mirror of
https://github.com/ziglang/zig.git
synced 2024-11-16 17:15:37 +00:00
235 lines
7.0 KiB
Zig
235 lines
7.0 KiB
Zig
// SPDX-License-Identifier: MIT
|
|
// Copyright (c) 2015-2021 Zig Contributors
|
|
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
|
|
// The MIT license requires this copyright notice to be included in all copies
|
|
// and substantial portions of the software.
|
|
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/log1pf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/log1p.c
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
/// Returns the natural logarithm of 1 + x with greater accuracy when x is near zero.
|
|
///
|
|
/// Special Cases:
|
|
/// - log1p(+inf) = +inf
|
|
/// - log1p(+-0) = +-0
|
|
/// - log1p(-1) = -inf
|
|
/// - log1p(x) = nan if x < -1
|
|
/// - log1p(nan) = nan
|
|
pub fn log1p(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
return switch (T) {
|
|
f32 => log1p_32(x),
|
|
f64 => log1p_64(x),
|
|
else => @compileError("log1p not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn log1p_32(x: f32) f32 {
|
|
const ln2_hi = 6.9313812256e-01;
|
|
const ln2_lo = 9.0580006145e-06;
|
|
const Lg1: f32 = 0xaaaaaa.0p-24;
|
|
const Lg2: f32 = 0xccce13.0p-25;
|
|
const Lg3: f32 = 0x91e9ee.0p-25;
|
|
const Lg4: f32 = 0xf89e26.0p-26;
|
|
|
|
const u = @bitCast(u32, x);
|
|
var ix = u;
|
|
var k: i32 = 1;
|
|
var f: f32 = undefined;
|
|
var c: f32 = undefined;
|
|
|
|
// 1 + x < sqrt(2)+
|
|
if (ix < 0x3ED413D0 or ix >> 31 != 0) {
|
|
// x <= -1.0
|
|
if (ix >= 0xBF800000) {
|
|
// log1p(-1) = -inf
|
|
if (x == -1.0) {
|
|
return -math.inf(f32);
|
|
}
|
|
// log1p(x < -1) = nan
|
|
else {
|
|
return math.nan(f32);
|
|
}
|
|
}
|
|
// |x| < 2^(-24)
|
|
if ((ix << 1) < (0x33800000 << 1)) {
|
|
// underflow if subnormal
|
|
if (ix & 0x7F800000 == 0) {
|
|
math.doNotOptimizeAway(x * x);
|
|
}
|
|
return x;
|
|
}
|
|
// sqrt(2) / 2- <= 1 + x < sqrt(2)+
|
|
if (ix <= 0xBE95F619) {
|
|
k = 0;
|
|
c = 0;
|
|
f = x;
|
|
}
|
|
} else if (ix >= 0x7F800000) {
|
|
return x;
|
|
}
|
|
|
|
if (k != 0) {
|
|
const uf = 1 + x;
|
|
var iu = @bitCast(u32, uf);
|
|
iu += 0x3F800000 - 0x3F3504F3;
|
|
k = @intCast(i32, iu >> 23) - 0x7F;
|
|
|
|
// correction to avoid underflow in c / u
|
|
if (k < 25) {
|
|
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
|
|
c /= uf;
|
|
} else {
|
|
c = 0;
|
|
}
|
|
|
|
// u into [sqrt(2)/2, sqrt(2)]
|
|
iu = (iu & 0x007FFFFF) + 0x3F3504F3;
|
|
f = @bitCast(f32, iu) - 1;
|
|
}
|
|
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * Lg4);
|
|
const t2 = z * (Lg1 + w * Lg3);
|
|
const R = t2 + t1;
|
|
const hfsq = 0.5 * f * f;
|
|
const dk = @intToFloat(f32, k);
|
|
|
|
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
|
|
}
|
|
|
|
fn log1p_64(x: f64) f64 {
|
|
const ln2_hi: f64 = 6.93147180369123816490e-01;
|
|
const ln2_lo: f64 = 1.90821492927058770002e-10;
|
|
const Lg1: f64 = 6.666666666666735130e-01;
|
|
const Lg2: f64 = 3.999999999940941908e-01;
|
|
const Lg3: f64 = 2.857142874366239149e-01;
|
|
const Lg4: f64 = 2.222219843214978396e-01;
|
|
const Lg5: f64 = 1.818357216161805012e-01;
|
|
const Lg6: f64 = 1.531383769920937332e-01;
|
|
const Lg7: f64 = 1.479819860511658591e-01;
|
|
|
|
var ix = @bitCast(u64, x);
|
|
var hx = @intCast(u32, ix >> 32);
|
|
var k: i32 = 1;
|
|
var c: f64 = undefined;
|
|
var f: f64 = undefined;
|
|
|
|
// 1 + x < sqrt(2)
|
|
if (hx < 0x3FDA827A or hx >> 31 != 0) {
|
|
// x <= -1.0
|
|
if (hx >= 0xBFF00000) {
|
|
// log1p(-1) = -inf
|
|
if (x == -1.0) {
|
|
return -math.inf(f64);
|
|
}
|
|
// log1p(x < -1) = nan
|
|
else {
|
|
return math.nan(f64);
|
|
}
|
|
}
|
|
// |x| < 2^(-53)
|
|
if ((hx << 1) < (0x3CA00000 << 1)) {
|
|
if ((hx & 0x7FF00000) == 0) {
|
|
math.raiseUnderflow();
|
|
}
|
|
return x;
|
|
}
|
|
// sqrt(2) / 2- <= 1 + x < sqrt(2)+
|
|
if (hx <= 0xBFD2BEC4) {
|
|
k = 0;
|
|
c = 0;
|
|
f = x;
|
|
}
|
|
} else if (hx >= 0x7FF00000) {
|
|
return x;
|
|
}
|
|
|
|
if (k != 0) {
|
|
const uf = 1 + x;
|
|
const hu = @bitCast(u64, uf);
|
|
var iu = @intCast(u32, hu >> 32);
|
|
iu += 0x3FF00000 - 0x3FE6A09E;
|
|
k = @intCast(i32, iu >> 20) - 0x3FF;
|
|
|
|
// correction to avoid underflow in c / u
|
|
if (k < 54) {
|
|
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
|
|
c /= uf;
|
|
} else {
|
|
c = 0;
|
|
}
|
|
|
|
// u into [sqrt(2)/2, sqrt(2)]
|
|
iu = (iu & 0x000FFFFF) + 0x3FE6A09E;
|
|
const iq = (@as(u64, iu) << 32) | (hu & 0xFFFFFFFF);
|
|
f = @bitCast(f64, iq) - 1;
|
|
}
|
|
|
|
const hfsq = 0.5 * f * f;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
|
|
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
|
|
const R = t2 + t1;
|
|
const dk = @intToFloat(f64, k);
|
|
|
|
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
|
|
}
|
|
|
|
test "math.log1p" {
|
|
expect(log1p(@as(f32, 0.0)) == log1p_32(0.0));
|
|
expect(log1p(@as(f64, 0.0)) == log1p_64(0.0));
|
|
}
|
|
|
|
test "math.log1p_32" {
|
|
const epsilon = 0.000001;
|
|
|
|
expect(math.approxEqAbs(f32, log1p_32(0.0), 0.0, epsilon));
|
|
expect(math.approxEqAbs(f32, log1p_32(0.2), 0.182322, epsilon));
|
|
expect(math.approxEqAbs(f32, log1p_32(0.8923), 0.637793, epsilon));
|
|
expect(math.approxEqAbs(f32, log1p_32(1.5), 0.916291, epsilon));
|
|
expect(math.approxEqAbs(f32, log1p_32(37.45), 3.649359, epsilon));
|
|
expect(math.approxEqAbs(f32, log1p_32(89.123), 4.501175, epsilon));
|
|
expect(math.approxEqAbs(f32, log1p_32(123123.234375), 11.720949, epsilon));
|
|
}
|
|
|
|
test "math.log1p_64" {
|
|
const epsilon = 0.000001;
|
|
|
|
expect(math.approxEqAbs(f64, log1p_64(0.0), 0.0, epsilon));
|
|
expect(math.approxEqAbs(f64, log1p_64(0.2), 0.182322, epsilon));
|
|
expect(math.approxEqAbs(f64, log1p_64(0.8923), 0.637793, epsilon));
|
|
expect(math.approxEqAbs(f64, log1p_64(1.5), 0.916291, epsilon));
|
|
expect(math.approxEqAbs(f64, log1p_64(37.45), 3.649359, epsilon));
|
|
expect(math.approxEqAbs(f64, log1p_64(89.123), 4.501175, epsilon));
|
|
expect(math.approxEqAbs(f64, log1p_64(123123.234375), 11.720949, epsilon));
|
|
}
|
|
|
|
test "math.log1p_32.special" {
|
|
expect(math.isPositiveInf(log1p_32(math.inf(f32))));
|
|
expect(log1p_32(0.0) == 0.0);
|
|
expect(log1p_32(-0.0) == -0.0);
|
|
expect(math.isNegativeInf(log1p_32(-1.0)));
|
|
expect(math.isNan(log1p_32(-2.0)));
|
|
expect(math.isNan(log1p_32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.log1p_64.special" {
|
|
expect(math.isPositiveInf(log1p_64(math.inf(f64))));
|
|
expect(log1p_64(0.0) == 0.0);
|
|
expect(log1p_64(-0.0) == -0.0);
|
|
expect(math.isNegativeInf(log1p_64(-1.0)));
|
|
expect(math.isNan(log1p_64(-2.0)));
|
|
expect(math.isNan(log1p_64(math.nan(f64))));
|
|
}
|