godot/servers/visual/visual_server_scene.h
lawnjelly 0b30d77384 Physics Interpolation - refactor Camera and fix get_camera_transform()
* Moves 3D Camera interpolation scene side.
* Automatically switches `get_camera_transform()` to report interpolated transform during `_process()`.
* Fixes `ClippedCamera` to work with physics interpolation.
2024-06-09 12:08:27 +01:00

953 lines
34 KiB
C++

/**************************************************************************/
/* visual_server_scene.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef VISUAL_SERVER_SCENE_H
#define VISUAL_SERVER_SCENE_H
#include "servers/visual/rasterizer.h"
#include "core/math/bvh.h"
#include "core/math/geometry.h"
#include "core/math/octree.h"
#include "core/os/semaphore.h"
#include "core/os/thread.h"
#include "core/safe_refcount.h"
#include "core/self_list.h"
#include "portals/portal_renderer.h"
#include "servers/arvr/arvr_interface.h"
class VisualServerLightCuller;
class VisualServerScene {
public:
enum {
MAX_INSTANCE_CULL = 65536,
MAX_LIGHTS_CULLED = 4096,
MAX_REFLECTION_PROBES_CULLED = 4096,
MAX_ROOM_CULL = 32,
MAX_EXTERIOR_PORTALS = 128,
};
uint64_t render_pass;
static VisualServerScene *singleton;
/* EVENT QUEUING */
void tick();
void pre_draw(bool p_will_draw);
/* CAMERA API */
struct Scenario;
struct Camera : public RID_Data {
enum Type {
PERSPECTIVE,
ORTHOGONAL,
FRUSTUM
};
Type type;
float fov;
float znear, zfar;
float size;
Vector2 offset;
uint32_t visible_layers;
RID env;
Transform transform;
bool vaspect : 1;
int32_t previous_room_id_hint;
Camera() {
visible_layers = 0xFFFFFFFF;
fov = 70;
type = PERSPECTIVE;
znear = 0.05;
zfar = 100;
size = 1.0;
offset = Vector2();
vaspect = false;
previous_room_id_hint = -1;
}
};
mutable RID_Owner<Camera> camera_owner;
virtual RID camera_create();
virtual void camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far);
virtual void camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far);
virtual void camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far);
virtual void camera_set_transform(RID p_camera, const Transform &p_transform);
virtual void camera_set_cull_mask(RID p_camera, uint32_t p_layers);
virtual void camera_set_environment(RID p_camera, RID p_env);
virtual void camera_set_use_vertical_aspect(RID p_camera, bool p_enable);
/* SCENARIO API */
struct Instance;
// common interface for all spatial partitioning schemes
// this is a bit excessive boilerplatewise but can be removed if we decide to stick with one method
// note this is actually the BVH id +1, so that visual server can test against zero
// for validity to maintain compatibility with octree (where 0 indicates invalid)
typedef uint32_t SpatialPartitionID;
class SpatialPartitioningScene {
public:
virtual SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb, int p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t pairable_mask) = 0;
virtual void erase(SpatialPartitionID p_handle) = 0;
virtual void move(SpatialPartitionID p_handle, const AABB &p_aabb) = 0;
virtual void activate(SpatialPartitionID p_handle, const AABB &p_aabb) {}
virtual void deactivate(SpatialPartitionID p_handle) {}
virtual void force_collision_check(SpatialPartitionID p_handle) {}
virtual void update() {}
virtual void update_collisions() {}
virtual void set_pairable(Instance *p_instance, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) = 0;
virtual int cull_convex(const Vector<Plane> &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF) = 0;
virtual int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) = 0;
virtual int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) = 0;
typedef void *(*PairCallback)(void *, uint32_t, Instance *, int, uint32_t, Instance *, int);
typedef void (*UnpairCallback)(void *, uint32_t, Instance *, int, uint32_t, Instance *, int, void *);
virtual void set_pair_callback(PairCallback p_callback, void *p_userdata) = 0;
virtual void set_unpair_callback(UnpairCallback p_callback, void *p_userdata) = 0;
// bvh specific
virtual void params_set_node_expansion(real_t p_value) {}
virtual void params_set_pairing_expansion(real_t p_value) {}
// octree specific
virtual void set_balance(float p_balance) {}
virtual ~SpatialPartitioningScene() {}
};
class SpatialPartitioningScene_Octree : public SpatialPartitioningScene {
Octree_CL<Instance, true> _octree;
public:
SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb, int p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t pairable_mask);
void erase(SpatialPartitionID p_handle);
void move(SpatialPartitionID p_handle, const AABB &p_aabb);
void set_pairable(Instance *p_instance, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask);
int cull_convex(const Vector<Plane> &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF);
int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
void set_pair_callback(PairCallback p_callback, void *p_userdata);
void set_unpair_callback(UnpairCallback p_callback, void *p_userdata);
void set_balance(float p_balance);
};
class SpatialPartitioningScene_BVH : public SpatialPartitioningScene {
template <class T>
class UserPairTestFunction {
public:
static bool user_pair_check(const T *p_a, const T *p_b) {
// return false if no collision, decided by masks etc
return true;
}
};
template <class T>
class UserCullTestFunction {
// write this logic once for use in all routines
// double check this as a possible source of bugs in future.
static bool _cull_pairing_mask_test_hit(uint32_t p_maskA, uint32_t p_typeA, uint32_t p_maskB, uint32_t p_typeB) {
// double check this as a possible source of bugs in future.
bool A_match_B = p_maskA & p_typeB;
if (!A_match_B) {
bool B_match_A = p_maskB & p_typeA;
if (!B_match_A) {
return false;
}
}
return true;
}
public:
static bool user_cull_check(const T *p_a, const T *p_b) {
DEV_ASSERT(p_a);
DEV_ASSERT(p_b);
uint32_t a_mask = p_a->bvh_pairable_mask;
uint32_t a_type = p_a->bvh_pairable_type;
uint32_t b_mask = p_b->bvh_pairable_mask;
uint32_t b_type = p_b->bvh_pairable_type;
if (!_cull_pairing_mask_test_hit(a_mask, a_type, b_mask, b_type)) {
return false;
}
return true;
}
};
private:
// Note that SpatialPartitionIDs are +1 based when stored in visual server, to enable 0 to indicate invalid ID.
BVH_Manager<Instance, 2, true, 256, UserPairTestFunction<Instance>, UserCullTestFunction<Instance>> _bvh;
Instance *_dummy_cull_object;
uint32_t find_tree_id_and_collision_mask(bool p_pairable, uint32_t &r_tree_collision_mask) const {
// "pairable" (lights etc) can pair with geometry (non pairable) or other pairables.
// Geometry never pairs with other geometry, so we can eliminate geometry - geometry collision checks.
// Additionally, when lights are made invisible their p_pairable_mask is set to zero to stop their collisions.
// We could potentially choose `tree_collision_mask` based on whether p_pairable_mask is zero,
// in order to catch invisible lights, but in practice these instances will already have been deactivated within
// the BVH so this step is unnecessary. So we can keep the simpler logic of geometry collides with pairable,
// pairable collides with everything.
r_tree_collision_mask = !p_pairable ? 2 : 3;
// Returns tree_id.
return p_pairable ? 1 : 0;
}
public:
SpatialPartitioningScene_BVH();
~SpatialPartitioningScene_BVH();
SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb, int p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask);
void erase(SpatialPartitionID p_handle);
void move(SpatialPartitionID p_handle, const AABB &p_aabb);
void activate(SpatialPartitionID p_handle, const AABB &p_aabb);
void deactivate(SpatialPartitionID p_handle);
void force_collision_check(SpatialPartitionID p_handle);
void update();
void update_collisions();
void set_pairable(Instance *p_instance, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask);
int cull_convex(const Vector<Plane> &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF);
int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
void set_pair_callback(PairCallback p_callback, void *p_userdata);
void set_unpair_callback(UnpairCallback p_callback, void *p_userdata);
void params_set_node_expansion(real_t p_value) { _bvh.params_set_node_expansion(p_value); }
void params_set_pairing_expansion(real_t p_value) { _bvh.params_set_pairing_expansion(p_value); }
};
struct Scenario : RID_Data {
VS::ScenarioDebugMode debug;
RID self;
SpatialPartitioningScene *sps;
PortalRenderer _portal_renderer;
List<Instance *> directional_lights;
RID environment;
RID fallback_environment;
RID reflection_probe_shadow_atlas;
RID reflection_atlas;
SelfList<Instance>::List instances;
Scenario();
~Scenario() { memdelete(sps); }
};
mutable RID_Owner<Scenario> scenario_owner;
static void *_instance_pair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int);
static void _instance_unpair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int, void *);
virtual RID scenario_create();
virtual void scenario_set_debug(RID p_scenario, VS::ScenarioDebugMode p_debug_mode);
virtual void scenario_set_environment(RID p_scenario, RID p_environment);
virtual void scenario_set_fallback_environment(RID p_scenario, RID p_environment);
virtual void scenario_set_reflection_atlas_size(RID p_scenario, int p_size, int p_subdiv);
/* INSTANCING API */
struct InstanceBaseData {
virtual ~InstanceBaseData() {}
};
struct Instance : RasterizerScene::InstanceBase {
RID self;
//scenario stuff
SpatialPartitionID spatial_partition_id;
// rooms & portals
OcclusionHandle occlusion_handle; // handle of instance in occlusion system (or 0)
VisualServer::InstancePortalMode portal_mode;
Scenario *scenario;
SelfList<Instance> scenario_item;
//aabb stuff
bool update_aabb;
bool update_materials;
SelfList<Instance> update_item;
AABB aabb;
AABB transformed_aabb;
AABB *custom_aabb; // <Zylann> would using aabb directly with a bool be better?
float sorting_offset;
bool use_aabb_center;
float extra_margin;
uint32_t object_id;
float lod_begin;
float lod_end;
float lod_begin_hysteresis;
float lod_end_hysteresis;
RID lod_instance;
// These are used for the user cull testing function
// in the BVH, this is precached rather than recalculated each time.
uint32_t bvh_pairable_mask;
uint32_t bvh_pairable_type;
uint64_t last_render_pass;
uint64_t last_frame_pass;
uint64_t version; // changes to this, and changes to base increase version
InstanceBaseData *base_data;
virtual void base_removed() {
singleton->instance_set_base(self, RID());
}
virtual void base_changed(bool p_aabb, bool p_materials) {
singleton->_instance_queue_update(this, p_aabb, p_materials);
}
Instance() :
scenario_item(this),
update_item(this) {
spatial_partition_id = 0;
scenario = nullptr;
update_aabb = false;
update_materials = false;
extra_margin = 0;
object_id = 0;
visible = true;
occlusion_handle = 0;
portal_mode = VisualServer::InstancePortalMode::INSTANCE_PORTAL_MODE_STATIC;
lod_begin = 0;
lod_end = 0;
lod_begin_hysteresis = 0;
lod_end_hysteresis = 0;
bvh_pairable_mask = 0;
bvh_pairable_type = 0;
last_render_pass = 0;
last_frame_pass = 0;
version = 1;
base_data = nullptr;
custom_aabb = nullptr;
sorting_offset = 0.0f;
use_aabb_center = true;
}
~Instance() {
if (base_data) {
memdelete(base_data);
}
if (custom_aabb) {
memdelete(custom_aabb);
}
}
};
SelfList<Instance>::List _instance_update_list;
// fixed timestep interpolation
virtual void set_physics_interpolation_enabled(bool p_enabled);
struct InterpolationData {
void notify_free_instance(RID p_rid, Instance &r_instance);
LocalVector<RID> instance_interpolate_update_list;
LocalVector<RID> instance_transform_update_lists[2];
LocalVector<RID> *instance_transform_update_list_curr = &instance_transform_update_lists[0];
LocalVector<RID> *instance_transform_update_list_prev = &instance_transform_update_lists[1];
bool interpolation_enabled = false;
} _interpolation_data;
void _instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_materials = false);
struct InstanceGeometryData : public InstanceBaseData {
List<Instance *> lighting;
bool lighting_dirty;
bool can_cast_shadows;
bool material_is_animated;
List<Instance *> reflection_probes;
bool reflection_dirty;
List<Instance *> gi_probes;
bool gi_probes_dirty;
List<Instance *> lightmap_captures;
InstanceGeometryData() {
lighting_dirty = true;
reflection_dirty = true;
can_cast_shadows = true;
material_is_animated = true;
gi_probes_dirty = true;
}
};
struct InstanceReflectionProbeData : public InstanceBaseData {
Instance *owner;
struct PairInfo {
List<Instance *>::Element *L; //reflection iterator in geometry
Instance *geometry;
};
List<PairInfo> geometries;
RID instance;
bool reflection_dirty;
SelfList<InstanceReflectionProbeData> update_list;
int render_step;
int32_t previous_room_id_hint;
InstanceReflectionProbeData() :
update_list(this) {
reflection_dirty = true;
render_step = -1;
previous_room_id_hint = -1;
}
};
SelfList<InstanceReflectionProbeData>::List reflection_probe_render_list;
struct InstanceLightData : public InstanceBaseData {
struct PairInfo {
List<Instance *>::Element *L; //light iterator in geometry
Instance *geometry;
};
RID instance;
uint64_t last_version;
List<Instance *>::Element *D; // directional light in scenario
List<PairInfo> geometries;
Instance *baked_light;
int32_t previous_room_id_hint;
private:
// Instead of a single dirty flag, we maintain a count
// so that we can detect lights that are being made dirty
// each frame, and switch on tighter caster culling.
int32_t shadow_dirty_count;
uint32_t light_update_frame_id;
bool light_intersects_multiple_cameras;
uint32_t light_intersects_multiple_cameras_timeout_frame_id;
public:
bool is_shadow_dirty() const { return shadow_dirty_count != 0; }
void make_shadow_dirty() { shadow_dirty_count = light_intersects_multiple_cameras ? 1 : 2; }
void detect_light_intersects_multiple_cameras(uint32_t p_frame_id) {
// We need to detect the case where shadow updates are occurring
// more than once per frame. In this case, we need to turn off
// tighter caster culling, so situation reverts to one full shadow update
// per frame (light_intersects_multiple_cameras is set).
if (p_frame_id == light_update_frame_id) {
light_intersects_multiple_cameras = true;
light_intersects_multiple_cameras_timeout_frame_id = p_frame_id + 60;
} else {
// When shadow_volume_intersects_multiple_cameras is set, we
// want to detect the situation this is no longer the case, via a timeout.
// The system can go back to tighter caster culling in this situation.
// Having a long-ish timeout prevents rapid cycling.
if (light_intersects_multiple_cameras && (p_frame_id >= light_intersects_multiple_cameras_timeout_frame_id)) {
light_intersects_multiple_cameras = false;
light_intersects_multiple_cameras_timeout_frame_id = UINT32_MAX;
}
}
light_update_frame_id = p_frame_id;
}
void decrement_shadow_dirty() {
shadow_dirty_count--;
DEV_ASSERT(shadow_dirty_count >= 0);
}
// Shadow updates can either full (everything in the shadow volume)
// or closely culled to the camera frustum.
bool is_shadow_update_full() const { return shadow_dirty_count == 0; }
InstanceLightData() {
shadow_dirty_count = 1;
light_update_frame_id = UINT32_MAX;
light_intersects_multiple_cameras_timeout_frame_id = UINT32_MAX;
light_intersects_multiple_cameras = false;
D = nullptr;
last_version = 0;
baked_light = nullptr;
previous_room_id_hint = -1;
}
};
struct InstanceGIProbeData : public InstanceBaseData {
Instance *owner;
struct PairInfo {
List<Instance *>::Element *L; //gi probe iterator in geometry
Instance *geometry;
};
List<PairInfo> geometries;
Set<Instance *> lights;
struct LightCache {
VS::LightType type;
Transform transform;
Color color;
float energy;
float radius;
float attenuation;
float spot_angle;
float spot_attenuation;
bool visible;
bool operator==(const LightCache &p_cache) {
return (type == p_cache.type &&
transform == p_cache.transform &&
color == p_cache.color &&
energy == p_cache.energy &&
radius == p_cache.radius &&
attenuation == p_cache.attenuation &&
spot_angle == p_cache.spot_angle &&
spot_attenuation == p_cache.spot_attenuation &&
visible == p_cache.visible);
}
bool operator!=(const LightCache &p_cache) {
return !operator==(p_cache);
}
LightCache() {
type = VS::LIGHT_DIRECTIONAL;
energy = 1.0;
radius = 1.0;
attenuation = 1.0;
spot_angle = 1.0;
spot_attenuation = 1.0;
visible = true;
}
};
struct LocalData {
uint16_t pos[3];
uint16_t energy[3]; //using 0..1024 for float range 0..1. integer is needed for deterministic add/remove of lights
};
struct CompBlockS3TC {
uint32_t offset; //offset in mipmap
uint32_t source_count; //sources
uint32_t sources[16]; //id for each source
uint8_t alpha[8]; //alpha block is pre-computed
};
struct Dynamic {
Map<RID, LightCache> light_cache;
Map<RID, LightCache> light_cache_changes;
PoolVector<int> light_data;
PoolVector<LocalData> local_data;
Vector<Vector<uint32_t>> level_cell_lists;
RID probe_data;
bool enabled;
int bake_dynamic_range;
RasterizerStorage::GIProbeCompression compression;
Vector<PoolVector<uint8_t>> mipmaps_3d;
Vector<PoolVector<CompBlockS3TC>> mipmaps_s3tc; //for s3tc
int updating_stage;
float propagate;
int grid_size[3];
Transform light_to_cell_xform;
} dynamic;
RID probe_instance;
bool invalid;
uint32_t base_version;
SelfList<InstanceGIProbeData> update_element;
InstanceGIProbeData() :
update_element(this) {
invalid = true;
base_version = 0;
dynamic.updating_stage = GI_UPDATE_STAGE_CHECK;
}
};
SelfList<InstanceGIProbeData>::List gi_probe_update_list;
struct InstanceLightmapCaptureData : public InstanceBaseData {
struct PairInfo {
List<Instance *>::Element *L; //iterator in geometry
Instance *geometry;
};
List<PairInfo> geometries;
Set<Instance *> users;
InstanceLightmapCaptureData() {
}
};
int instance_cull_count;
Instance *instance_cull_result[MAX_INSTANCE_CULL];
Instance *instance_shadow_cull_result[MAX_INSTANCE_CULL]; //used for generating shadowmaps
Instance *light_cull_result[MAX_LIGHTS_CULLED];
RID light_instance_cull_result[MAX_LIGHTS_CULLED];
int light_cull_count;
int directional_light_count;
VisualServerLightCuller *light_culler;
RID reflection_probe_instance_cull_result[MAX_REFLECTION_PROBES_CULLED];
int reflection_probe_cull_count;
RID_Owner<Instance> instance_owner;
virtual RID instance_create();
virtual void instance_set_base(RID p_instance, RID p_base);
virtual void instance_set_scenario(RID p_instance, RID p_scenario);
virtual void instance_set_layer_mask(RID p_instance, uint32_t p_mask);
virtual void instance_set_pivot_data(RID p_instance, float p_sorting_offset, bool p_use_aabb_center);
virtual void instance_set_transform(RID p_instance, const Transform &p_transform);
virtual void instance_set_interpolated(RID p_instance, bool p_interpolated);
virtual void instance_reset_physics_interpolation(RID p_instance);
virtual void instance_attach_object_instance_id(RID p_instance, ObjectID p_id);
virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight);
virtual void instance_set_surface_material(RID p_instance, int p_surface, RID p_material);
virtual void instance_set_visible(RID p_instance, bool p_visible);
virtual void instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap, int p_lightmap_slice, const Rect2 &p_lightmap_uv_rect);
virtual void instance_set_custom_aabb(RID p_instance, AABB p_aabb);
virtual void instance_attach_skeleton(RID p_instance, RID p_skeleton);
virtual void instance_set_exterior(RID p_instance, bool p_enabled);
virtual void instance_set_extra_visibility_margin(RID p_instance, real_t p_margin);
// Portals
virtual void instance_set_portal_mode(RID p_instance, VisualServer::InstancePortalMode p_mode);
bool _instance_get_transformed_aabb(RID p_instance, AABB &r_aabb);
bool _instance_get_transformed_aabb_for_occlusion(VSInstance *p_instance, AABB &r_aabb) const {
r_aabb = ((Instance *)p_instance)->transformed_aabb;
return ((Instance *)p_instance)->portal_mode != VisualServer::INSTANCE_PORTAL_MODE_GLOBAL;
}
void *_instance_get_from_rid(RID p_instance);
bool _instance_cull_check(VSInstance *p_instance, uint32_t p_cull_mask) const {
uint32_t pairable_type = 1 << ((Instance *)p_instance)->base_type;
return pairable_type & p_cull_mask;
}
ObjectID _instance_get_object_ID(VSInstance *p_instance) const {
if (p_instance) {
return ((Instance *)p_instance)->object_id;
}
return 0;
}
private:
void _instance_create_occlusion_rep(Instance *p_instance);
void _instance_destroy_occlusion_rep(Instance *p_instance);
public:
struct Ghost : RID_Data {
// all interactions with actual ghosts are indirect, as the ghost is part of the scenario
Scenario *scenario = nullptr;
uint32_t object_id = 0;
RGhostHandle rghost_handle = 0; // handle in occlusion system (or 0)
AABB aabb;
virtual ~Ghost() {
if (scenario) {
if (rghost_handle) {
scenario->_portal_renderer.rghost_destroy(rghost_handle);
rghost_handle = 0;
}
scenario = nullptr;
}
}
};
RID_Owner<Ghost> ghost_owner;
virtual RID ghost_create();
virtual void ghost_set_scenario(RID p_ghost, RID p_scenario, ObjectID p_id, const AABB &p_aabb);
virtual void ghost_update(RID p_ghost, const AABB &p_aabb);
private:
void _ghost_create_occlusion_rep(Ghost *p_ghost);
void _ghost_destroy_occlusion_rep(Ghost *p_ghost);
public:
/* PORTALS API */
struct Portal : RID_Data {
// all interactions with actual portals are indirect, as the portal is part of the scenario
uint32_t scenario_portal_id = 0;
Scenario *scenario = nullptr;
virtual ~Portal() {
if (scenario) {
scenario->_portal_renderer.portal_destroy(scenario_portal_id);
scenario = nullptr;
scenario_portal_id = 0;
}
}
};
RID_Owner<Portal> portal_owner;
virtual RID portal_create();
virtual void portal_set_scenario(RID p_portal, RID p_scenario);
virtual void portal_set_geometry(RID p_portal, const Vector<Vector3> &p_points, real_t p_margin);
virtual void portal_link(RID p_portal, RID p_room_from, RID p_room_to, bool p_two_way);
virtual void portal_set_active(RID p_portal, bool p_active);
/* ROOMGROUPS API */
struct RoomGroup : RID_Data {
// all interactions with actual roomgroups are indirect, as the roomgroup is part of the scenario
uint32_t scenario_roomgroup_id = 0;
Scenario *scenario = nullptr;
virtual ~RoomGroup() {
if (scenario) {
scenario->_portal_renderer.roomgroup_destroy(scenario_roomgroup_id);
scenario = nullptr;
scenario_roomgroup_id = 0;
}
}
};
RID_Owner<RoomGroup> roomgroup_owner;
virtual RID roomgroup_create();
virtual void roomgroup_prepare(RID p_roomgroup, ObjectID p_roomgroup_object_id);
virtual void roomgroup_set_scenario(RID p_roomgroup, RID p_scenario);
virtual void roomgroup_add_room(RID p_roomgroup, RID p_room);
/* OCCLUDERS API */
struct OccluderInstance : RID_Data {
uint32_t scenario_occluder_id = 0;
Scenario *scenario = nullptr;
virtual ~OccluderInstance() {
if (scenario) {
scenario->_portal_renderer.occluder_instance_destroy(scenario_occluder_id);
scenario = nullptr;
scenario_occluder_id = 0;
}
}
};
RID_Owner<OccluderInstance> occluder_instance_owner;
struct OccluderResource : RID_Data {
uint32_t occluder_resource_id = 0;
void destroy(PortalResources &r_portal_resources) {
r_portal_resources.occluder_resource_destroy(occluder_resource_id);
occluder_resource_id = 0;
}
virtual ~OccluderResource() {
DEV_ASSERT(occluder_resource_id == 0);
}
};
RID_Owner<OccluderResource> occluder_resource_owner;
virtual RID occluder_instance_create();
virtual void occluder_instance_set_scenario(RID p_occluder_instance, RID p_scenario);
virtual void occluder_instance_link_resource(RID p_occluder_instance, RID p_occluder_resource);
virtual void occluder_instance_set_transform(RID p_occluder_instance, const Transform &p_xform);
virtual void occluder_instance_set_active(RID p_occluder_instance, bool p_active);
virtual RID occluder_resource_create();
virtual void occluder_resource_prepare(RID p_occluder_resource, VisualServer::OccluderType p_type);
virtual void occluder_resource_spheres_update(RID p_occluder_resource, const Vector<Plane> &p_spheres);
virtual void occluder_resource_mesh_update(RID p_occluder_resource, const Geometry::OccluderMeshData &p_mesh_data);
virtual void set_use_occlusion_culling(bool p_enable);
// editor only .. slow
virtual Geometry::MeshData occlusion_debug_get_current_polys(RID p_scenario) const;
const PortalResources &get_portal_resources() const {
return _portal_resources;
}
PortalResources &get_portal_resources() {
return _portal_resources;
}
/* ROOMS API */
struct Room : RID_Data {
// all interactions with actual rooms are indirect, as the room is part of the scenario
uint32_t scenario_room_id = 0;
Scenario *scenario = nullptr;
virtual ~Room() {
if (scenario) {
scenario->_portal_renderer.room_destroy(scenario_room_id);
scenario = nullptr;
scenario_room_id = 0;
}
}
};
RID_Owner<Room> room_owner;
virtual RID room_create();
virtual void room_set_scenario(RID p_room, RID p_scenario);
virtual void room_add_instance(RID p_room, RID p_instance, const AABB &p_aabb, const Vector<Vector3> &p_object_pts);
virtual void room_add_ghost(RID p_room, ObjectID p_object_id, const AABB &p_aabb);
virtual void room_set_bound(RID p_room, ObjectID p_room_object_id, const Vector<Plane> &p_convex, const AABB &p_aabb, const Vector<Vector3> &p_verts);
virtual void room_prepare(RID p_room, int32_t p_priority);
virtual void rooms_and_portals_clear(RID p_scenario);
virtual void rooms_unload(RID p_scenario, String p_reason);
virtual void rooms_finalize(RID p_scenario, bool p_generate_pvs, bool p_cull_using_pvs, bool p_use_secondary_pvs, bool p_use_signals, String p_pvs_filename, bool p_use_simple_pvs, bool p_log_pvs_generation);
virtual void rooms_override_camera(RID p_scenario, bool p_override, const Vector3 &p_point, const Vector<Plane> *p_convex);
virtual void rooms_set_active(RID p_scenario, bool p_active);
virtual void rooms_set_params(RID p_scenario, int p_portal_depth_limit, real_t p_roaming_expansion_margin);
virtual void rooms_set_debug_feature(RID p_scenario, VisualServer::RoomsDebugFeature p_feature, bool p_active);
virtual void rooms_update_gameplay_monitor(RID p_scenario, const Vector<Vector3> &p_camera_positions);
// don't use this in a game
virtual bool rooms_is_loaded(RID p_scenario) const;
virtual void callbacks_register(VisualServerCallbacks *p_callbacks);
VisualServerCallbacks *get_callbacks() const {
return _visual_server_callbacks;
}
// don't use these in a game!
virtual Vector<ObjectID> instances_cull_aabb(const AABB &p_aabb, RID p_scenario = RID()) const;
virtual Vector<ObjectID> instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario = RID()) const;
virtual Vector<ObjectID> instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario = RID()) const;
// internal (uses portals when available)
int _cull_convex_from_point(Scenario *p_scenario, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, const Vector<Plane> &p_convex, Instance **p_result_array, int p_result_max, int32_t &r_previous_room_id_hint, uint32_t p_mask = 0xFFFFFFFF);
void _rooms_instance_update(Instance *p_instance, const AABB &p_aabb);
virtual void instance_geometry_set_flag(RID p_instance, VS::InstanceFlags p_flags, bool p_enabled);
virtual void instance_geometry_set_cast_shadows_setting(RID p_instance, VS::ShadowCastingSetting p_shadow_casting_setting);
virtual void instance_geometry_set_material_override(RID p_instance, RID p_material);
virtual void instance_geometry_set_material_overlay(RID p_instance, RID p_material);
_FORCE_INLINE_ void _update_instance(Instance *p_instance);
_FORCE_INLINE_ void _update_instance_aabb(Instance *p_instance);
_FORCE_INLINE_ void _update_dirty_instance(Instance *p_instance);
_FORCE_INLINE_ void _update_instance_lightmap_captures(Instance *p_instance);
_FORCE_INLINE_ bool _light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_shadow_atlas, Scenario *p_scenario, uint32_t p_visible_layers = 0xFFFFFF);
void _prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int32_t &r_previous_room_id_hint);
void _render_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, const int p_eye, bool p_cam_orthogonal, RID p_force_environment, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass);
void render_empty_scene(RID p_scenario, RID p_shadow_atlas);
void render_camera(RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas);
void render_camera(Ref<ARVRInterface> &p_interface, ARVRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas);
void update_dirty_instances();
// interpolation
void update_interpolation_tick(bool p_process = true);
void update_interpolation_frame(bool p_process = true);
//probes
struct GIProbeDataHeader {
uint32_t version;
uint32_t cell_subdiv;
uint32_t width;
uint32_t height;
uint32_t depth;
uint32_t cell_count;
uint32_t leaf_cell_count;
};
struct GIProbeDataCell {
uint32_t children[8];
uint32_t albedo;
uint32_t emission;
uint32_t normal;
uint32_t level_alpha;
};
enum {
GI_UPDATE_STAGE_CHECK,
GI_UPDATE_STAGE_LIGHTING,
GI_UPDATE_STAGE_UPLOADING,
};
void _gi_probe_bake_thread();
static void _gi_probe_bake_threads(void *);
bool probe_bake_thread_exit;
Thread probe_bake_thread;
Semaphore probe_bake_sem;
Mutex probe_bake_mutex;
List<Instance *> probe_bake_list;
bool _render_reflection_probe_step(Instance *p_instance, int p_step);
void _gi_probe_fill_local_data(int p_idx, int p_level, int p_x, int p_y, int p_z, const GIProbeDataCell *p_cell, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, Vector<uint32_t> *prev_cell);
_FORCE_INLINE_ uint32_t _gi_bake_find_cell(const GIProbeDataCell *cells, int x, int y, int z, int p_cell_subdiv);
void _bake_gi_downscale_light(int p_idx, int p_level, const GIProbeDataCell *p_cells, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, float p_propagate);
void _bake_gi_probe_light(const GIProbeDataHeader *header, const GIProbeDataCell *cells, InstanceGIProbeData::LocalData *local_data, const uint32_t *leaves, int p_leaf_count, const InstanceGIProbeData::LightCache &light_cache, int p_sign);
void _bake_gi_probe(Instance *p_gi_probe);
bool _check_gi_probe(Instance *p_gi_probe);
void _setup_gi_probe(Instance *p_instance);
void render_probes();
bool free(RID p_rid);
private:
bool _use_bvh;
VisualServerCallbacks *_visual_server_callbacks;
PortalResources _portal_resources;
public:
VisualServerScene();
virtual ~VisualServerScene();
};
#endif // VISUAL_SERVER_SCENE_H