//! This ring buffer stores read and write indices while being able to utilise //! the full backing slice by incrementing the indices modulo twice the slice's //! length and reducing indices modulo the slice's length on slice access. This //! means that whether the ring buffer is full or empty can be distinguished by //! looking at the difference between the read and write indices without adding //! an extra boolean flag or having to reserve a slot in the buffer. //! //! This ring buffer has not been implemented with thread safety in mind, and //! therefore should not be assumed to be suitable for use cases involving //! separate reader and writer threads. const Allocator = @import("std").mem.Allocator; const assert = @import("std").debug.assert; const copyForwards = @import("std").mem.copyForwards; const RingBuffer = @This(); data: []u8, read_index: usize, write_index: usize, pub const Error = error{ Full, ReadLengthInvalid }; /// Allocate a new `RingBuffer`; `deinit()` should be called to free the buffer. pub fn init(allocator: Allocator, capacity: usize) Allocator.Error!RingBuffer { const bytes = try allocator.alloc(u8, capacity); return RingBuffer{ .data = bytes, .write_index = 0, .read_index = 0, }; } /// Free the data backing a `RingBuffer`; must be passed the same `Allocator` as /// `init()`. pub fn deinit(self: *RingBuffer, allocator: Allocator) void { allocator.free(self.data); self.* = undefined; } /// Returns `index` modulo the length of the backing slice. pub fn mask(self: RingBuffer, index: usize) usize { return index % self.data.len; } /// Returns `index` modulo twice the length of the backing slice. pub fn mask2(self: RingBuffer, index: usize) usize { return index % (2 * self.data.len); } /// Write `byte` into the ring buffer. Returns `error.Full` if the ring /// buffer is full. pub fn write(self: *RingBuffer, byte: u8) Error!void { if (self.isFull()) return error.Full; self.writeAssumeCapacity(byte); } /// Write `byte` into the ring buffer. If the ring buffer is full, the /// oldest byte is overwritten. pub fn writeAssumeCapacity(self: *RingBuffer, byte: u8) void { self.data[self.mask(self.write_index)] = byte; self.write_index = self.mask2(self.write_index + 1); } /// Write `bytes` into the ring buffer. Returns `error.Full` if the ring /// buffer does not have enough space, without writing any data. /// Uses memcpy and so `bytes` must not overlap ring buffer data. pub fn writeSlice(self: *RingBuffer, bytes: []const u8) Error!void { if (self.len() + bytes.len > self.data.len) return error.Full; self.writeSliceAssumeCapacity(bytes); } /// Write `bytes` into the ring buffer. If there is not enough space, older /// bytes will be overwritten. /// Uses memcpy and so `bytes` must not overlap ring buffer data. pub fn writeSliceAssumeCapacity(self: *RingBuffer, bytes: []const u8) void { assert(bytes.len <= self.data.len); const data_start = self.mask(self.write_index); const part1_data_end = @min(data_start + bytes.len, self.data.len); const part1_len = part1_data_end - data_start; @memcpy(self.data[data_start..part1_data_end], bytes[0..part1_len]); const remaining = bytes.len - part1_len; const to_write = @min(remaining, remaining % self.data.len + self.data.len); const part2_bytes_start = bytes.len - to_write; const part2_bytes_end = @min(part2_bytes_start + self.data.len, bytes.len); const part2_len = part2_bytes_end - part2_bytes_start; @memcpy(self.data[0..part2_len], bytes[part2_bytes_start..part2_bytes_end]); if (part2_bytes_end != bytes.len) { const part3_len = bytes.len - part2_bytes_end; @memcpy(self.data[0..part3_len], bytes[part2_bytes_end..bytes.len]); } self.write_index = self.mask2(self.write_index + bytes.len); } /// Write `bytes` into the ring buffer. Returns `error.Full` if the ring /// buffer does not have enough space, without writing any data. /// Uses copyForwards and can write slices from this RingBuffer into itself. pub fn writeSliceForwards(self: *RingBuffer, bytes: []const u8) Error!void { if (self.len() + bytes.len > self.data.len) return error.Full; self.writeSliceForwardsAssumeCapacity(bytes); } /// Write `bytes` into the ring buffer. If there is not enough space, older /// bytes will be overwritten. /// Uses copyForwards and can write slices from this RingBuffer into itself. pub fn writeSliceForwardsAssumeCapacity(self: *RingBuffer, bytes: []const u8) void { assert(bytes.len <= self.data.len); const data_start = self.mask(self.write_index); const part1_data_end = @min(data_start + bytes.len, self.data.len); const part1_len = part1_data_end - data_start; copyForwards(u8, self.data[data_start..], bytes[0..part1_len]); const remaining = bytes.len - part1_len; const to_write = @min(remaining, remaining % self.data.len + self.data.len); const part2_bytes_start = bytes.len - to_write; const part2_bytes_end = @min(part2_bytes_start + self.data.len, bytes.len); copyForwards(u8, self.data[0..], bytes[part2_bytes_start..part2_bytes_end]); if (part2_bytes_end != bytes.len) copyForwards(u8, self.data[0..], bytes[part2_bytes_end..bytes.len]); self.write_index = self.mask2(self.write_index + bytes.len); } /// Consume a byte from the ring buffer and return it. Returns `null` if the /// ring buffer is empty. pub fn read(self: *RingBuffer) ?u8 { if (self.isEmpty()) return null; return self.readAssumeLength(); } /// Consume a byte from the ring buffer and return it; asserts that the buffer /// is not empty. pub fn readAssumeLength(self: *RingBuffer) u8 { assert(!self.isEmpty()); const byte = self.data[self.mask(self.read_index)]; self.read_index = self.mask2(self.read_index + 1); return byte; } /// Reads first `length` bytes written to the ring buffer into `dest`; Returns /// Error.ReadLengthInvalid if length greater than ring or dest length /// Uses memcpy and so `dest` must not overlap ring buffer data. pub fn readFirst(self: *RingBuffer, dest: []u8, length: usize) Error!void { if (length > self.len() or length > dest.len) return error.ReadLengthInvalid; self.readFirstAssumeLength(dest, length); } /// Reads first `length` bytes written to the ring buffer into `dest`; /// Asserts that length not greater than ring buffer or dest length /// Uses memcpy and so `dest` must not overlap ring buffer data. pub fn readFirstAssumeLength(self: *RingBuffer, dest: []u8, length: usize) void { assert(length <= self.len() and length <= dest.len); const slice = self.sliceAt(self.read_index, length); slice.copyTo(dest); self.read_index = self.mask2(self.read_index + length); } /// Reads last `length` bytes written to the ring buffer into `dest`; Returns /// Error.ReadLengthInvalid if length greater than ring or dest length /// Uses memcpy and so `dest` must not overlap ring buffer data. /// Reduces write index by `length`. pub fn readLast(self: *RingBuffer, dest: []u8, length: usize) Error!void { if (length > self.len() or length > dest.len) return error.ReadLengthInvalid; self.readLastAssumeLength(dest, length); } /// Reads last `length` bytes written to the ring buffer into `dest`; /// Asserts that length not greater than ring buffer or dest length /// Uses memcpy and so `dest` must not overlap ring buffer data. /// Reduces write index by `length`. pub fn readLastAssumeLength(self: *RingBuffer, dest: []u8, length: usize) void { assert(length <= self.len() and length <= dest.len); const slice = self.sliceLast(length); slice.copyTo(dest); self.write_index = if (self.write_index >= self.data.len) self.write_index - length else self.mask(self.write_index + self.data.len - length); } /// Returns `true` if the ring buffer is empty and `false` otherwise. pub fn isEmpty(self: RingBuffer) bool { return self.write_index == self.read_index; } /// Returns `true` if the ring buffer is full and `false` otherwise. pub fn isFull(self: RingBuffer) bool { return self.mask2(self.write_index + self.data.len) == self.read_index; } /// Returns the length of data available for reading pub fn len(self: RingBuffer) usize { const wrap_offset = 2 * self.data.len * @intFromBool(self.write_index < self.read_index); const adjusted_write_index = self.write_index + wrap_offset; return adjusted_write_index - self.read_index; } /// A `Slice` represents a region of a ring buffer. The region is split into two /// sections as the ring buffer data will not be contiguous if the desired /// region wraps to the start of the backing slice. pub const Slice = struct { first: []u8, second: []u8, /// Copy data from `self` into `dest` pub fn copyTo(self: Slice, dest: []u8) void { @memcpy(dest[0..self.first.len], self.first); @memcpy(dest[self.first.len..][0..self.second.len], self.second); } }; /// Returns a `Slice` for the region of the ring buffer starting at /// `self.mask(start_unmasked)` with the specified length. pub fn sliceAt(self: RingBuffer, start_unmasked: usize, length: usize) Slice { assert(length <= self.data.len); const slice1_start = self.mask(start_unmasked); const slice1_end = @min(self.data.len, slice1_start + length); const slice1 = self.data[slice1_start..slice1_end]; const slice2 = self.data[0 .. length - slice1.len]; return Slice{ .first = slice1, .second = slice2, }; } /// Returns a `Slice` for the last `length` bytes written to the ring buffer. /// Does not check that any bytes have been written into the region. pub fn sliceLast(self: RingBuffer, length: usize) Slice { return self.sliceAt(self.write_index + self.data.len - length, length); }