zig/lib/fuzzer.zig
2024-11-05 23:46:10 +01:00

524 lines
19 KiB
Zig

const builtin = @import("builtin");
const std = @import("std");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const fatal = std.process.fatal;
const SeenPcsHeader = std.Build.Fuzz.abi.SeenPcsHeader;
pub const std_options = std.Options{
.logFn = logOverride,
};
var log_file: ?std.fs.File = null;
fn logOverride(
comptime level: std.log.Level,
comptime scope: @Type(.enum_literal),
comptime format: []const u8,
args: anytype,
) void {
const f = if (log_file) |f| f else f: {
const f = fuzzer.cache_dir.createFile("tmp/libfuzzer.log", .{}) catch
@panic("failed to open fuzzer log file");
log_file = f;
break :f f;
};
const prefix1 = comptime level.asText();
const prefix2 = if (scope == .default) ": " else "(" ++ @tagName(scope) ++ "): ";
f.writer().print(prefix1 ++ prefix2 ++ format ++ "\n", args) catch @panic("failed to write to fuzzer log");
}
/// Helps determine run uniqueness in the face of recursion.
export threadlocal var __sancov_lowest_stack: usize = 0;
export fn __sanitizer_cov_trace_const_cmp1(arg1: u8, arg2: u8) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_cmp1(arg1: u8, arg2: u8) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_const_cmp2(arg1: u16, arg2: u16) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_cmp2(arg1: u16, arg2: u16) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_const_cmp4(arg1: u32, arg2: u32) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_cmp4(arg1: u32, arg2: u32) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_const_cmp8(arg1: u64, arg2: u64) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_cmp8(arg1: u64, arg2: u64) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_switch(val: u64, cases_ptr: [*]u64) void {
const pc = @returnAddress();
const len = cases_ptr[0];
const val_size_in_bits = cases_ptr[1];
const cases = cases_ptr[2..][0..len];
_ = val;
fuzzer.visitPc(pc);
_ = val_size_in_bits;
_ = cases;
//std.log.debug("0x{x}: switch on value {d} ({d} bits) with {d} cases", .{
// pc, val, val_size_in_bits, cases.len,
//});
}
export fn __sanitizer_cov_trace_pc_indir(callee: usize) void {
const pc = @returnAddress();
_ = callee;
fuzzer.visitPc(pc);
//std.log.debug("0x{x}: indirect call to 0x{x}", .{ pc, callee });
}
fn handleCmp(pc: usize, arg1: u64, arg2: u64) void {
fuzzer.visitPc(pc ^ arg1 ^ arg2);
//std.log.debug("0x{x}: comparison of {d} and {d}", .{ pc, arg1, arg2 });
}
const Fuzzer = struct {
gpa: Allocator,
rng: std.Random.DefaultPrng,
input: std.ArrayListUnmanaged(u8),
pcs: []const usize,
pc_counters: []u8,
n_runs: usize,
recent_cases: RunMap,
/// Data collected from code coverage instrumentation from one execution of
/// the test function.
coverage: Coverage,
/// Tracks which PCs have been seen across all runs that do not crash the fuzzer process.
/// Stored in a memory-mapped file so that it can be shared with other
/// processes and viewed while the fuzzer is running.
seen_pcs: MemoryMappedList,
cache_dir: std.fs.Dir,
/// Identifies the file name that will be used to store coverage
/// information, available to other processes.
coverage_id: u64,
const RunMap = std.ArrayHashMapUnmanaged(Run, void, Run.HashContext, false);
const Coverage = struct {
pc_table: std.AutoArrayHashMapUnmanaged(usize, void),
run_id_hasher: std.hash.Wyhash,
fn reset(cov: *Coverage) void {
cov.pc_table.clearRetainingCapacity();
cov.run_id_hasher = std.hash.Wyhash.init(0);
}
};
const Run = struct {
id: Id,
input: []const u8,
score: usize,
const Id = u64;
const HashContext = struct {
pub fn eql(ctx: HashContext, a: Run, b: Run, b_index: usize) bool {
_ = b_index;
_ = ctx;
return a.id == b.id;
}
pub fn hash(ctx: HashContext, a: Run) u32 {
_ = ctx;
return @truncate(a.id);
}
};
fn deinit(run: *Run, gpa: Allocator) void {
gpa.free(run.input);
run.* = undefined;
}
};
const Slice = extern struct {
ptr: [*]const u8,
len: usize,
fn toZig(s: Slice) []const u8 {
return s.ptr[0..s.len];
}
fn fromZig(s: []const u8) Slice {
return .{
.ptr = s.ptr,
.len = s.len,
};
}
};
const Analysis = struct {
score: usize,
id: Run.Id,
};
fn init(f: *Fuzzer, cache_dir: std.fs.Dir, pc_counters: []u8, pcs: []const usize) !void {
f.cache_dir = cache_dir;
f.pc_counters = pc_counters;
f.pcs = pcs;
// Choose a file name for the coverage based on a hash of the PCs that will be stored within.
const pc_digest = std.hash.Wyhash.hash(0, std.mem.sliceAsBytes(pcs));
f.coverage_id = pc_digest;
const hex_digest = std.fmt.hex(pc_digest);
const coverage_file_path = "v/" ++ hex_digest;
// Layout of this file:
// - Header
// - list of PC addresses (usize elements)
// - list of hit flag, 1 bit per address (stored in u8 elements)
const coverage_file = createFileBail(cache_dir, coverage_file_path, .{
.read = true,
.truncate = false,
});
defer coverage_file.close();
const n_bitset_elems = (pcs.len + @bitSizeOf(usize) - 1) / @bitSizeOf(usize);
comptime assert(SeenPcsHeader.trailing[0] == .pc_bits_usize);
comptime assert(SeenPcsHeader.trailing[1] == .pc_addr);
const bytes_len = @sizeOf(SeenPcsHeader) +
n_bitset_elems * @sizeOf(usize) +
pcs.len * @sizeOf(usize);
const existing_len = coverage_file.getEndPos() catch |err| {
fatal("unable to check len of coverage file: {s}", .{@errorName(err)});
};
if (existing_len == 0) {
coverage_file.setEndPos(bytes_len) catch |err| {
fatal("unable to set len of coverage file: {s}", .{@errorName(err)});
};
} else if (existing_len != bytes_len) {
fatal("incompatible existing coverage file (differing lengths)", .{});
}
f.seen_pcs = MemoryMappedList.init(coverage_file, existing_len, bytes_len) catch |err| {
fatal("unable to init coverage memory map: {s}", .{@errorName(err)});
};
if (existing_len != 0) {
const existing_pcs_bytes = f.seen_pcs.items[@sizeOf(SeenPcsHeader) + @sizeOf(usize) * n_bitset_elems ..][0 .. pcs.len * @sizeOf(usize)];
const existing_pcs = std.mem.bytesAsSlice(usize, existing_pcs_bytes);
for (existing_pcs, pcs, 0..) |old, new, i| {
if (old != new) {
fatal("incompatible existing coverage file (differing PC at index {d}: {x} != {x})", .{
i, old, new,
});
}
}
} else {
const header: SeenPcsHeader = .{
.n_runs = 0,
.unique_runs = 0,
.pcs_len = pcs.len,
};
f.seen_pcs.appendSliceAssumeCapacity(std.mem.asBytes(&header));
f.seen_pcs.appendNTimesAssumeCapacity(0, n_bitset_elems * @sizeOf(usize));
f.seen_pcs.appendSliceAssumeCapacity(std.mem.sliceAsBytes(pcs));
}
}
fn analyzeLastRun(f: *Fuzzer) Analysis {
return .{
.id = f.coverage.run_id_hasher.final(),
.score = f.coverage.pc_table.count(),
};
}
fn start(f: *Fuzzer) !void {
const gpa = f.gpa;
const rng = fuzzer.rng.random();
// Prepare initial input.
assert(f.recent_cases.entries.len == 0);
assert(f.n_runs == 0);
try f.recent_cases.ensureUnusedCapacity(gpa, 100);
const len = rng.uintLessThanBiased(usize, 80);
try f.input.resize(gpa, len);
rng.bytes(f.input.items);
f.recent_cases.putAssumeCapacity(.{
.id = 0,
.input = try gpa.dupe(u8, f.input.items),
.score = 0,
}, {});
const header: *volatile SeenPcsHeader = @ptrCast(f.seen_pcs.items[0..@sizeOf(SeenPcsHeader)]);
while (true) {
const chosen_index = rng.uintLessThanBiased(usize, f.recent_cases.entries.len);
const run = &f.recent_cases.keys()[chosen_index];
f.input.clearRetainingCapacity();
f.input.appendSliceAssumeCapacity(run.input);
try f.mutate();
@memset(f.pc_counters, 0);
__sancov_lowest_stack = std.math.maxInt(usize);
f.coverage.reset();
fuzzer_one(f.input.items.ptr, f.input.items.len);
f.n_runs += 1;
_ = @atomicRmw(usize, &header.n_runs, .Add, 1, .monotonic);
if (f.n_runs % 10000 == 0) f.dumpStats();
const analysis = f.analyzeLastRun();
const gop = f.recent_cases.getOrPutAssumeCapacity(.{
.id = analysis.id,
.input = undefined,
.score = undefined,
});
if (gop.found_existing) {
//std.log.info("duplicate analysis: score={d} id={d}", .{ analysis.score, analysis.id });
if (f.input.items.len < gop.key_ptr.input.len or gop.key_ptr.score == 0) {
gpa.free(gop.key_ptr.input);
gop.key_ptr.input = try gpa.dupe(u8, f.input.items);
gop.key_ptr.score = analysis.score;
}
} else {
std.log.info("unique analysis: score={d} id={d}", .{ analysis.score, analysis.id });
gop.key_ptr.* = .{
.id = analysis.id,
.input = try gpa.dupe(u8, f.input.items),
.score = analysis.score,
};
{
// Track code coverage from all runs.
comptime assert(SeenPcsHeader.trailing[0] == .pc_bits_usize);
const header_end_ptr: [*]volatile usize = @ptrCast(f.seen_pcs.items[@sizeOf(SeenPcsHeader)..]);
const remainder = f.pcs.len % @bitSizeOf(usize);
const aligned_len = f.pcs.len - remainder;
const seen_pcs = header_end_ptr[0..aligned_len];
const pc_counters = std.mem.bytesAsSlice([@bitSizeOf(usize)]u8, f.pc_counters[0..aligned_len]);
const V = @Vector(@bitSizeOf(usize), u8);
const zero_v: V = @splat(0);
for (header_end_ptr[0..pc_counters.len], pc_counters) |*elem, *array| {
const v: V = array.*;
const mask: usize = @bitCast(v != zero_v);
_ = @atomicRmw(usize, elem, .Or, mask, .monotonic);
}
if (remainder > 0) {
const i = pc_counters.len;
const elem = &seen_pcs[i];
var mask: usize = 0;
for (f.pc_counters[i * @bitSizeOf(usize) ..][0..remainder], 0..) |byte, bit_index| {
mask |= @as(usize, @intFromBool(byte != 0)) << @intCast(bit_index);
}
_ = @atomicRmw(usize, elem, .Or, mask, .monotonic);
}
}
_ = @atomicRmw(usize, &header.unique_runs, .Add, 1, .monotonic);
}
if (f.recent_cases.entries.len >= 100) {
const Context = struct {
values: []const Run,
pub fn lessThan(ctx: @This(), a_index: usize, b_index: usize) bool {
return ctx.values[b_index].score < ctx.values[a_index].score;
}
};
f.recent_cases.sortUnstable(Context{ .values = f.recent_cases.keys() });
const cap = 50;
// This has to be done before deinitializing the deleted items.
const doomed_runs = f.recent_cases.keys()[cap..];
f.recent_cases.shrinkRetainingCapacity(cap);
for (doomed_runs) |*doomed_run| {
std.log.info("culling score={d} id={d}", .{ doomed_run.score, doomed_run.id });
doomed_run.deinit(gpa);
}
}
}
}
fn visitPc(f: *Fuzzer, pc: usize) void {
errdefer |err| oom(err);
try f.coverage.pc_table.put(f.gpa, pc, {});
f.coverage.run_id_hasher.update(std.mem.asBytes(&pc));
}
fn dumpStats(f: *Fuzzer) void {
for (f.recent_cases.keys()[0..@min(f.recent_cases.entries.len, 5)], 0..) |run, i| {
std.log.info("best[{d}] id={x} score={d} input: '{}'", .{
i, run.id, run.score, std.zig.fmtEscapes(run.input),
});
}
}
fn mutate(f: *Fuzzer) !void {
const gpa = f.gpa;
const rng = fuzzer.rng.random();
if (f.input.items.len == 0) {
const len = rng.uintLessThanBiased(usize, 80);
try f.input.resize(gpa, len);
rng.bytes(f.input.items);
return;
}
const index = rng.uintLessThanBiased(usize, f.input.items.len * 3);
if (index < f.input.items.len) {
f.input.items[index] = rng.int(u8);
} else if (index < f.input.items.len * 2) {
_ = f.input.orderedRemove(index - f.input.items.len);
} else if (index < f.input.items.len * 3) {
try f.input.insert(gpa, index - f.input.items.len * 2, rng.int(u8));
} else {
unreachable;
}
}
};
fn createFileBail(dir: std.fs.Dir, sub_path: []const u8, flags: std.fs.File.CreateFlags) std.fs.File {
return dir.createFile(sub_path, flags) catch |err| switch (err) {
error.FileNotFound => {
const dir_name = std.fs.path.dirname(sub_path).?;
dir.makePath(dir_name) catch |e| {
fatal("unable to make path '{s}': {s}", .{ dir_name, @errorName(e) });
};
return dir.createFile(sub_path, flags) catch |e| {
fatal("unable to create file '{s}': {s}", .{ sub_path, @errorName(e) });
};
},
else => fatal("unable to create file '{s}': {s}", .{ sub_path, @errorName(err) }),
};
}
fn oom(err: anytype) noreturn {
switch (err) {
error.OutOfMemory => @panic("out of memory"),
}
}
var general_purpose_allocator: std.heap.GeneralPurposeAllocator(.{}) = .init;
var fuzzer: Fuzzer = .{
.gpa = general_purpose_allocator.allocator(),
.rng = std.Random.DefaultPrng.init(0),
.input = .{},
.pcs = undefined,
.pc_counters = undefined,
.n_runs = 0,
.recent_cases = .{},
.coverage = undefined,
.cache_dir = undefined,
.seen_pcs = undefined,
.coverage_id = undefined,
};
/// Invalid until `fuzzer_init` is called.
export fn fuzzer_coverage_id() u64 {
return fuzzer.coverage_id;
}
var fuzzer_one: *const fn (input_ptr: [*]const u8, input_len: usize) callconv(.C) void = undefined;
export fn fuzzer_start(testOne: @TypeOf(fuzzer_one)) void {
fuzzer_one = testOne;
fuzzer.start() catch |err| switch (err) {
error.OutOfMemory => fatal("out of memory", .{}),
};
}
export fn fuzzer_init(cache_dir_struct: Fuzzer.Slice) void {
// Linkers are expected to automatically add `__start_<section>` and
// `__stop_<section>` symbols when section names are valid C identifiers.
const pc_counters_start = @extern([*]u8, .{
.name = "__start___sancov_cntrs",
.linkage = .weak,
}) orelse fatal("missing __start___sancov_cntrs symbol", .{});
const pc_counters_end = @extern([*]u8, .{
.name = "__stop___sancov_cntrs",
.linkage = .weak,
}) orelse fatal("missing __stop___sancov_cntrs symbol", .{});
const pc_counters = pc_counters_start[0 .. pc_counters_end - pc_counters_start];
const pcs_start = @extern([*]usize, .{
.name = "__start___sancov_pcs1",
.linkage = .weak,
}) orelse fatal("missing __start___sancov_pcs1 symbol", .{});
const pcs_end = @extern([*]usize, .{
.name = "__stop___sancov_pcs1",
.linkage = .weak,
}) orelse fatal("missing __stop___sancov_pcs1 symbol", .{});
const pcs = pcs_start[0 .. pcs_end - pcs_start];
const cache_dir_path = cache_dir_struct.toZig();
const cache_dir = if (cache_dir_path.len == 0)
std.fs.cwd()
else
std.fs.cwd().makeOpenPath(cache_dir_path, .{ .iterate = true }) catch |err| {
fatal("unable to open fuzz directory '{s}': {s}", .{ cache_dir_path, @errorName(err) });
};
fuzzer.init(cache_dir, pc_counters, pcs) catch |err|
fatal("unable to init fuzzer: {s}", .{@errorName(err)});
}
/// Like `std.ArrayListUnmanaged(u8)` but backed by memory mapping.
pub const MemoryMappedList = struct {
/// Contents of the list.
///
/// Pointers to elements in this slice are invalidated by various functions
/// of this ArrayList in accordance with the respective documentation. In
/// all cases, "invalidated" means that the memory has been passed to this
/// allocator's resize or free function.
items: []align(std.mem.page_size) volatile u8,
/// How many bytes this list can hold without allocating additional memory.
capacity: usize,
pub fn init(file: std.fs.File, length: usize, capacity: usize) !MemoryMappedList {
const ptr = try std.posix.mmap(
null,
capacity,
std.posix.PROT.READ | std.posix.PROT.WRITE,
.{ .TYPE = .SHARED },
file.handle,
0,
);
return .{
.items = ptr[0..length],
.capacity = capacity,
};
}
/// Append the slice of items to the list.
/// Asserts that the list can hold the additional items.
pub fn appendSliceAssumeCapacity(l: *MemoryMappedList, items: []const u8) void {
const old_len = l.items.len;
const new_len = old_len + items.len;
assert(new_len <= l.capacity);
l.items.len = new_len;
@memcpy(l.items[old_len..][0..items.len], items);
}
/// Append a value to the list `n` times.
/// Never invalidates element pointers.
/// The function is inline so that a comptime-known `value` parameter will
/// have better memset codegen in case it has a repeated byte pattern.
/// Asserts that the list can hold the additional items.
pub inline fn appendNTimesAssumeCapacity(l: *MemoryMappedList, value: u8, n: usize) void {
const new_len = l.items.len + n;
assert(new_len <= l.capacity);
@memset(l.items.ptr[l.items.len..new_len], value);
l.items.len = new_len;
}
};