mirror of
https://github.com/godotengine/godot.git
synced 2024-11-14 16:13:08 +00:00
a0dbdcc3ab
* Replaces `find(...) != -1` with `contains` for `String` * Replaces `find(...) == -1` with `!contains` for `String` * Replaces `find(...) != -1` with `has` for containers * Replaces `find(...) == -1` with `!has` for containers
1548 lines
50 KiB
C++
1548 lines
50 KiB
C++
/**************************************************************************/
|
|
/* csg.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#include "csg.h"
|
|
|
|
#include "core/math/geometry_2d.h"
|
|
#include "core/math/math_funcs.h"
|
|
#include "core/templates/sort_array.h"
|
|
|
|
// Static helper functions.
|
|
|
|
inline static bool is_snapable(const Vector3 &p_point1, const Vector3 &p_point2, real_t p_distance) {
|
|
return p_point2.distance_squared_to(p_point1) < p_distance * p_distance;
|
|
}
|
|
|
|
inline static Vector2 interpolate_segment_uv(const Vector2 p_segment_points[2], const Vector2 p_uvs[2], const Vector2 &p_interpolation_point) {
|
|
if (p_segment_points[0].is_equal_approx(p_segment_points[1])) {
|
|
return p_uvs[0];
|
|
}
|
|
|
|
float segment_length = p_segment_points[0].distance_to(p_segment_points[1]);
|
|
float distance = p_segment_points[0].distance_to(p_interpolation_point);
|
|
float fraction = distance / segment_length;
|
|
|
|
return p_uvs[0].lerp(p_uvs[1], fraction);
|
|
}
|
|
|
|
inline static Vector2 interpolate_triangle_uv(const Vector2 p_vertices[3], const Vector2 p_uvs[3], const Vector2 &p_interpolation_point) {
|
|
if (p_interpolation_point.is_equal_approx(p_vertices[0])) {
|
|
return p_uvs[0];
|
|
}
|
|
if (p_interpolation_point.is_equal_approx(p_vertices[1])) {
|
|
return p_uvs[1];
|
|
}
|
|
if (p_interpolation_point.is_equal_approx(p_vertices[2])) {
|
|
return p_uvs[2];
|
|
}
|
|
|
|
Vector2 edge1 = p_vertices[1] - p_vertices[0];
|
|
Vector2 edge2 = p_vertices[2] - p_vertices[0];
|
|
Vector2 interpolation = p_interpolation_point - p_vertices[0];
|
|
|
|
float edge1_on_edge1 = edge1.dot(edge1);
|
|
float edge1_on_edge2 = edge1.dot(edge2);
|
|
float edge2_on_edge2 = edge2.dot(edge2);
|
|
float inter_on_edge1 = interpolation.dot(edge1);
|
|
float inter_on_edge2 = interpolation.dot(edge2);
|
|
float scale = (edge1_on_edge1 * edge2_on_edge2 - edge1_on_edge2 * edge1_on_edge2);
|
|
if (scale == 0) {
|
|
return p_uvs[0];
|
|
}
|
|
|
|
float v = (edge2_on_edge2 * inter_on_edge1 - edge1_on_edge2 * inter_on_edge2) / scale;
|
|
float w = (edge1_on_edge1 * inter_on_edge2 - edge1_on_edge2 * inter_on_edge1) / scale;
|
|
float u = 1.0f - v - w;
|
|
|
|
return p_uvs[0] * u + p_uvs[1] * v + p_uvs[2] * w;
|
|
}
|
|
|
|
static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 p_vertices[3], float p_tolerance, Vector3 &r_intersection_point) {
|
|
Vector3 edge1 = p_vertices[1] - p_vertices[0];
|
|
Vector3 edge2 = p_vertices[2] - p_vertices[0];
|
|
Vector3 h = p_dir.cross(edge2);
|
|
real_t a = edge1.dot(h);
|
|
// Check if ray is parallel to triangle.
|
|
if (Math::is_zero_approx(a)) {
|
|
return false;
|
|
}
|
|
real_t f = 1.0 / a;
|
|
|
|
Vector3 s = p_from - p_vertices[0];
|
|
real_t u = f * s.dot(h);
|
|
if (u < 0.0 - p_tolerance || u > 1.0 + p_tolerance) {
|
|
return false;
|
|
}
|
|
|
|
Vector3 q = s.cross(edge1);
|
|
real_t v = f * p_dir.dot(q);
|
|
if (v < 0.0 - p_tolerance || u + v > 1.0 + p_tolerance) {
|
|
return false;
|
|
}
|
|
|
|
// Ray intersects triangle.
|
|
// Calculate distance.
|
|
real_t t = f * edge2.dot(q);
|
|
// Confirm triangle is in front of ray.
|
|
if (t >= p_tolerance) {
|
|
r_intersection_point = p_from + p_dir * t;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline bool is_point_in_triangle(const Vector3 &p_point, const Vector3 p_vertices[3], int p_shifted = 0) {
|
|
real_t det = p_vertices[0].dot(p_vertices[1].cross(p_vertices[2]));
|
|
|
|
// If determinant is, zero try shift the triangle and the point.
|
|
if (Math::is_zero_approx(det)) {
|
|
if (p_shifted > 2) {
|
|
// Triangle appears degenerate, so ignore it.
|
|
return false;
|
|
}
|
|
Vector3 shift_by;
|
|
shift_by[p_shifted] = 1;
|
|
Vector3 shifted_point = p_point + shift_by;
|
|
Vector3 shifted_vertices[3] = { p_vertices[0] + shift_by, p_vertices[1] + shift_by, p_vertices[2] + shift_by };
|
|
return is_point_in_triangle(shifted_point, shifted_vertices, p_shifted + 1);
|
|
}
|
|
|
|
// Find the barycentric coordinates of the point with respect to the vertices.
|
|
real_t lambda[3];
|
|
lambda[0] = p_vertices[1].cross(p_vertices[2]).dot(p_point) / det;
|
|
lambda[1] = p_vertices[2].cross(p_vertices[0]).dot(p_point) / det;
|
|
lambda[2] = p_vertices[0].cross(p_vertices[1]).dot(p_point) / det;
|
|
|
|
// Point is in the plane if all lambdas sum to 1.
|
|
if (!Math::is_equal_approx(lambda[0] + lambda[1] + lambda[2], 1)) {
|
|
return false;
|
|
}
|
|
|
|
// Point is inside the triangle if all lambdas are positive.
|
|
if (lambda[0] < 0 || lambda[1] < 0 || lambda[2] < 0) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline static bool is_triangle_degenerate(const Vector2 p_vertices[3], real_t p_vertex_snap2) {
|
|
real_t det = p_vertices[0].x * p_vertices[1].y - p_vertices[0].x * p_vertices[2].y +
|
|
p_vertices[0].y * p_vertices[2].x - p_vertices[0].y * p_vertices[1].x +
|
|
p_vertices[1].x * p_vertices[2].y - p_vertices[1].y * p_vertices[2].x;
|
|
|
|
return det < p_vertex_snap2;
|
|
}
|
|
|
|
inline static bool are_segments_parallel(const Vector2 p_segment1_points[2], const Vector2 p_segment2_points[2], float p_vertex_snap2) {
|
|
Vector2 segment1 = p_segment1_points[1] - p_segment1_points[0];
|
|
Vector2 segment2 = p_segment2_points[1] - p_segment2_points[0];
|
|
real_t segment1_length2 = segment1.dot(segment1);
|
|
real_t segment2_length2 = segment2.dot(segment2);
|
|
real_t segment_onto_segment = segment2.dot(segment1);
|
|
|
|
if (segment1_length2 < p_vertex_snap2 || segment2_length2 < p_vertex_snap2) {
|
|
return true;
|
|
}
|
|
|
|
real_t max_separation2;
|
|
if (segment1_length2 > segment2_length2) {
|
|
max_separation2 = segment2_length2 - segment_onto_segment * segment_onto_segment / segment1_length2;
|
|
} else {
|
|
max_separation2 = segment1_length2 - segment_onto_segment * segment_onto_segment / segment2_length2;
|
|
}
|
|
|
|
return max_separation2 < p_vertex_snap2;
|
|
}
|
|
|
|
// CSGBrush
|
|
|
|
void CSGBrush::_regen_face_aabbs() {
|
|
for (int i = 0; i < faces.size(); i++) {
|
|
faces.write[i].aabb = AABB();
|
|
faces.write[i].aabb.position = faces[i].vertices[0];
|
|
faces.write[i].aabb.expand_to(faces[i].vertices[1]);
|
|
faces.write[i].aabb.expand_to(faces[i].vertices[2]);
|
|
}
|
|
}
|
|
|
|
void CSGBrush::build_from_faces(const Vector<Vector3> &p_vertices, const Vector<Vector2> &p_uvs, const Vector<bool> &p_smooth, const Vector<Ref<Material>> &p_materials, const Vector<bool> &p_flip_faces) {
|
|
faces.clear();
|
|
|
|
int vc = p_vertices.size();
|
|
|
|
ERR_FAIL_COND((vc % 3) != 0);
|
|
|
|
const Vector3 *rv = p_vertices.ptr();
|
|
int uvc = p_uvs.size();
|
|
const Vector2 *ruv = p_uvs.ptr();
|
|
int sc = p_smooth.size();
|
|
const bool *rs = p_smooth.ptr();
|
|
int mc = p_materials.size();
|
|
const Ref<Material> *rm = p_materials.ptr();
|
|
int ic = p_flip_faces.size();
|
|
const bool *ri = p_flip_faces.ptr();
|
|
|
|
HashMap<Ref<Material>, int> material_map;
|
|
|
|
faces.resize(p_vertices.size() / 3);
|
|
|
|
for (int i = 0; i < faces.size(); i++) {
|
|
Face &f = faces.write[i];
|
|
f.vertices[0] = rv[i * 3 + 0];
|
|
f.vertices[1] = rv[i * 3 + 1];
|
|
f.vertices[2] = rv[i * 3 + 2];
|
|
|
|
if (uvc == vc) {
|
|
f.uvs[0] = ruv[i * 3 + 0];
|
|
f.uvs[1] = ruv[i * 3 + 1];
|
|
f.uvs[2] = ruv[i * 3 + 2];
|
|
}
|
|
|
|
if (sc == vc / 3) {
|
|
f.smooth = rs[i];
|
|
} else {
|
|
f.smooth = false;
|
|
}
|
|
|
|
if (ic == vc / 3) {
|
|
f.invert = ri[i];
|
|
} else {
|
|
f.invert = false;
|
|
}
|
|
|
|
if (mc == vc / 3) {
|
|
Ref<Material> mat = rm[i];
|
|
if (mat.is_valid()) {
|
|
HashMap<Ref<Material>, int>::ConstIterator E = material_map.find(mat);
|
|
|
|
if (E) {
|
|
f.material = E->value;
|
|
} else {
|
|
f.material = material_map.size();
|
|
material_map[mat] = f.material;
|
|
}
|
|
|
|
} else {
|
|
f.material = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
materials.resize(material_map.size());
|
|
for (const KeyValue<Ref<Material>, int> &E : material_map) {
|
|
materials.write[E.value] = E.key;
|
|
}
|
|
|
|
_regen_face_aabbs();
|
|
}
|
|
|
|
void CSGBrush::copy_from(const CSGBrush &p_brush, const Transform3D &p_xform) {
|
|
faces = p_brush.faces;
|
|
materials = p_brush.materials;
|
|
|
|
for (int i = 0; i < faces.size(); i++) {
|
|
for (int j = 0; j < 3; j++) {
|
|
faces.write[i].vertices[j] = p_xform.xform(p_brush.faces[i].vertices[j]);
|
|
}
|
|
}
|
|
|
|
_regen_face_aabbs();
|
|
}
|
|
|
|
// CSGBrushOperation
|
|
|
|
void CSGBrushOperation::merge_brushes(Operation p_operation, const CSGBrush &p_brush_a, const CSGBrush &p_brush_b, CSGBrush &r_merged_brush, float p_vertex_snap) {
|
|
// Check for face collisions and add necessary faces.
|
|
Build2DFaceCollection build2DFaceCollection;
|
|
for (int i = 0; i < p_brush_a.faces.size(); i++) {
|
|
for (int j = 0; j < p_brush_b.faces.size(); j++) {
|
|
if (p_brush_a.faces[i].aabb.intersects_inclusive(p_brush_b.faces[j].aabb)) {
|
|
update_faces(p_brush_a, i, p_brush_b, j, build2DFaceCollection, p_vertex_snap);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add faces to MeshMerge.
|
|
MeshMerge mesh_merge;
|
|
mesh_merge.vertex_snap = p_vertex_snap;
|
|
|
|
for (int i = 0; i < p_brush_a.faces.size(); i++) {
|
|
Ref<Material> material;
|
|
if (p_brush_a.faces[i].material != -1) {
|
|
material = p_brush_a.materials[p_brush_a.faces[i].material];
|
|
}
|
|
|
|
if (build2DFaceCollection.build2DFacesA.has(i)) {
|
|
build2DFaceCollection.build2DFacesA[i].addFacesToMesh(mesh_merge, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
|
|
} else {
|
|
Vector3 points[3];
|
|
Vector2 uvs[3];
|
|
for (int j = 0; j < 3; j++) {
|
|
points[j] = p_brush_a.faces[i].vertices[j];
|
|
uvs[j] = p_brush_a.faces[i].uvs[j];
|
|
}
|
|
mesh_merge.add_face(points, uvs, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < p_brush_b.faces.size(); i++) {
|
|
Ref<Material> material;
|
|
if (p_brush_b.faces[i].material != -1) {
|
|
material = p_brush_b.materials[p_brush_b.faces[i].material];
|
|
}
|
|
|
|
if (build2DFaceCollection.build2DFacesB.has(i)) {
|
|
build2DFaceCollection.build2DFacesB[i].addFacesToMesh(mesh_merge, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
|
|
} else {
|
|
Vector3 points[3];
|
|
Vector2 uvs[3];
|
|
for (int j = 0; j < 3; j++) {
|
|
points[j] = p_brush_b.faces[i].vertices[j];
|
|
uvs[j] = p_brush_b.faces[i].uvs[j];
|
|
}
|
|
mesh_merge.add_face(points, uvs, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
|
|
}
|
|
}
|
|
|
|
// Mark faces that ended up inside the intersection.
|
|
mesh_merge.mark_inside_faces();
|
|
|
|
// Create new brush and fill with new faces.
|
|
r_merged_brush.faces.clear();
|
|
|
|
switch (p_operation) {
|
|
case OPERATION_UNION: {
|
|
int outside_count = 0;
|
|
|
|
for (int i = 0; i < mesh_merge.faces.size(); i++) {
|
|
if (mesh_merge.faces[i].inside) {
|
|
continue;
|
|
}
|
|
outside_count++;
|
|
}
|
|
|
|
r_merged_brush.faces.resize(outside_count);
|
|
|
|
outside_count = 0;
|
|
|
|
for (int i = 0; i < mesh_merge.faces.size(); i++) {
|
|
if (mesh_merge.faces[i].inside) {
|
|
continue;
|
|
}
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
r_merged_brush.faces.write[outside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
|
|
r_merged_brush.faces.write[outside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
|
|
}
|
|
|
|
r_merged_brush.faces.write[outside_count].smooth = mesh_merge.faces[i].smooth;
|
|
r_merged_brush.faces.write[outside_count].invert = mesh_merge.faces[i].invert;
|
|
r_merged_brush.faces.write[outside_count].material = mesh_merge.faces[i].material_idx;
|
|
outside_count++;
|
|
}
|
|
|
|
r_merged_brush._regen_face_aabbs();
|
|
|
|
} break;
|
|
|
|
case OPERATION_INTERSECTION: {
|
|
int inside_count = 0;
|
|
|
|
for (int i = 0; i < mesh_merge.faces.size(); i++) {
|
|
if (!mesh_merge.faces[i].inside) {
|
|
continue;
|
|
}
|
|
inside_count++;
|
|
}
|
|
|
|
r_merged_brush.faces.resize(inside_count);
|
|
|
|
inside_count = 0;
|
|
|
|
for (int i = 0; i < mesh_merge.faces.size(); i++) {
|
|
if (!mesh_merge.faces[i].inside) {
|
|
continue;
|
|
}
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
r_merged_brush.faces.write[inside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
|
|
r_merged_brush.faces.write[inside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
|
|
}
|
|
|
|
r_merged_brush.faces.write[inside_count].smooth = mesh_merge.faces[i].smooth;
|
|
r_merged_brush.faces.write[inside_count].invert = mesh_merge.faces[i].invert;
|
|
r_merged_brush.faces.write[inside_count].material = mesh_merge.faces[i].material_idx;
|
|
inside_count++;
|
|
}
|
|
|
|
r_merged_brush._regen_face_aabbs();
|
|
|
|
} break;
|
|
|
|
case OPERATION_SUBTRACTION: {
|
|
int face_count = 0;
|
|
|
|
for (int i = 0; i < mesh_merge.faces.size(); i++) {
|
|
if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside) {
|
|
continue;
|
|
}
|
|
if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside) {
|
|
continue;
|
|
}
|
|
face_count++;
|
|
}
|
|
|
|
r_merged_brush.faces.resize(face_count);
|
|
|
|
face_count = 0;
|
|
|
|
for (int i = 0; i < mesh_merge.faces.size(); i++) {
|
|
if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside) {
|
|
continue;
|
|
}
|
|
if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside) {
|
|
continue;
|
|
}
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
r_merged_brush.faces.write[face_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
|
|
r_merged_brush.faces.write[face_count].uvs[j] = mesh_merge.faces[i].uvs[j];
|
|
}
|
|
|
|
if (mesh_merge.faces[i].from_b) {
|
|
//invert facing of insides of B
|
|
SWAP(r_merged_brush.faces.write[face_count].vertices[1], r_merged_brush.faces.write[face_count].vertices[2]);
|
|
SWAP(r_merged_brush.faces.write[face_count].uvs[1], r_merged_brush.faces.write[face_count].uvs[2]);
|
|
}
|
|
|
|
r_merged_brush.faces.write[face_count].smooth = mesh_merge.faces[i].smooth;
|
|
r_merged_brush.faces.write[face_count].invert = mesh_merge.faces[i].invert;
|
|
r_merged_brush.faces.write[face_count].material = mesh_merge.faces[i].material_idx;
|
|
face_count++;
|
|
}
|
|
|
|
r_merged_brush._regen_face_aabbs();
|
|
|
|
} break;
|
|
}
|
|
|
|
// Update the list of materials.
|
|
r_merged_brush.materials.resize(mesh_merge.materials.size());
|
|
for (const KeyValue<Ref<Material>, int> &E : mesh_merge.materials) {
|
|
r_merged_brush.materials.write[E.value] = E.key;
|
|
}
|
|
}
|
|
|
|
// CSGBrushOperation::MeshMerge
|
|
|
|
// Use a limit to speed up bvh and limit the depth.
|
|
#define BVH_LIMIT 8
|
|
|
|
int CSGBrushOperation::MeshMerge::_create_bvh(FaceBVH *r_facebvhptr, FaceBVH **r_facebvhptrptr, int p_from, int p_size, int p_depth, int &r_max_depth, int &r_max_alloc) {
|
|
if (p_depth > r_max_depth) {
|
|
r_max_depth = p_depth;
|
|
}
|
|
|
|
if (p_size == 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (p_size <= BVH_LIMIT) {
|
|
for (int i = 0; i < p_size - 1; i++) {
|
|
r_facebvhptrptr[p_from + i]->next = r_facebvhptrptr[p_from + i + 1] - r_facebvhptr;
|
|
}
|
|
return r_facebvhptrptr[p_from] - r_facebvhptr;
|
|
}
|
|
|
|
AABB aabb;
|
|
aabb = r_facebvhptrptr[p_from]->aabb;
|
|
for (int i = 1; i < p_size; i++) {
|
|
aabb.merge_with(r_facebvhptrptr[p_from + i]->aabb);
|
|
}
|
|
|
|
int li = aabb.get_longest_axis_index();
|
|
|
|
switch (li) {
|
|
case Vector3::AXIS_X: {
|
|
SortArray<FaceBVH *, FaceBVHCmpX> sort_x;
|
|
sort_x.nth_element(0, p_size, p_size / 2, &r_facebvhptrptr[p_from]);
|
|
//sort_x.sort(&p_bb[p_from],p_size);
|
|
} break;
|
|
|
|
case Vector3::AXIS_Y: {
|
|
SortArray<FaceBVH *, FaceBVHCmpY> sort_y;
|
|
sort_y.nth_element(0, p_size, p_size / 2, &r_facebvhptrptr[p_from]);
|
|
//sort_y.sort(&p_bb[p_from],p_size);
|
|
} break;
|
|
|
|
case Vector3::AXIS_Z: {
|
|
SortArray<FaceBVH *, FaceBVHCmpZ> sort_z;
|
|
sort_z.nth_element(0, p_size, p_size / 2, &r_facebvhptrptr[p_from]);
|
|
//sort_z.sort(&p_bb[p_from],p_size);
|
|
} break;
|
|
}
|
|
|
|
int left = _create_bvh(r_facebvhptr, r_facebvhptrptr, p_from, p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
|
|
int right = _create_bvh(r_facebvhptr, r_facebvhptrptr, p_from + p_size / 2, p_size - p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
|
|
|
|
int index = r_max_alloc++;
|
|
FaceBVH *_new = &r_facebvhptr[index];
|
|
_new->aabb = aabb;
|
|
_new->center = aabb.get_center();
|
|
_new->face = -1;
|
|
_new->left = left;
|
|
_new->right = right;
|
|
_new->next = -1;
|
|
|
|
return index;
|
|
}
|
|
|
|
void CSGBrushOperation::MeshMerge::_add_distance(List<IntersectionDistance> &r_intersectionsA, List<IntersectionDistance> &r_intersectionsB, bool p_from_B, real_t p_distance_squared, bool p_is_conormal) const {
|
|
List<IntersectionDistance> &intersections = p_from_B ? r_intersectionsB : r_intersectionsA;
|
|
|
|
// Check if distance exists.
|
|
for (const IntersectionDistance E : intersections) {
|
|
if (E.is_conormal == p_is_conormal && Math::is_equal_approx(E.distance_squared, p_distance_squared)) {
|
|
return;
|
|
}
|
|
}
|
|
IntersectionDistance distance;
|
|
distance.is_conormal = p_is_conormal;
|
|
distance.distance_squared = p_distance_squared;
|
|
intersections.push_back(distance);
|
|
}
|
|
|
|
bool CSGBrushOperation::MeshMerge::_bvh_inside(FaceBVH *r_facebvhptr, int p_max_depth, int p_bvh_first, int p_face_idx) const {
|
|
Face face = faces[p_face_idx];
|
|
Vector3 face_points[3] = {
|
|
points[face.points[0]],
|
|
points[face.points[1]],
|
|
points[face.points[2]]
|
|
};
|
|
Vector3 face_center = (face_points[0] + face_points[1] + face_points[2]) / 3.0;
|
|
Vector3 face_normal = Plane(face_points[0], face_points[1], face_points[2]).normal;
|
|
|
|
uint32_t *stack = (uint32_t *)alloca(sizeof(int) * p_max_depth);
|
|
|
|
enum {
|
|
TEST_AABB_BIT = 0,
|
|
VISIT_LEFT_BIT = 1,
|
|
VISIT_RIGHT_BIT = 2,
|
|
VISIT_DONE_BIT = 3,
|
|
VISITED_BIT_SHIFT = 29,
|
|
NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
|
|
VISITED_BIT_MASK = ~NODE_IDX_MASK
|
|
};
|
|
|
|
List<IntersectionDistance> intersectionsA;
|
|
List<IntersectionDistance> intersectionsB;
|
|
|
|
Intersection closest_intersection;
|
|
closest_intersection.found = false;
|
|
|
|
int level = 0;
|
|
int pos = p_bvh_first;
|
|
stack[0] = pos;
|
|
|
|
while (true) {
|
|
uint32_t node = stack[level] & NODE_IDX_MASK;
|
|
const FaceBVH *current_facebvhptr = &(r_facebvhptr[node]);
|
|
bool done = false;
|
|
|
|
switch (stack[level] >> VISITED_BIT_SHIFT) {
|
|
case TEST_AABB_BIT: {
|
|
if (current_facebvhptr->face >= 0) {
|
|
while (current_facebvhptr) {
|
|
if (p_face_idx != current_facebvhptr->face &&
|
|
current_facebvhptr->aabb.intersects_ray(face_center, face_normal)) {
|
|
const Face ¤t_face = faces[current_facebvhptr->face];
|
|
Vector3 current_points[3] = {
|
|
points[current_face.points[0]],
|
|
points[current_face.points[1]],
|
|
points[current_face.points[2]]
|
|
};
|
|
Vector3 current_normal = Plane(current_points[0], current_points[1], current_points[2]).normal;
|
|
Vector3 intersection_point;
|
|
// Check if faces are co-planar.
|
|
if (current_normal.is_equal_approx(face_normal) &&
|
|
is_point_in_triangle(face_center, current_points)) {
|
|
// Only add an intersection if not a B face.
|
|
if (!face.from_b) {
|
|
_add_distance(intersectionsA, intersectionsB, current_face.from_b, 0, true);
|
|
}
|
|
} else if (ray_intersects_triangle(face_center, face_normal, current_points, CMP_EPSILON, intersection_point)) {
|
|
real_t distance_squared = face_center.distance_squared_to(intersection_point);
|
|
real_t inner = current_normal.dot(face_normal);
|
|
// If the faces are perpendicular, ignore this face.
|
|
// The triangles on the side should be intersected and result in the correct behavior.
|
|
if (!Math::is_zero_approx(inner)) {
|
|
_add_distance(intersectionsA, intersectionsB, current_face.from_b, distance_squared, inner > 0.0f);
|
|
}
|
|
}
|
|
|
|
if (face.from_b != current_face.from_b) {
|
|
if (current_normal.is_equal_approx(face_normal) &&
|
|
is_point_in_triangle(face_center, current_points)) {
|
|
// Only add an intersection if not a B face.
|
|
if (!face.from_b) {
|
|
closest_intersection.found = true;
|
|
closest_intersection.conormal = 1.0f;
|
|
closest_intersection.distance_squared = 0.0f;
|
|
closest_intersection.origin_angle = -FLT_MAX;
|
|
}
|
|
} else if (ray_intersects_triangle(face_center, face_normal, current_points, CMP_EPSILON, intersection_point)) {
|
|
Intersection potential_intersection;
|
|
potential_intersection.found = true;
|
|
potential_intersection.conormal = face_normal.dot(current_normal);
|
|
potential_intersection.distance_squared = face_center.distance_squared_to(intersection_point);
|
|
potential_intersection.origin_angle = Math::abs(potential_intersection.conormal);
|
|
real_t intersection_dist_from_face = face_normal.dot(intersection_point - face_center);
|
|
for (int i = 0; i < 3; i++) {
|
|
real_t point_dist_from_face = face_normal.dot(current_points[i] - face_center);
|
|
if (!Math::is_equal_approx(point_dist_from_face, intersection_dist_from_face) &&
|
|
point_dist_from_face < intersection_dist_from_face) {
|
|
potential_intersection.origin_angle = -potential_intersection.origin_angle;
|
|
break;
|
|
}
|
|
}
|
|
if (potential_intersection.conormal != 0.0f) {
|
|
if (!closest_intersection.found) {
|
|
closest_intersection = potential_intersection;
|
|
} else if (!Math::is_equal_approx(potential_intersection.distance_squared, closest_intersection.distance_squared) &&
|
|
potential_intersection.distance_squared < closest_intersection.distance_squared) {
|
|
closest_intersection = potential_intersection;
|
|
} else if (Math::is_equal_approx(potential_intersection.distance_squared, closest_intersection.distance_squared)) {
|
|
if (potential_intersection.origin_angle < closest_intersection.origin_angle) {
|
|
closest_intersection = potential_intersection;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (current_facebvhptr->next != -1) {
|
|
current_facebvhptr = &r_facebvhptr[current_facebvhptr->next];
|
|
} else {
|
|
current_facebvhptr = nullptr;
|
|
}
|
|
}
|
|
|
|
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
|
|
|
|
} else {
|
|
bool valid = current_facebvhptr->aabb.intersects_ray(face_center, face_normal);
|
|
|
|
if (!valid) {
|
|
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
|
|
} else {
|
|
stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
case VISIT_LEFT_BIT: {
|
|
stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
|
|
stack[level + 1] = current_facebvhptr->left | TEST_AABB_BIT;
|
|
level++;
|
|
continue;
|
|
}
|
|
|
|
case VISIT_RIGHT_BIT: {
|
|
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
|
|
stack[level + 1] = current_facebvhptr->right | TEST_AABB_BIT;
|
|
level++;
|
|
continue;
|
|
}
|
|
|
|
case VISIT_DONE_BIT: {
|
|
if (level == 0) {
|
|
done = true;
|
|
break;
|
|
} else {
|
|
level--;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (done) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!closest_intersection.found) {
|
|
return false;
|
|
} else {
|
|
return closest_intersection.conormal > 0.0f;
|
|
}
|
|
}
|
|
|
|
void CSGBrushOperation::MeshMerge::mark_inside_faces() {
|
|
// Mark faces that are inside. This helps later do the boolean ops when merging.
|
|
// This approach is very brute force with a bunch of optimizations,
|
|
// such as BVH and pre AABB intersection test.
|
|
|
|
Vector<FaceBVH> bvhvec;
|
|
bvhvec.resize(faces.size() * 3); // Will never be larger than this (TODO: Make better)
|
|
FaceBVH *facebvh = bvhvec.ptrw();
|
|
|
|
AABB aabb_a;
|
|
AABB aabb_b;
|
|
|
|
bool first_a = true;
|
|
bool first_b = true;
|
|
|
|
for (int i = 0; i < faces.size(); i++) {
|
|
facebvh[i].left = -1;
|
|
facebvh[i].right = -1;
|
|
facebvh[i].face = i;
|
|
facebvh[i].aabb.position = points[faces[i].points[0]];
|
|
facebvh[i].aabb.expand_to(points[faces[i].points[1]]);
|
|
facebvh[i].aabb.expand_to(points[faces[i].points[2]]);
|
|
facebvh[i].center = facebvh[i].aabb.get_center();
|
|
facebvh[i].aabb.grow_by(vertex_snap);
|
|
facebvh[i].next = -1;
|
|
|
|
if (faces[i].from_b) {
|
|
if (first_b) {
|
|
aabb_b = facebvh[i].aabb;
|
|
first_b = false;
|
|
} else {
|
|
aabb_b.merge_with(facebvh[i].aabb);
|
|
}
|
|
} else {
|
|
if (first_a) {
|
|
aabb_a = facebvh[i].aabb;
|
|
first_a = false;
|
|
} else {
|
|
aabb_a.merge_with(facebvh[i].aabb);
|
|
}
|
|
}
|
|
}
|
|
|
|
AABB intersection_aabb = aabb_a.intersection(aabb_b);
|
|
|
|
// Check if shape AABBs intersect.
|
|
if (intersection_aabb.size == Vector3()) {
|
|
return;
|
|
}
|
|
|
|
Vector<FaceBVH *> bvhtrvec;
|
|
bvhtrvec.resize(faces.size());
|
|
FaceBVH **bvhptr = bvhtrvec.ptrw();
|
|
for (int i = 0; i < faces.size(); i++) {
|
|
bvhptr[i] = &facebvh[i];
|
|
}
|
|
|
|
int max_depth = 0;
|
|
int max_alloc = faces.size();
|
|
_create_bvh(facebvh, bvhptr, 0, faces.size(), 1, max_depth, max_alloc);
|
|
|
|
for (int i = 0; i < faces.size(); i++) {
|
|
// Check if face AABB intersects the intersection AABB.
|
|
if (!intersection_aabb.intersects_inclusive(facebvh[i].aabb)) {
|
|
continue;
|
|
}
|
|
|
|
if (_bvh_inside(facebvh, max_depth, max_alloc - 1, i)) {
|
|
faces.write[i].inside = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CSGBrushOperation::MeshMerge::add_face(const Vector3 p_points[3], const Vector2 p_uvs[3], bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
|
|
int indices[3];
|
|
for (int i = 0; i < 3; i++) {
|
|
VertexKey vk;
|
|
vk.x = int((double(p_points[i].x) + double(vertex_snap) * 0.31234) / double(vertex_snap));
|
|
vk.y = int((double(p_points[i].y) + double(vertex_snap) * 0.31234) / double(vertex_snap));
|
|
vk.z = int((double(p_points[i].z) + double(vertex_snap) * 0.31234) / double(vertex_snap));
|
|
|
|
int res;
|
|
if (snap_cache.lookup(vk, res)) {
|
|
indices[i] = res;
|
|
} else {
|
|
indices[i] = points.size();
|
|
points.push_back(p_points[i]);
|
|
snap_cache.set(vk, indices[i]);
|
|
}
|
|
}
|
|
|
|
// Don't add degenerate faces.
|
|
if (indices[0] == indices[2] || indices[0] == indices[1] || indices[1] == indices[2]) {
|
|
return;
|
|
}
|
|
|
|
MeshMerge::Face face;
|
|
face.from_b = p_from_b;
|
|
face.inside = false;
|
|
face.smooth = p_smooth;
|
|
face.invert = p_invert;
|
|
|
|
if (p_material.is_valid()) {
|
|
if (!materials.has(p_material)) {
|
|
face.material_idx = materials.size();
|
|
materials[p_material] = face.material_idx;
|
|
} else {
|
|
face.material_idx = materials[p_material];
|
|
}
|
|
} else {
|
|
face.material_idx = -1;
|
|
}
|
|
|
|
for (int k = 0; k < 3; k++) {
|
|
face.points[k] = indices[k];
|
|
face.uvs[k] = p_uvs[k];
|
|
}
|
|
|
|
faces.push_back(face);
|
|
}
|
|
|
|
// CSGBrushOperation::Build2DFaces
|
|
|
|
int CSGBrushOperation::Build2DFaces::_get_point_idx(const Vector2 &p_point) {
|
|
for (int vertex_idx = 0; vertex_idx < vertices.size(); ++vertex_idx) {
|
|
if (vertices[vertex_idx].point.distance_squared_to(p_point) < vertex_snap2) {
|
|
return vertex_idx;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int CSGBrushOperation::Build2DFaces::_add_vertex(const Vertex2D &p_vertex) {
|
|
// Check if vertex exists.
|
|
int vertex_id = _get_point_idx(p_vertex.point);
|
|
if (vertex_id != -1) {
|
|
return vertex_id;
|
|
}
|
|
|
|
vertices.push_back(p_vertex);
|
|
return vertices.size() - 1;
|
|
}
|
|
|
|
void CSGBrushOperation::Build2DFaces::_add_vertex_idx_sorted(Vector<int> &r_vertex_indices, int p_new_vertex_index) {
|
|
if (p_new_vertex_index >= 0 && !r_vertex_indices.has(p_new_vertex_index)) {
|
|
ERR_FAIL_COND_MSG(p_new_vertex_index >= vertices.size(), "Invalid vertex index.");
|
|
|
|
// The first vertex.
|
|
if (r_vertex_indices.size() == 0) {
|
|
// Simply add it.
|
|
r_vertex_indices.push_back(p_new_vertex_index);
|
|
return;
|
|
}
|
|
|
|
// The second vertex.
|
|
if (r_vertex_indices.size() == 1) {
|
|
Vector2 first_point = vertices[r_vertex_indices[0]].point;
|
|
Vector2 new_point = vertices[p_new_vertex_index].point;
|
|
|
|
// Sort along the axis with the greatest difference.
|
|
int axis = 0;
|
|
if (Math::abs(new_point.x - first_point.x) < Math::abs(new_point.y - first_point.y)) {
|
|
axis = 1;
|
|
}
|
|
|
|
// Add it to the beginning or the end appropriately.
|
|
if (new_point[axis] < first_point[axis]) {
|
|
r_vertex_indices.insert(0, p_new_vertex_index);
|
|
} else {
|
|
r_vertex_indices.push_back(p_new_vertex_index);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Third or later vertices.
|
|
Vector2 first_point = vertices[r_vertex_indices[0]].point;
|
|
Vector2 last_point = vertices[r_vertex_indices[r_vertex_indices.size() - 1]].point;
|
|
Vector2 new_point = vertices[p_new_vertex_index].point;
|
|
|
|
// Determine axis being sorted against i.e. the axis with the greatest difference.
|
|
int axis = 0;
|
|
if (Math::abs(last_point.x - first_point.x) < Math::abs(last_point.y - first_point.y)) {
|
|
axis = 1;
|
|
}
|
|
|
|
// Insert the point at the appropriate index.
|
|
for (int insert_idx = 0; insert_idx < r_vertex_indices.size(); ++insert_idx) {
|
|
Vector2 insert_point = vertices[r_vertex_indices[insert_idx]].point;
|
|
if (new_point[axis] < insert_point[axis]) {
|
|
r_vertex_indices.insert(insert_idx, p_new_vertex_index);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// New largest, add it to the end.
|
|
r_vertex_indices.push_back(p_new_vertex_index);
|
|
}
|
|
}
|
|
|
|
void CSGBrushOperation::Build2DFaces::_merge_faces(const Vector<int> &p_segment_indices) {
|
|
int segments = p_segment_indices.size() - 1;
|
|
if (segments < 2) {
|
|
return;
|
|
}
|
|
|
|
// Faces around an inner vertex are merged by moving the inner vertex to the first vertex.
|
|
for (int sorted_idx = 1; sorted_idx < segments; ++sorted_idx) {
|
|
int closest_idx = 0;
|
|
int inner_idx = p_segment_indices[sorted_idx];
|
|
|
|
if (sorted_idx > segments / 2) {
|
|
// Merge to other segment end.
|
|
closest_idx = segments;
|
|
// Reverse the merge order.
|
|
inner_idx = p_segment_indices[segments + segments / 2 - sorted_idx];
|
|
}
|
|
|
|
// Find the mergeable faces.
|
|
Vector<int> merge_faces_idx;
|
|
Vector<Face2D> merge_faces;
|
|
Vector<int> merge_faces_inner_vertex_idx;
|
|
for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
|
|
for (int face_vertex_idx = 0; face_vertex_idx < 3; ++face_vertex_idx) {
|
|
if (faces[face_idx].vertex_idx[face_vertex_idx] == inner_idx) {
|
|
merge_faces_idx.push_back(face_idx);
|
|
merge_faces.push_back(faces[face_idx]);
|
|
merge_faces_inner_vertex_idx.push_back(face_vertex_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
Vector<int> degenerate_points;
|
|
|
|
// Create the new faces.
|
|
for (int merge_idx = 0; merge_idx < merge_faces.size(); ++merge_idx) {
|
|
int outer_edge_idx[2];
|
|
outer_edge_idx[0] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 1) % 3];
|
|
outer_edge_idx[1] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 2) % 3];
|
|
|
|
// Skip flattened faces.
|
|
if (outer_edge_idx[0] == p_segment_indices[closest_idx] ||
|
|
outer_edge_idx[1] == p_segment_indices[closest_idx]) {
|
|
continue;
|
|
}
|
|
|
|
//Don't create degenerate triangles.
|
|
Vector2 edge1[2] = {
|
|
vertices[outer_edge_idx[0]].point,
|
|
vertices[p_segment_indices[closest_idx]].point
|
|
};
|
|
Vector2 edge2[2] = {
|
|
vertices[outer_edge_idx[1]].point,
|
|
vertices[p_segment_indices[closest_idx]].point
|
|
};
|
|
if (are_segments_parallel(edge1, edge2, vertex_snap2)) {
|
|
if (!degenerate_points.find(outer_edge_idx[0])) {
|
|
degenerate_points.push_back(outer_edge_idx[0]);
|
|
}
|
|
if (!degenerate_points.find(outer_edge_idx[1])) {
|
|
degenerate_points.push_back(outer_edge_idx[1]);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Create new faces.
|
|
Face2D new_face;
|
|
new_face.vertex_idx[0] = p_segment_indices[closest_idx];
|
|
new_face.vertex_idx[1] = outer_edge_idx[0];
|
|
new_face.vertex_idx[2] = outer_edge_idx[1];
|
|
faces.push_back(new_face);
|
|
}
|
|
|
|
// Delete the old faces in reverse index order.
|
|
merge_faces_idx.sort();
|
|
merge_faces_idx.reverse();
|
|
for (int i = 0; i < merge_faces_idx.size(); ++i) {
|
|
faces.remove_at(merge_faces_idx[i]);
|
|
}
|
|
|
|
if (degenerate_points.size() == 0) {
|
|
continue;
|
|
}
|
|
|
|
// Split faces using degenerate points.
|
|
for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
|
|
Face2D face = faces[face_idx];
|
|
Vertex2D face_vertices[3] = {
|
|
vertices[face.vertex_idx[0]],
|
|
vertices[face.vertex_idx[1]],
|
|
vertices[face.vertex_idx[2]]
|
|
};
|
|
Vector2 face_points[3] = {
|
|
face_vertices[0].point,
|
|
face_vertices[1].point,
|
|
face_vertices[2].point
|
|
};
|
|
|
|
for (int point_idx = 0; point_idx < degenerate_points.size(); ++point_idx) {
|
|
int degenerate_idx = degenerate_points[point_idx];
|
|
Vector2 point_2D = vertices[degenerate_idx].point;
|
|
|
|
// Check if point is existing face vertex.
|
|
bool existing = false;
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (face_vertices[i].point.distance_squared_to(point_2D) < vertex_snap2) {
|
|
existing = true;
|
|
break;
|
|
}
|
|
}
|
|
if (existing) {
|
|
continue;
|
|
}
|
|
|
|
// Check if point is on each edge.
|
|
for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
|
|
Vector2 edge_points[2] = {
|
|
face_points[face_edge_idx],
|
|
face_points[(face_edge_idx + 1) % 3]
|
|
};
|
|
Vector2 closest_point = Geometry2D::get_closest_point_to_segment(point_2D, edge_points);
|
|
|
|
if (point_2D.distance_squared_to(closest_point) < vertex_snap2) {
|
|
int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
|
|
|
|
// If new vertex snaps to degenerate vertex, just delete this face.
|
|
if (degenerate_idx == opposite_vertex_idx) {
|
|
faces.remove_at(face_idx);
|
|
// Update index.
|
|
--face_idx;
|
|
break;
|
|
}
|
|
|
|
// Create two new faces around the new edge and remove this face.
|
|
// The new edge is the last edge.
|
|
Face2D left_face;
|
|
left_face.vertex_idx[0] = degenerate_idx;
|
|
left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
|
|
left_face.vertex_idx[2] = opposite_vertex_idx;
|
|
Face2D right_face;
|
|
right_face.vertex_idx[0] = opposite_vertex_idx;
|
|
right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
|
|
right_face.vertex_idx[2] = degenerate_idx;
|
|
faces.remove_at(face_idx);
|
|
faces.insert(face_idx, right_face);
|
|
faces.insert(face_idx, left_face);
|
|
|
|
// Don't check against the new faces.
|
|
++face_idx;
|
|
|
|
// No need to check other edges.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CSGBrushOperation::Build2DFaces::_find_edge_intersections(const Vector2 p_segment_points[2], Vector<int> &r_segment_indices) {
|
|
LocalVector<Vector<Vector2>> processed_edges;
|
|
|
|
// For each face.
|
|
for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
|
|
Face2D face = faces[face_idx];
|
|
Vertex2D face_vertices[3] = {
|
|
vertices[face.vertex_idx[0]],
|
|
vertices[face.vertex_idx[1]],
|
|
vertices[face.vertex_idx[2]]
|
|
};
|
|
|
|
// Check each edge.
|
|
for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
|
|
Vector<Vector2> edge_points_and_uvs = {
|
|
face_vertices[face_edge_idx].point,
|
|
face_vertices[(face_edge_idx + 1) % 3].point,
|
|
face_vertices[face_edge_idx].uv,
|
|
face_vertices[(face_edge_idx + 1) % 3].uv
|
|
};
|
|
|
|
Vector2 edge_points[2] = {
|
|
edge_points_and_uvs[0],
|
|
edge_points_and_uvs[1],
|
|
};
|
|
Vector2 edge_uvs[2] = {
|
|
edge_points_and_uvs[2],
|
|
edge_points_and_uvs[3],
|
|
};
|
|
|
|
// Check if edge has already been processed.
|
|
if (processed_edges.has(edge_points_and_uvs)) {
|
|
continue;
|
|
}
|
|
|
|
processed_edges.push_back(edge_points_and_uvs);
|
|
|
|
// First check if the ends of the segment are on the edge.
|
|
Vector2 intersection_point;
|
|
|
|
bool on_edge = false;
|
|
for (int edge_point_idx = 0; edge_point_idx < 2; ++edge_point_idx) {
|
|
intersection_point = Geometry2D::get_closest_point_to_segment(p_segment_points[edge_point_idx], edge_points);
|
|
if (p_segment_points[edge_point_idx].distance_squared_to(intersection_point) < vertex_snap2) {
|
|
on_edge = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Else check if the segment intersects the edge.
|
|
if (on_edge || Geometry2D::segment_intersects_segment(p_segment_points[0], p_segment_points[1], edge_points[0], edge_points[1], &intersection_point)) {
|
|
// Check if intersection point is an edge point.
|
|
if ((edge_points[0].distance_squared_to(intersection_point) < vertex_snap2) ||
|
|
(edge_points[1].distance_squared_to(intersection_point) < vertex_snap2)) {
|
|
continue;
|
|
}
|
|
|
|
// Check if edge exists, by checking if the intersecting segment is parallel to the edge.
|
|
if (are_segments_parallel(p_segment_points, edge_points, vertex_snap2)) {
|
|
continue;
|
|
}
|
|
|
|
// Add the intersection point as a new vertex.
|
|
Vertex2D new_vertex;
|
|
new_vertex.point = intersection_point;
|
|
new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, intersection_point);
|
|
int new_vertex_idx = _add_vertex(new_vertex);
|
|
int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
|
|
_add_vertex_idx_sorted(r_segment_indices, new_vertex_idx);
|
|
|
|
// If new vertex snaps to opposite vertex, just delete this face.
|
|
if (new_vertex_idx == opposite_vertex_idx) {
|
|
faces.remove_at(face_idx);
|
|
// Update index.
|
|
--face_idx;
|
|
break;
|
|
}
|
|
|
|
// If opposite point is on the segment, add its index to segment indices too.
|
|
Vector2 closest_point = Geometry2D::get_closest_point_to_segment(vertices[opposite_vertex_idx].point, p_segment_points);
|
|
if (vertices[opposite_vertex_idx].point.distance_squared_to(closest_point) < vertex_snap2) {
|
|
_add_vertex_idx_sorted(r_segment_indices, opposite_vertex_idx);
|
|
}
|
|
|
|
// Create two new faces around the new edge and remove this face.
|
|
// The new edge is the last edge.
|
|
Face2D left_face;
|
|
left_face.vertex_idx[0] = new_vertex_idx;
|
|
left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
|
|
left_face.vertex_idx[2] = opposite_vertex_idx;
|
|
Face2D right_face;
|
|
right_face.vertex_idx[0] = opposite_vertex_idx;
|
|
right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
|
|
right_face.vertex_idx[2] = new_vertex_idx;
|
|
faces.remove_at(face_idx);
|
|
faces.insert(face_idx, right_face);
|
|
faces.insert(face_idx, left_face);
|
|
|
|
// Check against the new faces.
|
|
--face_idx;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int CSGBrushOperation::Build2DFaces::_insert_point(const Vector2 &p_point) {
|
|
int new_vertex_idx = -1;
|
|
|
|
for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
|
|
Face2D face = faces[face_idx];
|
|
Vertex2D face_vertices[3] = {
|
|
vertices[face.vertex_idx[0]],
|
|
vertices[face.vertex_idx[1]],
|
|
vertices[face.vertex_idx[2]]
|
|
};
|
|
Vector2 points[3] = {
|
|
face_vertices[0].point,
|
|
face_vertices[1].point,
|
|
face_vertices[2].point
|
|
};
|
|
Vector2 uvs[3] = {
|
|
face_vertices[0].uv,
|
|
face_vertices[1].uv,
|
|
face_vertices[2].uv
|
|
};
|
|
|
|
// Skip degenerate triangles.
|
|
if (is_triangle_degenerate(points, vertex_snap2)) {
|
|
continue;
|
|
}
|
|
|
|
// Check if point is existing face vertex.
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (face_vertices[i].point.distance_squared_to(p_point) < vertex_snap2) {
|
|
return face.vertex_idx[i];
|
|
}
|
|
}
|
|
|
|
// Check if point is on each edge.
|
|
bool on_edge = false;
|
|
for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
|
|
Vector2 edge_points[2] = {
|
|
points[face_edge_idx],
|
|
points[(face_edge_idx + 1) % 3]
|
|
};
|
|
Vector2 edge_uvs[2] = {
|
|
uvs[face_edge_idx],
|
|
uvs[(face_edge_idx + 1) % 3]
|
|
};
|
|
|
|
Vector2 closest_point = Geometry2D::get_closest_point_to_segment(p_point, edge_points);
|
|
if (p_point.distance_squared_to(closest_point) < vertex_snap2) {
|
|
on_edge = true;
|
|
|
|
// Add the point as a new vertex.
|
|
Vertex2D new_vertex;
|
|
new_vertex.point = p_point;
|
|
new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, p_point);
|
|
new_vertex_idx = _add_vertex(new_vertex);
|
|
int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
|
|
|
|
// If new vertex snaps to opposite vertex, just delete this face.
|
|
if (new_vertex_idx == opposite_vertex_idx) {
|
|
faces.remove_at(face_idx);
|
|
// Update index.
|
|
--face_idx;
|
|
break;
|
|
}
|
|
|
|
// Don't create degenerate triangles.
|
|
Vector2 split_edge1[2] = { vertices[new_vertex_idx].point, edge_points[0] };
|
|
Vector2 split_edge2[2] = { vertices[new_vertex_idx].point, edge_points[1] };
|
|
Vector2 new_edge[2] = { vertices[new_vertex_idx].point, vertices[opposite_vertex_idx].point };
|
|
if (are_segments_parallel(split_edge1, new_edge, vertex_snap2) &&
|
|
are_segments_parallel(split_edge2, new_edge, vertex_snap2)) {
|
|
break;
|
|
}
|
|
|
|
// Create two new faces around the new edge and remove this face.
|
|
// The new edge is the last edge.
|
|
Face2D left_face;
|
|
left_face.vertex_idx[0] = new_vertex_idx;
|
|
left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
|
|
left_face.vertex_idx[2] = opposite_vertex_idx;
|
|
Face2D right_face;
|
|
right_face.vertex_idx[0] = opposite_vertex_idx;
|
|
right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
|
|
right_face.vertex_idx[2] = new_vertex_idx;
|
|
faces.remove_at(face_idx);
|
|
faces.insert(face_idx, right_face);
|
|
faces.insert(face_idx, left_face);
|
|
|
|
// Don't check against the new faces.
|
|
++face_idx;
|
|
|
|
// No need to check other edges.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If not on an edge, check if the point is inside the face.
|
|
if (!on_edge && Geometry2D::is_point_in_triangle(p_point, face_vertices[0].point, face_vertices[1].point, face_vertices[2].point)) {
|
|
// Add the point as a new vertex.
|
|
Vertex2D new_vertex;
|
|
new_vertex.point = p_point;
|
|
new_vertex.uv = interpolate_triangle_uv(points, uvs, p_point);
|
|
new_vertex_idx = _add_vertex(new_vertex);
|
|
|
|
// Create three new faces around this point and remove this face.
|
|
// The new vertex is the last vertex.
|
|
for (int i = 0; i < 3; ++i) {
|
|
// Don't create degenerate triangles.
|
|
Vector2 new_points[3] = { points[i], points[(i + 1) % 3], vertices[new_vertex_idx].point };
|
|
if (is_triangle_degenerate(new_points, vertex_snap2)) {
|
|
continue;
|
|
}
|
|
|
|
Face2D new_face;
|
|
new_face.vertex_idx[0] = face.vertex_idx[i];
|
|
new_face.vertex_idx[1] = face.vertex_idx[(i + 1) % 3];
|
|
new_face.vertex_idx[2] = new_vertex_idx;
|
|
faces.push_back(new_face);
|
|
}
|
|
faces.remove_at(face_idx);
|
|
|
|
// No need to check other faces.
|
|
break;
|
|
}
|
|
}
|
|
|
|
return new_vertex_idx;
|
|
}
|
|
|
|
void CSGBrushOperation::Build2DFaces::insert(const CSGBrush &p_brush, int p_face_idx) {
|
|
// Find edge points that cross the plane and face points that are in the plane.
|
|
// Map those points to 2D.
|
|
// Create new faces from those points.
|
|
|
|
Vector2 points_2D[3];
|
|
int points_count = 0;
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 point_3D = p_brush.faces[p_face_idx].vertices[i];
|
|
|
|
if (plane.has_point(point_3D)) {
|
|
// Point is in the plane, add it.
|
|
Vector3 point_2D = plane.project(point_3D);
|
|
point_2D = to_2D.xform(point_2D);
|
|
points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
|
|
|
|
} else {
|
|
Vector3 next_point_3D = p_brush.faces[p_face_idx].vertices[(i + 1) % 3];
|
|
|
|
if (plane.has_point(next_point_3D)) {
|
|
continue; // Next point is in plane, it will be added separately.
|
|
}
|
|
if (plane.is_point_over(point_3D) == plane.is_point_over(next_point_3D)) {
|
|
continue; // Both points on the same side of the plane, ignore.
|
|
}
|
|
|
|
// Edge crosses the plane, find and add the intersection point.
|
|
Vector3 point_2D;
|
|
if (plane.intersects_segment(point_3D, next_point_3D, &point_2D)) {
|
|
point_2D = to_2D.xform(point_2D);
|
|
points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
|
|
}
|
|
}
|
|
}
|
|
|
|
Vector<int> segment_indices;
|
|
Vector2 segment[2];
|
|
int inserted_index[3] = { -1, -1, -1 };
|
|
|
|
// Insert points.
|
|
for (int i = 0; i < points_count; ++i) {
|
|
inserted_index[i] = _insert_point(points_2D[i]);
|
|
}
|
|
|
|
if (points_count == 2) {
|
|
// Insert a single segment.
|
|
segment[0] = points_2D[0];
|
|
segment[1] = points_2D[1];
|
|
_find_edge_intersections(segment, segment_indices);
|
|
for (int i = 0; i < 2; ++i) {
|
|
_add_vertex_idx_sorted(segment_indices, inserted_index[i]);
|
|
}
|
|
_merge_faces(segment_indices);
|
|
}
|
|
|
|
if (points_count == 3) {
|
|
// Insert three segments.
|
|
for (int edge_idx = 0; edge_idx < 3; ++edge_idx) {
|
|
segment[0] = points_2D[edge_idx];
|
|
segment[1] = points_2D[(edge_idx + 1) % 3];
|
|
_find_edge_intersections(segment, segment_indices);
|
|
for (int i = 0; i < 2; ++i) {
|
|
_add_vertex_idx_sorted(segment_indices, inserted_index[(edge_idx + i) % 3]);
|
|
}
|
|
_merge_faces(segment_indices);
|
|
segment_indices.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CSGBrushOperation::Build2DFaces::addFacesToMesh(MeshMerge &r_mesh_merge, bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
|
|
for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
|
|
Face2D face = faces[face_idx];
|
|
Vertex2D fv[3] = {
|
|
vertices[face.vertex_idx[0]],
|
|
vertices[face.vertex_idx[1]],
|
|
vertices[face.vertex_idx[2]]
|
|
};
|
|
|
|
// Convert 2D vertex points to 3D.
|
|
Vector3 points_3D[3];
|
|
Vector2 uvs[3];
|
|
for (int i = 0; i < 3; ++i) {
|
|
Vector3 point_2D(fv[i].point.x, fv[i].point.y, 0);
|
|
points_3D[i] = to_3D.xform(point_2D);
|
|
uvs[i] = fv[i].uv;
|
|
}
|
|
|
|
r_mesh_merge.add_face(points_3D, uvs, p_smooth, p_invert, p_material, p_from_b);
|
|
}
|
|
}
|
|
|
|
CSGBrushOperation::Build2DFaces::Build2DFaces(const CSGBrush &p_brush, int p_face_idx, float p_vertex_snap2) :
|
|
vertex_snap2(p_vertex_snap2 * p_vertex_snap2) {
|
|
// Convert 3D vertex points to 2D.
|
|
Vector3 points_3D[3] = {
|
|
p_brush.faces[p_face_idx].vertices[0],
|
|
p_brush.faces[p_face_idx].vertices[1],
|
|
p_brush.faces[p_face_idx].vertices[2],
|
|
};
|
|
|
|
plane = Plane(points_3D[0], points_3D[1], points_3D[2]);
|
|
to_3D.origin = points_3D[0];
|
|
to_3D.basis.set_column(2, plane.normal);
|
|
to_3D.basis.set_column(0, (points_3D[1] - points_3D[2]).normalized());
|
|
to_3D.basis.set_column(1, to_3D.basis.get_column(0).cross(to_3D.basis.get_column(2)).normalized());
|
|
to_2D = to_3D.affine_inverse();
|
|
|
|
Face2D face;
|
|
for (int i = 0; i < 3; i++) {
|
|
Vertex2D vertex;
|
|
Vector3 point_2D = to_2D.xform(points_3D[i]);
|
|
vertex.point.x = point_2D.x;
|
|
vertex.point.y = point_2D.y;
|
|
vertex.uv = p_brush.faces[p_face_idx].uvs[i];
|
|
vertices.push_back(vertex);
|
|
face.vertex_idx[i] = i;
|
|
}
|
|
faces.push_back(face);
|
|
}
|
|
|
|
void CSGBrushOperation::update_faces(const CSGBrush &p_brush_a, const int p_face_idx_a, const CSGBrush &p_brush_b, const int p_face_idx_b, Build2DFaceCollection &p_collection, float p_vertex_snap) {
|
|
Vector3 vertices_a[3] = {
|
|
p_brush_a.faces[p_face_idx_a].vertices[0],
|
|
p_brush_a.faces[p_face_idx_a].vertices[1],
|
|
p_brush_a.faces[p_face_idx_a].vertices[2],
|
|
};
|
|
|
|
Vector3 vertices_b[3] = {
|
|
p_brush_b.faces[p_face_idx_b].vertices[0],
|
|
p_brush_b.faces[p_face_idx_b].vertices[1],
|
|
p_brush_b.faces[p_face_idx_b].vertices[2],
|
|
};
|
|
|
|
// Don't use degenerate faces.
|
|
bool has_degenerate = false;
|
|
if (is_snapable(vertices_a[0], vertices_a[1], p_vertex_snap) ||
|
|
is_snapable(vertices_a[0], vertices_a[2], p_vertex_snap) ||
|
|
is_snapable(vertices_a[1], vertices_a[2], p_vertex_snap)) {
|
|
p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces();
|
|
has_degenerate = true;
|
|
}
|
|
|
|
if (is_snapable(vertices_b[0], vertices_b[1], p_vertex_snap) ||
|
|
is_snapable(vertices_b[0], vertices_b[2], p_vertex_snap) ||
|
|
is_snapable(vertices_b[1], vertices_b[2], p_vertex_snap)) {
|
|
p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces();
|
|
has_degenerate = true;
|
|
}
|
|
if (has_degenerate) {
|
|
return;
|
|
}
|
|
|
|
// Ensure B has points either side of or in the plane of A.
|
|
int over_count = 0, under_count = 0;
|
|
Plane plane_a(vertices_a[0], vertices_a[1], vertices_a[2]);
|
|
ERR_FAIL_COND_MSG(plane_a.normal == Vector3(), "Couldn't form plane from Brush A face.");
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if (plane_a.has_point(vertices_b[i])) {
|
|
// In plane.
|
|
} else if (plane_a.is_point_over(vertices_b[i])) {
|
|
over_count++;
|
|
} else {
|
|
under_count++;
|
|
}
|
|
}
|
|
// If all points under or over the plane, there is no intersection.
|
|
if (over_count == 3 || under_count == 3) {
|
|
return;
|
|
}
|
|
|
|
// Ensure A has points either side of or in the plane of B.
|
|
over_count = 0;
|
|
under_count = 0;
|
|
Plane plane_b(vertices_b[0], vertices_b[1], vertices_b[2]);
|
|
ERR_FAIL_COND_MSG(plane_b.normal == Vector3(), "Couldn't form plane from Brush B face.");
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if (plane_b.has_point(vertices_a[i])) {
|
|
// In plane.
|
|
} else if (plane_b.is_point_over(vertices_a[i])) {
|
|
over_count++;
|
|
} else {
|
|
under_count++;
|
|
}
|
|
}
|
|
// If all points under or over the plane, there is no intersection.
|
|
if (over_count == 3 || under_count == 3) {
|
|
return;
|
|
}
|
|
|
|
// Check for intersection using the SAT theorem.
|
|
{
|
|
// Edge pair cross product combinations.
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis_a = (vertices_a[i] - vertices_a[(i + 1) % 3]).normalized();
|
|
|
|
for (int j = 0; j < 3; j++) {
|
|
Vector3 axis_b = (vertices_b[j] - vertices_b[(j + 1) % 3]).normalized();
|
|
|
|
Vector3 sep_axis = axis_a.cross(axis_b);
|
|
if (sep_axis == Vector3()) {
|
|
continue; //colineal
|
|
}
|
|
sep_axis.normalize();
|
|
|
|
real_t min_a = 1e20, max_a = -1e20;
|
|
real_t min_b = 1e20, max_b = -1e20;
|
|
|
|
for (int k = 0; k < 3; k++) {
|
|
real_t d = sep_axis.dot(vertices_a[k]);
|
|
min_a = MIN(min_a, d);
|
|
max_a = MAX(max_a, d);
|
|
d = sep_axis.dot(vertices_b[k]);
|
|
min_b = MIN(min_b, d);
|
|
max_b = MAX(max_b, d);
|
|
}
|
|
|
|
min_b -= (max_a - min_a) * 0.5;
|
|
max_b += (max_a - min_a) * 0.5;
|
|
|
|
real_t dmin = min_b - (min_a + max_a) * 0.5;
|
|
real_t dmax = max_b - (min_a + max_a) * 0.5;
|
|
|
|
if (dmin > CMP_EPSILON || dmax < -CMP_EPSILON) {
|
|
return; // Does not contain zero, so they don't overlap.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we're still here, the faces probably intersect, so add new faces.
|
|
if (!p_collection.build2DFacesA.has(p_face_idx_a)) {
|
|
p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces(p_brush_a, p_face_idx_a, p_vertex_snap);
|
|
}
|
|
p_collection.build2DFacesA[p_face_idx_a].insert(p_brush_b, p_face_idx_b);
|
|
|
|
if (!p_collection.build2DFacesB.has(p_face_idx_b)) {
|
|
p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces(p_brush_b, p_face_idx_b, p_vertex_snap);
|
|
}
|
|
p_collection.build2DFacesB[p_face_idx_b].insert(p_brush_a, p_face_idx_a);
|
|
}
|