std.crypto.ff: simplify implementation

* Take advantage of multi-object for loops.
* Remove use of BoundedArray since it had no meaningful impact on safety
  or readability.
* Simplify some complex expressions, such as using `!` to invert a
  boolean value.
This commit is contained in:
Andrew Kelley 2023-11-21 20:21:57 -07:00
parent 7b3556a8cf
commit 49d6dd3ecb

View File

@ -12,7 +12,6 @@ const math = std.math;
const mem = std.mem;
const meta = std.meta;
const testing = std.testing;
const BoundedArray = std.BoundedArray;
const assert = std.debug.assert;
const Endian = std.builtin.Endian;
@ -63,46 +62,54 @@ pub fn Uint(comptime max_bits: comptime_int) type {
return struct {
const Self = @This();
const max_limbs_count = math.divCeil(usize, max_bits, t_bits) catch unreachable;
const Limbs = BoundedArray(Limb, max_limbs_count);
limbs: Limbs,
limbs_buffer: [max_limbs_count]Limb,
/// The number of active limbs.
limbs_len: usize,
/// Number of bytes required to serialize an integer.
pub const encoded_bytes = math.divCeil(usize, max_bits, 8) catch unreachable;
// Returns the number of active limbs.
fn limbs_count(self: Self) usize {
return self.limbs.len;
/// Constant slice of active limbs.
fn limbsConst(self: *const Self) []const Limb {
return self.limbs_buffer[0..self.limbs_len];
}
/// Mutable slice of active limbs.
fn limbs(self: *Self) []Limb {
return self.limbs_buffer[0..self.limbs_len];
}
// Removes limbs whose value is zero from the active limbs.
fn normalize(self: Self) Self {
var res = self;
if (self.limbs_count() < 2) {
if (self.limbs_len < 2) {
return res;
}
var i = self.limbs_count() - 1;
while (i > 0 and res.limbs.get(i) == 0) : (i -= 1) {}
res.limbs.resize(i + 1) catch unreachable;
var i = self.limbs_len - 1;
while (i > 0 and res.limbsConst()[i] == 0) : (i -= 1) {}
res.limbs_len = i + 1;
assert(res.limbs_len <= res.limbs_buffer.len);
return res;
}
/// The zero integer.
pub const zero = zero: {
var limbs = Limbs.init(0) catch unreachable;
limbs.appendNTimesAssumeCapacity(0, max_limbs_count);
break :zero Self{ .limbs = limbs };
pub const zero: Self = .{
.limbs_buffer = [1]Limb{0} ** max_limbs_count,
.limbs_len = max_limbs_count,
};
/// Creates a new big integer from a primitive type.
/// This function may not run in constant time.
pub fn fromPrimitive(comptime T: type, x_: T) OverflowError!Self {
var x = x_;
var out = Self.zero;
for (0..out.limbs.capacity()) |i| {
const t = if (@bitSizeOf(T) > t_bits) @as(TLimb, @truncate(x)) else x;
out.limbs.set(i, t);
pub fn fromPrimitive(comptime T: type, init_value: T) OverflowError!Self {
var x = init_value;
var out: Self = .{
.limbs_buffer = undefined,
.limbs_len = max_limbs_count,
};
for (&out.limbs_buffer) |*limb| {
limb.* = if (@bitSizeOf(T) > t_bits) @as(TLimb, @truncate(x)) else x;
x = math.shr(T, x, t_bits);
}
if (x != 0) {
@ -115,13 +122,13 @@ pub fn Uint(comptime max_bits: comptime_int) type {
/// This function may not run in constant time.
pub fn toPrimitive(self: Self, comptime T: type) OverflowError!T {
var x: T = 0;
var i = self.limbs_count() - 1;
var i = self.limbs_len - 1;
while (true) : (i -= 1) {
if (@bitSizeOf(T) >= t_bits and math.shr(T, x, @bitSizeOf(T) - t_bits) != 0) {
return error.Overflow;
}
x = math.shl(T, x, t_bits);
const v = math.cast(T, self.limbs.get(i)) orelse return error.Overflow;
const v = math.cast(T, self.limbsConst()[i]) orelse return error.Overflow;
x |= v;
if (i == 0) break;
}
@ -140,9 +147,9 @@ pub fn Uint(comptime max_bits: comptime_int) type {
.big => bytes.len - 1,
.little => 0,
};
for (0..self.limbs.len) |i| {
for (0..self.limbs_len) |i| {
var remaining_bits = t_bits;
var limb = self.limbs.get(i);
var limb = self.limbsConst()[i];
while (remaining_bits >= 8) {
bytes[out_i] |= math.shl(u8, @as(u8, @truncate(limb)), shift);
const consumed = 8 - shift;
@ -152,7 +159,7 @@ pub fn Uint(comptime max_bits: comptime_int) type {
switch (endian) {
.big => {
if (out_i == 0) {
if (i != self.limbs.len - 1 or limb != 0) {
if (i != self.limbs_len - 1 or limb != 0) {
return error.Overflow;
}
return;
@ -162,7 +169,7 @@ pub fn Uint(comptime max_bits: comptime_int) type {
.little => {
out_i += 1;
if (out_i == bytes.len) {
if (i != self.limbs.len - 1 or limb != 0) {
if (i != self.limbs_len - 1 or limb != 0) {
return error.Overflow;
}
return;
@ -187,20 +194,20 @@ pub fn Uint(comptime max_bits: comptime_int) type {
};
while (true) {
const bi = bytes[i];
out.limbs.set(out_i, out.limbs.get(out_i) | math.shl(Limb, bi, shift));
out.limbs()[out_i] |= math.shl(Limb, bi, shift);
shift += 8;
if (shift >= t_bits) {
shift -= t_bits;
out.limbs.set(out_i, @as(TLimb, @truncate(out.limbs.get(out_i))));
out.limbs()[out_i] = @as(TLimb, @truncate(out.limbs()[out_i]));
const overflow = math.shr(Limb, bi, 8 - shift);
out_i += 1;
if (out_i >= out.limbs.len) {
if (out_i >= out.limbs_len) {
if (overflow != 0 or i != 0) {
return error.Overflow;
}
break;
}
out.limbs.set(out_i, overflow);
out.limbs()[out_i] = overflow;
}
switch (endian) {
.big => {
@ -218,32 +225,31 @@ pub fn Uint(comptime max_bits: comptime_int) type {
/// Returns `true` if both integers are equal.
pub fn eql(x: Self, y: Self) bool {
return crypto.utils.timingSafeEql([max_limbs_count]Limb, x.limbs.buffer, y.limbs.buffer);
return crypto.utils.timingSafeEql([max_limbs_count]Limb, x.limbs_buffer, y.limbs_buffer);
}
/// Compares two integers.
pub fn compare(x: Self, y: Self) math.Order {
return crypto.utils.timingSafeCompare(
Limb,
x.limbs.constSlice(),
y.limbs.constSlice(),
x.limbsConst(),
y.limbsConst(),
.little,
);
}
/// Returns `true` if the integer is zero.
pub fn isZero(x: Self) bool {
const x_limbs = x.limbs.constSlice();
var t: Limb = 0;
for (0..x.limbs_count()) |i| {
t |= x_limbs[i];
for (x.limbsConst()) |elem| {
t |= elem;
}
return ct.eql(t, 0);
}
/// Returns `true` if the integer is odd.
pub fn isOdd(x: Self) bool {
return @as(bool, @bitCast(@as(u1, @truncate(x.limbs.get(0)))));
return @as(u1, @truncate(x.limbsConst()[0])) != 0;
}
/// Adds `y` to `x`, and returns `true` if the operation overflowed.
@ -258,39 +264,31 @@ pub fn Uint(comptime max_bits: comptime_int) type {
// Replaces the limbs of `x` with the limbs of `y` if `on` is `true`.
fn cmov(x: *Self, on: bool, y: Self) void {
const x_limbs = x.limbs.slice();
const y_limbs = y.limbs.constSlice();
for (0..y.limbs_count()) |i| {
x_limbs[i] = ct.select(on, y_limbs[i], x_limbs[i]);
for (x.limbs(), y.limbsConst()) |*x_limb, y_limb| {
x_limb.* = ct.select(on, y_limb, x_limb.*);
}
}
// Adds `y` to `x` if `on` is `true`, and returns `true` if the operation overflowed.
// Adds `y` to `x` if `on` is `true`, and returns `true` if the
// operation overflowed.
fn conditionalAddWithOverflow(x: *Self, on: bool, y: Self) u1 {
assert(x.limbs_count() == y.limbs_count()); // Operands must have the same size.
const x_limbs = x.limbs.slice();
const y_limbs = y.limbs.constSlice();
var carry: u1 = 0;
for (0..x.limbs_count()) |i| {
const res = x_limbs[i] + y_limbs[i] + carry;
x_limbs[i] = ct.select(on, @as(TLimb, @truncate(res)), x_limbs[i]);
carry = @as(u1, @truncate(res >> t_bits));
for (x.limbs(), y.limbsConst()) |*x_limb, y_limb| {
const res = x_limb.* + y_limb + carry;
x_limb.* = ct.select(on, @as(TLimb, @truncate(res)), x_limb.*);
carry = @truncate(res >> t_bits);
}
return carry;
}
// Subtracts `y` from `x` if `on` is `true`, and returns `true` if the operation overflowed.
// Subtracts `y` from `x` if `on` is `true`, and returns `true` if the
// operation overflowed.
fn conditionalSubWithOverflow(x: *Self, on: bool, y: Self) u1 {
assert(x.limbs_count() == y.limbs_count()); // Operands must have the same size.
const x_limbs = x.limbs.slice();
const y_limbs = y.limbs.constSlice();
var borrow: u1 = 0;
for (0..x.limbs_count()) |i| {
const res = x_limbs[i] -% y_limbs[i] -% borrow;
x_limbs[i] = ct.select(on, @as(TLimb, @truncate(res)), x_limbs[i]);
borrow = @as(u1, @truncate(res >> t_bits));
for (x.limbs(), y.limbsConst()) |*x_limb, y_limb| {
const res = x_limb.* -% y_limb -% borrow;
x_limb.* = ct.select(on, @as(TLimb, @truncate(res)), x_limb.*);
borrow = @truncate(res >> t_bits);
}
return borrow;
}
@ -315,7 +313,7 @@ fn Fe_(comptime bits: comptime_int) type {
// The number of active limbs to represent the field element.
fn limbs_count(self: Self) usize {
return self.v.limbs_count();
return self.v.limbs_len;
}
/// Creates a field element from a primitive.
@ -398,7 +396,7 @@ pub fn Modulus(comptime max_bits: comptime_int) type {
// Number of active limbs in the modulus.
fn limbs_count(self: Self) usize {
return self.v.limbs_count();
return self.v.limbs_len;
}
/// Actual size of the modulus, in bits.
@ -409,7 +407,7 @@ pub fn Modulus(comptime max_bits: comptime_int) type {
/// Returns the element `1`.
pub fn one(self: Self) Fe {
var fe = self.zero;
fe.v.limbs.set(0, 1);
fe.v.limbs()[0] = 1;
return fe;
}
@ -419,10 +417,10 @@ pub fn Modulus(comptime max_bits: comptime_int) type {
if (!v_.isOdd()) return error.EvenModulus;
var v = v_.normalize();
const hi = v.limbs.get(v.limbs_count() - 1);
const lo = v.limbs.get(0);
const hi = v.limbsConst()[v.limbs_len - 1];
const lo = v.limbsConst()[0];
if (v.limbs_count() < 2 and lo < 3) {
if (v.limbs_len < 2 and lo < 3) {
return error.ModulusTooSmall;
}
@ -481,18 +479,19 @@ pub fn Modulus(comptime max_bits: comptime_int) type {
const new_len = self.limbs_count();
if (fe.limbs_count() < new_len) return error.Overflow;
var acc: Limb = 0;
for (fe.v.limbs.constSlice()[new_len..]) |limb| {
for (fe.v.limbsConst()[new_len..]) |limb| {
acc |= limb;
}
if (acc != 0) return error.Overflow;
try fe.v.limbs.resize(new_len);
if (new_len > fe.v.limbs_buffer.len) return error.Overflow;
fe.v.limbs_len = new_len;
}
// Computes R^2 for the Montgomery representation.
fn computeRR(self: *Self) void {
self.rr = self.zero;
const n = self.rr.limbs_count();
self.rr.v.limbs.set(n - 1, 1);
self.rr.v.limbs()[n - 1] = 1;
for ((n - 1)..(2 * n)) |_| {
self.shiftIn(&self.rr, 0);
}
@ -502,9 +501,9 @@ pub fn Modulus(comptime max_bits: comptime_int) type {
/// Computes x << t_bits + y (mod m)
fn shiftIn(self: Self, x: *Fe, y: Limb) void {
var d = self.zero;
const x_limbs = x.v.limbs.slice();
const d_limbs = d.v.limbs.slice();
const m_limbs = self.v.limbs.constSlice();
const x_limbs = x.v.limbs();
const d_limbs = d.v.limbs();
const m_limbs = self.v.limbsConst();
var need_sub = false;
var i: usize = t_bits - 1;
@ -569,18 +568,18 @@ pub fn Modulus(comptime max_bits: comptime_int) type {
/// Reduces an arbitrary `Uint`, converting it to a field element.
pub fn reduce(self: Self, x: anytype) Fe {
var out = self.zero;
var i = x.limbs_count() - 1;
var i = x.limbs_len - 1;
if (self.limbs_count() >= 2) {
const start = @min(i, self.limbs_count() - 2);
var j = start;
while (true) : (j -= 1) {
out.v.limbs.set(j, x.limbs.get(i));
out.v.limbs()[j] = x.limbsConst()[i];
i -= 1;
if (j == 0) break;
}
}
while (true) : (i -= 1) {
self.shiftIn(&out, x.limbs.get(i));
self.shiftIn(&out, x.limbsConst()[i]);
if (i == 0) break;
}
return out;
@ -591,10 +590,10 @@ pub fn Modulus(comptime max_bits: comptime_int) type {
assert(d.limbs_count() == y.limbs_count());
assert(d.limbs_count() == self.limbs_count());
const a_limbs = x.v.limbs.constSlice();
const b_limbs = y.v.limbs.constSlice();
const d_limbs = d.v.limbs.slice();
const m_limbs = self.v.limbs.constSlice();
const a_limbs = x.v.limbsConst();
const b_limbs = y.v.limbsConst();
const d_limbs = d.v.limbs();
const m_limbs = self.v.limbsConst();
var overflow: u1 = 0;
for (0..self.limbs_count()) |i| {
@ -685,7 +684,7 @@ pub fn Modulus(comptime max_bits: comptime_int) type {
const k: u1 = @truncate(b >> j);
if (k != 0) {
const t = self.montgomeryMul(out, x_m);
@memcpy(out.v.limbs.slice(), t.v.limbs.constSlice());
@memcpy(out.v.limbs(), t.v.limbsConst());
}
if (j == 0) break;
}
@ -731,7 +730,7 @@ pub fn Modulus(comptime max_bits: comptime_int) type {
}
const t1 = self.montgomeryMul(out, t0);
if (public) {
@memcpy(out.v.limbs.slice(), t1.v.limbs.constSlice());
@memcpy(out.v.limbs(), t1.v.limbsConst());
} else {
out.v.cmov(!ct.eql(k, 0), t1.v);
}
@ -790,9 +789,9 @@ pub fn Modulus(comptime max_bits: comptime_int) type {
pub fn powPublic(self: Self, x: Fe, e: Fe) NullExponentError!Fe {
var e_normalized = Fe{ .v = e.v.normalize() };
var buf_: [Fe.encoded_bytes]u8 = undefined;
var buf = buf_[0 .. math.divCeil(usize, e_normalized.v.limbs_count() * t_bits, 8) catch unreachable];
var buf = buf_[0 .. math.divCeil(usize, e_normalized.v.limbs_len * t_bits, 8) catch unreachable];
e_normalized.toBytes(buf, .little) catch unreachable;
const leading = @clz(e_normalized.v.limbs.get(e_normalized.v.limbs_count() - carry_bits));
const leading = @clz(e_normalized.v.limbsConst()[e_normalized.v.limbs_len - carry_bits]);
buf = buf[0 .. buf.len - leading / 8];
return self.powWithEncodedPublicExponent(x, buf, .little);
}
@ -835,20 +834,16 @@ const ct_protected = struct {
// Compares two big integers in constant time, returning true if x < y.
fn limbsCmpLt(x: anytype, y: @TypeOf(x)) bool {
assert(x.limbs_count() == y.limbs_count());
const x_limbs = x.limbs.constSlice();
const y_limbs = y.limbs.constSlice();
var c: u1 = 0;
for (0..x.limbs_count()) |i| {
c = @as(u1, @truncate((x_limbs[i] -% y_limbs[i] -% c) >> t_bits));
for (x.limbsConst(), y.limbsConst()) |x_limb, y_limb| {
c = @truncate((x_limb -% y_limb -% c) >> t_bits);
}
return @as(bool, @bitCast(c));
return c != 0;
}
// Compares two big integers in constant time, returning true if x >= y.
fn limbsCmpGeq(x: anytype, y: @TypeOf(x)) bool {
return @as(bool, @bitCast(1 - @intFromBool(ct.limbsCmpLt(x, y))));
return !ct.limbsCmpLt(x, y);
}
// Multiplies two limbs and returns the result as a wide limb.