zig/std/special/compiler_rt/mulXf3.zig

286 lines
11 KiB
Zig
Raw Normal View History

// Ported from:
//
// https://github.com/llvm/llvm-project/blob/2ffb1b0413efa9a24eb3c49e710e36f92e2cb50b/compiler-rt/lib/builtins/fp_mul_impl.inc
const std = @import("std");
const builtin = @import("builtin");
const compiler_rt = @import("../compiler_rt.zig");
pub extern fn __multf3(a: f128, b: f128) f128 {
return mulXf3(f128, a, b);
}
pub extern fn __muldf3(a: f64, b: f64) f64 {
return mulXf3(f64, a, b);
}
pub extern fn __mulsf3(a: f32, b: f32) f32 {
return mulXf3(f32, a, b);
}
fn mulXf3(comptime T: type, a: T, b: T) T {
const Z = @IntType(false, T.bit_count);
const typeWidth = T.bit_count;
const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T);
const signBit = (Z(1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1);
const exponentBias = (maxExponent >> 1);
const implicitBit = (Z(1) << significandBits);
const quietBit = implicitBit >> 1;
const significandMask = implicitBit - 1;
const absMask = signBit - 1;
const exponentMask = absMask ^ significandMask;
const qnanRep = exponentMask | quietBit;
const infRep = @bitCast(Z, std.math.inf(T));
const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent);
const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent);
const productSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit;
var aSignificand: Z = @bitCast(Z, a) & significandMask;
var bSignificand: Z = @bitCast(Z, b) & significandMask;
var scale: i32 = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent -% 1 >= maxExponent -% 1 or bExponent -% 1 >= maxExponent -% 1) {
const aAbs: Z = @bitCast(Z, a) & absMask;
const bAbs: Z = @bitCast(Z, b) & absMask;
// NaN * anything = qNaN
if (aAbs > infRep) return @bitCast(T, @bitCast(Z, a) | quietBit);
// anything * NaN = qNaN
if (bAbs > infRep) return @bitCast(T, @bitCast(Z, b) | quietBit);
if (aAbs == infRep) {
// infinity * non-zero = +/- infinity
if (bAbs != 0) {
return @bitCast(T, aAbs | productSign);
} else {
// infinity * zero = NaN
return @bitCast(T, qnanRep);
}
}
if (bAbs == infRep) {
//? non-zero * infinity = +/- infinity
if (aAbs != 0) {
return @bitCast(T, bAbs | productSign);
} else {
// zero * infinity = NaN
return @bitCast(T, qnanRep);
}
}
// zero * anything = +/- zero
if (aAbs == 0) return @bitCast(T, productSign);
// anything * zero = +/- zero
if (bAbs == 0) return @bitCast(T, productSign);
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < implicitBit) scale +%= normalize(T, &aSignificand);
if (bAbs < implicitBit) scale +%= normalize(T, &bSignificand);
}
// Or in the implicit significand bit. (If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.)
aSignificand |= implicitBit;
bSignificand |= implicitBit;
// Get the significand of a*b. Before multiplying the significands, shift
// one of them left to left-align it in the field. Thus, the product will
// have (exponentBits + 2) integral digits, all but two of which must be
// zero. Normalizing this result is just a conditional left-shift by one
// and bumping the exponent accordingly.
var productHi: Z = undefined;
var productLo: Z = undefined;
wideMultiply(Z, aSignificand, bSignificand << exponentBits, &productHi, &productLo);
var productExponent: i32 = @bitCast(i32, aExponent +% bExponent) -% exponentBias +% scale;
// Normalize the significand, adjust exponent if needed.
if ((productHi & implicitBit) != 0) {
productExponent +%= 1;
} else {
productHi = (productHi << 1) | (productLo >> (typeWidth - 1));
productLo = productLo << 1;
}
// If we have overflowed the type, return +/- infinity.
if (productExponent >= maxExponent) return @bitCast(T, infRep | productSign);
if (productExponent <= 0) {
// Result is denormal before rounding
//
// If the result is so small that it just underflows to zero, return
// a zero of the appropriate sign. Mathematically there is no need to
// handle this case separately, but we make it a special case to
// simplify the shift logic.
const shift: u32 = @truncate(u32, Z(1) -% @bitCast(u32, productExponent));
if (shift >= typeWidth) return @bitCast(T, productSign);
// Otherwise, shift the significand of the result so that the round
// bit is the high bit of productLo.
wideRightShiftWithSticky(Z, &productHi, &productLo, shift);
} else {
// Result is normal before rounding; insert the exponent.
productHi &= significandMask;
productHi |= Z(@bitCast(u32, productExponent)) << significandBits;
}
// Insert the sign of the result:
productHi |= productSign;
// Final rounding. The final result may overflow to infinity, or underflow
// to zero, but those are the correct results in those cases. We use the
// default IEEE-754 round-to-nearest, ties-to-even rounding mode.
if (productLo > signBit) productHi +%= 1;
if (productLo == signBit) productHi +%= productHi & 1;
return @bitCast(T, productHi);
}
fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
switch (Z) {
u32 => {
// 32x32 --> 64 bit multiply
const product = u64(a) * u64(b);
hi.* = @truncate(u32, product >> 32);
lo.* = @truncate(u32, product);
},
u64 => {
const S = struct {
fn loWord(x: u64) u64 {
return @truncate(u32, x);
}
fn hiWord(x: u64) u64 {
return @truncate(u32, x >> 32);
}
};
// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
// Each of the component 32x32 -> 64 products
const plolo: u64 = S.loWord(a) * S.loWord(b);
const plohi: u64 = S.loWord(a) * S.hiWord(b);
const philo: u64 = S.hiWord(a) * S.loWord(b);
const phihi: u64 = S.hiWord(a) * S.hiWord(b);
// Sum terms that contribute to lo in a way that allows us to get the carry
const r0: u64 = S.loWord(plolo);
const r1: u64 = S.hiWord(plolo) +% S.loWord(plohi) +% S.loWord(philo);
lo.* = r0 +% (r1 << 32);
// Sum terms contributing to hi with the carry from lo
hi.* = S.hiWord(plohi) +% S.hiWord(philo) +% S.hiWord(r1) +% phihi;
},
u128 => {
const Word_LoMask = u64(0x00000000ffffffff);
const Word_HiMask = u64(0xffffffff00000000);
const Word_FullMask = u64(0xffffffffffffffff);
const S = struct {
fn Word_1(x: u128) u64 {
return @truncate(u32, x >> 96);
}
fn Word_2(x: u128) u64 {
return @truncate(u32, x >> 64);
}
fn Word_3(x: u128) u64 {
return @truncate(u32, x >> 32);
}
fn Word_4(x: u128) u64 {
return @truncate(u32, x);
}
};
// 128x128 -> 256 wide multiply for platforms that don't have such an operation;
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
const product11: u64 = S.Word_1(a) * S.Word_1(b);
const product12: u64 = S.Word_1(a) * S.Word_2(b);
const product13: u64 = S.Word_1(a) * S.Word_3(b);
const product14: u64 = S.Word_1(a) * S.Word_4(b);
const product21: u64 = S.Word_2(a) * S.Word_1(b);
const product22: u64 = S.Word_2(a) * S.Word_2(b);
const product23: u64 = S.Word_2(a) * S.Word_3(b);
const product24: u64 = S.Word_2(a) * S.Word_4(b);
const product31: u64 = S.Word_3(a) * S.Word_1(b);
const product32: u64 = S.Word_3(a) * S.Word_2(b);
const product33: u64 = S.Word_3(a) * S.Word_3(b);
const product34: u64 = S.Word_3(a) * S.Word_4(b);
const product41: u64 = S.Word_4(a) * S.Word_1(b);
const product42: u64 = S.Word_4(a) * S.Word_2(b);
const product43: u64 = S.Word_4(a) * S.Word_3(b);
const product44: u64 = S.Word_4(a) * S.Word_4(b);
const sum0: u128 = u128(product44);
const sum1: u128 = u128(product34) +%
u128(product43);
const sum2: u128 = u128(product24) +%
u128(product33) +%
u128(product42);
const sum3: u128 = u128(product14) +%
u128(product23) +%
u128(product32) +%
u128(product41);
const sum4: u128 = u128(product13) +%
u128(product22) +%
u128(product31);
const sum5: u128 = u128(product12) +%
u128(product21);
const sum6: u128 = u128(product11);
const r0: u128 = (sum0 & Word_FullMask) +%
((sum1 & Word_LoMask) << 32);
const r1: u128 = (sum0 >> 64) +%
((sum1 >> 32) & Word_FullMask) +%
(sum2 & Word_FullMask) +%
((sum3 << 32) & Word_HiMask);
lo.* = r0 +% (r1 << 64);
hi.* = (r1 >> 64) +%
(sum1 >> 96) +%
(sum2 >> 64) +%
(sum3 >> 32) +%
sum4 +%
(sum5 << 32) +%
(sum6 << 64);
},
else => @compileError("unsupported"),
}
}
fn normalize(comptime T: type, significand: *@IntType(false, T.bit_count)) i32 {
const Z = @IntType(false, T.bit_count);
const significandBits = std.math.floatMantissaBits(T);
const implicitBit = Z(1) << significandBits;
const shift = @clz(significand.*) - @clz(implicitBit);
significand.* <<= @intCast(std.math.Log2Int(Z), shift);
return 1 - shift;
}
fn wideRightShiftWithSticky(comptime Z: type, hi: *Z, lo: *Z, count: u32) void {
const typeWidth = Z.bit_count;
const S = std.math.Log2Int(Z);
if (count < typeWidth) {
const sticky = @truncate(u8, lo.* << @intCast(S, typeWidth -% count));
lo.* = (hi.* << @intCast(S, typeWidth -% count)) | (lo.* >> @intCast(S, count)) | sticky;
hi.* = hi.* >> @intCast(S, count);
} else if (count < 2 * typeWidth) {
const sticky = @truncate(u8, hi.* << @intCast(S, 2 * typeWidth -% count) | lo.*);
lo.* = hi.* >> @intCast(S, count -% typeWidth) | sticky;
hi.* = 0;
} else {
const sticky = @truncate(u8, hi.* | lo.*);
lo.* = sticky;
hi.* = 0;
}
}
test "import mulXf3" {
_ = @import("mulXf3_test.zig");
}