Add divdf3 to compiler_rt

Also adds __aeabi_ddiv for arm32 targets
This commit is contained in:
vegecode 2019-04-04 21:46:53 -05:00 committed by Andrew Kelley
parent 1f9ebf49f8
commit d72239d339
4 changed files with 365 additions and 0 deletions

View File

@ -633,6 +633,7 @@ set(ZIG_STD_FILES
"special/compiler_rt/aullrem.zig"
"special/compiler_rt/comparetf2.zig"
"special/compiler_rt/divsf3.zig"
"special/compiler_rt/divdf3.zig"
"special/compiler_rt/divti3.zig"
"special/compiler_rt/extendXfYf2.zig"
"special/compiler_rt/fixdfdi.zig"

View File

@ -33,6 +33,7 @@ comptime {
@export("__multf3", @import("compiler_rt/mulXf3.zig").__multf3, linkage);
@export("__divsf3", @import("compiler_rt/divsf3.zig").__divsf3, linkage);
@export("__divdf3", @import("compiler_rt/divdf3.zig").__divdf3, linkage);
@export("__floattitf", @import("compiler_rt/floattitf.zig").__floattitf, linkage);
@export("__floattidf", @import("compiler_rt/floattidf.zig").__floattidf, linkage);
@ -142,6 +143,7 @@ comptime {
@export("__aeabi_d2iz", @import("compiler_rt/fixdfsi.zig").__fixdfsi, linkage);
@export("__aeabi_fdiv", @import("compiler_rt/divsf3.zig").__divsf3, linkage);
@export("__aeabi_ddiv", @import("compiler_rt/divdf3.zig").__divdf3, linkage);
}
if (builtin.os == builtin.Os.windows) {
switch (builtin.arch) {

View File

@ -0,0 +1,328 @@
// Ported from:
//
// https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/lib/builtins/divdf3.c
const std = @import("std");
const builtin = @import("builtin");
pub extern fn __divdf3(a: f64, b: f64) f64 {
@setRuntimeSafety(builtin.is_test);
const Z = @IntType(false, f64.bit_count);
const SignedZ = @IntType(true, f64.bit_count);
const typeWidth = f64.bit_count;
const significandBits = std.math.floatMantissaBits(f64);
const exponentBits = std.math.floatExponentBits(f64);
const signBit = (Z(1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1);
const exponentBias = (maxExponent >> 1);
const implicitBit = (Z(1) << significandBits);
const quietBit = implicitBit >> 1;
const significandMask = implicitBit - 1;
const absMask = signBit - 1;
const exponentMask = absMask ^ significandMask;
const qnanRep = exponentMask | quietBit;
const infRep = @bitCast(Z, std.math.inf(f64));
const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent);
const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent);
const quotientSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit;
var aSignificand: Z = @bitCast(Z, a) & significandMask;
var bSignificand: Z = @bitCast(Z, b) & significandMask;
var scale: i32 = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent -% 1 >= maxExponent -% 1 or bExponent -% 1 >= maxExponent -% 1) {
const aAbs: Z = @bitCast(Z, a) & absMask;
const bAbs: Z = @bitCast(Z, b) & absMask;
// NaN / anything = qNaN
if (aAbs > infRep) return @bitCast(f64, @bitCast(Z, a) | quietBit);
// anything / NaN = qNaN
if (bAbs > infRep) return @bitCast(f64, @bitCast(Z, b) | quietBit);
if (aAbs == infRep) {
// infinity / infinity = NaN
if (bAbs == infRep) {
return @bitCast(f64, qnanRep);
}
// infinity / anything else = +/- infinity
else {
return @bitCast(f64, aAbs | quotientSign);
}
}
// anything else / infinity = +/- 0
if (bAbs == infRep) return @bitCast(f64, quotientSign);
if (aAbs == 0) {
// zero / zero = NaN
if (bAbs == 0) {
return @bitCast(f64, qnanRep);
}
// zero / anything else = +/- zero
else {
return @bitCast(f64, quotientSign);
}
}
// anything else / zero = +/- infinity
if (bAbs == 0) return @bitCast(f64, infRep | quotientSign);
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < implicitBit) scale +%= normalize(f64, &aSignificand);
if (bAbs < implicitBit) scale -%= normalize(f64, &bSignificand);
}
// Or in the implicit significand bit. (If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.)
aSignificand |= implicitBit;
bSignificand |= implicitBit;
var quotientExponent: i32 = @bitCast(i32, aExponent -% bExponent) +% scale;
// Align the significand of b as a Q31 fixed-point number in the range
// [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
// is accurate to about 3.5 binary digits.
const q31b: u32 = @truncate(u32, bSignificand >> 21);
var recip32 = u32(0x7504f333) -% q31b;
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
//
// x1 = x0 * (2 - x0 * b)
//
// This doubles the number of correct binary digits in the approximation
// with each iteration, so after three iterations, we have about 28 binary
// digits of accuracy.
var correction32: u32 = undefined;
correction32 = @truncate(u32, ~(u64(recip32) *% q31b >> 32) +% 1);
recip32 = @truncate(u32, u64(recip32) *% correction32 >> 31);
correction32 = @truncate(u32, ~(u64(recip32) *% q31b >> 32) +% 1);
recip32 = @truncate(u32, u64(recip32) *% correction32 >> 31);
correction32 = @truncate(u32, ~(u64(recip32) *% q31b >> 32) +% 1);
recip32 = @truncate(u32, u64(recip32) *% correction32 >> 31);
// recip32 might have overflowed to exactly zero in the preceding
// computation if the high word of b is exactly 1.0. This would sabotage
// the full-width final stage of the computation that follows, so we adjust
// recip32 downward by one bit.
recip32 -%= 1;
// We need to perform one more iteration to get us to 56 binary digits;
// The last iteration needs to happen with extra precision.
const q63blo: u32 = @truncate(u32, bSignificand << 11);
var correction: u64 = undefined;
var reciprocal: u64 = undefined;
correction = ~(u64(recip32) *% q31b +% (u64(recip32) *% q63blo >> 32)) +% 1;
const cHi = @truncate(u32, correction >> 32);
const cLo = @truncate(u32, correction);
reciprocal = u64(recip32) *% cHi +% (u64(recip32) *% cLo >> 32);
// We already adjusted the 32-bit estimate, now we need to adjust the final
// 64-bit reciprocal estimate downward to ensure that it is strictly smaller
// than the infinitely precise exact reciprocal. Because the computation
// of the Newton-Raphson step is truncating at every step, this adjustment
// is small; most of the work is already done.
reciprocal -%= 2;
// The numerical reciprocal is accurate to within 2^-56, lies in the
// interval [0.5, 1.0), and is strictly smaller than the true reciprocal
// of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
// in Q53 with the following properties:
//
// 1. q < a/b
// 2. q is in the interval [0.5, 2.0)
// 3. the error in q is bounded away from 2^-53 (actually, we have a
// couple of bits to spare, but this is all we need).
// We need a 64 x 64 multiply high to compute q, which isn't a basic
// operation in C, so we need to be a little bit fussy.
var quotient: Z = undefined;
var quotientLo: Z = undefined;
wideMultiply(Z, aSignificand << 2, reciprocal, &quotient, &quotientLo);
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
// In either case, we are going to compute a residual of the form
//
// r = a - q*b
//
// We know from the construction of q that r satisfies:
//
// 0 <= r < ulp(q)*b
//
// if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
// already have the correct result. The exact halfway case cannot occur.
// We also take this time to right shift quotient if it falls in the [1,2)
// range and adjust the exponent accordingly.
var residual: Z = undefined;
if (quotient < (implicitBit << 1)) {
residual = (aSignificand << 53) -% quotient *% bSignificand;
quotientExponent -%= 1;
} else {
quotient >>= 1;
residual = (aSignificand << 52) -% quotient *% bSignificand;
}
const writtenExponent = quotientExponent +% exponentBias;
if (writtenExponent >= maxExponent) {
// If we have overflowed the exponent, return infinity.
return @bitCast(f64, infRep | quotientSign);
} else if (writtenExponent < 1) {
if (writtenExponent == 0) {
// Check whether the rounded result is normal.
const round = @boolToInt((residual << 1) > bSignificand);
// Clear the implicit bit.
var absResult = quotient & significandMask;
// Round.
absResult += round;
if ((absResult & ~significandMask) != 0) {
// The rounded result is normal; return it.
return @bitCast(f64, absResult | quotientSign);
}
}
// Flush denormals to zero. In the future, it would be nice to add
// code to round them correctly.
return @bitCast(f64, quotientSign);
} else {
const round = @boolToInt((residual << 1) > bSignificand);
// Clear the implicit bit
var absResult = quotient & significandMask;
// Insert the exponent
absResult |= @bitCast(Z, SignedZ(writtenExponent)) << significandBits;
// Round
absResult +%= round;
// Insert the sign and return
return @bitCast(f64, absResult | quotientSign);
}
}
fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
@setRuntimeSafety(builtin.is_test);
switch (Z) {
u32 => {
// 32x32 --> 64 bit multiply
const product = u64(a) * u64(b);
hi.* = @truncate(u32, product >> 32);
lo.* = @truncate(u32, product);
},
u64 => {
const S = struct {
fn loWord(x: u64) u64 {
return @truncate(u32, x);
}
fn hiWord(x: u64) u64 {
return @truncate(u32, x >> 32);
}
};
// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
// Each of the component 32x32 -> 64 products
const plolo: u64 = S.loWord(a) * S.loWord(b);
const plohi: u64 = S.loWord(a) * S.hiWord(b);
const philo: u64 = S.hiWord(a) * S.loWord(b);
const phihi: u64 = S.hiWord(a) * S.hiWord(b);
// Sum terms that contribute to lo in a way that allows us to get the carry
const r0: u64 = S.loWord(plolo);
const r1: u64 = S.hiWord(plolo) +% S.loWord(plohi) +% S.loWord(philo);
lo.* = r0 +% (r1 << 32);
// Sum terms contributing to hi with the carry from lo
hi.* = S.hiWord(plohi) +% S.hiWord(philo) +% S.hiWord(r1) +% phihi;
},
u128 => {
const Word_LoMask = u64(0x00000000ffffffff);
const Word_HiMask = u64(0xffffffff00000000);
const Word_FullMask = u64(0xffffffffffffffff);
const S = struct {
fn Word_1(x: u128) u64 {
return @truncate(u32, x >> 96);
}
fn Word_2(x: u128) u64 {
return @truncate(u32, x >> 64);
}
fn Word_3(x: u128) u64 {
return @truncate(u32, x >> 32);
}
fn Word_4(x: u128) u64 {
return @truncate(u32, x);
}
};
// 128x128 -> 256 wide multiply for platforms that don't have such an operation;
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
const product11: u64 = S.Word_1(a) * S.Word_1(b);
const product12: u64 = S.Word_1(a) * S.Word_2(b);
const product13: u64 = S.Word_1(a) * S.Word_3(b);
const product14: u64 = S.Word_1(a) * S.Word_4(b);
const product21: u64 = S.Word_2(a) * S.Word_1(b);
const product22: u64 = S.Word_2(a) * S.Word_2(b);
const product23: u64 = S.Word_2(a) * S.Word_3(b);
const product24: u64 = S.Word_2(a) * S.Word_4(b);
const product31: u64 = S.Word_3(a) * S.Word_1(b);
const product32: u64 = S.Word_3(a) * S.Word_2(b);
const product33: u64 = S.Word_3(a) * S.Word_3(b);
const product34: u64 = S.Word_3(a) * S.Word_4(b);
const product41: u64 = S.Word_4(a) * S.Word_1(b);
const product42: u64 = S.Word_4(a) * S.Word_2(b);
const product43: u64 = S.Word_4(a) * S.Word_3(b);
const product44: u64 = S.Word_4(a) * S.Word_4(b);
const sum0: u128 = u128(product44);
const sum1: u128 = u128(product34) +%
u128(product43);
const sum2: u128 = u128(product24) +%
u128(product33) +%
u128(product42);
const sum3: u128 = u128(product14) +%
u128(product23) +%
u128(product32) +%
u128(product41);
const sum4: u128 = u128(product13) +%
u128(product22) +%
u128(product31);
const sum5: u128 = u128(product12) +%
u128(product21);
const sum6: u128 = u128(product11);
const r0: u128 = (sum0 & Word_FullMask) +%
((sum1 & Word_LoMask) << 32);
const r1: u128 = (sum0 >> 64) +%
((sum1 >> 32) & Word_FullMask) +%
(sum2 & Word_FullMask) +%
((sum3 << 32) & Word_HiMask);
lo.* = r0 +% (r1 << 64);
hi.* = (r1 >> 64) +%
(sum1 >> 96) +%
(sum2 >> 64) +%
(sum3 >> 32) +%
sum4 +%
(sum5 << 32) +%
(sum6 << 64);
},
else => @compileError("unsupported"),
}
}
fn normalize(comptime T: type, significand: *@IntType(false, T.bit_count)) i32 {
@setRuntimeSafety(builtin.is_test);
const Z = @IntType(false, T.bit_count);
const significandBits = std.math.floatMantissaBits(T);
const implicitBit = Z(1) << significandBits;
const shift = @clz(significand.*) - @clz(implicitBit);
significand.* <<= @intCast(std.math.Log2Int(Z), shift);
return 1 - shift;
}
test "import divdf3" {
_ = @import("divdf3_test.zig");
}

View File

@ -0,0 +1,34 @@
// Ported from:
//
// https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/test/builtins/Unit/divdf3_test.c
const __divdf3 = @import("divdf3.zig").__divdf3;
const testing = @import("std").testing;
fn compareResultD(result: f64, expected: u64) bool {
const rep = @bitCast(u64, result);
if (rep == expected) {
return true;
}
// test other possible NaN representation(signal NaN)
else if (expected == 0x7ff8000000000000) {
if ((rep & 0x7ff0000000000000) == 0x7ff0000000000000 and
(rep & 0xfffffffffffff) > 0)
{
return true;
}
}
return false;
}
fn test__divdf3(a: f64, b: f64, expected: u64) void {
const x = __divdf3(a, b);
const ret = compareResultD(x, expected);
testing.expect(ret == true);
}
test "divdf3" {
test__divdf3(1.0, 3.0, 0x3fd5555555555555);
test__divdf3(4.450147717014403e-308, 2.0, 0x10000000000000);
}