godot/core/math/vector3.cpp
A Thousand Ships 308dbb8c63
[Core] Add scalar versions of Vector* min/max/clamp/snap(ped)
Convenience for a number of cases operating on single values
2024-05-02 10:31:13 +02:00

174 lines
5.9 KiB
C++

/**************************************************************************/
/* vector3.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "vector3.h"
#include "core/math/basis.h"
#include "core/math/vector2.h"
#include "core/math/vector3i.h"
#include "core/string/ustring.h"
void Vector3::rotate(const Vector3 &p_axis, real_t p_angle) {
*this = Basis(p_axis, p_angle).xform(*this);
}
Vector3 Vector3::rotated(const Vector3 &p_axis, real_t p_angle) const {
Vector3 r = *this;
r.rotate(p_axis, p_angle);
return r;
}
Vector3 Vector3::clamp(const Vector3 &p_min, const Vector3 &p_max) const {
return Vector3(
CLAMP(x, p_min.x, p_max.x),
CLAMP(y, p_min.y, p_max.y),
CLAMP(z, p_min.z, p_max.z));
}
Vector3 Vector3::clampf(real_t p_min, real_t p_max) const {
return Vector3(
CLAMP(x, p_min, p_max),
CLAMP(y, p_min, p_max),
CLAMP(z, p_min, p_max));
}
void Vector3::snap(const Vector3 &p_step) {
x = Math::snapped(x, p_step.x);
y = Math::snapped(y, p_step.y);
z = Math::snapped(z, p_step.z);
}
Vector3 Vector3::snapped(const Vector3 &p_step) const {
Vector3 v = *this;
v.snap(p_step);
return v;
}
void Vector3::snapf(real_t p_step) {
x = Math::snapped(x, p_step);
y = Math::snapped(y, p_step);
z = Math::snapped(z, p_step);
}
Vector3 Vector3::snappedf(real_t p_step) const {
Vector3 v = *this;
v.snapf(p_step);
return v;
}
Vector3 Vector3::limit_length(real_t p_len) const {
const real_t l = length();
Vector3 v = *this;
if (l > 0 && p_len < l) {
v /= l;
v *= p_len;
}
return v;
}
Vector3 Vector3::move_toward(const Vector3 &p_to, real_t p_delta) const {
Vector3 v = *this;
Vector3 vd = p_to - v;
real_t len = vd.length();
return len <= p_delta || len < (real_t)CMP_EPSILON ? p_to : v + vd / len * p_delta;
}
Vector2 Vector3::octahedron_encode() const {
Vector3 n = *this;
n /= Math::abs(n.x) + Math::abs(n.y) + Math::abs(n.z);
Vector2 o;
if (n.z >= 0.0f) {
o.x = n.x;
o.y = n.y;
} else {
o.x = (1.0f - Math::abs(n.y)) * (n.x >= 0.0f ? 1.0f : -1.0f);
o.y = (1.0f - Math::abs(n.x)) * (n.y >= 0.0f ? 1.0f : -1.0f);
}
o.x = o.x * 0.5f + 0.5f;
o.y = o.y * 0.5f + 0.5f;
return o;
}
Vector3 Vector3::octahedron_decode(const Vector2 &p_oct) {
Vector2 f(p_oct.x * 2.0f - 1.0f, p_oct.y * 2.0f - 1.0f);
Vector3 n(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y));
const real_t t = CLAMP(-n.z, 0.0f, 1.0f);
n.x += n.x >= 0 ? -t : t;
n.y += n.y >= 0 ? -t : t;
return n.normalized();
}
Vector2 Vector3::octahedron_tangent_encode(float p_sign) const {
const real_t bias = 1.0f / (real_t)32767.0f;
Vector2 res = octahedron_encode();
res.y = MAX(res.y, bias);
res.y = res.y * 0.5f + 0.5f;
res.y = p_sign >= 0.0f ? res.y : 1 - res.y;
return res;
}
Vector3 Vector3::octahedron_tangent_decode(const Vector2 &p_oct, float *r_sign) {
Vector2 oct_compressed = p_oct;
oct_compressed.y = oct_compressed.y * 2 - 1;
*r_sign = oct_compressed.y >= 0.0f ? 1.0f : -1.0f;
oct_compressed.y = Math::abs(oct_compressed.y);
Vector3 res = Vector3::octahedron_decode(oct_compressed);
return res;
}
Basis Vector3::outer(const Vector3 &p_with) const {
Basis basis;
basis.rows[0] = Vector3(x * p_with.x, x * p_with.y, x * p_with.z);
basis.rows[1] = Vector3(y * p_with.x, y * p_with.y, y * p_with.z);
basis.rows[2] = Vector3(z * p_with.x, z * p_with.y, z * p_with.z);
return basis;
}
bool Vector3::is_equal_approx(const Vector3 &p_v) const {
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y) && Math::is_equal_approx(z, p_v.z);
}
bool Vector3::is_zero_approx() const {
return Math::is_zero_approx(x) && Math::is_zero_approx(y) && Math::is_zero_approx(z);
}
bool Vector3::is_finite() const {
return Math::is_finite(x) && Math::is_finite(y) && Math::is_finite(z);
}
Vector3::operator String() const {
return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ")";
}
Vector3::operator Vector3i() const {
return Vector3i(x, y, z);
}