spirv: introduce SpvModule.Fn to generate function code into
spirv: assembler error message setup
spirv: runtime spec info
spirv: inline assembly tokenizer
spirv: inline assembly lhs result/opcode parsing
spirv: forgot to fmt
spirv: tokenize opcodes and assigned result-ids
spirv: operand parsing setup
spirv: assembler string literals
spirv: assembler integer literals
spirv: assembler value enums
spirv: assembler bit masks
spirv: update assembler to new asm air format
spirv: target 1.5 for now
Current vulkan sdk version (1.3.204) ships spirv tools targetting 1.5,
and so these do not work with binaries targetting 1.6 yet. In the
future, this version number should be decided by the target.
spirv: store operands in flat arraylist.
Instead of having dedicated Operand variants for variadic operands,
just flatten them and store them in the normal inst.operands list.
This is a little simpler, but is not easily decodable in the operand
data representation.
spirv: parse variadic assembly operands
spirv: improve assembler result-id tokenization
spirv: begin instruction processing
spirv: only remove decl if it was actually allocated
spirv: work around weird miscompilation
Seems like there are problems with switch in anonymous struct literals.
spirv: begin resolving some types in assembler
spirv: improve instruction processing
spirv: rename some types + process OpTypeInt
spirv: process OpTypeVector
spirv: process OpTypeMatrix and OpTypeSampler
spirv: add opcode class to spec, remove @exclude'd instructions
spirv: process more type instructions
spirv: OpTypeFunction
spirv: OpTypeOpaque
spirv: parse LiteralContextDependentNumber operands
spirv: emit assembly instruction into right section
spirv: parse OpPhi parameters
spirv: inline assembly inputs
spirv: also copy air types
spirv: inline assembly outputs
spirv: spir-v address spaces
spirv: basic vector constants/types and shuffle
spirv: assembler OpTypeImage
spirv: some stuff
spirv: remove spirv address spaces for now
* Rely on libSystem when targeting macOS.
* Make tools/gen_outline_atomics.zig more idiomatic.
* Remove the CPU detection / auxval checking from compiler_rt. This
functionality belongs in a different component. Zig's compiler_rt
must not rely on constructors. Instead it will export a symbol for
setting the value, and start code can detect and activate it.
* Remove the separate logic for inline assembly when the target does or
does not have lse support. `.inst` works in both cases.
enums so that we can branch to set `link_mode` properly when we iterate
over the clang arguments. also replaced `dynamic` flag in
clang_options_data.zig with proper definition similarly to `static`."
This reverts commit 6af0eeb58d.
This change needs more careful consideration. It regressed
zig-bootstrap due to cmake passing `-static -lkernel32` and zig failing
with error.UnableToStaticLink.
See https://github.com/ziglang/zig-bootstrap/issues/134
* make the setting in the linker backend be non-optional; by this time
all defaults are supposed to be resolved.
* integrate with `zig cc`
* change the CLI parsing to match C compiler parsing, allowing
`--compress-debug-sections` alone to choose a default encoding of
zlib.
Notable changes:
`_i386`, `_i486`, and `_i686` are renamed to `i386`, `i486`,
and `i686` respectively. `std.zig.fmtId` is enhanced to support
formatting `i386` as `@"i386"`.
Some CPU features which are actually CPU models have been
properly flattened, such as `apple_a12`, `apple_a13`, `apple_a7`,
`cortex_a78c`, `exynos_m4`, `neoverse_e1`, `neoverse_n1`,
`neoverse_n2`, `neoverse_v1`.
Some CPU features have been added and some have been removed, following
LLVM's lead.
CSky CPU features support is added.
Previously, updating the `SYS` enum for each architecture required
manually looking at the syscall tables and inserting any new additions.
This commit adds a tool, `generate_linux_syscalls.zig`, that automates
this process using the syscall tables in the Linux source tree. On
architectures without a table, it runs `zig cc` as a pre-processor to
extract the system-call numbers from the Linux headers.
Rename all references of sparcv9 to sparc64, to make Zig align more with
other projects. Also, added new function to convert glibc arch name to Zig
arch name, since it refers to the architecture as sparcv9.
This is based on the suggestion by @kubkon in PR 11847.
(https://github.com/ziglang/zig/pull/11487#pullrequestreview-963761757)
This was a bit trickier than it should be due to symbol conflicts with
zig's compiler-rt implementation. We attempt to use weak linkage in
our compiler-rt, but this does not seem to be working in all cases. I
manually disabled export of the problematic compiler-rt math functions
in order to cross compile musl's libc.so for all targets as input to
`tools/gen_stubs.zig`.
Other than that, this update went fairly smoothly. Quite a few
additional symbols were added to the blacklist in `tools/gen_stubs.zig`
due to recent reorganization of zig's compiler-rt.
The spirv spec generator now also generates some support information:
Opcode gains a function to query a Zig type representing the operands
of the opcode. The idea is that this will enable a richer interface for
emitting spirv instructions.
Zig calls it aarch64. Linux calls it arm64. Currently lib/libc/include
has both arm64 and aarch64, which is quite confusing.
tools/update-linux-headers.zig was executed against the latest stable
linux patch version, therefore some other minor header updates. I will
update the wiki on how to do it once this PR is accepted.
* rename `entry` to `entry_symbol_name` for the zig build API
* integrate with `zig cc` command line options
* integrate with COFF linking with LLD
* integrate with self-hosted ELF linker
* don't put it in the hash for MachO since it is ignored
Prior to this change, even if the use specified the sysroot on the
compiler line like so
```
zig cc --sysroot=/path/to/sdk
```
it would only be used as a prefix to include paths and not as a prefix
for `zig ld` linker.
Before this commit, glibc headers did the following mapping:
* (zig) mipsel-linux-gnu => (glibc) mipsel-linux-gnu
* (zig) mipsel-linux-gnu-soft => (glibc) (none)
* (zig) mips-linux-gnu => (glibc) mips-linux-gnu
* (zig) mips-linux-gnu-soft => (glibc) (none)
While the glibc ABI stubs used the (zig) gnueabi and gnueabihf ABIs,
and the stage2 available_libcs array listed:
* (zig) mipsel-linux-gnu
* (zig) mips-linux-gnu
The problem is the mismatch between the ABI component of the headers and
the stubs.
This commit makes the following clarifications:
* (zig) mips-linux-gnueabi means soft-float
* (zig) mipsel-linux-gnueabi means soft-float
* (zig) mips-linux-gnueabihf means hard-float
* (zig) mipsel-linux-gnueabihf means hard-float
Consequently, the glibc headers now do this mapping:
* (zig) mips-linux-gnueabihf => (glibc) mips-linux-gnu
* (zig) mipsel-linux-gnueabihf => (glibc) mipsel-linux-gnu
* (zig) mips-linux-gnueabi => (glibc) mips-linux-gnu-soft
* (zig) mipsel-linux-gnueabi => (glibc) mipsel-linux-gnu-soft
The glibc ABI stubs are unchanged, and the stage2 available_libcs
array's 2 entries are modified and it gains 2 more:
* (zig) mipsel-linux-gnueabi
* (zig) mipsel-linux-gnueabihf
* (zig) mips-linux-gnueabi
* (zig) mips-linux-gnueabihf
Now everything is consistent. Zig no longer recognizes a `mips-linux-gnu`
triple; one must use `mips-linux-gnueabi` (soft float) or
`mips-linux-gnueabihf` (hard float).