const std = @import("std.zig"); const debug = std.debug; const assert = debug.assert; const testing = std.testing; const mem = std.mem; const math = std.math; const Allocator = mem.Allocator; /// A contiguous, growable list of items in memory. /// This is a wrapper around an array of T values. Initialize with `init`. /// /// This struct internally stores a `std.mem.Allocator` for memory management. /// To manually specify an allocator with each function call see `ArrayListUnmanaged`. pub fn ArrayList(comptime T: type) type { return ArrayListAligned(T, null); } /// A contiguous, growable list of arbitrarily aligned items in memory. /// This is a wrapper around an array of T values aligned to `alignment`-byte /// addresses. If the specified alignment is `null`, then `@alignOf(T)` is used. /// Initialize with `init`. /// /// This struct internally stores a `std.mem.Allocator` for memory management. /// To manually specify an allocator with each function call see `ArrayListAlignedUnmanaged`. pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type { if (alignment) |a| { if (a == @alignOf(T)) { return ArrayListAligned(T, null); } } return struct { const Self = @This(); /// Contents of the list. This field is intended to be accessed /// directly. /// /// Pointers to elements in this slice are invalidated by various /// functions of this ArrayList in accordance with the respective /// documentation. In all cases, "invalidated" means that the memory /// has been passed to this allocator's resize or free function. items: Slice, /// How many T values this list can hold without allocating /// additional memory. capacity: usize, allocator: Allocator, pub const Slice = if (alignment) |a| ([]align(a) T) else []T; pub fn SentinelSlice(comptime s: T) type { return if (alignment) |a| ([:s]align(a) T) else [:s]T; } /// Deinitialize with `deinit` or use `toOwnedSlice`. pub fn init(allocator: Allocator) Self { return Self{ .items = &[_]T{}, .capacity = 0, .allocator = allocator, }; } /// Initialize with capacity to hold `num` elements. /// The resulting capacity will equal `num` exactly. /// Deinitialize with `deinit` or use `toOwnedSlice`. pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self { var self = Self.init(allocator); try self.ensureTotalCapacityPrecise(num); return self; } /// Release all allocated memory. pub fn deinit(self: Self) void { if (@sizeOf(T) > 0) { self.allocator.free(self.allocatedSlice()); } } /// ArrayList takes ownership of the passed in slice. The slice must have been /// allocated with `allocator`. /// Deinitialize with `deinit` or use `toOwnedSlice`. pub fn fromOwnedSlice(allocator: Allocator, slice: Slice) Self { return Self{ .items = slice, .capacity = slice.len, .allocator = allocator, }; } /// ArrayList takes ownership of the passed in slice. The slice must have been /// allocated with `allocator`. /// Deinitialize with `deinit` or use `toOwnedSlice`. pub fn fromOwnedSliceSentinel(allocator: Allocator, comptime sentinel: T, slice: [:sentinel]T) Self { return Self{ .items = slice, .capacity = slice.len + 1, .allocator = allocator, }; } /// Initializes an ArrayListUnmanaged with the `items` and `capacity` fields /// of this ArrayList. Empties this ArrayList. pub fn moveToUnmanaged(self: *Self) ArrayListAlignedUnmanaged(T, alignment) { const allocator = self.allocator; const result = .{ .items = self.items, .capacity = self.capacity }; self.* = init(allocator); return result; } /// The caller owns the returned memory. Empties this ArrayList, /// Its capacity is cleared, making deinit() safe but unnecessary to call. pub fn toOwnedSlice(self: *Self) Allocator.Error!Slice { const allocator = self.allocator; const old_memory = self.allocatedSlice(); if (allocator.resize(old_memory, self.items.len)) { const result = self.items; self.* = init(allocator); return result; } const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len); @memcpy(new_memory, self.items); @memset(self.items, undefined); self.clearAndFree(); return new_memory; } /// The caller owns the returned memory. Empties this ArrayList. pub fn toOwnedSliceSentinel(self: *Self, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) { // This addition can never overflow because `self.items` can never occupy the whole address space try self.ensureTotalCapacityPrecise(self.items.len + 1); self.appendAssumeCapacity(sentinel); const result = try self.toOwnedSlice(); return result[0 .. result.len - 1 :sentinel]; } /// Creates a copy of this ArrayList, using the same allocator. pub fn clone(self: Self) Allocator.Error!Self { var cloned = try Self.initCapacity(self.allocator, self.capacity); cloned.appendSliceAssumeCapacity(self.items); return cloned; } /// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room. /// If `i` is equal to the length of the list this operation is equivalent to append. /// This operation is O(N). /// Invalidates element pointers if additional memory is needed. /// Asserts that the index is in bounds or equal to the length. pub fn insert(self: *Self, i: usize, item: T) Allocator.Error!void { const dst = try self.addManyAt(i, 1); dst[0] = item; } /// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room. /// If `i` is equal to the length of the list this operation is /// equivalent to appendAssumeCapacity. /// This operation is O(N). /// Asserts that there is enough capacity for the new item. /// Asserts that the index is in bounds or equal to the length. pub fn insertAssumeCapacity(self: *Self, i: usize, item: T) void { assert(self.items.len < self.capacity); self.items.len += 1; mem.copyBackwards(T, self.items[i + 1 .. self.items.len], self.items[i .. self.items.len - 1]); self.items[i] = item; } /// Add `count` new elements at position `index`, which have /// `undefined` values. Returns a slice pointing to the newly allocated /// elements, which becomes invalid after various `ArrayList` /// operations. /// Invalidates pre-existing pointers to elements at and after `index`. /// Invalidates all pre-existing element pointers if capacity must be /// increased to accommodate the new elements. /// Asserts that the index is in bounds or equal to the length. pub fn addManyAt(self: *Self, index: usize, count: usize) Allocator.Error![]T { const new_len = try addOrOom(self.items.len, count); if (self.capacity >= new_len) return addManyAtAssumeCapacity(self, index, count); // Here we avoid copying allocated but unused bytes by // attempting a resize in place, and falling back to allocating // a new buffer and doing our own copy. With a realloc() call, // the allocator implementation would pointlessly copy our // extra capacity. const new_capacity = growCapacity(self.capacity, new_len); const old_memory = self.allocatedSlice(); if (self.allocator.resize(old_memory, new_capacity)) { self.capacity = new_capacity; return addManyAtAssumeCapacity(self, index, count); } // Make a new allocation, avoiding `ensureTotalCapacity` in order // to avoid extra memory copies. const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity); const to_move = self.items[index..]; @memcpy(new_memory[0..index], self.items[0..index]); @memcpy(new_memory[index + count ..][0..to_move.len], to_move); self.allocator.free(old_memory); self.items = new_memory[0..new_len]; self.capacity = new_memory.len; // The inserted elements at `new_memory[index..][0..count]` have // already been set to `undefined` by memory allocation. return new_memory[index..][0..count]; } /// Add `count` new elements at position `index`, which have /// `undefined` values. Returns a slice pointing to the newly allocated /// elements, which becomes invalid after various `ArrayList` /// operations. /// Asserts that there is enough capacity for the new elements. /// Invalidates pre-existing pointers to elements at and after `index`, but /// does not invalidate any before that. /// Asserts that the index is in bounds or equal to the length. pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T { const new_len = self.items.len + count; assert(self.capacity >= new_len); const to_move = self.items[index..]; self.items.len = new_len; mem.copyBackwards(T, self.items[index + count ..], to_move); const result = self.items[index..][0..count]; @memset(result, undefined); return result; } /// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room. /// This operation is O(N). /// Invalidates pre-existing pointers to elements at and after `index`. /// Invalidates all pre-existing element pointers if capacity must be /// increased to accommodate the new elements. /// Asserts that the index is in bounds or equal to the length. pub fn insertSlice( self: *Self, index: usize, items: []const T, ) Allocator.Error!void { const dst = try self.addManyAt(index, items.len); @memcpy(dst, items); } /// Grows or shrinks the list as necessary. /// Invalidates element pointers if additional capacity is allocated. /// Asserts that the range is in bounds. pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: []const T) Allocator.Error!void { var unmanaged = self.moveToUnmanaged(); defer self.* = unmanaged.toManaged(self.allocator); return unmanaged.replaceRange(self.allocator, start, len, new_items); } /// Grows or shrinks the list as necessary. /// Never invalidates element pointers. /// Asserts the capacity is enough for additional items. pub fn replaceRangeAssumeCapacity(self: *Self, start: usize, len: usize, new_items: []const T) void { var unmanaged = self.moveToUnmanaged(); defer self.* = unmanaged.toManaged(self.allocator); return unmanaged.replaceRangeAssumeCapacity(start, len, new_items); } /// Extends the list by 1 element. Allocates more memory as necessary. /// Invalidates element pointers if additional memory is needed. pub fn append(self: *Self, item: T) Allocator.Error!void { const new_item_ptr = try self.addOne(); new_item_ptr.* = item; } /// Extends the list by 1 element. /// Never invalidates element pointers. /// Asserts that the list can hold one additional item. pub fn appendAssumeCapacity(self: *Self, item: T) void { const new_item_ptr = self.addOneAssumeCapacity(); new_item_ptr.* = item; } /// Remove the element at index `i`, shift elements after index /// `i` forward, and return the removed element. /// Invalidates element pointers to end of list. /// This operation is O(N). /// This preserves item order. Use `swapRemove` if order preservation is not important. /// Asserts that the index is in bounds. /// Asserts that the list is not empty. pub fn orderedRemove(self: *Self, i: usize) T { const old_item = self.items[i]; self.replaceRangeAssumeCapacity(i, 1, &.{}); return old_item; } /// Removes the element at the specified index and returns it. /// The empty slot is filled from the end of the list. /// This operation is O(1). /// This may not preserve item order. Use `orderedRemove` if you need to preserve order. /// Asserts that the list is not empty. /// Asserts that the index is in bounds. pub fn swapRemove(self: *Self, i: usize) T { if (self.items.len - 1 == i) return self.pop(); const old_item = self.items[i]; self.items[i] = self.pop(); return old_item; } /// Append the slice of items to the list. Allocates more /// memory as necessary. /// Invalidates element pointers if additional memory is needed. pub fn appendSlice(self: *Self, items: []const T) Allocator.Error!void { try self.ensureUnusedCapacity(items.len); self.appendSliceAssumeCapacity(items); } /// Append the slice of items to the list. /// Never invalidates element pointers. /// Asserts that the list can hold the additional items. pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void { const old_len = self.items.len; const new_len = old_len + items.len; assert(new_len <= self.capacity); self.items.len = new_len; @memcpy(self.items[old_len..][0..items.len], items); } /// Append an unaligned slice of items to the list. Allocates more /// memory as necessary. Only call this function if calling /// `appendSlice` instead would be a compile error. /// Invalidates element pointers if additional memory is needed. pub fn appendUnalignedSlice(self: *Self, items: []align(1) const T) Allocator.Error!void { try self.ensureUnusedCapacity(items.len); self.appendUnalignedSliceAssumeCapacity(items); } /// Append the slice of items to the list. /// Never invalidates element pointers. /// This function is only needed when calling /// `appendSliceAssumeCapacity` instead would be a compile error due to the /// alignment of the `items` parameter. /// Asserts that the list can hold the additional items. pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void { const old_len = self.items.len; const new_len = old_len + items.len; assert(new_len <= self.capacity); self.items.len = new_len; @memcpy(self.items[old_len..][0..items.len], items); } pub const Writer = if (T != u8) @compileError("The Writer interface is only defined for ArrayList(u8) " ++ "but the given type is ArrayList(" ++ @typeName(T) ++ ")") else std.io.Writer(*Self, Allocator.Error, appendWrite); /// Initializes a Writer which will append to the list. pub fn writer(self: *Self) Writer { return .{ .context = self }; } /// Same as `append` except it returns the number of bytes written, which is always the same /// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API. /// Invalidates element pointers if additional memory is needed. fn appendWrite(self: *Self, m: []const u8) Allocator.Error!usize { try self.appendSlice(m); return m.len; } /// Append a value to the list `n` times. /// Allocates more memory as necessary. /// Invalidates element pointers if additional memory is needed. /// The function is inline so that a comptime-known `value` parameter will /// have a more optimal memset codegen in case it has a repeated byte pattern. pub inline fn appendNTimes(self: *Self, value: T, n: usize) Allocator.Error!void { const old_len = self.items.len; try self.resize(try addOrOom(old_len, n)); @memset(self.items[old_len..self.items.len], value); } /// Append a value to the list `n` times. /// Never invalidates element pointers. /// The function is inline so that a comptime-known `value` parameter will /// have a more optimal memset codegen in case it has a repeated byte pattern. /// Asserts that the list can hold the additional items. pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void { const new_len = self.items.len + n; assert(new_len <= self.capacity); @memset(self.items.ptr[self.items.len..new_len], value); self.items.len = new_len; } /// Adjust the list length to `new_len`. /// Additional elements contain the value `undefined`. /// Invalidates element pointers if additional memory is needed. pub fn resize(self: *Self, new_len: usize) Allocator.Error!void { try self.ensureTotalCapacity(new_len); self.items.len = new_len; } /// Reduce allocated capacity to `new_len`. /// May invalidate element pointers. /// Asserts that the new length is less than or equal to the previous length. pub fn shrinkAndFree(self: *Self, new_len: usize) void { var unmanaged = self.moveToUnmanaged(); unmanaged.shrinkAndFree(self.allocator, new_len); self.* = unmanaged.toManaged(self.allocator); } /// Reduce length to `new_len`. /// Invalidates element pointers for the elements `items[new_len..]`. /// Asserts that the new length is less than or equal to the previous length. pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void { assert(new_len <= self.items.len); self.items.len = new_len; } /// Invalidates all element pointers. pub fn clearRetainingCapacity(self: *Self) void { self.items.len = 0; } /// Invalidates all element pointers. pub fn clearAndFree(self: *Self) void { self.allocator.free(self.allocatedSlice()); self.items.len = 0; self.capacity = 0; } /// If the current capacity is less than `new_capacity`, this function will /// modify the array so that it can hold at least `new_capacity` items. /// Invalidates element pointers if additional memory is needed. pub fn ensureTotalCapacity(self: *Self, new_capacity: usize) Allocator.Error!void { if (@sizeOf(T) == 0) { self.capacity = math.maxInt(usize); return; } if (self.capacity >= new_capacity) return; const better_capacity = growCapacity(self.capacity, new_capacity); return self.ensureTotalCapacityPrecise(better_capacity); } /// If the current capacity is less than `new_capacity`, this function will /// modify the array so that it can hold exactly `new_capacity` items. /// Invalidates element pointers if additional memory is needed. pub fn ensureTotalCapacityPrecise(self: *Self, new_capacity: usize) Allocator.Error!void { if (@sizeOf(T) == 0) { self.capacity = math.maxInt(usize); return; } if (self.capacity >= new_capacity) return; // Here we avoid copying allocated but unused bytes by // attempting a resize in place, and falling back to allocating // a new buffer and doing our own copy. With a realloc() call, // the allocator implementation would pointlessly copy our // extra capacity. const old_memory = self.allocatedSlice(); if (self.allocator.resize(old_memory, new_capacity)) { self.capacity = new_capacity; } else { const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity); @memcpy(new_memory[0..self.items.len], self.items); self.allocator.free(old_memory); self.items.ptr = new_memory.ptr; self.capacity = new_memory.len; } } /// Modify the array so that it can hold at least `additional_count` **more** items. /// Invalidates element pointers if additional memory is needed. pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) Allocator.Error!void { return self.ensureTotalCapacity(try addOrOom(self.items.len, additional_count)); } /// Increases the array's length to match the full capacity that is already allocated. /// The new elements have `undefined` values. /// Never invalidates element pointers. pub fn expandToCapacity(self: *Self) void { self.items.len = self.capacity; } /// Increase length by 1, returning pointer to the new item. /// The returned pointer becomes invalid when the list resized. pub fn addOne(self: *Self) Allocator.Error!*T { // This can never overflow because `self.items` can never occupy the whole address space const newlen = self.items.len + 1; try self.ensureTotalCapacity(newlen); return self.addOneAssumeCapacity(); } /// Increase length by 1, returning pointer to the new item. /// The returned pointer becomes invalid when the list is resized. /// Never invalidates element pointers. /// Asserts that the list can hold one additional item. pub fn addOneAssumeCapacity(self: *Self) *T { assert(self.items.len < self.capacity); self.items.len += 1; return &self.items[self.items.len - 1]; } /// Resize the array, adding `n` new elements, which have `undefined` values. /// The return value is an array pointing to the newly allocated elements. /// The returned pointer becomes invalid when the list is resized. /// Resizes list if `self.capacity` is not large enough. pub fn addManyAsArray(self: *Self, comptime n: usize) Allocator.Error!*[n]T { const prev_len = self.items.len; try self.resize(try addOrOom(self.items.len, n)); return self.items[prev_len..][0..n]; } /// Resize the array, adding `n` new elements, which have `undefined` values. /// The return value is an array pointing to the newly allocated elements. /// Never invalidates element pointers. /// The returned pointer becomes invalid when the list is resized. /// Asserts that the list can hold the additional items. pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T { assert(self.items.len + n <= self.capacity); const prev_len = self.items.len; self.items.len += n; return self.items[prev_len..][0..n]; } /// Resize the array, adding `n` new elements, which have `undefined` values. /// The return value is a slice pointing to the newly allocated elements. /// The returned pointer becomes invalid when the list is resized. /// Resizes list if `self.capacity` is not large enough. pub fn addManyAsSlice(self: *Self, n: usize) Allocator.Error![]T { const prev_len = self.items.len; try self.resize(try addOrOom(self.items.len, n)); return self.items[prev_len..][0..n]; } /// Resize the array, adding `n` new elements, which have `undefined` values. /// The return value is a slice pointing to the newly allocated elements. /// Never invalidates element pointers. /// The returned pointer becomes invalid when the list is resized. /// Asserts that the list can hold the additional items. pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T { assert(self.items.len + n <= self.capacity); const prev_len = self.items.len; self.items.len += n; return self.items[prev_len..][0..n]; } /// Remove and return the last element from the list. /// Invalidates element pointers to the removed element. /// Asserts that the list is not empty. pub fn pop(self: *Self) T { const val = self.items[self.items.len - 1]; self.items.len -= 1; return val; } /// Remove and return the last element from the list, or /// return `null` if list is empty. /// Invalidates element pointers to the removed element, if any. pub fn popOrNull(self: *Self) ?T { if (self.items.len == 0) return null; return self.pop(); } /// Returns a slice of all the items plus the extra capacity, whose memory /// contents are `undefined`. pub fn allocatedSlice(self: Self) Slice { // `items.len` is the length, not the capacity. return self.items.ptr[0..self.capacity]; } /// Returns a slice of only the extra capacity after items. /// This can be useful for writing directly into an ArrayList. /// Note that such an operation must be followed up with a direct /// modification of `self.items.len`. pub fn unusedCapacitySlice(self: Self) []T { return self.allocatedSlice()[self.items.len..]; } /// Returns the last element from the list. /// Asserts that the list is not empty. pub fn getLast(self: Self) T { const val = self.items[self.items.len - 1]; return val; } /// Returns the last element from the list, or `null` if list is empty. pub fn getLastOrNull(self: Self) ?T { if (self.items.len == 0) return null; return self.getLast(); } }; } /// An ArrayList, but the allocator is passed as a parameter to the relevant functions /// rather than stored in the struct itself. The same allocator must be used throughout /// the entire lifetime of an ArrayListUnmanaged. Initialize directly or with /// `initCapacity`, and deinitialize with `deinit` or use `toOwnedSlice`. pub fn ArrayListUnmanaged(comptime T: type) type { return ArrayListAlignedUnmanaged(T, null); } /// A contiguous, growable list of arbitrarily aligned items in memory. /// This is a wrapper around an array of T values aligned to `alignment`-byte /// addresses. If the specified alignment is `null`, then `@alignOf(T)` is used. /// /// Functions that potentially allocate memory accept an `Allocator` parameter. /// Initialize directly or with `initCapacity`, and deinitialize with `deinit` /// or use `toOwnedSlice`. pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type { if (alignment) |a| { if (a == @alignOf(T)) { return ArrayListAlignedUnmanaged(T, null); } } return struct { const Self = @This(); /// Contents of the list. This field is intended to be accessed /// directly. /// /// Pointers to elements in this slice are invalidated by various /// functions of this ArrayList in accordance with the respective /// documentation. In all cases, "invalidated" means that the memory /// has been passed to an allocator's resize or free function. items: Slice = &[_]T{}, /// How many T values this list can hold without allocating /// additional memory. capacity: usize = 0, pub const Slice = if (alignment) |a| ([]align(a) T) else []T; pub fn SentinelSlice(comptime s: T) type { return if (alignment) |a| ([:s]align(a) T) else [:s]T; } /// Initialize with capacity to hold `num` elements. /// The resulting capacity will equal `num` exactly. /// Deinitialize with `deinit` or use `toOwnedSlice`. pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self { var self = Self{}; try self.ensureTotalCapacityPrecise(allocator, num); return self; } /// Initialize with externally-managed memory. The buffer determines the /// capacity, and the length is set to zero. /// When initialized this way, all functions that accept an Allocator /// argument cause illegal behavior. pub fn initBuffer(buffer: Slice) Self { return .{ .items = buffer[0..0], .capacity = buffer.len, }; } /// Release all allocated memory. pub fn deinit(self: *Self, allocator: Allocator) void { allocator.free(self.allocatedSlice()); self.* = undefined; } /// Convert this list into an analogous memory-managed one. /// The returned list has ownership of the underlying memory. pub fn toManaged(self: *Self, allocator: Allocator) ArrayListAligned(T, alignment) { return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator }; } /// ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been /// allocated with `allocator`. /// Deinitialize with `deinit` or use `toOwnedSlice`. pub fn fromOwnedSlice(slice: Slice) Self { return Self{ .items = slice, .capacity = slice.len, }; } /// ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been /// allocated with `allocator`. /// Deinitialize with `deinit` or use `toOwnedSlice`. pub fn fromOwnedSliceSentinel(comptime sentinel: T, slice: [:sentinel]T) Self { return Self{ .items = slice, .capacity = slice.len + 1, }; } /// The caller owns the returned memory. Empties this ArrayList. /// Its capacity is cleared, making deinit() safe but unnecessary to call. pub fn toOwnedSlice(self: *Self, allocator: Allocator) Allocator.Error!Slice { const old_memory = self.allocatedSlice(); if (allocator.resize(old_memory, self.items.len)) { const result = self.items; self.* = .{}; return result; } const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len); @memcpy(new_memory, self.items); @memset(self.items, undefined); self.clearAndFree(allocator); return new_memory; } /// The caller owns the returned memory. ArrayList becomes empty. pub fn toOwnedSliceSentinel(self: *Self, allocator: Allocator, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) { // This addition can never overflow because `self.items` can never occupy the whole address space try self.ensureTotalCapacityPrecise(allocator, self.items.len + 1); self.appendAssumeCapacity(sentinel); const result = try self.toOwnedSlice(allocator); return result[0 .. result.len - 1 :sentinel]; } /// Creates a copy of this ArrayList. pub fn clone(self: Self, allocator: Allocator) Allocator.Error!Self { var cloned = try Self.initCapacity(allocator, self.capacity); cloned.appendSliceAssumeCapacity(self.items); return cloned; } /// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room. /// If `i` is equal to the length of the list this operation is equivalent to append. /// This operation is O(N). /// Invalidates element pointers if additional memory is needed. /// Asserts that the index is in bounds or equal to the length. pub fn insert(self: *Self, allocator: Allocator, i: usize, item: T) Allocator.Error!void { const dst = try self.addManyAt(allocator, i, 1); dst[0] = item; } /// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room. /// If in` is equal to the length of the list this operation is equivalent to append. /// This operation is O(N). /// Asserts that the list has capacity for one additional item. /// Asserts that the index is in bounds or equal to the length. pub fn insertAssumeCapacity(self: *Self, i: usize, item: T) void { assert(self.items.len < self.capacity); self.items.len += 1; mem.copyBackwards(T, self.items[i + 1 .. self.items.len], self.items[i .. self.items.len - 1]); self.items[i] = item; } /// Add `count` new elements at position `index`, which have /// `undefined` values. Returns a slice pointing to the newly allocated /// elements, which becomes invalid after various `ArrayList` /// operations. /// Invalidates pre-existing pointers to elements at and after `index`. /// Invalidates all pre-existing element pointers if capacity must be /// increased to accommodate the new elements. /// Asserts that the index is in bounds or equal to the length. pub fn addManyAt( self: *Self, allocator: Allocator, index: usize, count: usize, ) Allocator.Error![]T { var managed = self.toManaged(allocator); defer self.* = managed.moveToUnmanaged(); return managed.addManyAt(index, count); } /// Add `count` new elements at position `index`, which have /// `undefined` values. Returns a slice pointing to the newly allocated /// elements, which becomes invalid after various `ArrayList` /// operations. /// Invalidates pre-existing pointers to elements at and after `index`, but /// does not invalidate any before that. /// Asserts that the list has capacity for the additional items. /// Asserts that the index is in bounds or equal to the length. pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T { const new_len = self.items.len + count; assert(self.capacity >= new_len); const to_move = self.items[index..]; self.items.len = new_len; mem.copyBackwards(T, self.items[index + count ..], to_move); const result = self.items[index..][0..count]; @memset(result, undefined); return result; } /// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room. /// This operation is O(N). /// Invalidates pre-existing pointers to elements at and after `index`. /// Invalidates all pre-existing element pointers if capacity must be /// increased to accommodate the new elements. /// Asserts that the index is in bounds or equal to the length. pub fn insertSlice( self: *Self, allocator: Allocator, index: usize, items: []const T, ) Allocator.Error!void { const dst = try self.addManyAt( allocator, index, items.len, ); @memcpy(dst, items); } /// Grows or shrinks the list as necessary. /// Invalidates element pointers if additional capacity is allocated. /// Asserts that the range is in bounds. pub fn replaceRange( self: *Self, allocator: Allocator, start: usize, len: usize, new_items: []const T, ) Allocator.Error!void { const after_range = start + len; const range = self.items[start..after_range]; if (range.len < new_items.len) { const first = new_items[0..range.len]; const rest = new_items[range.len..]; @memcpy(range[0..first.len], first); try self.insertSlice(allocator, after_range, rest); } else { self.replaceRangeAssumeCapacity(start, len, new_items); } } /// Grows or shrinks the list as necessary. /// Never invalidates element pointers. /// Asserts the capacity is enough for additional items. pub fn replaceRangeAssumeCapacity(self: *Self, start: usize, len: usize, new_items: []const T) void { const after_range = start + len; const range = self.items[start..after_range]; if (range.len == new_items.len) @memcpy(range[0..new_items.len], new_items) else if (range.len < new_items.len) { const first = new_items[0..range.len]; const rest = new_items[range.len..]; @memcpy(range[0..first.len], first); const dst = self.addManyAtAssumeCapacity(after_range, rest.len); @memcpy(dst, rest); } else { const extra = range.len - new_items.len; @memcpy(range[0..new_items.len], new_items); std.mem.copyForwards( T, self.items[after_range - extra ..], self.items[after_range..], ); @memset(self.items[self.items.len - extra ..], undefined); self.items.len -= extra; } } /// Extend the list by 1 element. Allocates more memory as necessary. /// Invalidates element pointers if additional memory is needed. pub fn append(self: *Self, allocator: Allocator, item: T) Allocator.Error!void { const new_item_ptr = try self.addOne(allocator); new_item_ptr.* = item; } /// Extend the list by 1 element. /// Never invalidates element pointers. /// Asserts that the list can hold one additional item. pub fn appendAssumeCapacity(self: *Self, item: T) void { const new_item_ptr = self.addOneAssumeCapacity(); new_item_ptr.* = item; } /// Remove the element at index `i` from the list and return its value. /// Invalidates pointers to the last element. /// This operation is O(N). /// Asserts that the list is not empty. /// Asserts that the index is in bounds. pub fn orderedRemove(self: *Self, i: usize) T { const old_item = self.items[i]; self.replaceRangeAssumeCapacity(i, 1, &.{}); return old_item; } /// Removes the element at the specified index and returns it. /// The empty slot is filled from the end of the list. /// Invalidates pointers to last element. /// This operation is O(1). /// Asserts that the list is not empty. /// Asserts that the index is in bounds. pub fn swapRemove(self: *Self, i: usize) T { if (self.items.len - 1 == i) return self.pop(); const old_item = self.items[i]; self.items[i] = self.pop(); return old_item; } /// Append the slice of items to the list. Allocates more /// memory as necessary. /// Invalidates element pointers if additional memory is needed. pub fn appendSlice(self: *Self, allocator: Allocator, items: []const T) Allocator.Error!void { try self.ensureUnusedCapacity(allocator, items.len); self.appendSliceAssumeCapacity(items); } /// Append the slice of items to the list. /// Asserts that the list can hold the additional items. pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void { const old_len = self.items.len; const new_len = old_len + items.len; assert(new_len <= self.capacity); self.items.len = new_len; @memcpy(self.items[old_len..][0..items.len], items); } /// Append the slice of items to the list. Allocates more /// memory as necessary. Only call this function if a call to `appendSlice` instead would /// be a compile error. /// Invalidates element pointers if additional memory is needed. pub fn appendUnalignedSlice(self: *Self, allocator: Allocator, items: []align(1) const T) Allocator.Error!void { try self.ensureUnusedCapacity(allocator, items.len); self.appendUnalignedSliceAssumeCapacity(items); } /// Append an unaligned slice of items to the list. /// Only call this function if a call to `appendSliceAssumeCapacity` /// instead would be a compile error. /// Asserts that the list can hold the additional items. pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void { const old_len = self.items.len; const new_len = old_len + items.len; assert(new_len <= self.capacity); self.items.len = new_len; @memcpy(self.items[old_len..][0..items.len], items); } pub const WriterContext = struct { self: *Self, allocator: Allocator, }; pub const Writer = if (T != u8) @compileError("The Writer interface is only defined for ArrayList(u8) " ++ "but the given type is ArrayList(" ++ @typeName(T) ++ ")") else std.io.Writer(WriterContext, Allocator.Error, appendWrite); /// Initializes a Writer which will append to the list. pub fn writer(self: *Self, allocator: Allocator) Writer { return .{ .context = .{ .self = self, .allocator = allocator } }; } /// Same as `append` except it returns the number of bytes written, /// which is always the same as `m.len`. The purpose of this function /// existing is to match `std.io.Writer` API. /// Invalidates element pointers if additional memory is needed. fn appendWrite(context: WriterContext, m: []const u8) Allocator.Error!usize { try context.self.appendSlice(context.allocator, m); return m.len; } pub const FixedWriter = std.io.Writer(*Self, Allocator.Error, appendWriteFixed); /// Initializes a Writer which will append to the list but will return /// `error.OutOfMemory` rather than increasing capacity. pub fn fixedWriter(self: *Self) FixedWriter { return .{ .context = self }; } /// The purpose of this function existing is to match `std.io.Writer` API. fn appendWriteFixed(self: *Self, m: []const u8) error{OutOfMemory}!usize { const available_capacity = self.capacity - self.items.len; if (m.len > available_capacity) return error.OutOfMemory; self.appendSliceAssumeCapacity(m); return m.len; } /// Append a value to the list `n` times. /// Allocates more memory as necessary. /// Invalidates element pointers if additional memory is needed. /// The function is inline so that a comptime-known `value` parameter will /// have a more optimal memset codegen in case it has a repeated byte pattern. pub inline fn appendNTimes(self: *Self, allocator: Allocator, value: T, n: usize) Allocator.Error!void { const old_len = self.items.len; try self.resize(allocator, try addOrOom(old_len, n)); @memset(self.items[old_len..self.items.len], value); } /// Append a value to the list `n` times. /// Never invalidates element pointers. /// The function is inline so that a comptime-known `value` parameter will /// have better memset codegen in case it has a repeated byte pattern. /// Asserts that the list can hold the additional items. pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void { const new_len = self.items.len + n; assert(new_len <= self.capacity); @memset(self.items.ptr[self.items.len..new_len], value); self.items.len = new_len; } /// Adjust the list length to `new_len`. /// Additional elements contain the value `undefined`. /// Invalidates element pointers if additional memory is needed. pub fn resize(self: *Self, allocator: Allocator, new_len: usize) Allocator.Error!void { try self.ensureTotalCapacity(allocator, new_len); self.items.len = new_len; } /// Reduce allocated capacity to `new_len`. /// May invalidate element pointers. /// Asserts that the new length is less than or equal to the previous length. pub fn shrinkAndFree(self: *Self, allocator: Allocator, new_len: usize) void { assert(new_len <= self.items.len); if (@sizeOf(T) == 0) { self.items.len = new_len; return; } const old_memory = self.allocatedSlice(); if (allocator.resize(old_memory, new_len)) { self.capacity = new_len; self.items.len = new_len; return; } const new_memory = allocator.alignedAlloc(T, alignment, new_len) catch |e| switch (e) { error.OutOfMemory => { // No problem, capacity is still correct then. self.items.len = new_len; return; }, }; @memcpy(new_memory, self.items[0..new_len]); allocator.free(old_memory); self.items = new_memory; self.capacity = new_memory.len; } /// Reduce length to `new_len`. /// Invalidates pointers to elements `items[new_len..]`. /// Keeps capacity the same. /// Asserts that the new length is less than or equal to the previous length. pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void { assert(new_len <= self.items.len); self.items.len = new_len; } /// Invalidates all element pointers. pub fn clearRetainingCapacity(self: *Self) void { self.items.len = 0; } /// Invalidates all element pointers. pub fn clearAndFree(self: *Self, allocator: Allocator) void { allocator.free(self.allocatedSlice()); self.items.len = 0; self.capacity = 0; } /// If the current capacity is less than `new_capacity`, this function will /// modify the array so that it can hold at least `new_capacity` items. /// Invalidates element pointers if additional memory is needed. pub fn ensureTotalCapacity(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void { if (self.capacity >= new_capacity) return; const better_capacity = growCapacity(self.capacity, new_capacity); return self.ensureTotalCapacityPrecise(allocator, better_capacity); } /// If the current capacity is less than `new_capacity`, this function will /// modify the array so that it can hold exactly `new_capacity` items. /// Invalidates element pointers if additional memory is needed. pub fn ensureTotalCapacityPrecise(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void { if (@sizeOf(T) == 0) { self.capacity = math.maxInt(usize); return; } if (self.capacity >= new_capacity) return; // Here we avoid copying allocated but unused bytes by // attempting a resize in place, and falling back to allocating // a new buffer and doing our own copy. With a realloc() call, // the allocator implementation would pointlessly copy our // extra capacity. const old_memory = self.allocatedSlice(); if (allocator.resize(old_memory, new_capacity)) { self.capacity = new_capacity; } else { const new_memory = try allocator.alignedAlloc(T, alignment, new_capacity); @memcpy(new_memory[0..self.items.len], self.items); allocator.free(old_memory); self.items.ptr = new_memory.ptr; self.capacity = new_memory.len; } } /// Modify the array so that it can hold at least `additional_count` **more** items. /// Invalidates element pointers if additional memory is needed. pub fn ensureUnusedCapacity( self: *Self, allocator: Allocator, additional_count: usize, ) Allocator.Error!void { return self.ensureTotalCapacity(allocator, try addOrOom(self.items.len, additional_count)); } /// Increases the array's length to match the full capacity that is already allocated. /// The new elements have `undefined` values. /// Never invalidates element pointers. pub fn expandToCapacity(self: *Self) void { self.items.len = self.capacity; } /// Increase length by 1, returning pointer to the new item. /// The returned element pointer becomes invalid when the list is resized. pub fn addOne(self: *Self, allocator: Allocator) Allocator.Error!*T { // This can never overflow because `self.items` can never occupy the whole address space const newlen = self.items.len + 1; try self.ensureTotalCapacity(allocator, newlen); return self.addOneAssumeCapacity(); } /// Increase length by 1, returning pointer to the new item. /// Never invalidates element pointers. /// The returned element pointer becomes invalid when the list is resized. /// Asserts that the list can hold one additional item. pub fn addOneAssumeCapacity(self: *Self) *T { assert(self.items.len < self.capacity); self.items.len += 1; return &self.items[self.items.len - 1]; } /// Resize the array, adding `n` new elements, which have `undefined` values. /// The return value is an array pointing to the newly allocated elements. /// The returned pointer becomes invalid when the list is resized. pub fn addManyAsArray(self: *Self, allocator: Allocator, comptime n: usize) Allocator.Error!*[n]T { const prev_len = self.items.len; try self.resize(allocator, try addOrOom(self.items.len, n)); return self.items[prev_len..][0..n]; } /// Resize the array, adding `n` new elements, which have `undefined` values. /// The return value is an array pointing to the newly allocated elements. /// Never invalidates element pointers. /// The returned pointer becomes invalid when the list is resized. /// Asserts that the list can hold the additional items. pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T { assert(self.items.len + n <= self.capacity); const prev_len = self.items.len; self.items.len += n; return self.items[prev_len..][0..n]; } /// Resize the array, adding `n` new elements, which have `undefined` values. /// The return value is a slice pointing to the newly allocated elements. /// The returned pointer becomes invalid when the list is resized. /// Resizes list if `self.capacity` is not large enough. pub fn addManyAsSlice(self: *Self, allocator: Allocator, n: usize) Allocator.Error![]T { const prev_len = self.items.len; try self.resize(allocator, try addOrOom(self.items.len, n)); return self.items[prev_len..][0..n]; } /// Resize the array, adding `n` new elements, which have `undefined` values. /// The return value is a slice pointing to the newly allocated elements. /// Never invalidates element pointers. /// The returned pointer becomes invalid when the list is resized. /// Asserts that the list can hold the additional items. pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T { assert(self.items.len + n <= self.capacity); const prev_len = self.items.len; self.items.len += n; return self.items[prev_len..][0..n]; } /// Remove and return the last element from the list. /// Invalidates pointers to last element. /// Asserts that the list is not empty. pub fn pop(self: *Self) T { const val = self.items[self.items.len - 1]; self.items.len -= 1; return val; } /// Remove and return the last element from the list. /// If the list is empty, returns `null`. /// Invalidates pointers to last element. pub fn popOrNull(self: *Self) ?T { if (self.items.len == 0) return null; return self.pop(); } /// Returns a slice of all the items plus the extra capacity, whose memory /// contents are `undefined`. pub fn allocatedSlice(self: Self) Slice { return self.items.ptr[0..self.capacity]; } /// Returns a slice of only the extra capacity after items. /// This can be useful for writing directly into an ArrayList. /// Note that such an operation must be followed up with a direct /// modification of `self.items.len`. pub fn unusedCapacitySlice(self: Self) []T { return self.allocatedSlice()[self.items.len..]; } /// Return the last element from the list. /// Asserts that the list is not empty. pub fn getLast(self: Self) T { const val = self.items[self.items.len - 1]; return val; } /// Return the last element from the list, or /// return `null` if list is empty. pub fn getLastOrNull(self: Self) ?T { if (self.items.len == 0) return null; return self.getLast(); } }; } /// Called when memory growth is necessary. Returns a capacity larger than /// minimum that grows super-linearly. fn growCapacity(current: usize, minimum: usize) usize { var new = current; while (true) { new +|= new / 2 + 8; if (new >= minimum) return new; } } /// Integer addition returning `error.OutOfMemory` on overflow. fn addOrOom(a: usize, b: usize) error{OutOfMemory}!usize { const result, const overflow = @addWithOverflow(a, b); if (overflow != 0) return error.OutOfMemory; return result; } test "init" { { var list = ArrayList(i32).init(testing.allocator); defer list.deinit(); try testing.expect(list.items.len == 0); try testing.expect(list.capacity == 0); } { const list = ArrayListUnmanaged(i32){}; try testing.expect(list.items.len == 0); try testing.expect(list.capacity == 0); } } test "initCapacity" { const a = testing.allocator; { var list = try ArrayList(i8).initCapacity(a, 200); defer list.deinit(); try testing.expect(list.items.len == 0); try testing.expect(list.capacity >= 200); } { var list = try ArrayListUnmanaged(i8).initCapacity(a, 200); defer list.deinit(a); try testing.expect(list.items.len == 0); try testing.expect(list.capacity >= 200); } } test "clone" { const a = testing.allocator; { var array = ArrayList(i32).init(a); try array.append(-1); try array.append(3); try array.append(5); const cloned = try array.clone(); defer cloned.deinit(); try testing.expectEqualSlices(i32, array.items, cloned.items); try testing.expectEqual(array.allocator, cloned.allocator); try testing.expect(cloned.capacity >= array.capacity); array.deinit(); try testing.expectEqual(@as(i32, -1), cloned.items[0]); try testing.expectEqual(@as(i32, 3), cloned.items[1]); try testing.expectEqual(@as(i32, 5), cloned.items[2]); } { var array = ArrayListUnmanaged(i32){}; try array.append(a, -1); try array.append(a, 3); try array.append(a, 5); var cloned = try array.clone(a); defer cloned.deinit(a); try testing.expectEqualSlices(i32, array.items, cloned.items); try testing.expect(cloned.capacity >= array.capacity); array.deinit(a); try testing.expectEqual(@as(i32, -1), cloned.items[0]); try testing.expectEqual(@as(i32, 3), cloned.items[1]); try testing.expectEqual(@as(i32, 5), cloned.items[2]); } } test "basic" { const a = testing.allocator; { var list = ArrayList(i32).init(a); defer list.deinit(); { var i: usize = 0; while (i < 10) : (i += 1) { list.append(@as(i32, @intCast(i + 1))) catch unreachable; } } { var i: usize = 0; while (i < 10) : (i += 1) { try testing.expect(list.items[i] == @as(i32, @intCast(i + 1))); } } for (list.items, 0..) |v, i| { try testing.expect(v == @as(i32, @intCast(i + 1))); } try testing.expect(list.pop() == 10); try testing.expect(list.items.len == 9); list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable; try testing.expect(list.items.len == 12); try testing.expect(list.pop() == 3); try testing.expect(list.pop() == 2); try testing.expect(list.pop() == 1); try testing.expect(list.items.len == 9); var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 }; list.appendUnalignedSlice(&unaligned) catch unreachable; try testing.expect(list.items.len == 12); try testing.expect(list.pop() == 6); try testing.expect(list.pop() == 5); try testing.expect(list.pop() == 4); try testing.expect(list.items.len == 9); list.appendSlice(&[_]i32{}) catch unreachable; try testing.expect(list.items.len == 9); // can only set on indices < self.items.len list.items[7] = 33; list.items[8] = 42; try testing.expect(list.pop() == 42); try testing.expect(list.pop() == 33); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); { var i: usize = 0; while (i < 10) : (i += 1) { list.append(a, @as(i32, @intCast(i + 1))) catch unreachable; } } { var i: usize = 0; while (i < 10) : (i += 1) { try testing.expect(list.items[i] == @as(i32, @intCast(i + 1))); } } for (list.items, 0..) |v, i| { try testing.expect(v == @as(i32, @intCast(i + 1))); } try testing.expect(list.pop() == 10); try testing.expect(list.items.len == 9); list.appendSlice(a, &[_]i32{ 1, 2, 3 }) catch unreachable; try testing.expect(list.items.len == 12); try testing.expect(list.pop() == 3); try testing.expect(list.pop() == 2); try testing.expect(list.pop() == 1); try testing.expect(list.items.len == 9); var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 }; list.appendUnalignedSlice(a, &unaligned) catch unreachable; try testing.expect(list.items.len == 12); try testing.expect(list.pop() == 6); try testing.expect(list.pop() == 5); try testing.expect(list.pop() == 4); try testing.expect(list.items.len == 9); list.appendSlice(a, &[_]i32{}) catch unreachable; try testing.expect(list.items.len == 9); // can only set on indices < self.items.len list.items[7] = 33; list.items[8] = 42; try testing.expect(list.pop() == 42); try testing.expect(list.pop() == 33); } } test "appendNTimes" { const a = testing.allocator; { var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendNTimes(2, 10); try testing.expectEqual(@as(usize, 10), list.items.len); for (list.items) |element| { try testing.expectEqual(@as(i32, 2), element); } } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.appendNTimes(a, 2, 10); try testing.expectEqual(@as(usize, 10), list.items.len); for (list.items) |element| { try testing.expectEqual(@as(i32, 2), element); } } } test "appendNTimes with failing allocator" { const a = testing.failing_allocator; { var list = ArrayList(i32).init(a); defer list.deinit(); try testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10)); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try testing.expectError(error.OutOfMemory, list.appendNTimes(a, 2, 10)); } } test "orderedRemove" { const a = testing.allocator; { var list = ArrayList(i32).init(a); defer list.deinit(); try list.append(1); try list.append(2); try list.append(3); try list.append(4); try list.append(5); try list.append(6); try list.append(7); //remove from middle try testing.expectEqual(@as(i32, 4), list.orderedRemove(3)); try testing.expectEqual(@as(i32, 5), list.items[3]); try testing.expectEqual(@as(usize, 6), list.items.len); //remove from end try testing.expectEqual(@as(i32, 7), list.orderedRemove(5)); try testing.expectEqual(@as(usize, 5), list.items.len); //remove from front try testing.expectEqual(@as(i32, 1), list.orderedRemove(0)); try testing.expectEqual(@as(i32, 2), list.items[0]); try testing.expectEqual(@as(usize, 4), list.items.len); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.append(a, 1); try list.append(a, 2); try list.append(a, 3); try list.append(a, 4); try list.append(a, 5); try list.append(a, 6); try list.append(a, 7); //remove from middle try testing.expectEqual(@as(i32, 4), list.orderedRemove(3)); try testing.expectEqual(@as(i32, 5), list.items[3]); try testing.expectEqual(@as(usize, 6), list.items.len); //remove from end try testing.expectEqual(@as(i32, 7), list.orderedRemove(5)); try testing.expectEqual(@as(usize, 5), list.items.len); //remove from front try testing.expectEqual(@as(i32, 1), list.orderedRemove(0)); try testing.expectEqual(@as(i32, 2), list.items[0]); try testing.expectEqual(@as(usize, 4), list.items.len); } { // remove last item var list = ArrayList(i32).init(a); defer list.deinit(); try list.append(1); try testing.expectEqual(@as(i32, 1), list.orderedRemove(0)); try testing.expectEqual(@as(usize, 0), list.items.len); } { // remove last item var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.append(a, 1); try testing.expectEqual(@as(i32, 1), list.orderedRemove(0)); try testing.expectEqual(@as(usize, 0), list.items.len); } } test "swapRemove" { const a = testing.allocator; { var list = ArrayList(i32).init(a); defer list.deinit(); try list.append(1); try list.append(2); try list.append(3); try list.append(4); try list.append(5); try list.append(6); try list.append(7); //remove from middle try testing.expect(list.swapRemove(3) == 4); try testing.expect(list.items[3] == 7); try testing.expect(list.items.len == 6); //remove from end try testing.expect(list.swapRemove(5) == 6); try testing.expect(list.items.len == 5); //remove from front try testing.expect(list.swapRemove(0) == 1); try testing.expect(list.items[0] == 5); try testing.expect(list.items.len == 4); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.append(a, 1); try list.append(a, 2); try list.append(a, 3); try list.append(a, 4); try list.append(a, 5); try list.append(a, 6); try list.append(a, 7); //remove from middle try testing.expect(list.swapRemove(3) == 4); try testing.expect(list.items[3] == 7); try testing.expect(list.items.len == 6); //remove from end try testing.expect(list.swapRemove(5) == 6); try testing.expect(list.items.len == 5); //remove from front try testing.expect(list.swapRemove(0) == 1); try testing.expect(list.items[0] == 5); try testing.expect(list.items.len == 4); } } test "insert" { const a = testing.allocator; { var list = ArrayList(i32).init(a); defer list.deinit(); try list.insert(0, 1); try list.append(2); try list.insert(2, 3); try list.insert(0, 5); try testing.expect(list.items[0] == 5); try testing.expect(list.items[1] == 1); try testing.expect(list.items[2] == 2); try testing.expect(list.items[3] == 3); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.insert(a, 0, 1); try list.append(a, 2); try list.insert(a, 2, 3); try list.insert(a, 0, 5); try testing.expect(list.items[0] == 5); try testing.expect(list.items[1] == 1); try testing.expect(list.items[2] == 2); try testing.expect(list.items[3] == 3); } } test "insertSlice" { const a = testing.allocator; { var list = ArrayList(i32).init(a); defer list.deinit(); try list.append(1); try list.append(2); try list.append(3); try list.append(4); try list.insertSlice(1, &[_]i32{ 9, 8 }); try testing.expect(list.items[0] == 1); try testing.expect(list.items[1] == 9); try testing.expect(list.items[2] == 8); try testing.expect(list.items[3] == 2); try testing.expect(list.items[4] == 3); try testing.expect(list.items[5] == 4); const items = [_]i32{1}; try list.insertSlice(0, items[0..0]); try testing.expect(list.items.len == 6); try testing.expect(list.items[0] == 1); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.append(a, 1); try list.append(a, 2); try list.append(a, 3); try list.append(a, 4); try list.insertSlice(a, 1, &[_]i32{ 9, 8 }); try testing.expect(list.items[0] == 1); try testing.expect(list.items[1] == 9); try testing.expect(list.items[2] == 8); try testing.expect(list.items[3] == 2); try testing.expect(list.items[4] == 3); try testing.expect(list.items[5] == 4); const items = [_]i32{1}; try list.insertSlice(a, 0, items[0..0]); try testing.expect(list.items.len == 6); try testing.expect(list.items[0] == 1); } } test "ArrayList.replaceRange" { const a = testing.allocator; { var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 }); try list.replaceRange(1, 0, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items); } { var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 }); try list.replaceRange(1, 1, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices( i32, &[_]i32{ 1, 0, 0, 0, 3, 4, 5 }, list.items, ); } { var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 }); try list.replaceRange(1, 2, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items); } { var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 }); try list.replaceRange(1, 3, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items); } { var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 }); try list.replaceRange(1, 4, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items); } } test "ArrayList.replaceRangeAssumeCapacity" { const a = testing.allocator; { var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 }); list.replaceRangeAssumeCapacity(1, 0, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items); } { var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 }); list.replaceRangeAssumeCapacity(1, 1, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices( i32, &[_]i32{ 1, 0, 0, 0, 3, 4, 5 }, list.items, ); } { var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 }); list.replaceRangeAssumeCapacity(1, 2, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items); } { var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 }); list.replaceRangeAssumeCapacity(1, 3, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items); } { var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 }); list.replaceRangeAssumeCapacity(1, 4, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items); } } test "ArrayListUnmanaged.replaceRange" { const a = testing.allocator; { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 }); try list.replaceRange(a, 1, 0, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 }); try list.replaceRange(a, 1, 1, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices( i32, &[_]i32{ 1, 0, 0, 0, 3, 4, 5 }, list.items, ); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 }); try list.replaceRange(a, 1, 2, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 }); try list.replaceRange(a, 1, 3, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 }); try list.replaceRange(a, 1, 4, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items); } } test "ArrayListUnmanaged.replaceRangeAssumeCapacity" { const a = testing.allocator; { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 }); list.replaceRangeAssumeCapacity(1, 0, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 }); list.replaceRangeAssumeCapacity(1, 1, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices( i32, &[_]i32{ 1, 0, 0, 0, 3, 4, 5 }, list.items, ); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 }); list.replaceRangeAssumeCapacity(1, 2, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 }); list.replaceRangeAssumeCapacity(1, 3, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 }); list.replaceRangeAssumeCapacity(1, 4, &[_]i32{ 0, 0, 0 }); try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items); } } const Item = struct { integer: i32, sub_items: ArrayList(Item), }; const ItemUnmanaged = struct { integer: i32, sub_items: ArrayListUnmanaged(ItemUnmanaged), }; test "ArrayList(T) of struct T" { const a = std.testing.allocator; { var root = Item{ .integer = 1, .sub_items = ArrayList(Item).init(a) }; defer root.sub_items.deinit(); try root.sub_items.append(Item{ .integer = 42, .sub_items = ArrayList(Item).init(a) }); try testing.expect(root.sub_items.items[0].integer == 42); } { var root = ItemUnmanaged{ .integer = 1, .sub_items = ArrayListUnmanaged(ItemUnmanaged){} }; defer root.sub_items.deinit(a); try root.sub_items.append(a, ItemUnmanaged{ .integer = 42, .sub_items = ArrayListUnmanaged(ItemUnmanaged){} }); try testing.expect(root.sub_items.items[0].integer == 42); } } test "ArrayList(u8) implements writer" { const a = testing.allocator; { var buffer = ArrayList(u8).init(a); defer buffer.deinit(); const x: i32 = 42; const y: i32 = 1234; try buffer.writer().print("x: {}\ny: {}\n", .{ x, y }); try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items); } { var list = ArrayListAligned(u8, 2).init(a); defer list.deinit(); const writer = list.writer(); try writer.writeAll("a"); try writer.writeAll("bc"); try writer.writeAll("d"); try writer.writeAll("efg"); try testing.expectEqualSlices(u8, list.items, "abcdefg"); } } test "ArrayListUnmanaged(u8) implements writer" { const a = testing.allocator; { var buffer: ArrayListUnmanaged(u8) = .{}; defer buffer.deinit(a); const x: i32 = 42; const y: i32 = 1234; try buffer.writer(a).print("x: {}\ny: {}\n", .{ x, y }); try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items); } { var list: ArrayListAlignedUnmanaged(u8, 2) = .{}; defer list.deinit(a); const writer = list.writer(a); try writer.writeAll("a"); try writer.writeAll("bc"); try writer.writeAll("d"); try writer.writeAll("efg"); try testing.expectEqualSlices(u8, list.items, "abcdefg"); } } test "shrink still sets length when resizing is disabled" { var failing_allocator = testing.FailingAllocator.init(testing.allocator, .{ .resize_fail_index = 0 }); const a = failing_allocator.allocator(); { var list = ArrayList(i32).init(a); defer list.deinit(); try list.append(1); try list.append(2); try list.append(3); list.shrinkAndFree(1); try testing.expect(list.items.len == 1); } { var list = ArrayListUnmanaged(i32){}; defer list.deinit(a); try list.append(a, 1); try list.append(a, 2); try list.append(a, 3); list.shrinkAndFree(a, 1); try testing.expect(list.items.len == 1); } } test "shrinkAndFree with a copy" { var failing_allocator = testing.FailingAllocator.init(testing.allocator, .{ .resize_fail_index = 0 }); const a = failing_allocator.allocator(); var list = ArrayList(i32).init(a); defer list.deinit(); try list.appendNTimes(3, 16); list.shrinkAndFree(4); try testing.expect(mem.eql(i32, list.items, &.{ 3, 3, 3, 3 })); } test "addManyAsArray" { const a = std.testing.allocator; { var list = ArrayList(u8).init(a); defer list.deinit(); (try list.addManyAsArray(4)).* = "aoeu".*; try list.ensureTotalCapacity(8); list.addManyAsArrayAssumeCapacity(4).* = "asdf".*; try testing.expectEqualSlices(u8, list.items, "aoeuasdf"); } { var list = ArrayListUnmanaged(u8){}; defer list.deinit(a); (try list.addManyAsArray(a, 4)).* = "aoeu".*; try list.ensureTotalCapacity(a, 8); list.addManyAsArrayAssumeCapacity(4).* = "asdf".*; try testing.expectEqualSlices(u8, list.items, "aoeuasdf"); } } test "growing memory preserves contents" { // Shrink the list after every insertion to ensure that a memory growth // will be triggered in the next operation. const a = std.testing.allocator; { var list = ArrayList(u8).init(a); defer list.deinit(); (try list.addManyAsArray(4)).* = "abcd".*; list.shrinkAndFree(4); try list.appendSlice("efgh"); try testing.expectEqualSlices(u8, list.items, "abcdefgh"); list.shrinkAndFree(8); try list.insertSlice(4, "ijkl"); try testing.expectEqualSlices(u8, list.items, "abcdijklefgh"); } { var list = ArrayListUnmanaged(u8){}; defer list.deinit(a); (try list.addManyAsArray(a, 4)).* = "abcd".*; list.shrinkAndFree(a, 4); try list.appendSlice(a, "efgh"); try testing.expectEqualSlices(u8, list.items, "abcdefgh"); list.shrinkAndFree(a, 8); try list.insertSlice(a, 4, "ijkl"); try testing.expectEqualSlices(u8, list.items, "abcdijklefgh"); } } test "fromOwnedSlice" { const a = testing.allocator; { var orig_list = ArrayList(u8).init(a); defer orig_list.deinit(); try orig_list.appendSlice("foobar"); const slice = try orig_list.toOwnedSlice(); var list = ArrayList(u8).fromOwnedSlice(a, slice); defer list.deinit(); try testing.expectEqualStrings(list.items, "foobar"); } { var list = ArrayList(u8).init(a); defer list.deinit(); try list.appendSlice("foobar"); const slice = try list.toOwnedSlice(); var unmanaged = ArrayListUnmanaged(u8).fromOwnedSlice(slice); defer unmanaged.deinit(a); try testing.expectEqualStrings(unmanaged.items, "foobar"); } } test "fromOwnedSliceSentinel" { const a = testing.allocator; { var orig_list = ArrayList(u8).init(a); defer orig_list.deinit(); try orig_list.appendSlice("foobar"); const sentinel_slice = try orig_list.toOwnedSliceSentinel(0); var list = ArrayList(u8).fromOwnedSliceSentinel(a, 0, sentinel_slice); defer list.deinit(); try testing.expectEqualStrings(list.items, "foobar"); } { var list = ArrayList(u8).init(a); defer list.deinit(); try list.appendSlice("foobar"); const sentinel_slice = try list.toOwnedSliceSentinel(0); var unmanaged = ArrayListUnmanaged(u8).fromOwnedSliceSentinel(0, sentinel_slice); defer unmanaged.deinit(a); try testing.expectEqualStrings(unmanaged.items, "foobar"); } } test "toOwnedSliceSentinel" { const a = testing.allocator; { var list = ArrayList(u8).init(a); defer list.deinit(); try list.appendSlice("foobar"); const result = try list.toOwnedSliceSentinel(0); defer a.free(result); try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0)); } { var list = ArrayListUnmanaged(u8){}; defer list.deinit(a); try list.appendSlice(a, "foobar"); const result = try list.toOwnedSliceSentinel(a, 0); defer a.free(result); try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0)); } } test "accepts unaligned slices" { const a = testing.allocator; { var list = std.ArrayListAligned(u8, 8).init(a); defer list.deinit(); try list.appendSlice(&.{ 0, 1, 2, 3 }); try list.insertSlice(2, &.{ 4, 5, 6, 7 }); try list.replaceRange(1, 3, &.{ 8, 9 }); try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 }); } { var list = std.ArrayListAlignedUnmanaged(u8, 8){}; defer list.deinit(a); try list.appendSlice(a, &.{ 0, 1, 2, 3 }); try list.insertSlice(a, 2, &.{ 4, 5, 6, 7 }); try list.replaceRange(a, 1, 3, &.{ 8, 9 }); try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 }); } } test "ArrayList(u0)" { // An ArrayList on zero-sized types should not need to allocate const a = testing.failing_allocator; var list = ArrayList(u0).init(a); defer list.deinit(); try list.append(0); try list.append(0); try list.append(0); try testing.expectEqual(list.items.len, 3); var count: usize = 0; for (list.items) |x| { try testing.expectEqual(x, 0); count += 1; } try testing.expectEqual(count, 3); } test "ArrayList(?u32).popOrNull()" { const a = testing.allocator; var list = ArrayList(?u32).init(a); defer list.deinit(); try list.append(null); try list.append(1); try list.append(2); try testing.expectEqual(list.items.len, 3); try testing.expect(list.popOrNull().? == @as(u32, 2)); try testing.expect(list.popOrNull().? == @as(u32, 1)); try testing.expect(list.popOrNull().? == null); try testing.expect(list.popOrNull() == null); } test "ArrayList(u32).getLast()" { const a = testing.allocator; var list = ArrayList(u32).init(a); defer list.deinit(); try list.append(2); const const_list = list; try testing.expectEqual(const_list.getLast(), 2); } test "ArrayList(u32).getLastOrNull()" { const a = testing.allocator; var list = ArrayList(u32).init(a); defer list.deinit(); try testing.expectEqual(list.getLastOrNull(), null); try list.append(2); const const_list = list; try testing.expectEqual(const_list.getLastOrNull().?, 2); } test "return OutOfMemory when capacity would exceed maximum usize integer value" { const a = testing.allocator; const new_item: u32 = 42; const items = &.{ 42, 43 }; { var list: ArrayListUnmanaged(u32) = .{ .items = undefined, .capacity = math.maxInt(usize) - 1, }; list.items.len = math.maxInt(usize) - 1; try testing.expectError(error.OutOfMemory, list.appendSlice(a, items)); try testing.expectError(error.OutOfMemory, list.appendNTimes(a, new_item, 2)); try testing.expectError(error.OutOfMemory, list.appendUnalignedSlice(a, &.{ new_item, new_item })); try testing.expectError(error.OutOfMemory, list.addManyAt(a, 0, 2)); try testing.expectError(error.OutOfMemory, list.addManyAsArray(a, 2)); try testing.expectError(error.OutOfMemory, list.addManyAsSlice(a, 2)); try testing.expectError(error.OutOfMemory, list.insertSlice(a, 0, items)); try testing.expectError(error.OutOfMemory, list.ensureUnusedCapacity(a, 2)); } { var list: ArrayList(u32) = .{ .items = undefined, .capacity = math.maxInt(usize) - 1, .allocator = a, }; list.items.len = math.maxInt(usize) - 1; try testing.expectError(error.OutOfMemory, list.appendSlice(items)); try testing.expectError(error.OutOfMemory, list.appendNTimes(new_item, 2)); try testing.expectError(error.OutOfMemory, list.appendUnalignedSlice(&.{ new_item, new_item })); try testing.expectError(error.OutOfMemory, list.addManyAt(0, 2)); try testing.expectError(error.OutOfMemory, list.addManyAsArray(2)); try testing.expectError(error.OutOfMemory, list.addManyAsSlice(2)); try testing.expectError(error.OutOfMemory, list.insertSlice(0, items)); try testing.expectError(error.OutOfMemory, list.ensureUnusedCapacity(2)); } } test "ArrayListAligned with non-native alignment compiles unusedCapabitySlice" { var list = ArrayListAligned(u8, 4).init(testing.allocator); defer list.deinit(); try list.appendNTimes(1, 4); _ = list.unusedCapacitySlice(); }