zig/lib/compiler_rt/emutls.zig
Alex Rønne Petersen ebbc50d8be
std.Target: Introduce Abi.androideabi to distinguish the soft float case.
Abi.android on its own is not enough to know whether soft float or hard float
should be used. In the C world, androideabi is typically used for the soft float
case, so let's go with that.

Note that Android doesn't have a hard float ABI, so no androideabihf.

Closes #21488.
2024-09-24 09:23:24 +02:00

381 lines
12 KiB
Zig

//! __emutls_get_address specific builtin
//!
//! derived work from LLVM Compiler Infrastructure - release 8.0 (MIT)
//! https://github.com/llvm-mirror/compiler-rt/blob/release_80/lib/builtins/emutls.c
const std = @import("std");
const builtin = @import("builtin");
const common = @import("common.zig");
const abort = std.posix.abort;
const assert = std.debug.assert;
const expect = std.testing.expect;
/// defined in C as:
/// typedef unsigned int gcc_word __attribute__((mode(word)));
const gcc_word = usize;
pub const panic = common.panic;
comptime {
if (builtin.link_libc and (builtin.abi.isAndroid() or builtin.os.tag == .openbsd)) {
@export(&__emutls_get_address, .{ .name = "__emutls_get_address", .linkage = common.linkage, .visibility = common.visibility });
}
}
/// public entrypoint for generated code using EmulatedTLS
pub fn __emutls_get_address(control: *emutls_control) callconv(.C) *anyopaque {
return control.getPointer();
}
/// Simple allocator interface, to avoid pulling in the while
/// std allocator implementation.
const simple_allocator = struct {
/// Allocate a memory chunk for requested type. Return a pointer on the data.
pub fn alloc(comptime T: type) *T {
return @ptrCast(@alignCast(advancedAlloc(@alignOf(T), @sizeOf(T))));
}
/// Allocate a slice of T, with len elements.
pub fn allocSlice(comptime T: type, len: usize) []T {
return @as([*]T, @ptrCast(@alignCast(
advancedAlloc(@alignOf(T), @sizeOf(T) * len),
)))[0 .. len - 1];
}
/// Allocate a memory chunk.
pub fn advancedAlloc(alignment: u29, size: usize) [*]u8 {
const minimal_alignment = @max(@alignOf(usize), alignment);
var aligned_ptr: ?*anyopaque = undefined;
if (std.c.posix_memalign(&aligned_ptr, minimal_alignment, size) != 0) {
abort();
}
return @ptrCast(aligned_ptr);
}
/// Resize a slice.
pub fn reallocSlice(comptime T: type, slice: []T, len: usize) []T {
const c_ptr: *anyopaque = @ptrCast(slice.ptr);
const new_array: [*]T = @ptrCast(@alignCast(std.c.realloc(c_ptr, @sizeOf(T) * len) orelse abort()));
return new_array[0..len];
}
/// Free a memory chunk allocated with simple_allocator.
pub fn free(ptr: anytype) void {
std.c.free(@ptrCast(ptr));
}
};
/// Simple array of ?ObjectPointer with automatic resizing and
/// automatic storage allocation.
const ObjectArray = struct {
const ObjectPointer = *anyopaque;
// content of the array
slots: []?ObjectPointer,
/// create a new ObjectArray with n slots. must call deinit() to deallocate.
pub fn init(n: usize) *ObjectArray {
const array = simple_allocator.alloc(ObjectArray);
array.* = ObjectArray{
.slots = simple_allocator.allocSlice(?ObjectPointer, n),
};
for (array.slots) |*object| {
object.* = null;
}
return array;
}
/// deallocate the ObjectArray.
pub fn deinit(self: *ObjectArray) void {
// deallocated used objects in the array
for (self.slots) |*object| {
simple_allocator.free(object.*);
}
simple_allocator.free(self.slots);
simple_allocator.free(self);
}
/// resize the ObjectArray if needed.
pub fn ensureLength(self: *ObjectArray, new_len: usize) *ObjectArray {
const old_len = self.slots.len;
if (old_len > new_len) {
return self;
}
// reallocate
self.slots = simple_allocator.reallocSlice(?ObjectPointer, self.slots, new_len);
// init newly added slots
for (self.slots[old_len..]) |*object| {
object.* = null;
}
return self;
}
/// Retrieve the pointer at request index, using control to initialize it if needed.
pub fn getPointer(self: *ObjectArray, index: usize, control: *emutls_control) ObjectPointer {
if (self.slots[index] == null) {
// initialize the slot
const size = control.size;
const alignment: u29 = @truncate(control.alignment);
var data = simple_allocator.advancedAlloc(alignment, size);
errdefer simple_allocator.free(data);
if (control.default_value) |value| {
// default value: copy the content to newly allocated object.
@memcpy(data[0..size], @as([*]const u8, @ptrCast(value)));
} else {
// no default: return zeroed memory.
@memset(data[0..size], 0);
}
self.slots[index] = data;
}
return self.slots[index].?;
}
};
// Global structure for Thread Storage.
// It provides thread-safety for on-demand storage of Thread Objects.
const current_thread_storage = struct {
var key: std.c.pthread_key_t = undefined;
var init_once = std.once(current_thread_storage.init);
/// Return a per thread ObjectArray with at least the expected index.
pub fn getArray(index: usize) *ObjectArray {
if (current_thread_storage.getspecific()) |array| {
// we already have a specific. just ensure the array is
// big enough for the wanted index.
return array.ensureLength(index);
}
// no specific. we need to create a new array.
// make it to contains at least 16 objects (to avoid too much
// reallocation at startup).
const size = @max(16, index);
// create a new array and store it.
const array: *ObjectArray = ObjectArray.init(size);
current_thread_storage.setspecific(array);
return array;
}
/// Return casted thread specific value.
fn getspecific() ?*ObjectArray {
return @ptrCast(@alignCast(std.c.pthread_getspecific(current_thread_storage.key)));
}
/// Set casted thread specific value.
fn setspecific(new: ?*ObjectArray) void {
if (std.c.pthread_setspecific(current_thread_storage.key, @ptrCast(new)) != 0) {
abort();
}
}
/// Initialize pthread_key_t.
fn init() void {
if (std.c.pthread_key_create(&current_thread_storage.key, current_thread_storage.deinit) != .SUCCESS) {
abort();
}
}
/// Invoked by pthread specific destructor. the passed argument is the ObjectArray pointer.
fn deinit(arrayPtr: *anyopaque) callconv(.C) void {
var array: *ObjectArray = @ptrCast(@alignCast(arrayPtr));
array.deinit();
}
};
const emutls_control = extern struct {
// A emutls_control value is a global value across all
// threads. The threads shares the index of TLS variable. The data
// array (containing address of allocated variables) is thread
// specific and stored using pthread_setspecific().
// size of the object in bytes
size: gcc_word,
// alignment of the object in bytes
alignment: gcc_word,
object: extern union {
// data[index-1] is the object address / 0 = uninit
index: usize,
// object address, when in single thread env (not used)
address: *anyopaque,
},
// null or non-zero initial value for the object
default_value: ?*const anyopaque,
// global Mutex used to serialize control.index initialization.
var mutex: std.c.pthread_mutex_t = std.c.PTHREAD_MUTEX_INITIALIZER;
// global counter for keeping track of requested indexes.
// access should be done with mutex held.
var next_index: usize = 1;
/// Simple wrapper for global lock.
fn lock() void {
if (std.c.pthread_mutex_lock(&emutls_control.mutex) != .SUCCESS) {
abort();
}
}
/// Simple wrapper for global unlock.
fn unlock() void {
if (std.c.pthread_mutex_unlock(&emutls_control.mutex) != .SUCCESS) {
abort();
}
}
/// Helper to retrieve nad initialize global unique index per emutls variable.
pub fn getIndex(self: *emutls_control) usize {
// Two threads could race against the same emutls_control.
// Use atomic for reading coherent value lockless.
const index_lockless = @atomicLoad(usize, &self.object.index, .acquire);
if (index_lockless != 0) {
// index is already initialized, return it.
return index_lockless;
}
// index is uninitialized: take global lock to avoid possible race.
emutls_control.lock();
defer emutls_control.unlock();
const index_locked = self.object.index;
if (index_locked != 0) {
// we lost a race, but index is already initialized: nothing particular to do.
return index_locked;
}
// Store a new index atomically (for having coherent index_lockless reading).
@atomicStore(usize, &self.object.index, emutls_control.next_index, .release);
// Increment the next available index
emutls_control.next_index += 1;
return self.object.index;
}
/// Simple helper for testing purpose.
pub fn init(comptime T: type, default_value: ?*const T) emutls_control {
return emutls_control{
.size = @sizeOf(T),
.alignment = @alignOf(T),
.object = .{ .index = 0 },
.default_value = @ptrCast(default_value),
};
}
/// Get the pointer on allocated storage for emutls variable.
pub fn getPointer(self: *emutls_control) *anyopaque {
// ensure current_thread_storage initialization is done
current_thread_storage.init_once.call();
const index = self.getIndex();
var array = current_thread_storage.getArray(index);
return array.getPointer(index - 1, self);
}
/// Testing helper for retrieving typed pointer.
pub fn get_typed_pointer(self: *emutls_control, comptime T: type) *T {
assert(self.size == @sizeOf(T));
assert(self.alignment == @alignOf(T));
return @ptrCast(@alignCast(self.getPointer()));
}
};
test "simple_allocator" {
if (!builtin.link_libc or builtin.os.tag != .openbsd) return error.SkipZigTest;
const data1: *[64]u8 = simple_allocator.alloc([64]u8);
defer simple_allocator.free(data1);
for (data1) |*c| {
c.* = 0xff;
}
const data2: [*]u8 = simple_allocator.advancedAlloc(@alignOf(u8), 64);
defer simple_allocator.free(data2);
for (data2[0..63]) |*c| {
c.* = 0xff;
}
}
test "__emutls_get_address zeroed" {
if (!builtin.link_libc or builtin.os.tag != .openbsd) return error.SkipZigTest;
var ctl = emutls_control.init(usize, null);
try expect(ctl.object.index == 0);
// retrieve a variable from ctl
const x: *usize = @ptrCast(@alignCast(__emutls_get_address(&ctl)));
try expect(ctl.object.index != 0); // index has been allocated for this ctl
try expect(x.* == 0); // storage has been zeroed
// modify the storage
x.* = 1234;
// retrieve a variable from ctl (same ctl)
const y: *usize = @ptrCast(@alignCast(__emutls_get_address(&ctl)));
try expect(y.* == 1234); // same content that x.*
try expect(x == y); // same pointer
}
test "__emutls_get_address with default_value" {
if (!builtin.link_libc or builtin.os.tag != .openbsd) return error.SkipZigTest;
const value: usize = 5678; // default value
var ctl = emutls_control.init(usize, &value);
try expect(ctl.object.index == 0);
const x: *usize = @ptrCast(@alignCast(__emutls_get_address(&ctl)));
try expect(ctl.object.index != 0);
try expect(x.* == 5678); // storage initialized with default value
// modify the storage
x.* = 9012;
try expect(value == 5678); // the default value didn't change
const y: *usize = @ptrCast(@alignCast(__emutls_get_address(&ctl)));
try expect(y.* == 9012); // the modified storage persists
}
test "test default_value with different sizes" {
if (!builtin.link_libc or builtin.os.tag != .openbsd) return error.SkipZigTest;
const testType = struct {
fn _testType(comptime T: type, value: T) !void {
var ctl = emutls_control.init(T, &value);
const x = ctl.get_typed_pointer(T);
try expect(x.* == value);
}
}._testType;
try testType(usize, 1234);
try testType(u32, 1234);
try testType(i16, -12);
try testType(f64, -12.0);
try testType(
@TypeOf("012345678901234567890123456789"),
"012345678901234567890123456789",
);
}