zig/lib/tsan/tsan_interceptors_posix.cpp
2020-12-24 01:18:47 -07:00

2855 lines
90 KiB
C++

//===-- tsan_interceptors_posix.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// FIXME: move as many interceptors as possible into
// sanitizer_common/sanitizer_common_interceptors.inc
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_linux.h"
#include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
#include "sanitizer_common/sanitizer_platform_limits_posix.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_posix.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_tls_get_addr.h"
#include "interception/interception.h"
#include "tsan_interceptors.h"
#include "tsan_interface.h"
#include "tsan_platform.h"
#include "tsan_suppressions.h"
#include "tsan_rtl.h"
#include "tsan_mman.h"
#include "tsan_fd.h"
using namespace __tsan;
#if SANITIZER_FREEBSD || SANITIZER_MAC
#define stdout __stdoutp
#define stderr __stderrp
#endif
#if SANITIZER_NETBSD
#define dirfd(dirp) (*(int *)(dirp))
#define fileno_unlocked(fp) \
(((__sanitizer_FILE *)fp)->_file == -1 \
? -1 \
: (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
#define stdout ((__sanitizer_FILE*)&__sF[1])
#define stderr ((__sanitizer_FILE*)&__sF[2])
#define nanosleep __nanosleep50
#define vfork __vfork14
#endif
#if SANITIZER_ANDROID
#define mallopt(a, b)
#endif
#ifdef __mips__
const int kSigCount = 129;
#else
const int kSigCount = 65;
#endif
#ifdef __mips__
struct ucontext_t {
u64 opaque[768 / sizeof(u64) + 1];
};
#else
struct ucontext_t {
// The size is determined by looking at sizeof of real ucontext_t on linux.
u64 opaque[936 / sizeof(u64) + 1];
};
#endif
#if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
#define PTHREAD_ABI_BASE "GLIBC_2.3.2"
#elif defined(__aarch64__) || SANITIZER_PPC64V2
#define PTHREAD_ABI_BASE "GLIBC_2.17"
#endif
extern "C" int pthread_attr_init(void *attr);
extern "C" int pthread_attr_destroy(void *attr);
DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
extern "C" int pthread_setspecific(unsigned key, const void *v);
DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
extern "C" void *pthread_self();
extern "C" void _exit(int status);
#if !SANITIZER_NETBSD
extern "C" int fileno_unlocked(void *stream);
extern "C" int dirfd(void *dirp);
#endif
#if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_NETBSD
extern "C" int mallopt(int param, int value);
#endif
#if SANITIZER_NETBSD
extern __sanitizer_FILE __sF[];
#else
extern __sanitizer_FILE *stdout, *stderr;
#endif
#if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
const int PTHREAD_MUTEX_RECURSIVE = 1;
const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
#else
const int PTHREAD_MUTEX_RECURSIVE = 2;
const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
#endif
#if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
const int EPOLL_CTL_ADD = 1;
#endif
const int SIGILL = 4;
const int SIGTRAP = 5;
const int SIGABRT = 6;
const int SIGFPE = 8;
const int SIGSEGV = 11;
const int SIGPIPE = 13;
const int SIGTERM = 15;
#if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
const int SIGBUS = 10;
const int SIGSYS = 12;
#else
const int SIGBUS = 7;
const int SIGSYS = 31;
#endif
void *const MAP_FAILED = (void*)-1;
#if SANITIZER_NETBSD
const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
#elif !SANITIZER_MAC
const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
#endif
const int MAP_FIXED = 0x10;
typedef long long_t;
// From /usr/include/unistd.h
# define F_ULOCK 0 /* Unlock a previously locked region. */
# define F_LOCK 1 /* Lock a region for exclusive use. */
# define F_TLOCK 2 /* Test and lock a region for exclusive use. */
# define F_TEST 3 /* Test a region for other processes locks. */
#if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
const int SA_SIGINFO = 0x40;
const int SIG_SETMASK = 3;
#elif defined(__mips__)
const int SA_SIGINFO = 8;
const int SIG_SETMASK = 3;
#else
const int SA_SIGINFO = 4;
const int SIG_SETMASK = 2;
#endif
#define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
(cur_thread_init(), !cur_thread()->is_inited)
namespace __tsan {
struct SignalDesc {
bool armed;
bool sigaction;
__sanitizer_siginfo siginfo;
ucontext_t ctx;
};
struct ThreadSignalContext {
int int_signal_send;
atomic_uintptr_t in_blocking_func;
atomic_uintptr_t have_pending_signals;
SignalDesc pending_signals[kSigCount];
// emptyset and oldset are too big for stack.
__sanitizer_sigset_t emptyset;
__sanitizer_sigset_t oldset;
};
// The sole reason tsan wraps atexit callbacks is to establish synchronization
// between callback setup and callback execution.
struct AtExitCtx {
void (*f)();
void *arg;
};
// InterceptorContext holds all global data required for interceptors.
// It's explicitly constructed in InitializeInterceptors with placement new
// and is never destroyed. This allows usage of members with non-trivial
// constructors and destructors.
struct InterceptorContext {
// The object is 64-byte aligned, because we want hot data to be located
// in a single cache line if possible (it's accessed in every interceptor).
ALIGNED(64) LibIgnore libignore;
__sanitizer_sigaction sigactions[kSigCount];
#if !SANITIZER_MAC && !SANITIZER_NETBSD
unsigned finalize_key;
#endif
BlockingMutex atexit_mu;
Vector<struct AtExitCtx *> AtExitStack;
InterceptorContext()
: libignore(LINKER_INITIALIZED), AtExitStack() {
}
};
static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
InterceptorContext *interceptor_ctx() {
return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
}
LibIgnore *libignore() {
return &interceptor_ctx()->libignore;
}
void InitializeLibIgnore() {
const SuppressionContext &supp = *Suppressions();
const uptr n = supp.SuppressionCount();
for (uptr i = 0; i < n; i++) {
const Suppression *s = supp.SuppressionAt(i);
if (0 == internal_strcmp(s->type, kSuppressionLib))
libignore()->AddIgnoredLibrary(s->templ);
}
if (flags()->ignore_noninstrumented_modules)
libignore()->IgnoreNoninstrumentedModules(true);
libignore()->OnLibraryLoaded(0);
}
// The following two hooks can be used by for cooperative scheduling when
// locking.
#ifdef TSAN_EXTERNAL_HOOKS
void OnPotentiallyBlockingRegionBegin();
void OnPotentiallyBlockingRegionEnd();
#else
SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
#endif
} // namespace __tsan
static ThreadSignalContext *SigCtx(ThreadState *thr) {
ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
if (ctx == 0 && !thr->is_dead) {
ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
thr->signal_ctx = ctx;
}
return ctx;
}
ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
uptr pc)
: thr_(thr), pc_(pc), in_ignored_lib_(false), ignoring_(false) {
Initialize(thr);
if (!thr_->is_inited) return;
if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
ignoring_ =
!thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
libignore()->IsIgnored(pc, &in_ignored_lib_));
EnableIgnores();
}
ScopedInterceptor::~ScopedInterceptor() {
if (!thr_->is_inited) return;
DisableIgnores();
if (!thr_->ignore_interceptors) {
ProcessPendingSignals(thr_);
FuncExit(thr_);
CheckNoLocks(thr_);
}
}
void ScopedInterceptor::EnableIgnores() {
if (ignoring_) {
ThreadIgnoreBegin(thr_, pc_, /*save_stack=*/false);
if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports++;
if (in_ignored_lib_) {
DCHECK(!thr_->in_ignored_lib);
thr_->in_ignored_lib = true;
}
}
}
void ScopedInterceptor::DisableIgnores() {
if (ignoring_) {
ThreadIgnoreEnd(thr_, pc_);
if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports--;
if (in_ignored_lib_) {
DCHECK(thr_->in_ignored_lib);
thr_->in_ignored_lib = false;
}
}
}
#define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
#if SANITIZER_FREEBSD
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
#elif SANITIZER_NETBSD
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
INTERCEPT_FUNCTION(__libc_##func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
INTERCEPT_FUNCTION(__libc_thr_##func)
#else
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
#endif
#define READ_STRING_OF_LEN(thr, pc, s, len, n) \
MemoryAccessRange((thr), (pc), (uptr)(s), \
common_flags()->strict_string_checks ? (len) + 1 : (n), false)
#define READ_STRING(thr, pc, s, n) \
READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
#define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
struct BlockingCall {
explicit BlockingCall(ThreadState *thr)
: thr(thr)
, ctx(SigCtx(thr)) {
for (;;) {
atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
break;
atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
ProcessPendingSignals(thr);
}
// When we are in a "blocking call", we process signals asynchronously
// (right when they arrive). In this context we do not expect to be
// executing any user/runtime code. The known interceptor sequence when
// this is not true is: pthread_join -> munmap(stack). It's fine
// to ignore munmap in this case -- we handle stack shadow separately.
thr->ignore_interceptors++;
}
~BlockingCall() {
thr->ignore_interceptors--;
atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
}
ThreadState *thr;
ThreadSignalContext *ctx;
};
TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
SCOPED_TSAN_INTERCEPTOR(sleep, sec);
unsigned res = BLOCK_REAL(sleep)(sec);
AfterSleep(thr, pc);
return res;
}
TSAN_INTERCEPTOR(int, usleep, long_t usec) {
SCOPED_TSAN_INTERCEPTOR(usleep, usec);
int res = BLOCK_REAL(usleep)(usec);
AfterSleep(thr, pc);
return res;
}
TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
int res = BLOCK_REAL(nanosleep)(req, rem);
AfterSleep(thr, pc);
return res;
}
TSAN_INTERCEPTOR(int, pause, int fake) {
SCOPED_TSAN_INTERCEPTOR(pause, fake);
return BLOCK_REAL(pause)(fake);
}
static void at_exit_wrapper() {
AtExitCtx *ctx;
{
// Ensure thread-safety.
BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
// Pop AtExitCtx from the top of the stack of callback functions
uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
ctx = interceptor_ctx()->AtExitStack[element];
interceptor_ctx()->AtExitStack.PopBack();
}
Acquire(cur_thread(), (uptr)0, (uptr)ctx);
((void(*)())ctx->f)();
InternalFree(ctx);
}
static void cxa_at_exit_wrapper(void *arg) {
Acquire(cur_thread(), 0, (uptr)arg);
AtExitCtx *ctx = (AtExitCtx*)arg;
((void(*)(void *arg))ctx->f)(ctx->arg);
InternalFree(ctx);
}
static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
void *arg, void *dso);
#if !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
if (in_symbolizer())
return 0;
// We want to setup the atexit callback even if we are in ignored lib
// or after fork.
SCOPED_INTERCEPTOR_RAW(atexit, f);
return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
}
#endif
TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
if (in_symbolizer())
return 0;
SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
}
static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
void *arg, void *dso) {
AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
ctx->f = f;
ctx->arg = arg;
Release(thr, pc, (uptr)ctx);
// Memory allocation in __cxa_atexit will race with free during exit,
// because we do not see synchronization around atexit callback list.
ThreadIgnoreBegin(thr, pc);
int res;
if (!dso) {
// NetBSD does not preserve the 2nd argument if dso is equal to 0
// Store ctx in a local stack-like structure
// Ensure thread-safety.
BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_wrapper, 0, 0);
// Push AtExitCtx on the top of the stack of callback functions
if (!res) {
interceptor_ctx()->AtExitStack.PushBack(ctx);
}
} else {
res = REAL(__cxa_atexit)(cxa_at_exit_wrapper, ctx, dso);
}
ThreadIgnoreEnd(thr, pc);
return res;
}
#if !SANITIZER_MAC && !SANITIZER_NETBSD
static void on_exit_wrapper(int status, void *arg) {
ThreadState *thr = cur_thread();
uptr pc = 0;
Acquire(thr, pc, (uptr)arg);
AtExitCtx *ctx = (AtExitCtx*)arg;
((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
InternalFree(ctx);
}
TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
if (in_symbolizer())
return 0;
SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
ctx->f = (void(*)())f;
ctx->arg = arg;
Release(thr, pc, (uptr)ctx);
// Memory allocation in __cxa_atexit will race with free during exit,
// because we do not see synchronization around atexit callback list.
ThreadIgnoreBegin(thr, pc);
int res = REAL(on_exit)(on_exit_wrapper, ctx);
ThreadIgnoreEnd(thr, pc);
return res;
}
#define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
#else
#define TSAN_MAYBE_INTERCEPT_ON_EXIT
#endif
// Cleanup old bufs.
static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
JmpBuf *buf = &thr->jmp_bufs[i];
if (buf->sp <= sp) {
uptr sz = thr->jmp_bufs.Size();
internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
thr->jmp_bufs.PopBack();
i--;
}
}
}
static void SetJmp(ThreadState *thr, uptr sp) {
if (!thr->is_inited) // called from libc guts during bootstrap
return;
// Cleanup old bufs.
JmpBufGarbageCollect(thr, sp);
// Remember the buf.
JmpBuf *buf = thr->jmp_bufs.PushBack();
buf->sp = sp;
buf->shadow_stack_pos = thr->shadow_stack_pos;
ThreadSignalContext *sctx = SigCtx(thr);
buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
buf->in_blocking_func = sctx ?
atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
false;
buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
memory_order_relaxed);
}
static void LongJmp(ThreadState *thr, uptr *env) {
uptr sp = ExtractLongJmpSp(env);
// Find the saved buf with matching sp.
for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
JmpBuf *buf = &thr->jmp_bufs[i];
if (buf->sp == sp) {
CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
// Unwind the stack.
while (thr->shadow_stack_pos > buf->shadow_stack_pos)
FuncExit(thr);
ThreadSignalContext *sctx = SigCtx(thr);
if (sctx) {
sctx->int_signal_send = buf->int_signal_send;
atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
memory_order_relaxed);
}
atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
memory_order_relaxed);
JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp
return;
}
}
Printf("ThreadSanitizer: can't find longjmp buf\n");
CHECK(0);
}
// FIXME: put everything below into a common extern "C" block?
extern "C" void __tsan_setjmp(uptr sp) {
cur_thread_init();
SetJmp(cur_thread(), sp);
}
#if SANITIZER_MAC
TSAN_INTERCEPTOR(int, setjmp, void *env);
TSAN_INTERCEPTOR(int, _setjmp, void *env);
TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
#else // SANITIZER_MAC
#if SANITIZER_NETBSD
#define setjmp_symname __setjmp14
#define sigsetjmp_symname __sigsetjmp14
#else
#define setjmp_symname setjmp
#define sigsetjmp_symname sigsetjmp
#endif
#define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
#define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
#define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
#define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)
#define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
#define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)
// Not called. Merely to satisfy TSAN_INTERCEPT().
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int TSAN_INTERCEPTOR_SETJMP(void *env);
extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) {
CHECK(0);
return 0;
}
// FIXME: any reason to have a separate declaration?
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int __interceptor__setjmp(void *env);
extern "C" int __interceptor__setjmp(void *env) {
CHECK(0);
return 0;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int TSAN_INTERCEPTOR_SIGSETJMP(void *env);
extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) {
CHECK(0);
return 0;
}
#if !SANITIZER_NETBSD
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int __interceptor___sigsetjmp(void *env);
extern "C" int __interceptor___sigsetjmp(void *env) {
CHECK(0);
return 0;
}
#endif
extern "C" int setjmp_symname(void *env);
extern "C" int _setjmp(void *env);
extern "C" int sigsetjmp_symname(void *env);
#if !SANITIZER_NETBSD
extern "C" int __sigsetjmp(void *env);
#endif
DEFINE_REAL(int, setjmp_symname, void *env)
DEFINE_REAL(int, _setjmp, void *env)
DEFINE_REAL(int, sigsetjmp_symname, void *env)
#if !SANITIZER_NETBSD
DEFINE_REAL(int, __sigsetjmp, void *env)
#endif
#endif // SANITIZER_MAC
#if SANITIZER_NETBSD
#define longjmp_symname __longjmp14
#define siglongjmp_symname __siglongjmp14
#else
#define longjmp_symname longjmp
#define siglongjmp_symname siglongjmp
#endif
TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
// Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
// bad things will happen. We will jump over ScopedInterceptor dtor and can
// leave thr->in_ignored_lib set.
{
SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
}
LongJmp(cur_thread(), env);
REAL(longjmp_symname)(env, val);
}
TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
{
SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
}
LongJmp(cur_thread(), env);
REAL(siglongjmp_symname)(env, val);
}
#if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
{
SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
}
LongJmp(cur_thread(), env);
REAL(_longjmp)(env, val);
}
#endif
#if !SANITIZER_MAC
TSAN_INTERCEPTOR(void*, malloc, uptr size) {
if (in_symbolizer())
return InternalAlloc(size);
void *p = 0;
{
SCOPED_INTERCEPTOR_RAW(malloc, size);
p = user_alloc(thr, pc, size);
}
invoke_malloc_hook(p, size);
return p;
}
TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
return user_memalign(thr, pc, align, sz);
}
TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
if (in_symbolizer())
return InternalCalloc(size, n);
void *p = 0;
{
SCOPED_INTERCEPTOR_RAW(calloc, size, n);
p = user_calloc(thr, pc, size, n);
}
invoke_malloc_hook(p, n * size);
return p;
}
TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
if (in_symbolizer())
return InternalRealloc(p, size);
if (p)
invoke_free_hook(p);
{
SCOPED_INTERCEPTOR_RAW(realloc, p, size);
p = user_realloc(thr, pc, p, size);
}
invoke_malloc_hook(p, size);
return p;
}
TSAN_INTERCEPTOR(void*, reallocarray, void *p, uptr size, uptr n) {
if (in_symbolizer())
return InternalReallocArray(p, size, n);
if (p)
invoke_free_hook(p);
{
SCOPED_INTERCEPTOR_RAW(reallocarray, p, size, n);
p = user_reallocarray(thr, pc, p, size, n);
}
invoke_malloc_hook(p, size);
return p;
}
TSAN_INTERCEPTOR(void, free, void *p) {
if (p == 0)
return;
if (in_symbolizer())
return InternalFree(p);
invoke_free_hook(p);
SCOPED_INTERCEPTOR_RAW(free, p);
user_free(thr, pc, p);
}
TSAN_INTERCEPTOR(void, cfree, void *p) {
if (p == 0)
return;
if (in_symbolizer())
return InternalFree(p);
invoke_free_hook(p);
SCOPED_INTERCEPTOR_RAW(cfree, p);
user_free(thr, pc, p);
}
TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
return user_alloc_usable_size(p);
}
#endif
TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) {
SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);
uptr srclen = internal_strlen(src);
MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
return REAL(strcpy)(dst, src);
}
TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
uptr srclen = internal_strnlen(src, n);
MemoryAccessRange(thr, pc, (uptr)dst, n, true);
MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
return REAL(strncpy)(dst, src, n);
}
TSAN_INTERCEPTOR(char*, strdup, const char *str) {
SCOPED_TSAN_INTERCEPTOR(strdup, str);
// strdup will call malloc, so no instrumentation is required here.
return REAL(strdup)(str);
}
// Zero out addr if it points into shadow memory and was provided as a hint
// only, i.e., MAP_FIXED is not set.
static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
if (*addr) {
if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
if (flags & MAP_FIXED) {
errno = errno_EINVAL;
return false;
} else {
*addr = 0;
}
}
}
return true;
}
template <class Mmap>
static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
void *addr, SIZE_T sz, int prot, int flags,
int fd, OFF64_T off) {
if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
void *res = real_mmap(addr, sz, prot, flags, fd, off);
if (res != MAP_FAILED) {
if (fd > 0) FdAccess(thr, pc, fd);
MemoryRangeImitateWriteOrResetRange(thr, pc, (uptr)res, sz);
}
return res;
}
TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
UnmapShadow(thr, (uptr)addr, sz);
int res = REAL(munmap)(addr, sz);
return res;
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
return user_memalign(thr, pc, align, sz);
}
#define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
#else
#define TSAN_MAYBE_INTERCEPT_MEMALIGN
#endif
#if !SANITIZER_MAC
TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
if (in_symbolizer())
return InternalAlloc(sz, nullptr, align);
SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
return user_aligned_alloc(thr, pc, align, sz);
}
TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
if (in_symbolizer())
return InternalAlloc(sz, nullptr, GetPageSizeCached());
SCOPED_INTERCEPTOR_RAW(valloc, sz);
return user_valloc(thr, pc, sz);
}
#endif
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
if (in_symbolizer()) {
uptr PageSize = GetPageSizeCached();
sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
return InternalAlloc(sz, nullptr, PageSize);
}
SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
return user_pvalloc(thr, pc, sz);
}
#define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
#else
#define TSAN_MAYBE_INTERCEPT_PVALLOC
#endif
#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
if (in_symbolizer()) {
void *p = InternalAlloc(sz, nullptr, align);
if (!p)
return errno_ENOMEM;
*memptr = p;
return 0;
}
SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
return user_posix_memalign(thr, pc, memptr, align, sz);
}
#endif
// __cxa_guard_acquire and friends need to be intercepted in a special way -
// regular interceptors will break statically-linked libstdc++. Linux
// interceptors are especially defined as weak functions (so that they don't
// cause link errors when user defines them as well). So they silently
// auto-disable themselves when such symbol is already present in the binary. If
// we link libstdc++ statically, it will bring own __cxa_guard_acquire which
// will silently replace our interceptor. That's why on Linux we simply export
// these interceptors with INTERFACE_ATTRIBUTE.
// On OS X, we don't support statically linking, so we just use a regular
// interceptor.
#if SANITIZER_MAC
#define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
#else
#define STDCXX_INTERCEPTOR(rettype, name, ...) \
extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
#endif
// Used in thread-safe function static initialization.
STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
OnPotentiallyBlockingRegionBegin();
auto on_exit = at_scope_exit(&OnPotentiallyBlockingRegionEnd);
for (;;) {
u32 cmp = atomic_load(g, memory_order_acquire);
if (cmp == 0) {
if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
return 1;
} else if (cmp == 1) {
Acquire(thr, pc, (uptr)g);
return 0;
} else {
internal_sched_yield();
}
}
}
STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
Release(thr, pc, (uptr)g);
atomic_store(g, 1, memory_order_release);
}
STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
atomic_store(g, 0, memory_order_relaxed);
}
namespace __tsan {
void DestroyThreadState() {
ThreadState *thr = cur_thread();
Processor *proc = thr->proc();
ThreadFinish(thr);
ProcUnwire(proc, thr);
ProcDestroy(proc);
DTLS_Destroy();
cur_thread_finalize();
}
void PlatformCleanUpThreadState(ThreadState *thr) {
ThreadSignalContext *sctx = thr->signal_ctx;
if (sctx) {
thr->signal_ctx = 0;
UnmapOrDie(sctx, sizeof(*sctx));
}
}
} // namespace __tsan
#if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
static void thread_finalize(void *v) {
uptr iter = (uptr)v;
if (iter > 1) {
if (pthread_setspecific(interceptor_ctx()->finalize_key,
(void*)(iter - 1))) {
Printf("ThreadSanitizer: failed to set thread key\n");
Die();
}
return;
}
DestroyThreadState();
}
#endif
struct ThreadParam {
void* (*callback)(void *arg);
void *param;
atomic_uintptr_t tid;
};
extern "C" void *__tsan_thread_start_func(void *arg) {
ThreadParam *p = (ThreadParam*)arg;
void* (*callback)(void *arg) = p->callback;
void *param = p->param;
int tid = 0;
{
cur_thread_init();
ThreadState *thr = cur_thread();
// Thread-local state is not initialized yet.
ScopedIgnoreInterceptors ignore;
#if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
ThreadIgnoreBegin(thr, 0);
if (pthread_setspecific(interceptor_ctx()->finalize_key,
(void *)GetPthreadDestructorIterations())) {
Printf("ThreadSanitizer: failed to set thread key\n");
Die();
}
ThreadIgnoreEnd(thr, 0);
#endif
while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
internal_sched_yield();
Processor *proc = ProcCreate();
ProcWire(proc, thr);
ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
atomic_store(&p->tid, 0, memory_order_release);
}
void *res = callback(param);
// Prevent the callback from being tail called,
// it mixes up stack traces.
volatile int foo = 42;
foo++;
return res;
}
TSAN_INTERCEPTOR(int, pthread_create,
void *th, void *attr, void *(*callback)(void*), void * param) {
SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
MaybeSpawnBackgroundThread();
if (ctx->after_multithreaded_fork) {
if (flags()->die_after_fork) {
Report("ThreadSanitizer: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)\n");
Die();
} else {
VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
"fork is not supported (pid %d). Continuing because of "
"die_after_fork=0, but you are on your own\n", internal_getpid());
}
}
__sanitizer_pthread_attr_t myattr;
if (attr == 0) {
pthread_attr_init(&myattr);
attr = &myattr;
}
int detached = 0;
REAL(pthread_attr_getdetachstate)(attr, &detached);
AdjustStackSize(attr);
ThreadParam p;
p.callback = callback;
p.param = param;
atomic_store(&p.tid, 0, memory_order_relaxed);
int res = -1;
{
// Otherwise we see false positives in pthread stack manipulation.
ScopedIgnoreInterceptors ignore;
ThreadIgnoreBegin(thr, pc);
res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
ThreadIgnoreEnd(thr, pc);
}
if (res == 0) {
int tid = ThreadCreate(thr, pc, *(uptr*)th, IsStateDetached(detached));
CHECK_NE(tid, 0);
// Synchronization on p.tid serves two purposes:
// 1. ThreadCreate must finish before the new thread starts.
// Otherwise the new thread can call pthread_detach, but the pthread_t
// identifier is not yet registered in ThreadRegistry by ThreadCreate.
// 2. ThreadStart must finish before this thread continues.
// Otherwise, this thread can call pthread_detach and reset thr->sync
// before the new thread got a chance to acquire from it in ThreadStart.
atomic_store(&p.tid, tid, memory_order_release);
while (atomic_load(&p.tid, memory_order_acquire) != 0)
internal_sched_yield();
}
if (attr == &myattr)
pthread_attr_destroy(&myattr);
return res;
}
TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
int tid = ThreadConsumeTid(thr, pc, (uptr)th);
ThreadIgnoreBegin(thr, pc);
int res = BLOCK_REAL(pthread_join)(th, ret);
ThreadIgnoreEnd(thr, pc);
if (res == 0) {
ThreadJoin(thr, pc, tid);
}
return res;
}
DEFINE_REAL_PTHREAD_FUNCTIONS
TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
SCOPED_INTERCEPTOR_RAW(pthread_detach, th);
int tid = ThreadConsumeTid(thr, pc, (uptr)th);
int res = REAL(pthread_detach)(th);
if (res == 0) {
ThreadDetach(thr, pc, tid);
}
return res;
}
TSAN_INTERCEPTOR(void, pthread_exit, void *retval) {
{
SCOPED_INTERCEPTOR_RAW(pthread_exit, retval);
#if !SANITIZER_MAC && !SANITIZER_ANDROID
CHECK_EQ(thr, &cur_thread_placeholder);
#endif
}
REAL(pthread_exit)(retval);
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret);
int tid = ThreadConsumeTid(thr, pc, (uptr)th);
ThreadIgnoreBegin(thr, pc);
int res = REAL(pthread_tryjoin_np)(th, ret);
ThreadIgnoreEnd(thr, pc);
if (res == 0)
ThreadJoin(thr, pc, tid);
else
ThreadNotJoined(thr, pc, tid, (uptr)th);
return res;
}
TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
const struct timespec *abstime) {
SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime);
int tid = ThreadConsumeTid(thr, pc, (uptr)th);
ThreadIgnoreBegin(thr, pc);
int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
ThreadIgnoreEnd(thr, pc);
if (res == 0)
ThreadJoin(thr, pc, tid);
else
ThreadNotJoined(thr, pc, tid, (uptr)th);
return res;
}
#endif
// Problem:
// NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
// pthread_cond_t has different size in the different versions.
// If call new REAL functions for old pthread_cond_t, they will corrupt memory
// after pthread_cond_t (old cond is smaller).
// If we call old REAL functions for new pthread_cond_t, we will lose some
// functionality (e.g. old functions do not support waiting against
// CLOCK_REALTIME).
// Proper handling would require to have 2 versions of interceptors as well.
// But this is messy, in particular requires linker scripts when sanitizer
// runtime is linked into a shared library.
// Instead we assume we don't have dynamic libraries built against old
// pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
// that allows to work with old libraries (but this mode does not support
// some features, e.g. pthread_condattr_getpshared).
static void *init_cond(void *c, bool force = false) {
// sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
// So we allocate additional memory on the side large enough to hold
// any pthread_cond_t object. Always call new REAL functions, but pass
// the aux object to them.
// Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
// first word of pthread_cond_t to zero.
// It's all relevant only for linux.
if (!common_flags()->legacy_pthread_cond)
return c;
atomic_uintptr_t *p = (atomic_uintptr_t*)c;
uptr cond = atomic_load(p, memory_order_acquire);
if (!force && cond != 0)
return (void*)cond;
void *newcond = WRAP(malloc)(pthread_cond_t_sz);
internal_memset(newcond, 0, pthread_cond_t_sz);
if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
memory_order_acq_rel))
return newcond;
WRAP(free)(newcond);
return (void*)cond;
}
struct CondMutexUnlockCtx {
ScopedInterceptor *si;
ThreadState *thr;
uptr pc;
void *m;
};
static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
// pthread_cond_wait interceptor has enabled async signal delivery
// (see BlockingCall below). Disable async signals since we are running
// tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
// since the thread is cancelled, so we have to manually execute them
// (the thread still can run some user code due to pthread_cleanup_push).
ThreadSignalContext *ctx = SigCtx(arg->thr);
CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
MutexPostLock(arg->thr, arg->pc, (uptr)arg->m, MutexFlagDoPreLockOnPostLock);
// Undo BlockingCall ctor effects.
arg->thr->ignore_interceptors--;
arg->si->~ScopedInterceptor();
}
INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
void *cond = init_cond(c, true);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
return REAL(pthread_cond_init)(cond, a);
}
static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
int (*fn)(void *c, void *m, void *abstime), void *c,
void *m, void *t) {
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
MutexUnlock(thr, pc, (uptr)m);
CondMutexUnlockCtx arg = {si, thr, pc, m};
int res = 0;
// This ensures that we handle mutex lock even in case of pthread_cancel.
// See test/tsan/cond_cancel.cpp.
{
// Enable signal delivery while the thread is blocked.
BlockingCall bc(thr);
res = call_pthread_cancel_with_cleanup(
fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
}
if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
return res;
}
INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
pthread_cond_wait),
cond, m, 0);
}
INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
abstime);
}
#if SANITIZER_MAC
INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
void *reltime) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
m, reltime);
}
#endif
INTERCEPTOR(int, pthread_cond_signal, void *c) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
return REAL(pthread_cond_signal)(cond);
}
INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
return REAL(pthread_cond_broadcast)(cond);
}
INTERCEPTOR(int, pthread_cond_destroy, void *c) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
int res = REAL(pthread_cond_destroy)(cond);
if (common_flags()->legacy_pthread_cond) {
// Free our aux cond and zero the pointer to not leave dangling pointers.
WRAP(free)(cond);
atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
int res = REAL(pthread_mutex_init)(m, a);
if (res == 0) {
u32 flagz = 0;
if (a) {
int type = 0;
if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
if (type == PTHREAD_MUTEX_RECURSIVE ||
type == PTHREAD_MUTEX_RECURSIVE_NP)
flagz |= MutexFlagWriteReentrant;
}
MutexCreate(thr, pc, (uptr)m, flagz);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
int res = REAL(pthread_mutex_destroy)(m);
if (res == 0 || res == errno_EBUSY) {
MutexDestroy(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
int res = REAL(pthread_mutex_trylock)(m);
if (res == errno_EOWNERDEAD)
MutexRepair(thr, pc, (uptr)m);
if (res == 0 || res == errno_EOWNERDEAD)
MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
return res;
}
#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
int res = REAL(pthread_mutex_timedlock)(m, abstime);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
}
return res;
}
#endif
#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
int res = REAL(pthread_spin_init)(m, pshared);
if (res == 0) {
MutexCreate(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
int res = REAL(pthread_spin_destroy)(m);
if (res == 0) {
MutexDestroy(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
MutexPreLock(thr, pc, (uptr)m);
int res = REAL(pthread_spin_lock)(m);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
int res = REAL(pthread_spin_trylock)(m);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
MutexUnlock(thr, pc, (uptr)m);
int res = REAL(pthread_spin_unlock)(m);
return res;
}
#endif
TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
int res = REAL(pthread_rwlock_init)(m, a);
if (res == 0) {
MutexCreate(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
int res = REAL(pthread_rwlock_destroy)(m);
if (res == 0) {
MutexDestroy(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
MutexPreReadLock(thr, pc, (uptr)m);
int res = REAL(pthread_rwlock_rdlock)(m);
if (res == 0) {
MutexPostReadLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
int res = REAL(pthread_rwlock_tryrdlock)(m);
if (res == 0) {
MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
}
return res;
}
#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
if (res == 0) {
MutexPostReadLock(thr, pc, (uptr)m);
}
return res;
}
#endif
TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
MutexPreLock(thr, pc, (uptr)m);
int res = REAL(pthread_rwlock_wrlock)(m);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
int res = REAL(pthread_rwlock_trywrlock)(m);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
}
return res;
}
#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
if (res == 0) {
MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
}
return res;
}
#endif
TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
MutexReadOrWriteUnlock(thr, pc, (uptr)m);
int res = REAL(pthread_rwlock_unlock)(m);
return res;
}
#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
int res = REAL(pthread_barrier_init)(b, a, count);
return res;
}
TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
int res = REAL(pthread_barrier_destroy)(b);
return res;
}
TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
Release(thr, pc, (uptr)b);
MemoryRead(thr, pc, (uptr)b, kSizeLog1);
int res = REAL(pthread_barrier_wait)(b);
MemoryRead(thr, pc, (uptr)b, kSizeLog1);
if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
Acquire(thr, pc, (uptr)b);
}
return res;
}
#endif
TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
if (o == 0 || f == 0)
return errno_EINVAL;
atomic_uint32_t *a;
if (SANITIZER_MAC)
a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
else if (SANITIZER_NETBSD)
a = static_cast<atomic_uint32_t*>
((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
else
a = static_cast<atomic_uint32_t*>(o);
u32 v = atomic_load(a, memory_order_acquire);
if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
memory_order_relaxed)) {
(*f)();
if (!thr->in_ignored_lib)
Release(thr, pc, (uptr)o);
atomic_store(a, 2, memory_order_release);
} else {
while (v != 2) {
internal_sched_yield();
v = atomic_load(a, memory_order_acquire);
}
if (!thr->in_ignored_lib)
Acquire(thr, pc, (uptr)o);
}
return 0;
}
#if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat)(version, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
#else
#define TSAN_MAYBE_INTERCEPT___FXSTAT
#endif
TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
#if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD
SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(fstat)(fd, buf);
#else
SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat)(0, fd, buf);
#endif
}
#if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat64)(version, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
#else
#define TSAN_MAYBE_INTERCEPT___FXSTAT64
#endif
#if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat64)(0, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
#else
#define TSAN_MAYBE_INTERCEPT_FSTAT64
#endif
TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
READ_STRING(thr, pc, name, 0);
int fd = REAL(open)(name, flags, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
READ_STRING(thr, pc, name, 0);
int fd = REAL(open64)(name, flags, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
#else
#define TSAN_MAYBE_INTERCEPT_OPEN64
#endif
TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
READ_STRING(thr, pc, name, 0);
int fd = REAL(creat)(name, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
READ_STRING(thr, pc, name, 0);
int fd = REAL(creat64)(name, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
#else
#define TSAN_MAYBE_INTERCEPT_CREAT64
#endif
TSAN_INTERCEPTOR(int, dup, int oldfd) {
SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
int newfd = REAL(dup)(oldfd);
if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
FdDup(thr, pc, oldfd, newfd, true);
return newfd;
}
TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
int newfd2 = REAL(dup2)(oldfd, newfd);
if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
FdDup(thr, pc, oldfd, newfd2, false);
return newfd2;
}
#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
int newfd2 = REAL(dup3)(oldfd, newfd, flags);
if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
FdDup(thr, pc, oldfd, newfd2, false);
return newfd2;
}
#endif
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
int fd = REAL(eventfd)(initval, flags);
if (fd >= 0)
FdEventCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
#else
#define TSAN_MAYBE_INTERCEPT_EVENTFD
#endif
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
if (fd >= 0)
FdClose(thr, pc, fd);
fd = REAL(signalfd)(fd, mask, flags);
if (fd >= 0)
FdSignalCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
#else
#define TSAN_MAYBE_INTERCEPT_SIGNALFD
#endif
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, inotify_init, int fake) {
SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
int fd = REAL(inotify_init)(fake);
if (fd >= 0)
FdInotifyCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
#else
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
#endif
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
int fd = REAL(inotify_init1)(flags);
if (fd >= 0)
FdInotifyCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
#else
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
#endif
TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
int fd = REAL(socket)(domain, type, protocol);
if (fd >= 0)
FdSocketCreate(thr, pc, fd);
return fd;
}
TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
int res = REAL(socketpair)(domain, type, protocol, fd);
if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
FdPipeCreate(thr, pc, fd[0], fd[1]);
return res;
}
TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
FdSocketConnecting(thr, pc, fd);
int res = REAL(connect)(fd, addr, addrlen);
if (res == 0 && fd >= 0)
FdSocketConnect(thr, pc, fd);
return res;
}
TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
int res = REAL(bind)(fd, addr, addrlen);
if (fd > 0 && res == 0)
FdAccess(thr, pc, fd);
return res;
}
TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
int res = REAL(listen)(fd, backlog);
if (fd > 0 && res == 0)
FdAccess(thr, pc, fd);
return res;
}
TSAN_INTERCEPTOR(int, close, int fd) {
SCOPED_TSAN_INTERCEPTOR(close, fd);
if (fd >= 0)
FdClose(thr, pc, fd);
return REAL(close)(fd);
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, __close, int fd) {
SCOPED_TSAN_INTERCEPTOR(__close, fd);
if (fd >= 0)
FdClose(thr, pc, fd);
return REAL(__close)(fd);
}
#define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
#else
#define TSAN_MAYBE_INTERCEPT___CLOSE
#endif
// glibc guts
#if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
int fds[64];
int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
for (int i = 0; i < cnt; i++) {
if (fds[i] > 0)
FdClose(thr, pc, fds[i]);
}
REAL(__res_iclose)(state, free_addr);
}
#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
#else
#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
#endif
TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
int res = REAL(pipe)(pipefd);
if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
return res;
}
#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
int res = REAL(pipe2)(pipefd, flags);
if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
return res;
}
#endif
TSAN_INTERCEPTOR(int, unlink, char *path) {
SCOPED_TSAN_INTERCEPTOR(unlink, path);
Release(thr, pc, File2addr(path));
int res = REAL(unlink)(path);
return res;
}
TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
void *res = REAL(tmpfile)(fake);
if (res) {
int fd = fileno_unlocked(res);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
}
return res;
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
void *res = REAL(tmpfile64)(fake);
if (res) {
int fd = fileno_unlocked(res);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
}
return res;
}
#define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
#else
#define TSAN_MAYBE_INTERCEPT_TMPFILE64
#endif
static void FlushStreams() {
// Flushing all the streams here may freeze the process if a child thread is
// performing file stream operations at the same time.
REAL(fflush)(stdout);
REAL(fflush)(stderr);
}
TSAN_INTERCEPTOR(void, abort, int fake) {
SCOPED_TSAN_INTERCEPTOR(abort, fake);
FlushStreams();
REAL(abort)(fake);
}
TSAN_INTERCEPTOR(int, rmdir, char *path) {
SCOPED_TSAN_INTERCEPTOR(rmdir, path);
Release(thr, pc, Dir2addr(path));
int res = REAL(rmdir)(path);
return res;
}
TSAN_INTERCEPTOR(int, closedir, void *dirp) {
SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
if (dirp) {
int fd = dirfd(dirp);
FdClose(thr, pc, fd);
}
return REAL(closedir)(dirp);
}
#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, epoll_create, int size) {
SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
int fd = REAL(epoll_create)(size);
if (fd >= 0)
FdPollCreate(thr, pc, fd);
return fd;
}
TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
int fd = REAL(epoll_create1)(flags);
if (fd >= 0)
FdPollCreate(thr, pc, fd);
return fd;
}
TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
if (epfd >= 0)
FdAccess(thr, pc, epfd);
if (epfd >= 0 && fd >= 0)
FdAccess(thr, pc, fd);
if (op == EPOLL_CTL_ADD && epfd >= 0)
FdRelease(thr, pc, epfd);
int res = REAL(epoll_ctl)(epfd, op, fd, ev);
return res;
}
TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
if (epfd >= 0)
FdAccess(thr, pc, epfd);
int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
if (res > 0 && epfd >= 0)
FdAcquire(thr, pc, epfd);
return res;
}
TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
void *sigmask) {
SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
if (epfd >= 0)
FdAccess(thr, pc, epfd);
int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
if (res > 0 && epfd >= 0)
FdAcquire(thr, pc, epfd);
return res;
}
#define TSAN_MAYBE_INTERCEPT_EPOLL \
TSAN_INTERCEPT(epoll_create); \
TSAN_INTERCEPT(epoll_create1); \
TSAN_INTERCEPT(epoll_ctl); \
TSAN_INTERCEPT(epoll_wait); \
TSAN_INTERCEPT(epoll_pwait)
#else
#define TSAN_MAYBE_INTERCEPT_EPOLL
#endif
// The following functions are intercepted merely to process pending signals.
// If program blocks signal X, we must deliver the signal before the function
// returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
// it's better to deliver the signal straight away.
TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
return REAL(sigsuspend)(mask);
}
TSAN_INTERCEPTOR(int, sigblock, int mask) {
SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
return REAL(sigblock)(mask);
}
TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
return REAL(sigsetmask)(mask);
}
TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
__sanitizer_sigset_t *oldset) {
SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
return REAL(pthread_sigmask)(how, set, oldset);
}
namespace __tsan {
static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
bool sigact, int sig,
__sanitizer_siginfo *info, void *uctx) {
__sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
if (acquire)
Acquire(thr, 0, (uptr)&sigactions[sig]);
// Signals are generally asynchronous, so if we receive a signals when
// ignores are enabled we should disable ignores. This is critical for sync
// and interceptors, because otherwise we can miss syncronization and report
// false races.
int ignore_reads_and_writes = thr->ignore_reads_and_writes;
int ignore_interceptors = thr->ignore_interceptors;
int ignore_sync = thr->ignore_sync;
if (!ctx->after_multithreaded_fork) {
thr->ignore_reads_and_writes = 0;
thr->fast_state.ClearIgnoreBit();
thr->ignore_interceptors = 0;
thr->ignore_sync = 0;
}
// Ensure that the handler does not spoil errno.
const int saved_errno = errno;
errno = 99;
// This code races with sigaction. Be careful to not read sa_sigaction twice.
// Also need to remember pc for reporting before the call,
// because the handler can reset it.
volatile uptr pc =
sigact ? (uptr)sigactions[sig].sigaction : (uptr)sigactions[sig].handler;
if (pc != sig_dfl && pc != sig_ign) {
if (sigact)
((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
else
((__sanitizer_sighandler_ptr)pc)(sig);
}
if (!ctx->after_multithreaded_fork) {
thr->ignore_reads_and_writes = ignore_reads_and_writes;
if (ignore_reads_and_writes)
thr->fast_state.SetIgnoreBit();
thr->ignore_interceptors = ignore_interceptors;
thr->ignore_sync = ignore_sync;
}
// We do not detect errno spoiling for SIGTERM,
// because some SIGTERM handlers do spoil errno but reraise SIGTERM,
// tsan reports false positive in such case.
// It's difficult to properly detect this situation (reraise),
// because in async signal processing case (when handler is called directly
// from rtl_generic_sighandler) we have not yet received the reraised
// signal; and it looks too fragile to intercept all ways to reraise a signal.
if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
VarSizeStackTrace stack;
// StackTrace::GetNestInstructionPc(pc) is used because return address is
// expected, OutputReport() will undo this.
ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
ThreadRegistryLock l(ctx->thread_registry);
ScopedReport rep(ReportTypeErrnoInSignal);
if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
rep.AddStack(stack, true);
OutputReport(thr, rep);
}
}
errno = saved_errno;
}
void ProcessPendingSignals(ThreadState *thr) {
ThreadSignalContext *sctx = SigCtx(thr);
if (sctx == 0 ||
atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
return;
atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
internal_sigfillset(&sctx->emptyset);
int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
CHECK_EQ(res, 0);
for (int sig = 0; sig < kSigCount; sig++) {
SignalDesc *signal = &sctx->pending_signals[sig];
if (signal->armed) {
signal->armed = false;
CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
&signal->siginfo, &signal->ctx);
}
}
res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
CHECK_EQ(res, 0);
atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
}
} // namespace __tsan
static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP ||
sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
// If we are sending signal to ourselves, we must process it now.
(sctx && sig == sctx->int_signal_send);
}
void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
__sanitizer_siginfo *info,
void *ctx) {
cur_thread_init();
ThreadState *thr = cur_thread();
ThreadSignalContext *sctx = SigCtx(thr);
if (sig < 0 || sig >= kSigCount) {
VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
return;
}
// Don't mess with synchronous signals.
const bool sync = is_sync_signal(sctx, sig);
if (sync ||
// If we are in blocking function, we can safely process it now
// (but check if we are in a recursive interceptor,
// i.e. pthread_join()->munmap()).
(sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
} else {
// Be very conservative with when we do acquire in this case.
// It's unsafe to do acquire in async handlers, because ThreadState
// can be in inconsistent state.
// SIGSYS looks relatively safe -- it's synchronous and can actually
// need some global state.
bool acq = (sig == SIGSYS);
CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
}
atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
return;
}
if (sctx == 0)
return;
SignalDesc *signal = &sctx->pending_signals[sig];
if (signal->armed == false) {
signal->armed = true;
signal->sigaction = sigact;
if (info)
internal_memcpy(&signal->siginfo, info, sizeof(*info));
if (ctx)
internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
}
}
static void rtl_sighandler(int sig) {
rtl_generic_sighandler(false, sig, 0, 0);
}
static void rtl_sigaction(int sig, __sanitizer_siginfo *info, void *ctx) {
rtl_generic_sighandler(true, sig, info, ctx);
}
TSAN_INTERCEPTOR(int, raise, int sig) {
SCOPED_TSAN_INTERCEPTOR(raise, sig);
ThreadSignalContext *sctx = SigCtx(thr);
CHECK_NE(sctx, 0);
int prev = sctx->int_signal_send;
sctx->int_signal_send = sig;
int res = REAL(raise)(sig);
CHECK_EQ(sctx->int_signal_send, sig);
sctx->int_signal_send = prev;
return res;
}
TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
ThreadSignalContext *sctx = SigCtx(thr);
CHECK_NE(sctx, 0);
int prev = sctx->int_signal_send;
if (pid == (int)internal_getpid()) {
sctx->int_signal_send = sig;
}
int res = REAL(kill)(pid, sig);
if (pid == (int)internal_getpid()) {
CHECK_EQ(sctx->int_signal_send, sig);
sctx->int_signal_send = prev;
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
ThreadSignalContext *sctx = SigCtx(thr);
CHECK_NE(sctx, 0);
int prev = sctx->int_signal_send;
if (tid == pthread_self()) {
sctx->int_signal_send = sig;
}
int res = REAL(pthread_kill)(tid, sig);
if (tid == pthread_self()) {
CHECK_EQ(sctx->int_signal_send, sig);
sctx->int_signal_send = prev;
}
return res;
}
TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
// It's intercepted merely to process pending signals.
return REAL(gettimeofday)(tv, tz);
}
TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
void *hints, void *rv) {
SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
// We miss atomic synchronization in getaddrinfo,
// and can report false race between malloc and free
// inside of getaddrinfo. So ignore memory accesses.
ThreadIgnoreBegin(thr, pc);
int res = REAL(getaddrinfo)(node, service, hints, rv);
ThreadIgnoreEnd(thr, pc);
return res;
}
TSAN_INTERCEPTOR(int, fork, int fake) {
if (in_symbolizer())
return REAL(fork)(fake);
SCOPED_INTERCEPTOR_RAW(fork, fake);
ForkBefore(thr, pc);
int pid;
{
// On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
// we'll assert in CheckNoLocks() unless we ignore interceptors.
ScopedIgnoreInterceptors ignore;
pid = REAL(fork)(fake);
}
if (pid == 0) {
// child
ForkChildAfter(thr, pc);
FdOnFork(thr, pc);
} else if (pid > 0) {
// parent
ForkParentAfter(thr, pc);
} else {
// error
ForkParentAfter(thr, pc);
}
return pid;
}
TSAN_INTERCEPTOR(int, vfork, int fake) {
// Some programs (e.g. openjdk) call close for all file descriptors
// in the child process. Under tsan it leads to false positives, because
// address space is shared, so the parent process also thinks that
// the descriptors are closed (while they are actually not).
// This leads to false positives due to missed synchronization.
// Strictly saying this is undefined behavior, because vfork child is not
// allowed to call any functions other than exec/exit. But this is what
// openjdk does, so we want to handle it.
// We could disable interceptors in the child process. But it's not possible
// to simply intercept and wrap vfork, because vfork child is not allowed
// to return from the function that calls vfork, and that's exactly what
// we would do. So this would require some assembly trickery as well.
// Instead we simply turn vfork into fork.
return WRAP(fork)(fake);
}
#if !SANITIZER_MAC && !SANITIZER_ANDROID
typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
void *data);
struct dl_iterate_phdr_data {
ThreadState *thr;
uptr pc;
dl_iterate_phdr_cb_t cb;
void *data;
};
static bool IsAppNotRodata(uptr addr) {
return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
}
static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
void *data) {
dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
// dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
// accessible in dl_iterate_phdr callback. But we don't see synchronization
// inside of dynamic linker, so we "unpoison" it here in order to not
// produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
// because some libc functions call __libc_dlopen.
if (info && IsAppNotRodata((uptr)info->dlpi_name))
MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
internal_strlen(info->dlpi_name));
int res = cbdata->cb(info, size, cbdata->data);
// Perform the check one more time in case info->dlpi_name was overwritten
// by user callback.
if (info && IsAppNotRodata((uptr)info->dlpi_name))
MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
internal_strlen(info->dlpi_name));
return res;
}
TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
dl_iterate_phdr_data cbdata;
cbdata.thr = thr;
cbdata.pc = pc;
cbdata.cb = cb;
cbdata.data = data;
int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
return res;
}
#endif
static int OnExit(ThreadState *thr) {
int status = Finalize(thr);
FlushStreams();
return status;
}
struct TsanInterceptorContext {
ThreadState *thr;
const uptr caller_pc;
const uptr pc;
};
#if !SANITIZER_MAC
static void HandleRecvmsg(ThreadState *thr, uptr pc,
__sanitizer_msghdr *msg) {
int fds[64];
int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
for (int i = 0; i < cnt; i++)
FdEventCreate(thr, pc, fds[i]);
}
#endif
#include "sanitizer_common/sanitizer_platform_interceptors.h"
// Causes interceptor recursion (getaddrinfo() and fopen())
#undef SANITIZER_INTERCEPT_GETADDRINFO
// We define our own.
#if SANITIZER_INTERCEPT_TLS_GET_ADDR
#define NEED_TLS_GET_ADDR
#endif
#undef SANITIZER_INTERCEPT_TLS_GET_ADDR
#undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
#define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
#define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
INTERCEPT_FUNCTION_VER(name, ver)
#define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
true)
#define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
false)
#define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
ctx = (void *)&_ctx; \
(void) ctx;
#define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
ctx = (void *)&_ctx; \
(void) ctx;
#define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
if (path) \
Acquire(thr, pc, File2addr(path)); \
if (file) { \
int fd = fileno_unlocked(file); \
if (fd >= 0) FdFileCreate(thr, pc, fd); \
}
#define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
if (file) { \
int fd = fileno_unlocked(file); \
if (fd >= 0) FdClose(thr, pc, fd); \
}
#define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
libignore()->OnLibraryLoaded(filename)
#define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
libignore()->OnLibraryUnloaded()
#define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
#define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
#define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
#define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
#define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
#define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
#define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
__tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
#define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
#define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
OnExit(((TsanInterceptorContext *) ctx)->thr)
#define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
#define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
#define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
#define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
#define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
#define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \
off) \
do { \
return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
off); \
} while (false)
#if !SANITIZER_MAC
#define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, msg)
#endif
#define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
if (TsanThread *t = GetCurrentThread()) { \
*begin = t->tls_begin(); \
*end = t->tls_end(); \
} else { \
*begin = *end = 0; \
}
#define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
#define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
#include "sanitizer_common/sanitizer_common_interceptors.inc"
static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
__sanitizer_sigaction *old);
static __sanitizer_sighandler_ptr signal_impl(int sig,
__sanitizer_sighandler_ptr h);
#define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
{ return sigaction_impl(signo, act, oldact); }
#define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
{ return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
#include "sanitizer_common/sanitizer_signal_interceptors.inc"
int sigaction_impl(int sig, const __sanitizer_sigaction *act,
__sanitizer_sigaction *old) {
// Note: if we call REAL(sigaction) directly for any reason without proxying
// the signal handler through rtl_sigaction, very bad things will happen.
// The handler will run synchronously and corrupt tsan per-thread state.
SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
__sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
__sanitizer_sigaction old_stored;
if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
__sanitizer_sigaction newact;
if (act) {
// Copy act into sigactions[sig].
// Can't use struct copy, because compiler can emit call to memcpy.
// Can't use internal_memcpy, because it copies byte-by-byte,
// and signal handler reads the handler concurrently. It it can read
// some bytes from old value and some bytes from new value.
// Use volatile to prevent insertion of memcpy.
sigactions[sig].handler =
*(volatile __sanitizer_sighandler_ptr const *)&act->handler;
sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
sizeof(sigactions[sig].sa_mask));
#if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
sigactions[sig].sa_restorer = act->sa_restorer;
#endif
internal_memcpy(&newact, act, sizeof(newact));
internal_sigfillset(&newact.sa_mask);
if ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl) {
if (newact.sa_flags & SA_SIGINFO)
newact.sigaction = rtl_sigaction;
else
newact.handler = rtl_sighandler;
}
ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
act = &newact;
}
int res = REAL(sigaction)(sig, act, old);
if (res == 0 && old) {
uptr cb = (uptr)old->sigaction;
if (cb == (uptr)rtl_sigaction || cb == (uptr)rtl_sighandler) {
internal_memcpy(old, &old_stored, sizeof(*old));
}
}
return res;
}
static __sanitizer_sighandler_ptr signal_impl(int sig,
__sanitizer_sighandler_ptr h) {
__sanitizer_sigaction act;
act.handler = h;
internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
act.sa_flags = 0;
__sanitizer_sigaction old;
int res = sigaction_symname(sig, &act, &old);
if (res) return (__sanitizer_sighandler_ptr)sig_err;
return old.handler;
}
#define TSAN_SYSCALL() \
ThreadState *thr = cur_thread(); \
if (thr->ignore_interceptors) \
return; \
ScopedSyscall scoped_syscall(thr) \
/**/
struct ScopedSyscall {
ThreadState *thr;
explicit ScopedSyscall(ThreadState *thr)
: thr(thr) {
Initialize(thr);
}
~ScopedSyscall() {
ProcessPendingSignals(thr);
}
};
#if !SANITIZER_FREEBSD && !SANITIZER_MAC
static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
TSAN_SYSCALL();
MemoryAccessRange(thr, pc, p, s, write);
}
static void syscall_acquire(uptr pc, uptr addr) {
TSAN_SYSCALL();
Acquire(thr, pc, addr);
DPrintf("syscall_acquire(%p)\n", addr);
}
static void syscall_release(uptr pc, uptr addr) {
TSAN_SYSCALL();
DPrintf("syscall_release(%p)\n", addr);
Release(thr, pc, addr);
}
static void syscall_fd_close(uptr pc, int fd) {
TSAN_SYSCALL();
FdClose(thr, pc, fd);
}
static USED void syscall_fd_acquire(uptr pc, int fd) {
TSAN_SYSCALL();
FdAcquire(thr, pc, fd);
DPrintf("syscall_fd_acquire(%p)\n", fd);
}
static USED void syscall_fd_release(uptr pc, int fd) {
TSAN_SYSCALL();
DPrintf("syscall_fd_release(%p)\n", fd);
FdRelease(thr, pc, fd);
}
static void syscall_pre_fork(uptr pc) {
TSAN_SYSCALL();
ForkBefore(thr, pc);
}
static void syscall_post_fork(uptr pc, int pid) {
TSAN_SYSCALL();
if (pid == 0) {
// child
ForkChildAfter(thr, pc);
FdOnFork(thr, pc);
} else if (pid > 0) {
// parent
ForkParentAfter(thr, pc);
} else {
// error
ForkParentAfter(thr, pc);
}
}
#endif
#define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
#define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
#define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
do { \
(void)(p); \
(void)(s); \
} while (false)
#define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
do { \
(void)(p); \
(void)(s); \
} while (false)
#define COMMON_SYSCALL_ACQUIRE(addr) \
syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
#define COMMON_SYSCALL_RELEASE(addr) \
syscall_release(GET_CALLER_PC(), (uptr)(addr))
#define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
#define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
#define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
#define COMMON_SYSCALL_PRE_FORK() \
syscall_pre_fork(GET_CALLER_PC())
#define COMMON_SYSCALL_POST_FORK(res) \
syscall_post_fork(GET_CALLER_PC(), res)
#include "sanitizer_common/sanitizer_common_syscalls.inc"
#include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
#ifdef NEED_TLS_GET_ADDR
// Define own interceptor instead of sanitizer_common's for three reasons:
// 1. It must not process pending signals.
// Signal handlers may contain MOVDQA instruction (see below).
// 2. It must be as simple as possible to not contain MOVDQA.
// 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
// is empty for tsan (meant only for msan).
// Note: __tls_get_addr can be called with mis-aligned stack due to:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
// So the interceptor must work with mis-aligned stack, in particular, does not
// execute MOVDQA with stack addresses.
TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
void *res = REAL(__tls_get_addr)(arg);
ThreadState *thr = cur_thread();
if (!thr)
return res;
DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
thr->tls_addr + thr->tls_size);
if (!dtv)
return res;
// New DTLS block has been allocated.
MemoryResetRange(thr, 0, dtv->beg, dtv->size);
return res;
}
#endif
#if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void, _lwp_exit) {
SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
DestroyThreadState();
REAL(_lwp_exit)();
}
#define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
#else
#define TSAN_MAYBE_INTERCEPT__LWP_EXIT
#endif
#if SANITIZER_FREEBSD
TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
DestroyThreadState();
REAL(thr_exit(state));
}
#define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
#else
#define TSAN_MAYBE_INTERCEPT_THR_EXIT
#endif
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
void *c)
namespace __tsan {
static void finalize(void *arg) {
ThreadState *thr = cur_thread();
int status = Finalize(thr);
// Make sure the output is not lost.
FlushStreams();
if (status)
Die();
}
#if !SANITIZER_MAC && !SANITIZER_ANDROID
static void unreachable() {
Report("FATAL: ThreadSanitizer: unreachable called\n");
Die();
}
#endif
// Define default implementation since interception of libdispatch is optional.
SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {}
void InitializeInterceptors() {
#if !SANITIZER_MAC
// We need to setup it early, because functions like dlsym() can call it.
REAL(memset) = internal_memset;
REAL(memcpy) = internal_memcpy;
#endif
// Instruct libc malloc to consume less memory.
#if SANITIZER_LINUX
mallopt(1, 0); // M_MXFAST
mallopt(-3, 32*1024); // M_MMAP_THRESHOLD
#endif
new(interceptor_ctx()) InterceptorContext();
InitializeCommonInterceptors();
InitializeSignalInterceptors();
InitializeLibdispatchInterceptors();
#if !SANITIZER_MAC
// We can not use TSAN_INTERCEPT to get setjmp addr,
// because it does &setjmp and setjmp is not present in some versions of libc.
using __interception::InterceptFunction;
InterceptFunction(TSAN_STRING_SETJMP, (uptr*)&REAL(setjmp_symname), 0, 0);
InterceptFunction("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
InterceptFunction(TSAN_STRING_SIGSETJMP, (uptr*)&REAL(sigsetjmp_symname), 0,
0);
#if !SANITIZER_NETBSD
InterceptFunction("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
#endif
#endif
TSAN_INTERCEPT(longjmp_symname);
TSAN_INTERCEPT(siglongjmp_symname);
#if SANITIZER_NETBSD
TSAN_INTERCEPT(_longjmp);
#endif
TSAN_INTERCEPT(malloc);
TSAN_INTERCEPT(__libc_memalign);
TSAN_INTERCEPT(calloc);
TSAN_INTERCEPT(realloc);
TSAN_INTERCEPT(reallocarray);
TSAN_INTERCEPT(free);
TSAN_INTERCEPT(cfree);
TSAN_INTERCEPT(munmap);
TSAN_MAYBE_INTERCEPT_MEMALIGN;
TSAN_INTERCEPT(valloc);
TSAN_MAYBE_INTERCEPT_PVALLOC;
TSAN_INTERCEPT(posix_memalign);
TSAN_INTERCEPT(strcpy);
TSAN_INTERCEPT(strncpy);
TSAN_INTERCEPT(strdup);
TSAN_INTERCEPT(pthread_create);
TSAN_INTERCEPT(pthread_join);
TSAN_INTERCEPT(pthread_detach);
TSAN_INTERCEPT(pthread_exit);
#if SANITIZER_LINUX
TSAN_INTERCEPT(pthread_tryjoin_np);
TSAN_INTERCEPT(pthread_timedjoin_np);
#endif
TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
TSAN_INTERCEPT(pthread_mutex_init);
TSAN_INTERCEPT(pthread_mutex_destroy);
TSAN_INTERCEPT(pthread_mutex_trylock);
TSAN_INTERCEPT(pthread_mutex_timedlock);
TSAN_INTERCEPT(pthread_spin_init);
TSAN_INTERCEPT(pthread_spin_destroy);
TSAN_INTERCEPT(pthread_spin_lock);
TSAN_INTERCEPT(pthread_spin_trylock);
TSAN_INTERCEPT(pthread_spin_unlock);
TSAN_INTERCEPT(pthread_rwlock_init);
TSAN_INTERCEPT(pthread_rwlock_destroy);
TSAN_INTERCEPT(pthread_rwlock_rdlock);
TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
TSAN_INTERCEPT(pthread_rwlock_wrlock);
TSAN_INTERCEPT(pthread_rwlock_trywrlock);
TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
TSAN_INTERCEPT(pthread_rwlock_unlock);
TSAN_INTERCEPT(pthread_barrier_init);
TSAN_INTERCEPT(pthread_barrier_destroy);
TSAN_INTERCEPT(pthread_barrier_wait);
TSAN_INTERCEPT(pthread_once);
TSAN_INTERCEPT(fstat);
TSAN_MAYBE_INTERCEPT___FXSTAT;
TSAN_MAYBE_INTERCEPT_FSTAT64;
TSAN_MAYBE_INTERCEPT___FXSTAT64;
TSAN_INTERCEPT(open);
TSAN_MAYBE_INTERCEPT_OPEN64;
TSAN_INTERCEPT(creat);
TSAN_MAYBE_INTERCEPT_CREAT64;
TSAN_INTERCEPT(dup);
TSAN_INTERCEPT(dup2);
TSAN_INTERCEPT(dup3);
TSAN_MAYBE_INTERCEPT_EVENTFD;
TSAN_MAYBE_INTERCEPT_SIGNALFD;
TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
TSAN_INTERCEPT(socket);
TSAN_INTERCEPT(socketpair);
TSAN_INTERCEPT(connect);
TSAN_INTERCEPT(bind);
TSAN_INTERCEPT(listen);
TSAN_MAYBE_INTERCEPT_EPOLL;
TSAN_INTERCEPT(close);
TSAN_MAYBE_INTERCEPT___CLOSE;
TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
TSAN_INTERCEPT(pipe);
TSAN_INTERCEPT(pipe2);
TSAN_INTERCEPT(unlink);
TSAN_INTERCEPT(tmpfile);
TSAN_MAYBE_INTERCEPT_TMPFILE64;
TSAN_INTERCEPT(abort);
TSAN_INTERCEPT(rmdir);
TSAN_INTERCEPT(closedir);
TSAN_INTERCEPT(sigsuspend);
TSAN_INTERCEPT(sigblock);
TSAN_INTERCEPT(sigsetmask);
TSAN_INTERCEPT(pthread_sigmask);
TSAN_INTERCEPT(raise);
TSAN_INTERCEPT(kill);
TSAN_INTERCEPT(pthread_kill);
TSAN_INTERCEPT(sleep);
TSAN_INTERCEPT(usleep);
TSAN_INTERCEPT(nanosleep);
TSAN_INTERCEPT(pause);
TSAN_INTERCEPT(gettimeofday);
TSAN_INTERCEPT(getaddrinfo);
TSAN_INTERCEPT(fork);
TSAN_INTERCEPT(vfork);
#if !SANITIZER_ANDROID
TSAN_INTERCEPT(dl_iterate_phdr);
#endif
TSAN_MAYBE_INTERCEPT_ON_EXIT;
TSAN_INTERCEPT(__cxa_atexit);
TSAN_INTERCEPT(_exit);
#ifdef NEED_TLS_GET_ADDR
TSAN_INTERCEPT(__tls_get_addr);
#endif
TSAN_MAYBE_INTERCEPT__LWP_EXIT;
TSAN_MAYBE_INTERCEPT_THR_EXIT;
#if !SANITIZER_MAC && !SANITIZER_ANDROID
// Need to setup it, because interceptors check that the function is resolved.
// But atexit is emitted directly into the module, so can't be resolved.
REAL(atexit) = (int(*)(void(*)()))unreachable;
#endif
if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
Printf("ThreadSanitizer: failed to setup atexit callback\n");
Die();
}
#if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
Printf("ThreadSanitizer: failed to create thread key\n");
Die();
}
#endif
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);
FdInit();
}
} // namespace __tsan
// Invisible barrier for tests.
// There were several unsuccessful iterations for this functionality:
// 1. Initially it was implemented in user code using
// REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
// MacOS. Futexes are linux-specific for this matter.
// 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
// "as-if synchronized via sleep" messages in reports which failed some
// output tests.
// 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
// visible events, which lead to "failed to restore stack trace" failures.
// Note that no_sanitize_thread attribute does not turn off atomic interception
// so attaching it to the function defined in user code does not help.
// That's why we now have what we have.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
if (count >= (1 << 8)) {
Printf("barrier_init: count is too large (%d)\n", count);
Die();
}
// 8 lsb is thread count, the remaining are count of entered threads.
*barrier = count;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_testonly_barrier_wait(u64 *barrier) {
unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
unsigned old_epoch = (old >> 8) / (old & 0xff);
for (;;) {
unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
if (cur_epoch != old_epoch)
return;
internal_sched_yield();
}
}