mirror of
https://github.com/godotengine/godot.git
synced 2024-11-10 14:12:51 +00:00
a367378f9e
Renames parameters that were named differently across different scripting languages or their documentation to use the same name everywhere.
496 lines
21 KiB
XML
496 lines
21 KiB
XML
<?xml version="1.0" encoding="UTF-8" ?>
|
|
<class name="Vector2" version="4.0">
|
|
<brief_description>
|
|
Vector used for 2D math using floating point coordinates.
|
|
</brief_description>
|
|
<description>
|
|
2-element structure that can be used to represent positions in 2D space or any other pair of numeric values.
|
|
It uses floating-point coordinates. See [Vector2i] for its integer counterpart.
|
|
[b]Note:[/b] In a boolean context, a Vector2 will evaluate to [code]false[/code] if it's equal to [code]Vector2(0, 0)[/code]. Otherwise, a Vector2 will always evaluate to [code]true[/code].
|
|
</description>
|
|
<tutorials>
|
|
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
|
|
<link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link>
|
|
<link title="Advanced vector math">$DOCS_URL/tutorials/math/vectors_advanced.html</link>
|
|
<link title="3Blue1Brown Essence of Linear Algebra">https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link>
|
|
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
|
|
<link title="All 2D Demos">https://github.com/godotengine/godot-demo-projects/tree/master/2d</link>
|
|
</tutorials>
|
|
<constructors>
|
|
<constructor name="Vector2">
|
|
<return type="Vector2" />
|
|
<description>
|
|
Constructs a default-initialized [Vector2] with all components set to [code]0[/code].
|
|
</description>
|
|
</constructor>
|
|
<constructor name="Vector2">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="from" type="Vector2" />
|
|
<description>
|
|
Constructs a [Vector2] as a copy of the given [Vector2].
|
|
</description>
|
|
</constructor>
|
|
<constructor name="Vector2">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="from" type="Vector2i" />
|
|
<description>
|
|
Constructs a new [Vector2] from [Vector2i].
|
|
</description>
|
|
</constructor>
|
|
<constructor name="Vector2">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="x" type="float" />
|
|
<argument index="1" name="y" type="float" />
|
|
<description>
|
|
Constructs a new [Vector2] from the given [code]x[/code] and [code]y[/code].
|
|
</description>
|
|
</constructor>
|
|
</constructors>
|
|
<methods>
|
|
<method name="abs" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<description>
|
|
Returns a new vector with all components in absolute values (i.e. positive).
|
|
</description>
|
|
</method>
|
|
<method name="angle" qualifiers="const">
|
|
<return type="float" />
|
|
<description>
|
|
Returns this vector's angle with respect to the positive X axis, or [code](1, 0)[/code] vector, in radians.
|
|
For example, [code]Vector2.RIGHT.angle()[/code] will return zero, [code]Vector2.DOWN.angle()[/code] will return [code]PI / 2[/code] (a quarter turn, or 90 degrees), and [code]Vector2(1, -1).angle()[/code] will return [code]-PI / 4[/code] (a negative eighth turn, or -45 degrees).
|
|
[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle.png]Illustration of the returned angle.[/url]
|
|
Equivalent to the result of [method @GlobalScope.atan2] when called with the vector's [member y] and [member x] as parameters: [code]atan2(y, x)[/code].
|
|
</description>
|
|
</method>
|
|
<method name="angle_to" qualifiers="const">
|
|
<return type="float" />
|
|
<argument index="0" name="to" type="Vector2" />
|
|
<description>
|
|
Returns the angle to the given vector, in radians.
|
|
[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle_to.png]Illustration of the returned angle.[/url]
|
|
</description>
|
|
</method>
|
|
<method name="angle_to_point" qualifiers="const">
|
|
<return type="float" />
|
|
<argument index="0" name="to" type="Vector2" />
|
|
<description>
|
|
Returns the angle between the line connecting the two points and the X axis, in radians.
|
|
[code]a.angle_to_point(b)[/code] is equivalent of doing [code](b - a).angle()[/code].
|
|
[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle_to_point.png]Illustration of the returned angle.[/url]
|
|
</description>
|
|
</method>
|
|
<method name="aspect" qualifiers="const">
|
|
<return type="float" />
|
|
<description>
|
|
Returns the aspect ratio of this vector, the ratio of [member x] to [member y].
|
|
</description>
|
|
</method>
|
|
<method name="bounce" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="n" type="Vector2" />
|
|
<description>
|
|
Returns the vector "bounced off" from a plane defined by the given normal.
|
|
</description>
|
|
</method>
|
|
<method name="ceil" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<description>
|
|
Returns the vector with all components rounded up (towards positive infinity).
|
|
</description>
|
|
</method>
|
|
<method name="clamp" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="min" type="Vector2" />
|
|
<argument index="1" name="max" type="Vector2" />
|
|
<description>
|
|
Returns a new vector with all components clamped between the components of [code]min[/code] and [code]max[/code], by running [method @GlobalScope.clamp] on each component.
|
|
</description>
|
|
</method>
|
|
<method name="cross" qualifiers="const">
|
|
<return type="float" />
|
|
<argument index="0" name="with" type="Vector2" />
|
|
<description>
|
|
Returns the cross product of this vector and [code]with[/code].
|
|
</description>
|
|
</method>
|
|
<method name="cubic_interpolate" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="b" type="Vector2" />
|
|
<argument index="1" name="pre_a" type="Vector2" />
|
|
<argument index="2" name="post_b" type="Vector2" />
|
|
<argument index="3" name="weight" type="float" />
|
|
<description>
|
|
Cubically interpolates between this vector and [code]b[/code] using [code]pre_a[/code] and [code]post_b[/code] as handles, and returns the result at position [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
|
</description>
|
|
</method>
|
|
<method name="direction_to" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="to" type="Vector2" />
|
|
<description>
|
|
Returns the normalized vector pointing from this vector to [code]to[/code]. This is equivalent to using [code](b - a).normalized()[/code].
|
|
</description>
|
|
</method>
|
|
<method name="distance_squared_to" qualifiers="const">
|
|
<return type="float" />
|
|
<argument index="0" name="to" type="Vector2" />
|
|
<description>
|
|
Returns the squared distance between this vector and [code]to[/code].
|
|
This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
|
|
</description>
|
|
</method>
|
|
<method name="distance_to" qualifiers="const">
|
|
<return type="float" />
|
|
<argument index="0" name="to" type="Vector2" />
|
|
<description>
|
|
Returns the distance between this vector and [code]to[/code].
|
|
</description>
|
|
</method>
|
|
<method name="dot" qualifiers="const">
|
|
<return type="float" />
|
|
<argument index="0" name="with" type="Vector2" />
|
|
<description>
|
|
Returns the dot product of this vector and [code]with[/code]. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.
|
|
The dot product will be [code]0[/code] for a straight angle (90 degrees), greater than 0 for angles narrower than 90 degrees and lower than 0 for angles wider than 90 degrees.
|
|
When using unit (normalized) vectors, the result will always be between [code]-1.0[/code] (180 degree angle) when the vectors are facing opposite directions, and [code]1.0[/code] (0 degree angle) when the vectors are aligned.
|
|
[b]Note:[/b] [code]a.dot(b)[/code] is equivalent to [code]b.dot(a)[/code].
|
|
</description>
|
|
</method>
|
|
<method name="floor" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<description>
|
|
Returns the vector with all components rounded down (towards negative infinity).
|
|
</description>
|
|
</method>
|
|
<method name="from_angle" qualifiers="static">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="angle" type="float" />
|
|
<description>
|
|
Creates a unit [Vector2] rotated to the given [code]angle[/code] in radians. This is equivalent to doing [code]Vector2(cos(angle), sin(angle))[/code] or [code]Vector2.RIGHT.rotated(angle)[/code].
|
|
[codeblock]
|
|
print(Vector2.from_angle(0)) # Prints (1, 0).
|
|
print(Vector2(1, 0).angle()) # Prints 0, which is the angle used above.
|
|
print(Vector2.from_angle(PI / 2)) # Prints (0, 1).
|
|
[/codeblock]
|
|
</description>
|
|
</method>
|
|
<method name="is_equal_approx" qualifiers="const">
|
|
<return type="bool" />
|
|
<argument index="0" name="to" type="Vector2" />
|
|
<description>
|
|
Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
|
|
</description>
|
|
</method>
|
|
<method name="is_normalized" qualifiers="const">
|
|
<return type="bool" />
|
|
<description>
|
|
Returns [code]true[/code] if the vector is normalized, [code]false[/code] otherwise.
|
|
</description>
|
|
</method>
|
|
<method name="length" qualifiers="const">
|
|
<return type="float" />
|
|
<description>
|
|
Returns the length (magnitude) of this vector.
|
|
</description>
|
|
</method>
|
|
<method name="length_squared" qualifiers="const">
|
|
<return type="float" />
|
|
<description>
|
|
Returns the squared length (squared magnitude) of this vector.
|
|
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
|
|
</description>
|
|
</method>
|
|
<method name="lerp" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="to" type="Vector2" />
|
|
<argument index="1" name="weight" type="float" />
|
|
<description>
|
|
Returns the result of the linear interpolation between this vector and [code]to[/code] by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
|
</description>
|
|
</method>
|
|
<method name="limit_length" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="length" type="float" default="1.0" />
|
|
<description>
|
|
Returns the vector with a maximum length by limiting its length to [code]length[/code].
|
|
</description>
|
|
</method>
|
|
<method name="move_toward" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="to" type="Vector2" />
|
|
<argument index="1" name="delta" type="float" />
|
|
<description>
|
|
Moves the vector toward [code]to[/code] by the fixed [code]delta[/code] amount.
|
|
</description>
|
|
</method>
|
|
<method name="normalized" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<description>
|
|
Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
|
|
</description>
|
|
</method>
|
|
<method name="orthogonal" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<description>
|
|
Returns a perpendicular vector rotated 90 degrees counter-clockwise compared to the original, with the same length.
|
|
</description>
|
|
</method>
|
|
<method name="posmod" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="mod" type="float" />
|
|
<description>
|
|
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]mod[/code].
|
|
</description>
|
|
</method>
|
|
<method name="posmodv" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="modv" type="Vector2" />
|
|
<description>
|
|
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]modv[/code]'s components.
|
|
</description>
|
|
</method>
|
|
<method name="project" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="b" type="Vector2" />
|
|
<description>
|
|
Returns the vector projected onto the vector [code]b[/code].
|
|
</description>
|
|
</method>
|
|
<method name="reflect" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="n" type="Vector2" />
|
|
<description>
|
|
Returns the vector reflected from a plane defined by the given normal.
|
|
</description>
|
|
</method>
|
|
<method name="rotated" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="phi" type="float" />
|
|
<description>
|
|
Returns the vector rotated by [code]phi[/code] radians. See also [method @GlobalScope.deg2rad].
|
|
</description>
|
|
</method>
|
|
<method name="round" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<description>
|
|
Returns the vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
|
|
</description>
|
|
</method>
|
|
<method name="sign" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<description>
|
|
Returns the vector with each component set to one or negative one, depending on the signs of the components, or zero if the component is zero, by calling [method @GlobalScope.sign] on each component.
|
|
</description>
|
|
</method>
|
|
<method name="slerp" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="to" type="Vector2" />
|
|
<argument index="1" name="weight" type="float" />
|
|
<description>
|
|
Returns the result of spherical linear interpolation between this vector and [code]to[/code], by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
|
[b]Note:[/b] Both vectors must be normalized.
|
|
</description>
|
|
</method>
|
|
<method name="slide" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="n" type="Vector2" />
|
|
<description>
|
|
Returns this vector slid along a plane defined by the given normal.
|
|
</description>
|
|
</method>
|
|
<method name="snapped" qualifiers="const">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="step" type="Vector2" />
|
|
<description>
|
|
Returns this vector with each component snapped to the nearest multiple of [code]step[/code]. This can also be used to round to an arbitrary number of decimals.
|
|
</description>
|
|
</method>
|
|
</methods>
|
|
<members>
|
|
<member name="x" type="float" setter="" getter="" default="0.0">
|
|
The vector's X component. Also accessible by using the index position [code][0][/code].
|
|
</member>
|
|
<member name="y" type="float" setter="" getter="" default="0.0">
|
|
The vector's Y component. Also accessible by using the index position [code][1][/code].
|
|
</member>
|
|
</members>
|
|
<constants>
|
|
<constant name="AXIS_X" value="0">
|
|
Enumerated value for the X axis.
|
|
</constant>
|
|
<constant name="AXIS_Y" value="1">
|
|
Enumerated value for the Y axis.
|
|
</constant>
|
|
<constant name="ZERO" value="Vector2(0, 0)">
|
|
Zero vector, a vector with all components set to [code]0[/code].
|
|
</constant>
|
|
<constant name="ONE" value="Vector2(1, 1)">
|
|
One vector, a vector with all components set to [code]1[/code].
|
|
</constant>
|
|
<constant name="INF" value="Vector2(inf, inf)">
|
|
Infinity vector, a vector with all components set to [constant @GDScript.INF].
|
|
</constant>
|
|
<constant name="LEFT" value="Vector2(-1, 0)">
|
|
Left unit vector. Represents the direction of left.
|
|
</constant>
|
|
<constant name="RIGHT" value="Vector2(1, 0)">
|
|
Right unit vector. Represents the direction of right.
|
|
</constant>
|
|
<constant name="UP" value="Vector2(0, -1)">
|
|
Up unit vector. Y is down in 2D, so this vector points -Y.
|
|
</constant>
|
|
<constant name="DOWN" value="Vector2(0, 1)">
|
|
Down unit vector. Y is down in 2D, so this vector points +Y.
|
|
</constant>
|
|
</constants>
|
|
<operators>
|
|
<operator name="operator !=">
|
|
<return type="bool" />
|
|
<description>
|
|
</description>
|
|
</operator>
|
|
<operator name="operator !=">
|
|
<return type="bool" />
|
|
<argument index="0" name="right" type="Vector2" />
|
|
<description>
|
|
Returns [code]true[/code] if the vectors are not equal.
|
|
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator *">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="right" type="Transform2D" />
|
|
<description>
|
|
Inversely transforms (multiplies) the [Vector2] by the given [Transform2D] transformation matrix.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator *">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="right" type="Vector2" />
|
|
<description>
|
|
Multiplies each component of the [Vector2] by the components of the given [Vector2].
|
|
[codeblock]
|
|
print(Vector2(10, 20) * Vector2(3, 4)) # Prints "(30, 80)"
|
|
[/codeblock]
|
|
</description>
|
|
</operator>
|
|
<operator name="operator *">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="right" type="float" />
|
|
<description>
|
|
Multiplies each component of the [Vector2] by the given [float].
|
|
</description>
|
|
</operator>
|
|
<operator name="operator *">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="right" type="int" />
|
|
<description>
|
|
Multiplies each component of the [Vector2] by the given [int].
|
|
</description>
|
|
</operator>
|
|
<operator name="operator +">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="right" type="Vector2" />
|
|
<description>
|
|
Adds each component of the [Vector2] by the components of the given [Vector2].
|
|
[codeblock]
|
|
print(Vector2(10, 20) + Vector2(3, 4)) # Prints "(13, 24)"
|
|
[/codeblock]
|
|
</description>
|
|
</operator>
|
|
<operator name="operator -">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="right" type="Vector2" />
|
|
<description>
|
|
Subtracts each component of the [Vector2] by the components of the given [Vector2].
|
|
[codeblock]
|
|
print(Vector2(10, 20) - Vector2(3, 4)) # Prints "(7, 16)"
|
|
[/codeblock]
|
|
</description>
|
|
</operator>
|
|
<operator name="operator /">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="right" type="Vector2" />
|
|
<description>
|
|
Divides each component of the [Vector2] by the components of the given [Vector2].
|
|
[codeblock]
|
|
print(Vector2(10, 20) / Vector2(2, 5)) # Prints "(5, 4)"
|
|
[/codeblock]
|
|
</description>
|
|
</operator>
|
|
<operator name="operator /">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="right" type="float" />
|
|
<description>
|
|
Divides each component of the [Vector2] by the given [float].
|
|
</description>
|
|
</operator>
|
|
<operator name="operator /">
|
|
<return type="Vector2" />
|
|
<argument index="0" name="right" type="int" />
|
|
<description>
|
|
Divides each component of the [Vector2] by the given [int].
|
|
</description>
|
|
</operator>
|
|
<operator name="operator <">
|
|
<return type="bool" />
|
|
<argument index="0" name="right" type="Vector2" />
|
|
<description>
|
|
Compares two [Vector2] vectors by first checking if the X value of the left vector is less than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator <=">
|
|
<return type="bool" />
|
|
<argument index="0" name="right" type="Vector2" />
|
|
<description>
|
|
Compares two [Vector2] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator ==">
|
|
<return type="bool" />
|
|
<description>
|
|
</description>
|
|
</operator>
|
|
<operator name="operator ==">
|
|
<return type="bool" />
|
|
<argument index="0" name="right" type="Vector2" />
|
|
<description>
|
|
Returns [code]true[/code] if the vectors are exactly equal.
|
|
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator >">
|
|
<return type="bool" />
|
|
<argument index="0" name="right" type="Vector2" />
|
|
<description>
|
|
Compares two [Vector2] vectors by first checking if the X value of the left vector is greater than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator >=">
|
|
<return type="bool" />
|
|
<argument index="0" name="right" type="Vector2" />
|
|
<description>
|
|
Compares two [Vector2] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator []">
|
|
<return type="float" />
|
|
<argument index="0" name="index" type="int" />
|
|
<description>
|
|
Access vector components using their index. [code]v[0][/code] is equivalent to [code]v.x[/code], and [code]v[1][/code] is equivalent to [code]v.y[/code].
|
|
</description>
|
|
</operator>
|
|
<operator name="operator unary+">
|
|
<return type="Vector2" />
|
|
<description>
|
|
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator unary-">
|
|
<return type="Vector2" />
|
|
<description>
|
|
Returns the negative value of the [Vector2]. This is the same as writing [code]Vector2(-v.x, -v.y)[/code]. This operation flips the direction of the vector while keeping the same magnitude. With floats, the number zero can be either positive or negative.
|
|
</description>
|
|
</operator>
|
|
</operators>
|
|
</class>
|