.lap();
try testing.expect(time_1 >= time_0);
timer.reset();
try testing.expect(timer.read() < time_1);
}
test {
_ = epoch;
}