Merge pull request #6442 from jedisct1/aegis

std/crypto: add the AEGIS AEADs
This commit is contained in:
Andrew Kelley 2020-09-29 15:18:06 -04:00 committed by GitHub
commit a1ae3f92c1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 494 additions and 13 deletions

View File

@ -28,6 +28,8 @@ pub const aead = struct {
pub const Gimli = @import("crypto/gimli.zig").Aead; pub const Gimli = @import("crypto/gimli.zig").Aead;
pub const ChaCha20Poly1305 = chacha20.Chacha20Poly1305; pub const ChaCha20Poly1305 = chacha20.Chacha20Poly1305;
pub const XChaCha20Poly1305 = chacha20.XChacha20Poly1305; pub const XChaCha20Poly1305 = chacha20.XChacha20Poly1305;
pub const AEGIS128L = @import("crypto/aegis.zig").AEGIS128L;
pub const AEGIS256 = @import("crypto/aegis.zig").AEGIS256;
}; };
/// MAC functions requiring single-use secret keys. /// MAC functions requiring single-use secret keys.

447
lib/std/crypto/aegis.zig Normal file
View File

@ -0,0 +1,447 @@
const std = @import("std");
const mem = std.mem;
const assert = std.debug.assert;
const AESBlock = std.crypto.core.aes.Block;
const State128L = struct {
blocks: [8]AESBlock,
fn init(key: [16]u8, nonce: [16]u8) State128L {
const c1 = AESBlock.fromBytes(&[16]u8{ 0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1, 0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd });
const c2 = AESBlock.fromBytes(&[16]u8{ 0x0, 0x1, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d, 0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62 });
const key_block = AESBlock.fromBytes(&key);
const nonce_block = AESBlock.fromBytes(&nonce);
const blocks = [8]AESBlock{
key_block.xorBlocks(nonce_block),
c1,
c2,
c1,
key_block.xorBlocks(nonce_block),
key_block.xorBlocks(c2),
key_block.xorBlocks(c1),
key_block.xorBlocks(c2),
};
var state = State128L{ .blocks = blocks };
var i: usize = 0;
while (i < 10) : (i += 1) {
state.update(nonce_block, key_block);
}
return state;
}
inline fn update(state: *State128L, d1: AESBlock, d2: AESBlock) void {
const blocks = &state.blocks;
const tmp = blocks[7];
comptime var i: usize = 7;
inline while (i > 0) : (i -= 1) {
blocks[i] = blocks[i - 1].encrypt(blocks[i]);
}
blocks[0] = tmp.encrypt(blocks[0]);
blocks[0] = blocks[0].xorBlocks(d1);
blocks[4] = blocks[4].xorBlocks(d2);
}
fn enc(state: *State128L, dst: *[32]u8, src: *const [32]u8) void {
const blocks = &state.blocks;
const msg0 = AESBlock.fromBytes(src[0..16]);
const msg1 = AESBlock.fromBytes(src[16..32]);
var tmp0 = msg0.xorBlocks(blocks[6]).xorBlocks(blocks[1]);
var tmp1 = msg1.xorBlocks(blocks[2]).xorBlocks(blocks[5]);
tmp0 = tmp0.xorBlocks(blocks[2].andBlocks(blocks[3]));
tmp1 = tmp1.xorBlocks(blocks[6].andBlocks(blocks[7]));
dst[0..16].* = tmp0.toBytes();
dst[16..32].* = tmp1.toBytes();
state.update(msg0, msg1);
}
fn dec(state: *State128L, dst: *[32]u8, src: *const [32]u8) void {
const blocks = &state.blocks;
var msg0 = AESBlock.fromBytes(src[0..16]).xorBlocks(blocks[6]).xorBlocks(blocks[1]);
var msg1 = AESBlock.fromBytes(src[16..32]).xorBlocks(blocks[2]).xorBlocks(blocks[5]);
msg0 = msg0.xorBlocks(blocks[2].andBlocks(blocks[3]));
msg1 = msg1.xorBlocks(blocks[6].andBlocks(blocks[7]));
dst[0..16].* = msg0.toBytes();
dst[16..32].* = msg1.toBytes();
state.update(msg0, msg1);
}
fn mac(state: *State128L, adlen: usize, mlen: usize) [16]u8 {
const blocks = &state.blocks;
var sizes: [16]u8 = undefined;
mem.writeIntLittle(u64, sizes[0..8], adlen * 8);
mem.writeIntLittle(u64, sizes[8..16], mlen * 8);
const tmp = AESBlock.fromBytes(&sizes).xorBlocks(blocks[2]);
var i: usize = 0;
while (i < 7) : (i += 1) {
state.update(tmp, tmp);
}
return blocks[0].xorBlocks(blocks[1]).xorBlocks(blocks[2]).xorBlocks(blocks[3]).xorBlocks(blocks[4]).
xorBlocks(blocks[5]).xorBlocks(blocks[6]).toBytes();
}
};
/// AEGIS is a very fast authenticated encryption system built on top of the core AES function.
///
/// The 128L variant of AEGIS has a 128 bit key, a 128 bit nonce, and processes 256 bit message blocks.
/// It was designed to fully exploit the parallelism and built-in AES support of recent Intel and ARM CPUs.
///
/// https://competitions.cr.yp.to/round3/aegisv11.pdf
pub const AEGIS128L = struct {
pub const tag_length = 16;
pub const nonce_length = 16;
pub const key_length = 16;
/// c: ciphertext: output buffer should be of size m.len
/// tag: authentication tag: output MAC
/// m: message
/// ad: Associated Data
/// npub: public nonce
/// k: private key
pub fn encrypt(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: []const u8, npub: [nonce_length]u8, key: [key_length]u8) void {
assert(c.len == m.len);
var state = State128L.init(key, npub);
var src: [32]u8 align(16) = undefined;
var dst: [32]u8 align(16) = undefined;
var i: usize = 0;
while (i + 32 <= ad.len) : (i += 32) {
state.enc(&dst, ad[i..][0..32]);
}
if (ad.len % 32 != 0) {
mem.set(u8, src[0..], 0);
mem.copy(u8, src[0 .. ad.len % 32], ad[i .. i + ad.len % 32]);
state.enc(&dst, &src);
}
i = 0;
while (i + 32 <= m.len) : (i += 32) {
state.enc(c[i..][0..32], m[i..][0..32]);
}
if (m.len % 32 != 0) {
mem.set(u8, src[0..], 0);
mem.copy(u8, src[0 .. m.len % 32], m[i .. i + m.len % 32]);
state.enc(&dst, &src);
mem.copy(u8, c[i .. i + m.len % 32], dst[0 .. m.len % 32]);
}
tag.* = state.mac(ad.len, m.len);
}
/// m: message: output buffer should be of size c.len
/// c: ciphertext
/// tag: authentication tag
/// ad: Associated Data
/// npub: public nonce
/// k: private key
pub fn decrypt(m: []u8, c: []const u8, tag: [tag_length]u8, ad: []const u8, npub: [nonce_length]u8, key: [key_length]u8) !void {
assert(c.len == m.len);
var state = State128L.init(key, npub);
var src: [32]u8 align(16) = undefined;
var dst: [32]u8 align(16) = undefined;
var i: usize = 0;
while (i + 32 <= ad.len) : (i += 32) {
state.enc(&dst, ad[i..][0..32]);
}
if (ad.len % 32 != 0) {
mem.set(u8, src[0..], 0);
mem.copy(u8, src[0 .. ad.len % 32], ad[i .. i + ad.len % 32]);
state.enc(&dst, &src);
}
i = 0;
while (i + 32 <= m.len) : (i += 32) {
state.dec(m[i..][0..32], c[i..][0..32]);
}
if (m.len % 32 != 0) {
mem.set(u8, src[0..], 0);
mem.copy(u8, src[0 .. m.len % 32], c[i .. i + m.len % 32]);
state.dec(&dst, &src);
mem.copy(u8, m[i .. i + m.len % 32], dst[0 .. m.len % 32]);
mem.set(u8, dst[0 .. m.len % 32], 0);
const blocks = &state.blocks;
blocks[0] = blocks[0].xorBlocks(AESBlock.fromBytes(dst[0..16]));
blocks[4] = blocks[4].xorBlocks(AESBlock.fromBytes(dst[16..32]));
}
const computed_tag = state.mac(ad.len, m.len);
var acc: u8 = 0;
for (computed_tag) |_, j| {
acc |= (computed_tag[j] ^ tag[j]);
}
if (acc != 0) {
mem.set(u8, m, 0xaa);
return error.AuthenticationFailed;
}
}
};
const State256 = struct {
blocks: [6]AESBlock,
fn init(key: [32]u8, nonce: [32]u8) State256 {
const c1 = AESBlock.fromBytes(&[16]u8{ 0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1, 0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd });
const c2 = AESBlock.fromBytes(&[16]u8{ 0x0, 0x1, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d, 0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62 });
const key_block1 = AESBlock.fromBytes(key[0..16]);
const key_block2 = AESBlock.fromBytes(key[16..32]);
const nonce_block1 = AESBlock.fromBytes(nonce[0..16]);
const nonce_block2 = AESBlock.fromBytes(nonce[16..32]);
const kxn1 = key_block1.xorBlocks(nonce_block1);
const kxn2 = key_block2.xorBlocks(nonce_block2);
const blocks = [6]AESBlock{
kxn1,
kxn2,
c1,
c2,
key_block1.xorBlocks(c2),
key_block2.xorBlocks(c1),
};
var state = State256{ .blocks = blocks };
var i: usize = 0;
while (i < 4) : (i += 1) {
state.update(key_block1);
state.update(key_block2);
state.update(kxn1);
state.update(kxn2);
}
return state;
}
inline fn update(state: *State256, d: AESBlock) void {
const blocks = &state.blocks;
const tmp = blocks[5].encrypt(blocks[0]);
comptime var i: usize = 5;
inline while (i > 0) : (i -= 1) {
blocks[i] = blocks[i - 1].encrypt(blocks[i]);
}
blocks[0] = tmp.xorBlocks(d);
}
fn enc(state: *State256, dst: *[16]u8, src: *const [16]u8) void {
const blocks = &state.blocks;
const msg = AESBlock.fromBytes(src);
var tmp = msg.xorBlocks(blocks[5]).xorBlocks(blocks[4]).xorBlocks(blocks[1]);
tmp = tmp.xorBlocks(blocks[2].andBlocks(blocks[3]));
dst.* = tmp.toBytes();
state.update(msg);
}
fn dec(state: *State256, dst: *[16]u8, src: *const [16]u8) void {
const blocks = &state.blocks;
var msg = AESBlock.fromBytes(src).xorBlocks(blocks[5]).xorBlocks(blocks[4]).xorBlocks(blocks[1]);
msg = msg.xorBlocks(blocks[2].andBlocks(blocks[3]));
dst.* = msg.toBytes();
state.update(msg);
}
fn mac(state: *State256, adlen: usize, mlen: usize) [16]u8 {
const blocks = &state.blocks;
var sizes: [16]u8 = undefined;
mem.writeIntLittle(u64, sizes[0..8], adlen * 8);
mem.writeIntLittle(u64, sizes[8..16], mlen * 8);
const tmp = AESBlock.fromBytes(&sizes).xorBlocks(blocks[3]);
var i: usize = 0;
while (i < 7) : (i += 1) {
state.update(tmp);
}
return blocks[0].xorBlocks(blocks[1]).xorBlocks(blocks[2]).xorBlocks(blocks[3]).xorBlocks(blocks[4]).
xorBlocks(blocks[5]).toBytes();
}
};
/// AEGIS is a very fast authenticated encryption system built on top of the core AES function.
///
/// The 256 bit variant of AEGIS has a 256 bit key, a 256 bit nonce, and processes 128 bit message blocks.
///
/// https://competitions.cr.yp.to/round3/aegisv11.pdf
pub const AEGIS256 = struct {
pub const tag_length = 16;
pub const nonce_length = 32;
pub const key_length = 32;
/// c: ciphertext: output buffer should be of size m.len
/// tag: authentication tag: output MAC
/// m: message
/// ad: Associated Data
/// npub: public nonce
/// k: private key
pub fn encrypt(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: []const u8, npub: [nonce_length]u8, key: [key_length]u8) void {
assert(c.len == m.len);
var state = State256.init(key, npub);
var src: [16]u8 align(16) = undefined;
var dst: [16]u8 align(16) = undefined;
var i: usize = 0;
while (i + 16 <= ad.len) : (i += 16) {
state.enc(&dst, ad[i..][0..16]);
}
if (ad.len % 16 != 0) {
mem.set(u8, src[0..], 0);
mem.copy(u8, src[0 .. ad.len % 16], ad[i .. i + ad.len % 16]);
state.enc(&dst, &src);
}
i = 0;
while (i + 16 <= m.len) : (i += 16) {
state.enc(c[i..][0..16], m[i..][0..16]);
}
if (m.len % 16 != 0) {
mem.set(u8, src[0..], 0);
mem.copy(u8, src[0 .. m.len % 16], m[i .. i + m.len % 16]);
state.enc(&dst, &src);
mem.copy(u8, c[i .. i + m.len % 16], dst[0 .. m.len % 16]);
}
tag.* = state.mac(ad.len, m.len);
}
/// m: message: output buffer should be of size c.len
/// c: ciphertext
/// tag: authentication tag
/// ad: Associated Data
/// npub: public nonce
/// k: private key
pub fn decrypt(m: []u8, c: []const u8, tag: [tag_length]u8, ad: []const u8, npub: [nonce_length]u8, key: [key_length]u8) !void {
assert(c.len == m.len);
var state = State256.init(key, npub);
var src: [16]u8 align(16) = undefined;
var dst: [16]u8 align(16) = undefined;
var i: usize = 0;
while (i + 16 <= ad.len) : (i += 16) {
state.enc(&dst, ad[i..][0..16]);
}
if (ad.len % 16 != 0) {
mem.set(u8, src[0..], 0);
mem.copy(u8, src[0 .. ad.len % 16], ad[i .. i + ad.len % 16]);
state.enc(&dst, &src);
}
i = 0;
while (i + 16 <= m.len) : (i += 16) {
state.dec(m[i..][0..16], c[i..][0..16]);
}
if (m.len % 16 != 0) {
mem.set(u8, src[0..], 0);
mem.copy(u8, src[0 .. m.len % 16], c[i .. i + m.len % 16]);
state.dec(&dst, &src);
mem.copy(u8, m[i .. i + m.len % 16], dst[0 .. m.len % 16]);
mem.set(u8, dst[0 .. m.len % 16], 0);
const blocks = &state.blocks;
blocks[0] = blocks[0].xorBlocks(AESBlock.fromBytes(&dst));
}
const computed_tag = state.mac(ad.len, m.len);
var acc: u8 = 0;
for (computed_tag) |_, j| {
acc |= (computed_tag[j] ^ tag[j]);
}
if (acc != 0) {
mem.set(u8, m, 0xaa);
return error.AuthenticationFailed;
}
}
};
const htest = @import("test.zig");
const testing = std.testing;
test "AEGIS128L test vector 1" {
const key: [AEGIS128L.key_length]u8 = [_]u8{ 0x10, 0x01 } ++ [_]u8{0x00} ** 14;
const nonce: [AEGIS128L.nonce_length]u8 = [_]u8{ 0x10, 0x00, 0x02 } ++ [_]u8{0x00} ** 13;
const ad = [8]u8{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 };
const m = [32]u8{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f };
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [AEGIS128L.tag_length]u8 = undefined;
AEGIS128L.encrypt(&c, &tag, &m, &ad, nonce, key);
try AEGIS128L.decrypt(&m2, &c, tag, &ad, nonce, key);
testing.expectEqualSlices(u8, &m, &m2);
htest.assertEqual("79d94593d8c2119d7e8fd9b8fc77845c5c077a05b2528b6ac54b563aed8efe84", &c);
htest.assertEqual("cc6f3372f6aa1bb82388d695c3962d9a", &tag);
c[0] +%= 1;
testing.expectError(error.AuthenticationFailed, AEGIS128L.decrypt(&m2, &c, tag, &ad, nonce, key));
c[0] -%= 1;
tag[0] +%= 1;
testing.expectError(error.AuthenticationFailed, AEGIS128L.decrypt(&m2, &c, tag, &ad, nonce, key));
}
test "AEGIS128L test vector 2" {
const key: [AEGIS128L.key_length]u8 = [_]u8{0x00} ** 16;
const nonce: [AEGIS128L.nonce_length]u8 = [_]u8{0x00} ** 16;
const ad = [_]u8{};
const m = [_]u8{0x00} ** 16;
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [AEGIS128L.tag_length]u8 = undefined;
AEGIS128L.encrypt(&c, &tag, &m, &ad, nonce, key);
try AEGIS128L.decrypt(&m2, &c, tag, &ad, nonce, key);
testing.expectEqualSlices(u8, &m, &m2);
htest.assertEqual("41de9000a7b5e40e2d68bb64d99ebb19", &c);
htest.assertEqual("f4d997cc9b94227ada4fe4165422b1c8", &tag);
}
test "AEGIS128L test vector 3" {
const key: [AEGIS128L.key_length]u8 = [_]u8{0x00} ** 16;
const nonce: [AEGIS128L.nonce_length]u8 = [_]u8{0x00} ** 16;
const ad = [_]u8{};
const m = [_]u8{};
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [AEGIS128L.tag_length]u8 = undefined;
AEGIS128L.encrypt(&c, &tag, &m, &ad, nonce, key);
try AEGIS128L.decrypt(&m2, &c, tag, &ad, nonce, key);
testing.expectEqualSlices(u8, &m, &m2);
htest.assertEqual("83cc600dc4e3e7e62d4055826174f149", &tag);
}
test "AEGIS256 test vector 1" {
const key: [AEGIS256.key_length]u8 = [_]u8{ 0x10, 0x01 } ++ [_]u8{0x00} ** 30;
const nonce: [AEGIS256.nonce_length]u8 = [_]u8{ 0x10, 0x00, 0x02 } ++ [_]u8{0x00} ** 29;
const ad = [8]u8{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 };
const m = [32]u8{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f };
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [AEGIS256.tag_length]u8 = undefined;
AEGIS256.encrypt(&c, &tag, &m, &ad, nonce, key);
try AEGIS256.decrypt(&m2, &c, tag, &ad, nonce, key);
testing.expectEqualSlices(u8, &m, &m2);
htest.assertEqual("f373079ed84b2709faee373584585d60accd191db310ef5d8b11833df9dec711", &c);
htest.assertEqual("8d86f91ee606e9ff26a01b64ccbdd91d", &tag);
c[0] +%= 1;
testing.expectError(error.AuthenticationFailed, AEGIS256.decrypt(&m2, &c, tag, &ad, nonce, key));
c[0] -%= 1;
tag[0] +%= 1;
testing.expectError(error.AuthenticationFailed, AEGIS256.decrypt(&m2, &c, tag, &ad, nonce, key));
}
test "AEGIS256 test vector 2" {
const key: [AEGIS256.key_length]u8 = [_]u8{0x00} ** 32;
const nonce: [AEGIS256.nonce_length]u8 = [_]u8{0x00} ** 32;
const ad = [_]u8{};
const m = [_]u8{0x00} ** 16;
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [AEGIS256.tag_length]u8 = undefined;
AEGIS256.encrypt(&c, &tag, &m, &ad, nonce, key);
try AEGIS256.decrypt(&m2, &c, tag, &ad, nonce, key);
testing.expectEqualSlices(u8, &m, &m2);
htest.assertEqual("b98f03a947807713d75a4fff9fc277a6", &c);
htest.assertEqual("478f3b50dc478ef7d5cf2d0f7cc13180", &tag);
}
test "AEGIS256 test vector 3" {
const key: [AEGIS256.key_length]u8 = [_]u8{0x00} ** 32;
const nonce: [AEGIS256.nonce_length]u8 = [_]u8{0x00} ** 32;
const ad = [_]u8{};
const m = [_]u8{};
var c: [m.len]u8 = undefined;
var m2: [m.len]u8 = undefined;
var tag: [AEGIS256.tag_length]u8 = undefined;
AEGIS256.encrypt(&c, &tag, &m, &ad, nonce, key);
try AEGIS256.decrypt(&m2, &c, tag, &ad, nonce, key);
testing.expectEqualSlices(u8, &m, &m2);
htest.assertEqual("f7a0878f68bd083e8065354071fc27c3", &tag);
}

View File

@ -84,11 +84,21 @@ pub const Block = struct {
}; };
} }
/// XOR the content of two blocks. /// Apply the bitwise XOR operation to the content of two blocks.
pub inline fn xor(block1: Block, block2: Block) Block { pub inline fn xorBlocks(block1: Block, block2: Block) Block {
return Block{ .repr = block1.repr ^ block2.repr }; return Block{ .repr = block1.repr ^ block2.repr };
} }
/// Apply the bitwise AND operation to the content of two blocks.
pub inline fn andBlocks(block1: Block, block2: Block) Block {
return Block{ .repr = block1.repr & block2.repr };
}
/// Apply the bitwise OR operation to the content of two blocks.
pub inline fn orBlocks(block1: Block, block2: Block) Block {
return Block{ .repr = block1.repr | block2.repr };
}
/// Perform operations on multiple blocks in parallel. /// Perform operations on multiple blocks in parallel.
pub const parallel = struct { pub const parallel = struct {
/// The recommended number of AES encryption/decryption to perform in parallel for the chosen implementation. /// The recommended number of AES encryption/decryption to perform in parallel for the chosen implementation.
@ -261,7 +271,7 @@ pub fn AESEncryptCtx(comptime AES: type) type {
/// Encrypt a single block. /// Encrypt a single block.
pub fn encrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void { pub fn encrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void {
const round_keys = ctx.key_schedule.round_keys; const round_keys = ctx.key_schedule.round_keys;
var t = Block.fromBytes(src).xor(round_keys[0]); var t = Block.fromBytes(src).xorBlocks(round_keys[0]);
comptime var i = 1; comptime var i = 1;
inline while (i < rounds) : (i += 1) { inline while (i < rounds) : (i += 1) {
t = t.encrypt(round_keys[i]); t = t.encrypt(round_keys[i]);
@ -273,7 +283,7 @@ pub fn AESEncryptCtx(comptime AES: type) type {
/// Encrypt+XOR a single block. /// Encrypt+XOR a single block.
pub fn xor(ctx: Self, dst: *[16]u8, src: *const [16]u8, counter: [16]u8) void { pub fn xor(ctx: Self, dst: *[16]u8, src: *const [16]u8, counter: [16]u8) void {
const round_keys = ctx.key_schedule.round_keys; const round_keys = ctx.key_schedule.round_keys;
var t = Block.fromBytes(&counter).xor(round_keys[0]); var t = Block.fromBytes(&counter).xorBlocks(round_keys[0]);
comptime var i = 1; comptime var i = 1;
inline while (i < rounds) : (i += 1) { inline while (i < rounds) : (i += 1) {
t = t.encrypt(round_keys[i]); t = t.encrypt(round_keys[i]);
@ -288,7 +298,7 @@ pub fn AESEncryptCtx(comptime AES: type) type {
var ts: [count]Block = undefined; var ts: [count]Block = undefined;
comptime var j = 0; comptime var j = 0;
inline while (j < count) : (j += 1) { inline while (j < count) : (j += 1) {
ts[j] = Block.fromBytes(src[j * 16 .. j * 16 + 16][0..16]).xor(round_keys[0]); ts[j] = Block.fromBytes(src[j * 16 .. j * 16 + 16][0..16]).xorBlocks(round_keys[0]);
} }
comptime var i = 1; comptime var i = 1;
inline while (i < rounds) : (i += 1) { inline while (i < rounds) : (i += 1) {
@ -310,7 +320,7 @@ pub fn AESEncryptCtx(comptime AES: type) type {
var ts: [count]Block = undefined; var ts: [count]Block = undefined;
comptime var j = 0; comptime var j = 0;
inline while (j < count) : (j += 1) { inline while (j < count) : (j += 1) {
ts[j] = Block.fromBytes(counters[j * 16 .. j * 16 + 16][0..16]).xor(round_keys[0]); ts[j] = Block.fromBytes(counters[j * 16 .. j * 16 + 16][0..16]).xorBlocks(round_keys[0]);
} }
comptime var i = 1; comptime var i = 1;
inline while (i < rounds) : (i += 1) { inline while (i < rounds) : (i += 1) {
@ -352,7 +362,7 @@ pub fn AESDecryptCtx(comptime AES: type) type {
/// Decrypt a single block. /// Decrypt a single block.
pub fn decrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void { pub fn decrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void {
const inv_round_keys = ctx.key_schedule.round_keys; const inv_round_keys = ctx.key_schedule.round_keys;
var t = Block.fromBytes(src).xor(inv_round_keys[0]); var t = Block.fromBytes(src).xorBlocks(inv_round_keys[0]);
comptime var i = 1; comptime var i = 1;
inline while (i < rounds) : (i += 1) { inline while (i < rounds) : (i += 1) {
t = t.decrypt(inv_round_keys[i]); t = t.decrypt(inv_round_keys[i]);
@ -367,7 +377,7 @@ pub fn AESDecryptCtx(comptime AES: type) type {
var ts: [count]Block = undefined; var ts: [count]Block = undefined;
comptime var j = 0; comptime var j = 0;
inline while (j < count) : (j += 1) { inline while (j < count) : (j += 1) {
ts[j] = Block.fromBytes(src[j * 16 .. j * 16 + 16][0..16]).xor(inv_round_keys[0]); ts[j] = Block.fromBytes(src[j * 16 .. j * 16 + 16][0..16]).xorBlocks(inv_round_keys[0]);
} }
comptime var i = 1; comptime var i = 1;
inline while (i < rounds) : (i += 1) { inline while (i < rounds) : (i += 1) {

View File

@ -125,8 +125,8 @@ pub const Block = struct {
return Block{ .repr = BlockVec{ s0, s1, s2, s3 } }; return Block{ .repr = BlockVec{ s0, s1, s2, s3 } };
} }
/// XOR the content of two blocks. /// Apply the bitwise XOR operation to the content of two blocks.
pub inline fn xor(block1: Block, block2: Block) Block { pub inline fn xorBlocks(block1: Block, block2: Block) Block {
var x: BlockVec = undefined; var x: BlockVec = undefined;
comptime var i = 0; comptime var i = 0;
inline while (i < 4) : (i += 1) { inline while (i < 4) : (i += 1) {
@ -135,6 +135,26 @@ pub const Block = struct {
return Block{ .repr = x }; return Block{ .repr = x };
} }
/// Apply the bitwise AND operation to the content of two blocks.
pub inline fn andBlocks(block1: Block, block2: Block) Block {
var x: BlockVec = undefined;
comptime var i = 0;
inline while (i < 4) : (i += 1) {
x[i] = block1.repr[i] & block2.repr[i];
}
return Block{ .repr = x };
}
/// Apply the bitwise OR operation to the content of two blocks.
pub inline fn orBlocks(block1: Block, block2: Block) Block {
var x: BlockVec = undefined;
comptime var i = 0;
inline while (i < 4) : (i += 1) {
x[i] = block1.repr[i] | block2.repr[i];
}
return Block{ .repr = x };
}
/// Perform operations on multiple blocks in parallel. /// Perform operations on multiple blocks in parallel.
pub const parallel = struct { pub const parallel = struct {
/// The recommended number of AES encryption/decryption to perform in parallel for the chosen implementation. /// The recommended number of AES encryption/decryption to perform in parallel for the chosen implementation.
@ -283,7 +303,7 @@ pub fn AESEncryptCtx(comptime AES: type) type {
/// Encrypt a single block. /// Encrypt a single block.
pub fn encrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void { pub fn encrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void {
const round_keys = ctx.key_schedule.round_keys; const round_keys = ctx.key_schedule.round_keys;
var t = Block.fromBytes(src).xor(round_keys[0]); var t = Block.fromBytes(src).xorBlocks(round_keys[0]);
comptime var i = 1; comptime var i = 1;
inline while (i < rounds) : (i += 1) { inline while (i < rounds) : (i += 1) {
t = t.encrypt(round_keys[i]); t = t.encrypt(round_keys[i]);
@ -295,7 +315,7 @@ pub fn AESEncryptCtx(comptime AES: type) type {
/// Encrypt+XOR a single block. /// Encrypt+XOR a single block.
pub fn xor(ctx: Self, dst: *[16]u8, src: *const [16]u8, counter: [16]u8) void { pub fn xor(ctx: Self, dst: *[16]u8, src: *const [16]u8, counter: [16]u8) void {
const round_keys = ctx.key_schedule.round_keys; const round_keys = ctx.key_schedule.round_keys;
var t = Block.fromBytes(&counter).xor(round_keys[0]); var t = Block.fromBytes(&counter).xorBlocks(round_keys[0]);
comptime var i = 1; comptime var i = 1;
inline while (i < rounds) : (i += 1) { inline while (i < rounds) : (i += 1) {
t = t.encrypt(round_keys[i]); t = t.encrypt(round_keys[i]);
@ -349,7 +369,7 @@ pub fn AESDecryptCtx(comptime AES: type) type {
/// Decrypt a single block. /// Decrypt a single block.
pub fn decrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void { pub fn decrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void {
const inv_round_keys = ctx.key_schedule.round_keys; const inv_round_keys = ctx.key_schedule.round_keys;
var t = Block.fromBytes(src).xor(inv_round_keys[0]); var t = Block.fromBytes(src).xorBlocks(inv_round_keys[0]);
comptime var i = 1; comptime var i = 1;
inline while (i < rounds) : (i += 1) { inline while (i < rounds) : (i += 1) {
t = t.decrypt(inv_round_keys[i]); t = t.decrypt(inv_round_keys[i]);

View File

@ -149,6 +149,8 @@ const aeads = [_]Crypto{
Crypto{ .ty = crypto.aead.ChaCha20Poly1305, .name = "chacha20Poly1305" }, Crypto{ .ty = crypto.aead.ChaCha20Poly1305, .name = "chacha20Poly1305" },
Crypto{ .ty = crypto.aead.XChaCha20Poly1305, .name = "xchacha20Poly1305" }, Crypto{ .ty = crypto.aead.XChaCha20Poly1305, .name = "xchacha20Poly1305" },
Crypto{ .ty = crypto.aead.Gimli, .name = "gimli-aead" }, Crypto{ .ty = crypto.aead.Gimli, .name = "gimli-aead" },
Crypto{ .ty = crypto.aead.AEGIS128L, .name = "aegis-128l" },
Crypto{ .ty = crypto.aead.AEGIS256, .name = "aegis-256" },
}; };
pub fn benchmarkAead(comptime Aead: anytype, comptime bytes: comptime_int) !u64 { pub fn benchmarkAead(comptime Aead: anytype, comptime bytes: comptime_int) !u64 {