zig/lib/std/special/c.zig

1213 lines
34 KiB
Zig
Raw Normal View History

// SPDX-License-Identifier: MIT
2020-12-31 23:07:36 +00:00
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// This is Zig's multi-target implementation of libc.
// When builtin.link_libc is true, we need to export all the functions and
// provide an entire C API.
// Otherwise, only the functions which LLVM generates calls to need to be generated,
// such as memcpy, memset, and some math functions.
const std = @import("std");
const builtin = std.builtin;
const maxInt = std.math.maxInt;
2019-11-05 02:13:47 +00:00
const isNan = std.math.isNan;
const native_arch = std.Target.current.cpu.arch;
const native_abi = std.Target.current.abi;
const native_os = std.Target.current.os.tag;
const is_wasm = switch (native_arch) {
2019-05-19 20:26:43 +00:00
.wasm32, .wasm64 => true,
else => false,
};
const is_msvc = switch (native_abi) {
2019-07-17 22:11:03 +00:00
.msvc => true,
else => false,
};
const is_freestanding = switch (native_os) {
2019-05-19 20:26:43 +00:00
.freestanding => true,
else => false,
};
comptime {
if (is_freestanding and is_wasm and builtin.link_libc) {
@export(wasm_start, .{ .name = "_start", .linkage = .Strong });
}
if (builtin.link_libc) {
@export(strcmp, .{ .name = "strcmp", .linkage = .Strong });
@export(strncmp, .{ .name = "strncmp", .linkage = .Strong });
@export(strerror, .{ .name = "strerror", .linkage = .Strong });
@export(strlen, .{ .name = "strlen", .linkage = .Strong });
@export(strcpy, .{ .name = "strcpy", .linkage = .Strong });
@export(strncpy, .{ .name = "strncpy", .linkage = .Strong });
@export(strcat, .{ .name = "strcat", .linkage = .Strong });
@export(strncat, .{ .name = "strncat", .linkage = .Strong });
2019-07-17 22:11:03 +00:00
} else if (is_msvc) {
@export(_fltused, .{ .name = "_fltused", .linkage = .Strong });
}
}
var _fltused: c_int = 1;
2019-07-17 22:11:03 +00:00
extern fn main(argc: c_int, argv: [*:null]?[*:0]u8) c_int;
fn wasm_start() callconv(.C) void {
_ = main(0, undefined);
}
fn strcpy(dest: [*:0]u8, src: [*:0]const u8) callconv(.C) [*:0]u8 {
var i: usize = 0;
while (src[i] != 0) : (i += 1) {
dest[i] = src[i];
}
dest[i] = 0;
return dest;
}
test "strcpy" {
var s1: [9:0]u8 = undefined;
s1[0] = 0;
_ = strcpy(&s1, "foobarbaz");
try std.testing.expectEqualSlices(u8, "foobarbaz", std.mem.spanZ(&s1));
}
fn strncpy(dest: [*:0]u8, src: [*:0]const u8, n: usize) callconv(.C) [*:0]u8 {
var i: usize = 0;
while (i < n and src[i] != 0) : (i += 1) {
dest[i] = src[i];
}
while (i < n) : (i += 1) {
dest[i] = 0;
}
return dest;
}
test "strncpy" {
var s1: [9:0]u8 = undefined;
s1[0] = 0;
_ = strncpy(&s1, "foobarbaz", @sizeOf(@TypeOf(s1)));
try std.testing.expectEqualSlices(u8, "foobarbaz", std.mem.spanZ(&s1));
}
fn strcat(dest: [*:0]u8, src: [*:0]const u8) callconv(.C) [*:0]u8 {
var dest_end: usize = 0;
while (dest[dest_end] != 0) : (dest_end += 1) {}
var i: usize = 0;
while (src[i] != 0) : (i += 1) {
dest[dest_end + i] = src[i];
}
dest[dest_end + i] = 0;
return dest;
}
test "strcat" {
var s1: [9:0]u8 = undefined;
s1[0] = 0;
_ = strcat(&s1, "foo");
_ = strcat(&s1, "bar");
_ = strcat(&s1, "baz");
try std.testing.expectEqualSlices(u8, "foobarbaz", std.mem.spanZ(&s1));
}
fn strncat(dest: [*:0]u8, src: [*:0]const u8, avail: usize) callconv(.C) [*:0]u8 {
var dest_end: usize = 0;
while (dest[dest_end] != 0) : (dest_end += 1) {}
var i: usize = 0;
while (i < avail and src[i] != 0) : (i += 1) {
dest[dest_end + i] = src[i];
}
dest[dest_end + i] = 0;
return dest;
}
test "strncat" {
var s1: [9:0]u8 = undefined;
s1[0] = 0;
_ = strncat(&s1, "foo1111", 3);
_ = strncat(&s1, "bar1111", 3);
_ = strncat(&s1, "baz1111", 3);
try std.testing.expectEqualSlices(u8, "foobarbaz", std.mem.spanZ(&s1));
}
fn strcmp(s1: [*:0]const u8, s2: [*:0]const u8) callconv(.C) c_int {
return std.cstr.cmp(s1, s2);
}
fn strlen(s: [*:0]const u8) callconv(.C) usize {
return std.mem.len(s);
}
fn strncmp(_l: [*:0]const u8, _r: [*:0]const u8, _n: usize) callconv(.C) c_int {
if (_n == 0) return 0;
var l = _l;
var r = _r;
var n = _n - 1;
while (l[0] != 0 and r[0] != 0 and n != 0 and l[0] == r[0]) {
l += 1;
r += 1;
n -= 1;
}
2019-11-07 04:25:57 +00:00
return @as(c_int, l[0]) - @as(c_int, r[0]);
}
fn strerror(errnum: c_int) callconv(.C) [*:0]const u8 {
2021-06-20 01:10:22 +00:00
_ = errnum;
return "TODO strerror implementation";
}
test "strncmp" {
2021-05-04 17:47:26 +00:00
try std.testing.expect(strncmp("a", "b", 1) == -1);
try std.testing.expect(strncmp("a", "c", 1) == -2);
try std.testing.expect(strncmp("b", "a", 1) == 1);
try std.testing.expect(strncmp("\xff", "\x02", 1) == 253);
}
// Avoid dragging in the runtime safety mechanisms into this .o file,
// unless we're trying to test this file.
pub fn panic(msg: []const u8, error_return_trace: ?*builtin.StackTrace) noreturn {
2021-06-20 01:10:22 +00:00
_ = error_return_trace;
if (builtin.is_test) {
@setCold(true);
2021-01-03 02:03:14 +00:00
std.debug.panic("{s}", .{msg});
}
if (native_os != .freestanding and native_os != .other) {
std.os.abort();
}
while (true) {}
}
export fn memset(dest: ?[*]u8, c: u8, n: usize) callconv(.C) ?[*]u8 {
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1)
dest.?[index] = c;
2018-04-11 02:24:01 +00:00
return dest;
}
export fn __memset(dest: ?[*]u8, c: u8, n: usize, dest_n: usize) callconv(.C) ?[*]u8 {
if (dest_n < n)
@panic("buffer overflow");
return memset(dest, c, n);
}
export fn memcpy(noalias dest: ?[*]u8, noalias src: ?[*]const u8, n: usize) callconv(.C) ?[*]u8 {
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1)
dest.?[index] = src.?[index];
2018-04-11 02:24:01 +00:00
return dest;
}
export fn memmove(dest: ?[*]u8, src: ?[*]const u8, n: usize) callconv(.C) ?[*]u8 {
2018-04-11 02:24:01 +00:00
@setRuntimeSafety(false);
if (@ptrToInt(dest) < @ptrToInt(src)) {
var index: usize = 0;
while (index != n) : (index += 1) {
dest.?[index] = src.?[index];
2018-04-11 02:24:01 +00:00
}
} else {
var index = n;
while (index != 0) {
index -= 1;
dest.?[index] = src.?[index];
2018-04-11 02:24:01 +00:00
}
}
return dest;
}
export fn memcmp(vl: ?[*]const u8, vr: ?[*]const u8, n: usize) callconv(.C) c_int {
2019-03-26 03:13:21 +00:00
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1) {
const compare_val = @bitCast(i8, vl.?[index] -% vr.?[index]);
if (compare_val != 0) {
return compare_val;
}
}
return 0;
}
test "memcmp" {
const base_arr = &[_]u8{ 1, 1, 1 };
const arr1 = &[_]u8{ 1, 1, 1 };
const arr2 = &[_]u8{ 1, 0, 1 };
const arr3 = &[_]u8{ 1, 2, 1 };
2021-05-04 17:47:26 +00:00
try std.testing.expect(memcmp(base_arr[0..], arr1[0..], base_arr.len) == 0);
try std.testing.expect(memcmp(base_arr[0..], arr2[0..], base_arr.len) > 0);
try std.testing.expect(memcmp(base_arr[0..], arr3[0..], base_arr.len) < 0);
}
export fn bcmp(vl: [*]allowzero const u8, vr: [*]allowzero const u8, n: usize) callconv(.C) c_int {
@setRuntimeSafety(false);
var index: usize = 0;
while (index != n) : (index += 1) {
if (vl[index] != vr[index]) {
2019-06-28 21:01:49 +00:00
return 1;
}
}
return 0;
}
test "bcmp" {
const base_arr = &[_]u8{ 1, 1, 1 };
const arr1 = &[_]u8{ 1, 1, 1 };
const arr2 = &[_]u8{ 1, 0, 1 };
const arr3 = &[_]u8{ 1, 2, 1 };
2021-05-04 17:47:26 +00:00
try std.testing.expect(bcmp(base_arr[0..], arr1[0..], base_arr.len) == 0);
try std.testing.expect(bcmp(base_arr[0..], arr2[0..], base_arr.len) != 0);
try std.testing.expect(bcmp(base_arr[0..], arr3[0..], base_arr.len) != 0);
2019-03-26 03:13:21 +00:00
}
comptime {
if (native_os == .linux) {
@export(clone, .{ .name = "clone" });
}
}
// TODO we should be able to put this directly in std/linux/x86_64.zig but
// it causes a segfault in release mode. this is a workaround of calling it
// across .o file boundaries. fix comptime @ptrCast of nakedcc functions.
2019-12-23 20:52:06 +00:00
fn clone() callconv(.Naked) void {
switch (native_arch) {
2019-11-30 15:13:33 +00:00
.i386 => {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// +8, +12, +16, +20, +24, +28, +32
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// eax, ebx, ecx, edx, esi, edi
asm volatile (
\\ push %%ebp
\\ mov %%esp,%%ebp
\\ push %%ebx
\\ push %%esi
\\ push %%edi
\\ // Setup the arguments
\\ mov 16(%%ebp),%%ebx
\\ mov 12(%%ebp),%%ecx
\\ and $-16,%%ecx
\\ sub $20,%%ecx
\\ mov 20(%%ebp),%%eax
\\ mov %%eax,4(%%ecx)
\\ mov 8(%%ebp),%%eax
\\ mov %%eax,0(%%ecx)
\\ mov 24(%%ebp),%%edx
\\ mov 28(%%ebp),%%esi
\\ mov 32(%%ebp),%%edi
\\ mov $120,%%eax
\\ int $128
\\ test %%eax,%%eax
\\ jnz 1f
\\ pop %%eax
\\ xor %%ebp,%%ebp
\\ call *%%eax
\\ mov %%eax,%%ebx
\\ xor %%eax,%%eax
\\ inc %%eax
\\ int $128
\\ hlt
\\1:
\\ pop %%edi
\\ pop %%esi
\\ pop %%ebx
\\ pop %%ebp
\\ ret
);
},
2019-09-25 07:30:44 +00:00
.x86_64 => {
asm volatile (
\\ xor %%eax,%%eax
\\ mov $56,%%al // SYS_clone
\\ mov %%rdi,%%r11
\\ mov %%rdx,%%rdi
\\ mov %%r8,%%rdx
\\ mov %%r9,%%r8
\\ mov 8(%%rsp),%%r10
\\ mov %%r11,%%r9
\\ and $-16,%%rsi
\\ sub $8,%%rsi
\\ mov %%rcx,(%%rsi)
\\ syscall
\\ test %%eax,%%eax
\\ jnz 1f
\\ xor %%ebp,%%ebp
\\ pop %%rdi
\\ call *%%r9
\\ mov %%eax,%%edi
\\ xor %%eax,%%eax
\\ mov $60,%%al // SYS_exit
\\ syscall
\\ hlt
\\1: ret
\\
);
},
.aarch64 => {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// x0, x1, w2, x3, x4, x5, x6
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// x8, x0, x1, x2, x3, x4
asm volatile (
\\ // align stack and save func,arg
\\ and x1,x1,#-16
\\ stp x0,x3,[x1,#-16]!
\\
\\ // syscall
\\ uxtw x0,w2
\\ mov x2,x4
\\ mov x3,x5
\\ mov x4,x6
\\ mov x8,#220 // SYS_clone
\\ svc #0
\\
\\ cbz x0,1f
\\ // parent
\\ ret
\\ // child
\\1: ldp x1,x0,[sp],#16
\\ blr x1
\\ mov x8,#93 // SYS_exit
\\ svc #0
);
},
.arm, .thumb => {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// r0, r1, r2, r3, +0, +4, +8
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// r7 r0, r1, r2, r3, r4
2019-09-25 07:30:44 +00:00
asm volatile (
\\ stmfd sp!,{r4,r5,r6,r7}
\\ mov r7,#120
\\ mov r6,r3
\\ mov r5,r0
\\ mov r0,r2
\\ and r1,r1,#-16
\\ ldr r2,[sp,#16]
\\ ldr r3,[sp,#20]
\\ ldr r4,[sp,#24]
\\ svc 0
\\ tst r0,r0
\\ beq 1f
\\ ldmfd sp!,{r4,r5,r6,r7}
\\ bx lr
\\
\\1: mov r0,r6
\\ bl 3f
\\2: mov r7,#1
\\ svc 0
\\ b 2b
\\3: bx r5
);
},
.riscv64 => {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// a0, a1, a2, a3, a4, a5, a6
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// a7 a0, a1, a2, a3, a4
asm volatile (
\\ # Save func and arg to stack
\\ addi a1, a1, -16
\\ sd a0, 0(a1)
\\ sd a3, 8(a1)
\\
\\ # Call SYS_clone
\\ mv a0, a2
\\ mv a2, a4
\\ mv a3, a5
\\ mv a4, a6
\\ li a7, 220 # SYS_clone
\\ ecall
\\
\\ beqz a0, 1f
\\ # Parent
\\ ret
\\
\\ # Child
\\1: ld a1, 0(sp)
\\ ld a0, 8(sp)
\\ jalr a1
\\
\\ # Exit
\\ li a7, 93 # SYS_exit
\\ ecall
);
},
2020-04-21 16:42:21 +00:00
.mips, .mipsel => {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// 3, 4, 5, 6, 7, 8, 9
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// 2 4, 5, 6, 7, 8
asm volatile (
\\ # Save function pointer and argument pointer on new thread stack
\\ and $5, $5, -8
\\ subu $5, $5, 16
\\ sw $4, 0($5)
\\ sw $7, 4($5)
\\ # Shuffle (fn,sp,fl,arg,ptid,tls,ctid) to (fl,sp,ptid,tls,ctid)
\\ move $4, $6
\\ lw $6, 16($sp)
\\ lw $7, 20($sp)
\\ lw $9, 24($sp)
\\ subu $sp, $sp, 16
\\ sw $9, 16($sp)
\\ li $2, 4120
\\ syscall
\\ beq $7, $0, 1f
\\ nop
\\ addu $sp, $sp, 16
\\ jr $ra
\\ subu $2, $0, $2
\\1:
\\ beq $2, $0, 1f
\\ nop
\\ addu $sp, $sp, 16
\\ jr $ra
\\ nop
\\1:
\\ lw $25, 0($sp)
\\ lw $4, 4($sp)
\\ jalr $25
\\ nop
\\ move $4, $2
\\ li $2, 4001
\\ syscall
);
},
2021-04-09 04:10:42 +00:00
.powerpc => {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// 3, 4, 5, 6, 7, 8, 9
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// 0 3, 4, 5, 6, 7
asm volatile (
\\# store non-volatile regs r30, r31 on stack in order to put our
\\# start func and its arg there
\\stwu 30, -16(1)
\\stw 31, 4(1)
\\
\\# save r3 (func) into r30, and r6(arg) into r31
\\mr 30, 3
\\mr 31, 6
\\
\\# create initial stack frame for new thread
\\clrrwi 4, 4, 4
\\li 0, 0
\\stwu 0, -16(4)
\\
\\#move c into first arg
\\mr 3, 5
\\#mr 4, 4
\\mr 5, 7
\\mr 6, 8
\\mr 7, 9
\\
\\# move syscall number into r0
\\li 0, 120
\\
\\sc
\\
\\# check for syscall error
\\bns+ 1f # jump to label 1 if no summary overflow.
\\#else
\\neg 3, 3 #negate the result (errno)
\\1:
\\# compare sc result with 0
\\cmpwi cr7, 3, 0
\\
\\# if not 0, jump to end
\\bne cr7, 2f
\\
\\#else: we're the child
\\#call funcptr: move arg (d) into r3
\\mr 3, 31
\\#move r30 (funcptr) into CTR reg
\\mtctr 30
\\# call CTR reg
\\bctrl
\\# mov SYS_exit into r0 (the exit param is already in r3)
\\li 0, 1
\\sc
\\
\\2:
\\
\\# restore stack
\\lwz 30, 0(1)
\\lwz 31, 4(1)
\\addi 1, 1, 16
\\
\\blr
);
},
.powerpc64, .powerpc64le => {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// 3, 4, 5, 6, 7, 8, 9
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// 0 3, 4, 5, 6, 7
asm volatile (
\\ # create initial stack frame for new thread
\\ clrrdi 4, 4, 4
\\ li 0, 0
\\ stdu 0,-32(4)
\\
\\ # save fn and arg to child stack
\\ std 3, 8(4)
\\ std 6, 16(4)
\\
\\ # shuffle args into correct registers and call SYS_clone
\\ mr 3, 5
\\ #mr 4, 4
\\ mr 5, 7
\\ mr 6, 8
\\ mr 7, 9
\\ li 0, 120 # SYS_clone = 120
\\ sc
\\
\\ # if error, negate return (errno)
\\ bns+ 1f
\\ neg 3, 3
\\
\\1:
\\ # if we're the parent, return
\\ cmpwi cr7, 3, 0
\\ bnelr cr7
\\
\\ # we're the child. call fn(arg)
\\ ld 3, 16(1)
\\ ld 12, 8(1)
\\ mtctr 12
\\ bctrl
\\
\\ # call SYS_exit. exit code is already in r3 from fn return value
\\ li 0, 1 # SYS_exit = 1
\\ sc
);
},
.sparcv9 => {
// __clone(func, stack, flags, arg, ptid, tls, ctid)
// i0, i1, i2, i3, i4, i5, sp
// syscall(SYS_clone, flags, stack, ptid, tls, ctid)
// g1 o0, o1, o2, o3, o4
asm volatile (
\\ save %%sp, -192, %%sp
\\ # Save the func pointer and the arg pointer
\\ mov %%i0, %%g2
\\ mov %%i3, %%g3
\\ # Shuffle the arguments
\\ mov 217, %%g1
\\ mov %%i2, %%o0
\\ # Add some extra space for the initial frame
\\ sub %%i1, 176 + 2047, %%o1
\\ mov %%i4, %%o2
\\ mov %%i5, %%o3
\\ ldx [%%fp + 0x8af], %%o4
\\ t 0x6d
\\ bcs,pn %%xcc, 2f
\\ nop
\\ # The child pid is returned in o0 while o1 tells if this
\\ # process is # the child (=1) or the parent (=0).
\\ brnz %%o1, 1f
\\ nop
\\ # Parent process, return the child pid
\\ mov %%o0, %%i0
\\ ret
\\ restore
\\1:
\\ # Child process, call func(arg)
\\ mov %%g0, %%fp
\\ call %%g2
\\ mov %%g3, %%o0
\\ # Exit
\\ mov 1, %%g1
\\ t 0x6d
\\2:
\\ # The syscall failed
\\ sub %%g0, %%o0, %%i0
\\ ret
\\ restore
);
},
2019-09-25 07:30:44 +00:00
else => @compileError("Implement clone() for this arch."),
2018-08-30 02:45:10 +00:00
}
}
const math = std.math;
2018-05-29 00:23:55 +00:00
export fn fmodf(x: f32, y: f32) f32 {
return generic_fmod(f32, x, y);
}
export fn fmod(x: f64, y: f64) f64 {
return generic_fmod(f64, x, y);
}
// TODO add intrinsics for these (and probably the double version too)
// and have the math stuff use the intrinsic. same as @mod and @rem
2019-06-28 21:01:49 +00:00
export fn floorf(x: f32) f32 {
return math.floor(x);
}
export fn ceilf(x: f32) f32 {
return math.ceil(x);
}
export fn floor(x: f64) f64 {
return math.floor(x);
}
export fn ceil(x: f64) f64 {
return math.ceil(x);
}
export fn fma(a: f64, b: f64, c: f64) f64 {
return math.fma(f64, a, b, c);
}
export fn fmaf(a: f32, b: f32, c: f32) f32 {
return math.fma(f32, a, b, c);
}
export fn sin(a: f64) f64 {
return math.sin(a);
}
export fn sinf(a: f32) f32 {
return math.sin(a);
}
export fn cos(a: f64) f64 {
return math.cos(a);
}
export fn cosf(a: f32) f32 {
return math.cos(a);
}
export fn sincos(a: f64, r_sin: *f64, r_cos: *f64) void {
r_sin.* = math.sin(a);
r_cos.* = math.cos(a);
}
export fn sincosf(a: f32, r_sin: *f32, r_cos: *f32) void {
r_sin.* = math.sin(a);
r_cos.* = math.cos(a);
}
2019-06-28 21:01:49 +00:00
export fn exp(a: f64) f64 {
return math.exp(a);
}
export fn expf(a: f32) f32 {
return math.exp(a);
}
export fn exp2(a: f64) f64 {
return math.exp2(a);
}
export fn exp2f(a: f32) f32 {
return math.exp2(a);
}
export fn log(a: f64) f64 {
return math.ln(a);
}
export fn logf(a: f32) f32 {
return math.ln(a);
}
export fn log2(a: f64) f64 {
return math.log2(a);
}
export fn log2f(a: f32) f32 {
return math.log2(a);
}
export fn log10(a: f64) f64 {
return math.log10(a);
}
export fn log10f(a: f32) f32 {
return math.log10(a);
}
export fn fabs(a: f64) f64 {
return math.fabs(a);
}
export fn fabsf(a: f32) f32 {
return math.fabs(a);
}
export fn trunc(a: f64) f64 {
return math.trunc(a);
}
export fn truncf(a: f32) f32 {
return math.trunc(a);
}
export fn round(a: f64) f64 {
return math.round(a);
}
export fn roundf(a: f32) f32 {
return math.round(a);
}
fn generic_fmod(comptime T: type, x: T, y: T) T {
@setRuntimeSafety(false);
const bits = @typeInfo(T).Float.bits;
const uint = std.meta.Int(.unsigned, bits);
const log2uint = math.Log2Int(uint);
const digits = if (T == f32) 23 else 52;
const exp_bits = if (T == f32) 9 else 12;
const bits_minus_1 = bits - 1;
const mask = if (T == f32) 0xff else 0x7ff;
var ux = @bitCast(uint, x);
var uy = @bitCast(uint, y);
var ex = @intCast(i32, (ux >> digits) & mask);
var ey = @intCast(i32, (uy >> digits) & mask);
const sx = if (T == f32) @intCast(u32, ux & 0x80000000) else @intCast(i32, ux >> bits_minus_1);
var i: uint = undefined;
2019-11-05 02:13:47 +00:00
if (uy << 1 == 0 or isNan(@bitCast(T, uy)) or ex == mask)
return (x * y) / (x * y);
if (ux << 1 <= uy << 1) {
if (ux << 1 == uy << 1)
return 0 * x;
return x;
}
// normalize x and y
if (ex == 0) {
i = ux << exp_bits;
while (i >> bits_minus_1 == 0) : ({
2018-05-29 00:23:55 +00:00
ex -= 1;
i <<= 1;
}) {}
ux <<= @intCast(log2uint, @bitCast(u32, -ex + 1));
} else {
ux &= maxInt(uint) >> exp_bits;
ux |= 1 << digits;
}
if (ey == 0) {
i = uy << exp_bits;
while (i >> bits_minus_1 == 0) : ({
2018-05-29 00:23:55 +00:00
ey -= 1;
i <<= 1;
}) {}
uy <<= @intCast(log2uint, @bitCast(u32, -ey + 1));
} else {
uy &= maxInt(uint) >> exp_bits;
uy |= 1 << digits;
}
// x mod y
while (ex > ey) : (ex -= 1) {
i = ux -% uy;
if (i >> bits_minus_1 == 0) {
if (i == 0)
return 0 * x;
ux = i;
}
ux <<= 1;
}
i = ux -% uy;
if (i >> bits_minus_1 == 0) {
if (i == 0)
return 0 * x;
ux = i;
}
while (ux >> digits == 0) : ({
2018-05-29 00:23:55 +00:00
ux <<= 1;
ex -= 1;
}) {}
// scale result up
if (ex > 0) {
ux -%= 1 << digits;
2019-11-07 04:25:57 +00:00
ux |= @as(uint, @bitCast(u32, ex)) << digits;
} else {
ux >>= @intCast(log2uint, @bitCast(u32, -ex + 1));
}
if (T == f32) {
ux |= sx;
} else {
ux |= @intCast(uint, sx) << bits_minus_1;
}
return @bitCast(T, ux);
}
test "fmod, fmodf" {
inline for ([_]type{ f32, f64 }) |T| {
const nan_val = math.nan(T);
const inf_val = math.inf(T);
2021-05-04 17:47:26 +00:00
try std.testing.expect(isNan(generic_fmod(T, nan_val, 1.0)));
try std.testing.expect(isNan(generic_fmod(T, 1.0, nan_val)));
try std.testing.expect(isNan(generic_fmod(T, inf_val, 1.0)));
try std.testing.expect(isNan(generic_fmod(T, 0.0, 0.0)));
try std.testing.expect(isNan(generic_fmod(T, 1.0, 0.0)));
try std.testing.expectEqual(@as(T, 0.0), generic_fmod(T, 0.0, 2.0));
try std.testing.expectEqual(@as(T, -0.0), generic_fmod(T, -0.0, 2.0));
try std.testing.expectEqual(@as(T, -2.0), generic_fmod(T, -32.0, 10.0));
try std.testing.expectEqual(@as(T, -2.0), generic_fmod(T, -32.0, -10.0));
try std.testing.expectEqual(@as(T, 2.0), generic_fmod(T, 32.0, 10.0));
try std.testing.expectEqual(@as(T, 2.0), generic_fmod(T, 32.0, -10.0));
}
}
2021-04-20 13:43:46 +00:00
fn generic_fmin(comptime T: type, x: T, y: T) T {
if (isNan(x))
return y;
if (isNan(y))
return x;
return if (x < y) x else y;
}
export fn fminf(x: f32, y: f32) callconv(.C) f32 {
return generic_fmin(f32, x, y);
}
export fn fmin(x: f64, y: f64) callconv(.C) f64 {
return generic_fmin(f64, x, y);
}
test "fmin, fminf" {
inline for ([_]type{ f32, f64 }) |T| {
const nan_val = math.nan(T);
2021-05-04 17:47:26 +00:00
try std.testing.expect(isNan(generic_fmin(T, nan_val, nan_val)));
try std.testing.expectEqual(@as(T, 1.0), generic_fmin(T, nan_val, 1.0));
try std.testing.expectEqual(@as(T, 1.0), generic_fmin(T, 1.0, nan_val));
2021-04-20 13:43:46 +00:00
try std.testing.expectEqual(@as(T, 1.0), generic_fmin(T, 1.0, 10.0));
try std.testing.expectEqual(@as(T, -1.0), generic_fmin(T, 1.0, -1.0));
2021-04-20 13:43:46 +00:00
}
}
2021-04-20 13:44:21 +00:00
fn generic_fmax(comptime T: type, x: T, y: T) T {
if (isNan(x))
return y;
if (isNan(y))
return x;
return if (x < y) y else x;
}
export fn fmaxf(x: f32, y: f32) callconv(.C) f32 {
return generic_fmax(f32, x, y);
}
export fn fmax(x: f64, y: f64) callconv(.C) f64 {
return generic_fmax(f64, x, y);
}
test "fmax, fmaxf" {
inline for ([_]type{ f32, f64 }) |T| {
const nan_val = math.nan(T);
2021-05-04 17:47:26 +00:00
try std.testing.expect(isNan(generic_fmax(T, nan_val, nan_val)));
try std.testing.expectEqual(@as(T, 1.0), generic_fmax(T, nan_val, 1.0));
try std.testing.expectEqual(@as(T, 1.0), generic_fmax(T, 1.0, nan_val));
2021-04-20 13:44:21 +00:00
try std.testing.expectEqual(@as(T, 10.0), generic_fmax(T, 1.0, 10.0));
try std.testing.expectEqual(@as(T, 1.0), generic_fmax(T, 1.0, -1.0));
2021-04-20 13:44:21 +00:00
}
}
2018-04-15 17:21:52 +00:00
// NOTE: The original code is full of implicit signed -> unsigned assumptions and u32 wraparound
// behaviour. Most intermediate i32 values are changed to u32 where appropriate but there are
// potentially some edge cases remaining that are not handled in the same way.
export fn sqrt(x: f64) f64 {
const tiny: f64 = 1.0e-300;
const sign: u32 = 0x80000000;
const u = @bitCast(u64, x);
var ix0 = @intCast(u32, u >> 32);
var ix1 = @intCast(u32, u & 0xFFFFFFFF);
2018-04-15 17:21:52 +00:00
// sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = nan
if (ix0 & 0x7FF00000 == 0x7FF00000) {
return x * x + x;
}
// sqrt(+-0) = +-0
if (x == 0.0) {
return x;
}
// sqrt(-ve) = snan
if (ix0 & sign != 0) {
return math.snan(f64);
}
// normalize x
var m = @intCast(i32, ix0 >> 20);
2018-04-15 17:21:52 +00:00
if (m == 0) {
// subnormal
while (ix0 == 0) {
m -= 21;
ix0 |= ix1 >> 11;
ix1 <<= 21;
}
// subnormal
var i: u32 = 0;
while (ix0 & 0x00100000 == 0) : (i += 1) {
ix0 <<= 1;
}
m -= @intCast(i32, i) - 1;
ix0 |= ix1 >> @intCast(u5, 32 - i);
ix1 <<= @intCast(u5, i);
2018-04-15 17:21:52 +00:00
}
// unbias exponent
m -= 1023;
ix0 = (ix0 & 0x000FFFFF) | 0x00100000;
if (m & 1 != 0) {
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
}
m >>= 1;
// sqrt(x) bit by bit
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
var q: u32 = 0;
var q1: u32 = 0;
var s0: u32 = 0;
var s1: u32 = 0;
var r: u32 = 0x00200000;
var t: u32 = undefined;
var t1: u32 = undefined;
while (r != 0) {
t = s0 +% r;
if (t <= ix0) {
s0 = t + r;
ix0 -= t;
q += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
r = sign;
while (r != 0) {
t1 = s1 +% r;
2018-04-15 17:21:52 +00:00
t = s0;
if (t < ix0 or (t == ix0 and t1 <= ix1)) {
s1 = t1 +% r;
if (t1 & sign == sign and s1 & sign == 0) {
s0 += 1;
}
ix0 -= t;
if (ix1 < t1) {
ix0 -= 1;
}
ix1 = ix1 -% t1;
q1 += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
// rounding direction
if (ix0 | ix1 != 0) {
2018-05-29 00:23:55 +00:00
var z = 1.0 - tiny; // raise inexact
2018-04-15 17:21:52 +00:00
if (z >= 1.0) {
z = 1.0 + tiny;
if (q1 == 0xFFFFFFFF) {
q1 = 0;
q += 1;
} else if (z > 1.0) {
if (q1 == 0xFFFFFFFE) {
q += 1;
}
q1 += 2;
} else {
q1 += q1 & 1;
}
}
}
ix0 = (q >> 1) + 0x3FE00000;
ix1 = q1 >> 1;
if (q & 1 != 0) {
ix1 |= 0x80000000;
}
// NOTE: musl here appears to rely on signed twos-complement wraparound. +% has the same
// behaviour at least.
var iix0 = @intCast(i32, ix0);
2018-04-15 17:21:52 +00:00
iix0 = iix0 +% (m << 20);
const uz = (@intCast(u64, iix0) << 32) | ix1;
2018-04-15 17:21:52 +00:00
return @bitCast(f64, uz);
}
test "sqrt" {
const V = [_]f64{
0.0,
4.089288054930154,
7.538757127071935,
8.97780793672623,
5.304443821913729,
5.682408965311888,
0.5846878579110049,
3.650338664297043,
0.3178091951800732,
7.1505232436382835,
3.6589165881946464,
};
// Note that @sqrt will either generate the sqrt opcode (if supported by the
// target ISA) or a call to `sqrtf` otherwise.
for (V) |val|
try std.testing.expectEqual(@sqrt(val), sqrt(val));
}
test "sqrt special" {
2021-05-04 17:47:26 +00:00
try std.testing.expect(std.math.isPositiveInf(sqrt(std.math.inf(f64))));
try std.testing.expect(sqrt(0.0) == 0.0);
try std.testing.expect(sqrt(-0.0) == -0.0);
try std.testing.expect(isNan(sqrt(-1.0)));
try std.testing.expect(isNan(sqrt(std.math.nan(f64))));
}
2018-04-15 17:21:52 +00:00
export fn sqrtf(x: f32) f32 {
const tiny: f32 = 1.0e-30;
2019-11-07 04:25:57 +00:00
const sign: i32 = @bitCast(i32, @as(u32, 0x80000000));
2018-04-15 17:21:52 +00:00
var ix: i32 = @bitCast(i32, x);
if ((ix & 0x7F800000) == 0x7F800000) {
2018-05-29 00:23:55 +00:00
return x * x + x; // sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = snan
2018-04-15 17:21:52 +00:00
}
// zero
if (ix <= 0) {
if (ix & ~sign == 0) {
2018-05-29 00:23:55 +00:00
return x; // sqrt (+-0) = +-0
2018-04-15 17:21:52 +00:00
}
if (ix < 0) {
return math.snan(f32);
}
}
// normalize
var m = ix >> 23;
if (m == 0) {
// subnormal
var i: i32 = 0;
while (ix & 0x00800000 == 0) : (i += 1) {
ix <<= 1;
}
m -= i - 1;
}
2018-05-29 00:23:55 +00:00
m -= 127; // unbias exponent
2018-04-15 17:21:52 +00:00
ix = (ix & 0x007FFFFF) | 0x00800000;
2018-05-29 00:23:55 +00:00
if (m & 1 != 0) { // odd m, double x to even
2018-04-15 17:21:52 +00:00
ix += ix;
}
2018-05-29 00:23:55 +00:00
m >>= 1; // m = [m / 2]
2018-04-15 17:21:52 +00:00
// sqrt(x) bit by bit
ix += ix;
2018-05-29 00:23:55 +00:00
var q: i32 = 0; // q = sqrt(x)
2018-04-15 17:21:52 +00:00
var s: i32 = 0;
2018-05-29 00:23:55 +00:00
var r: i32 = 0x01000000; // r = moving bit right -> left
2018-04-15 17:21:52 +00:00
while (r != 0) {
const t = s + r;
if (t <= ix) {
s = t + r;
ix -= t;
q += r;
}
ix += ix;
r >>= 1;
}
// floating add to find rounding direction
if (ix != 0) {
2018-05-29 00:23:55 +00:00
var z = 1.0 - tiny; // inexact
2018-04-15 17:21:52 +00:00
if (z >= 1.0) {
z = 1.0 + tiny;
if (z > 1.0) {
q += 2;
} else {
if (q & 1 != 0) {
q += 1;
}
}
}
}
ix = (q >> 1) + 0x3f000000;
ix += m << 23;
return @bitCast(f32, ix);
}
test "sqrtf" {
const V = [_]f32{
0.0,
4.089288054930154,
7.538757127071935,
8.97780793672623,
5.304443821913729,
5.682408965311888,
0.5846878579110049,
3.650338664297043,
0.3178091951800732,
7.1505232436382835,
3.6589165881946464,
};
// Note that @sqrt will either generate the sqrt opcode (if supported by the
// target ISA) or a call to `sqrtf` otherwise.
for (V) |val|
try std.testing.expectEqual(@sqrt(val), sqrtf(val));
}
test "sqrtf special" {
2021-05-04 17:47:26 +00:00
try std.testing.expect(std.math.isPositiveInf(sqrtf(std.math.inf(f32))));
try std.testing.expect(sqrtf(0.0) == 0.0);
try std.testing.expect(sqrtf(-0.0) == -0.0);
try std.testing.expect(isNan(sqrtf(-1.0)));
try std.testing.expect(isNan(sqrtf(std.math.nan(f32))));
}