std: remove one layer of redundant parse_float namespace

there are still more, though.

This provides a doctest for the `parseFloat` function.
This commit is contained in:
Andrew Kelley 2024-03-12 15:46:14 -07:00
parent b8920bceb7
commit d029e0e972
2 changed files with 67 additions and 71 deletions

View File

@ -1,7 +1,4 @@
pub const parseFloat = @import("parse_float/parse_float.zig").parseFloat;
pub const ParseFloatError = @import("parse_float/parse_float.zig").ParseFloatError;
const std = @import("std");
const std = @import("../std.zig");
const math = std.math;
const testing = std.testing;
const expect = testing.expect;
@ -9,10 +6,75 @@ const expectEqual = testing.expectEqual;
const expectError = testing.expectError;
const approxEqAbs = std.math.approxEqAbs;
const epsilon = 1e-7;
const parse = @import("parse_float/parse.zig");
const convertHex = @import("parse_float/convert_hex.zig").convertHex;
const convertFast = @import("parse_float/convert_fast.zig").convertFast;
const convertEiselLemire = @import("parse_float/convert_eisel_lemire.zig").convertEiselLemire;
const convertSlow = @import("parse_float/convert_slow.zig").convertSlow;
pub const ParseFloatError = error{
InvalidCharacter,
};
pub fn parseFloat(comptime T: type, s: []const u8) ParseFloatError!T {
if (@typeInfo(T) != .Float) {
@compileError("Cannot parse a float into a non-floating point type.");
}
if (T == f80) {
@compileError("TODO support parsing float to f80");
}
if (s.len == 0) {
return error.InvalidCharacter;
}
var i: usize = 0;
const negative = s[i] == '-';
if (s[i] == '-' or s[i] == '+') {
i += 1;
}
if (s.len == i) {
return error.InvalidCharacter;
}
const n = parse.parseNumber(T, s[i..], negative) orelse {
return parse.parseInfOrNan(T, s[i..], negative) orelse error.InvalidCharacter;
};
if (n.hex) {
return convertHex(T, n);
}
if (convertFast(T, n)) |f| {
return f;
}
if (T == f16 or T == f32 or T == f64) {
// If significant digits were truncated, then we can have rounding error
// only if `mantissa + 1` produces a different result. We also avoid
// redundantly using the Eisel-Lemire algorithm if it was unable to
// correctly round on the first pass.
if (convertEiselLemire(T, n.exponent, n.mantissa)) |bf| {
if (!n.many_digits) {
return bf.toFloat(T, n.negative);
}
if (convertEiselLemire(T, n.exponent, n.mantissa + 1)) |bf2| {
if (bf.eql(bf2)) {
return bf.toFloat(T, n.negative);
}
}
}
}
// Unable to correctly round the float using the Eisel-Lemire algorithm.
// Fallback to a slower, but always correct algorithm.
return convertSlow(T, s[i..]).toFloat(T, negative);
}
// See https://github.com/tiehuis/parse-number-fxx-test-data for a wider-selection of test-data.
test "parseFloat" {
test parseFloat {
inline for ([_]type{ f16, f32, f64, f128 }) |T| {
try testing.expectError(error.InvalidCharacter, parseFloat(T, ""));
try testing.expectError(error.InvalidCharacter, parseFloat(T, " 1"));

View File

@ -1,66 +0,0 @@
const std = @import("std");
const parse = @import("parse.zig");
const convertFast = @import("convert_fast.zig").convertFast;
const convertEiselLemire = @import("convert_eisel_lemire.zig").convertEiselLemire;
const convertSlow = @import("convert_slow.zig").convertSlow;
const convertHex = @import("convert_hex.zig").convertHex;
pub const ParseFloatError = error{
InvalidCharacter,
};
pub fn parseFloat(comptime T: type, s: []const u8) ParseFloatError!T {
if (@typeInfo(T) != .Float) {
@compileError("Cannot parse a float into a non-floating point type.");
}
if (T == f80) {
@compileError("TODO support parsing float to f80");
}
if (s.len == 0) {
return error.InvalidCharacter;
}
var i: usize = 0;
const negative = s[i] == '-';
if (s[i] == '-' or s[i] == '+') {
i += 1;
}
if (s.len == i) {
return error.InvalidCharacter;
}
const n = parse.parseNumber(T, s[i..], negative) orelse {
return parse.parseInfOrNan(T, s[i..], negative) orelse error.InvalidCharacter;
};
if (n.hex) {
return convertHex(T, n);
}
if (convertFast(T, n)) |f| {
return f;
}
if (T == f16 or T == f32 or T == f64) {
// If significant digits were truncated, then we can have rounding error
// only if `mantissa + 1` produces a different result. We also avoid
// redundantly using the Eisel-Lemire algorithm if it was unable to
// correctly round on the first pass.
if (convertEiselLemire(T, n.exponent, n.mantissa)) |bf| {
if (!n.many_digits) {
return bf.toFloat(T, n.negative);
}
if (convertEiselLemire(T, n.exponent, n.mantissa + 1)) |bf2| {
if (bf.eql(bf2)) {
return bf.toFloat(T, n.negative);
}
}
}
}
// Unable to correctly round the float using the Eisel-Lemire algorithm.
// Fallback to a slower, but always correct algorithm.
return convertSlow(T, s[i..]).toFloat(T, negative);
}