zig/lib/compiler_rt/extendxftf2.zig

51 lines
1.9 KiB
Zig

const std = @import("std");
const common = @import("./common.zig");
pub const panic = common.panic;
comptime {
@export(&__extendxftf2, .{ .name = "__extendxftf2", .linkage = common.linkage, .visibility = common.visibility });
}
fn __extendxftf2(a: f80) callconv(.C) f128 {
const src_int_bit: u64 = 0x8000000000000000;
const src_sig_mask = ~src_int_bit;
const src_sig_bits = std.math.floatMantissaBits(f80) - 1; // -1 for the integer bit
const dst_sig_bits = std.math.floatMantissaBits(f128);
const dst_bits = @bitSizeOf(f128);
const dst_min_normal = @as(u128, 1) << dst_sig_bits;
// Break a into a sign and representation of the absolute value
var a_rep = std.math.F80.fromFloat(a);
const sign = a_rep.exp & 0x8000;
a_rep.exp &= 0x7FFF;
var abs_result: u128 = undefined;
if (a_rep.exp == 0 and a_rep.fraction == 0) {
// zero
abs_result = 0;
} else if (a_rep.exp == 0x7FFF) {
// a is nan or infinite
abs_result = @as(u128, a_rep.fraction) << (dst_sig_bits - src_sig_bits);
abs_result |= @as(u128, a_rep.exp) << dst_sig_bits;
} else if (a_rep.fraction & src_int_bit != 0) {
// a is a normal value
abs_result = @as(u128, a_rep.fraction & src_sig_mask) << (dst_sig_bits - src_sig_bits);
abs_result |= @as(u128, a_rep.exp) << dst_sig_bits;
} else {
// a is denormal
// renormalize the significand and clear the leading bit and integer part,
// then insert the correct adjusted exponent in the destination type.
const scale: u32 = @clz(a_rep.fraction);
abs_result = @as(u128, a_rep.fraction) << @intCast(dst_sig_bits - src_sig_bits + scale + 1);
abs_result ^= dst_min_normal;
abs_result |= @as(u128, scale + 1) << dst_sig_bits;
}
// Apply the signbit to (dst_t)abs(a).
const result: u128 align(@alignOf(f128)) = abs_result | @as(u128, sign) << (dst_bits - 16);
return @bitCast(result);
}