godot/servers/rendering/renderer_scene_cull.h
BlueCube3310 ef9bb1a207 Implement support for bicubic lightmap filtering
Co-authored-by: Calinou <hugo.locurcio@hugo.pro>
2024-08-19 09:52:09 +02:00

1452 lines
50 KiB
C++

/**************************************************************************/
/* renderer_scene_cull.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef RENDERER_SCENE_CULL_H
#define RENDERER_SCENE_CULL_H
#include "core/math/dynamic_bvh.h"
#include "core/math/transform_interpolator.h"
#include "core/templates/bin_sorted_array.h"
#include "core/templates/local_vector.h"
#include "core/templates/paged_allocator.h"
#include "core/templates/paged_array.h"
#include "core/templates/pass_func.h"
#include "core/templates/rid_owner.h"
#include "core/templates/self_list.h"
#include "servers/rendering/renderer_scene_occlusion_cull.h"
#include "servers/rendering/renderer_scene_render.h"
#include "servers/rendering/rendering_method.h"
#include "servers/rendering/rendering_server_globals.h"
#include "servers/rendering/storage/utilities.h"
#ifndef _3D_DISABLED
#include "servers/xr/xr_interface.h"
#endif // _3D_DISABLED
class RenderingLightCuller;
class RendererSceneCull : public RenderingMethod {
public:
RendererSceneRender *scene_render = nullptr;
enum {
SDFGI_MAX_CASCADES = 8,
SDFGI_MAX_REGIONS_PER_CASCADE = 3,
MAX_INSTANCE_PAIRS = 32,
MAX_UPDATE_SHADOWS = 512
};
uint64_t render_pass;
static RendererSceneCull *singleton;
/* EVENT QUEUING */
void tick();
void pre_draw(bool p_will_draw);
/* CAMERA API */
struct Camera {
enum Type {
PERSPECTIVE,
ORTHOGONAL,
FRUSTUM
};
Type type;
float fov;
float znear, zfar;
float size;
Vector2 offset;
uint32_t visible_layers;
bool vaspect;
RID env;
RID attributes;
RID compositor;
Transform3D transform;
Camera() {
visible_layers = 0xFFFFFFFF;
fov = 75;
type = PERSPECTIVE;
znear = 0.05;
zfar = 4000;
size = 1.0;
offset = Vector2();
vaspect = false;
}
};
mutable RID_Owner<Camera, true> camera_owner;
virtual RID camera_allocate();
virtual void camera_initialize(RID p_rid);
virtual void camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far);
virtual void camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far);
virtual void camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far);
virtual void camera_set_transform(RID p_camera, const Transform3D &p_transform);
virtual void camera_set_cull_mask(RID p_camera, uint32_t p_layers);
virtual void camera_set_environment(RID p_camera, RID p_env);
virtual void camera_set_camera_attributes(RID p_camera, RID p_attributes);
virtual void camera_set_compositor(RID p_camera, RID p_compositor);
virtual void camera_set_use_vertical_aspect(RID p_camera, bool p_enable);
virtual bool is_camera(RID p_camera) const;
/* OCCLUDER API */
virtual RID occluder_allocate();
virtual void occluder_initialize(RID p_occluder);
virtual void occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices);
/* VISIBILITY NOTIFIER API */
RendererSceneOcclusionCull *dummy_occlusion_culling = nullptr;
/* SCENARIO API */
struct Instance;
struct PlaneSign {
_ALWAYS_INLINE_ PlaneSign() {}
_ALWAYS_INLINE_ PlaneSign(const Plane &p_plane) {
if (p_plane.normal.x > 0) {
signs[0] = 0;
} else {
signs[0] = 3;
}
if (p_plane.normal.y > 0) {
signs[1] = 1;
} else {
signs[1] = 4;
}
if (p_plane.normal.z > 0) {
signs[2] = 2;
} else {
signs[2] = 5;
}
}
uint32_t signs[3];
};
struct Frustum {
Vector<Plane> planes;
Vector<PlaneSign> plane_signs;
const Plane *planes_ptr;
const PlaneSign *plane_signs_ptr;
uint32_t plane_count;
_ALWAYS_INLINE_ Frustum() {}
_ALWAYS_INLINE_ Frustum(const Frustum &p_frustum) {
planes = p_frustum.planes;
plane_signs = p_frustum.plane_signs;
planes_ptr = planes.ptr();
plane_signs_ptr = plane_signs.ptr();
plane_count = p_frustum.plane_count;
}
_ALWAYS_INLINE_ void operator=(const Frustum &p_frustum) {
planes = p_frustum.planes;
plane_signs = p_frustum.plane_signs;
planes_ptr = planes.ptr();
plane_signs_ptr = plane_signs.ptr();
plane_count = p_frustum.plane_count;
}
_ALWAYS_INLINE_ Frustum(const Vector<Plane> &p_planes) {
planes = p_planes;
planes_ptr = planes.ptrw();
plane_count = planes.size();
for (int i = 0; i < planes.size(); i++) {
PlaneSign ps(p_planes[i]);
plane_signs.push_back(ps);
}
plane_signs_ptr = plane_signs.ptr();
}
};
struct InstanceBounds {
// Efficiently store instance bounds.
// Because bounds checking is performed first,
// keep it separated from data.
real_t bounds[6];
_ALWAYS_INLINE_ InstanceBounds() {}
_ALWAYS_INLINE_ InstanceBounds(const AABB &p_aabb) {
bounds[0] = p_aabb.position.x;
bounds[1] = p_aabb.position.y;
bounds[2] = p_aabb.position.z;
bounds[3] = p_aabb.position.x + p_aabb.size.x;
bounds[4] = p_aabb.position.y + p_aabb.size.y;
bounds[5] = p_aabb.position.z + p_aabb.size.z;
}
_ALWAYS_INLINE_ bool in_frustum(const Frustum &p_frustum) const {
// This is not a full SAT check and the possibility of false positives exist,
// but the tradeoff vs performance is still very good.
for (uint32_t i = 0; i < p_frustum.plane_count; i++) {
Vector3 min(
bounds[p_frustum.plane_signs_ptr[i].signs[0]],
bounds[p_frustum.plane_signs_ptr[i].signs[1]],
bounds[p_frustum.plane_signs_ptr[i].signs[2]]);
if (p_frustum.planes_ptr[i].distance_to(min) >= 0.0) {
return false;
}
}
return true;
}
_ALWAYS_INLINE_ bool in_aabb(const AABB &p_aabb) const {
Vector3 end = p_aabb.position + p_aabb.size;
if (bounds[0] >= end.x) {
return false;
}
if (bounds[3] <= p_aabb.position.x) {
return false;
}
if (bounds[1] >= end.y) {
return false;
}
if (bounds[4] <= p_aabb.position.y) {
return false;
}
if (bounds[2] >= end.z) {
return false;
}
if (bounds[5] <= p_aabb.position.z) {
return false;
}
return true;
}
};
struct InstanceVisibilityNotifierData;
struct InstanceData {
// Store instance pointer as well as common instance processing information,
// to make processing more cache friendly.
enum Flags {
FLAG_BASE_TYPE_MASK = 0xFF,
FLAG_CAST_SHADOWS = (1 << 8),
FLAG_CAST_SHADOWS_ONLY = (1 << 9),
FLAG_REDRAW_IF_VISIBLE = (1 << 10),
FLAG_GEOM_LIGHTING_DIRTY = (1 << 11),
FLAG_GEOM_REFLECTION_DIRTY = (1 << 12),
FLAG_GEOM_DECAL_DIRTY = (1 << 13),
FLAG_GEOM_VOXEL_GI_DIRTY = (1 << 14),
FLAG_LIGHTMAP_CAPTURE = (1 << 15),
FLAG_USES_BAKED_LIGHT = (1 << 16),
FLAG_USES_MESH_INSTANCE = (1 << 17),
FLAG_REFLECTION_PROBE_DIRTY = (1 << 18),
FLAG_IGNORE_OCCLUSION_CULLING = (1 << 19),
FLAG_VISIBILITY_DEPENDENCY_NEEDS_CHECK = (3 << 20), // 2 bits, overlaps with the other vis. dependency flags
FLAG_VISIBILITY_DEPENDENCY_HIDDEN_CLOSE_RANGE = (1 << 20),
FLAG_VISIBILITY_DEPENDENCY_HIDDEN = (1 << 21),
FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN = (1 << 22),
FLAG_GEOM_PROJECTOR_SOFTSHADOW_DIRTY = (1 << 23),
FLAG_IGNORE_ALL_CULLING = (1 << 24),
};
uint32_t flags = 0;
uint32_t layer_mask = 0; //for fast layer-mask discard
RID base_rid;
union {
uint64_t instance_data_rid;
RenderGeometryInstance *instance_geometry;
InstanceVisibilityNotifierData *visibility_notifier = nullptr;
};
Instance *instance = nullptr;
int32_t parent_array_index = -1;
int32_t visibility_index = -1;
// Each time occlusion culling determines an instance is visible,
// set this to occlusion_frame plus some delay.
// Once the timeout is reached, allow the instance to be occlusion culled.
// This creates a delay for occlusion culling, which prevents flickering
// when jittering the raster occlusion projection.
uint64_t occlusion_timeout = 0;
};
struct InstanceVisibilityData {
uint64_t viewport_state = 0;
int32_t array_index = -1;
RS::VisibilityRangeFadeMode fade_mode = RS::VISIBILITY_RANGE_FADE_DISABLED;
Vector3 position;
Instance *instance = nullptr;
float range_begin = 0.0f;
float range_end = 0.0f;
float range_begin_margin = 0.0f;
float range_end_margin = 0.0f;
float children_fade_alpha = 1.0f;
};
class VisibilityArray : public BinSortedArray<InstanceVisibilityData> {
_FORCE_INLINE_ virtual void _update_idx(InstanceVisibilityData &r_element, uint64_t p_idx) {
r_element.instance->visibility_index = p_idx;
if (r_element.instance->scenario && r_element.instance->array_index != -1) {
r_element.instance->scenario->instance_data[r_element.instance->array_index].visibility_index = p_idx;
}
}
};
PagedArrayPool<InstanceBounds> instance_aabb_page_pool;
PagedArrayPool<InstanceData> instance_data_page_pool;
PagedArrayPool<InstanceVisibilityData> instance_visibility_data_page_pool;
struct Scenario {
enum IndexerType {
INDEXER_GEOMETRY, //for geometry
INDEXER_VOLUMES, //for everything else
INDEXER_MAX
};
DynamicBVH indexers[INDEXER_MAX];
RID self;
List<Instance *> directional_lights;
RID environment;
RID fallback_environment;
RID camera_attributes;
RID compositor;
RID reflection_probe_shadow_atlas;
RID reflection_atlas;
uint64_t used_viewport_visibility_bits;
HashMap<RID, uint64_t> viewport_visibility_masks;
SelfList<Instance>::List instances;
LocalVector<RID> dynamic_lights;
PagedArray<InstanceBounds> instance_aabbs;
PagedArray<InstanceData> instance_data;
VisibilityArray instance_visibility;
Scenario() {
indexers[INDEXER_GEOMETRY].set_index(INDEXER_GEOMETRY);
indexers[INDEXER_VOLUMES].set_index(INDEXER_VOLUMES);
used_viewport_visibility_bits = 0;
}
};
int indexer_update_iterations = 0;
mutable RID_Owner<Scenario, true> scenario_owner;
static void _instance_pair(Instance *p_A, Instance *p_B);
static void _instance_unpair(Instance *p_A, Instance *p_B);
void _instance_update_mesh_instance(Instance *p_instance);
virtual RID scenario_allocate();
virtual void scenario_initialize(RID p_rid);
virtual void scenario_set_environment(RID p_scenario, RID p_environment);
virtual void scenario_set_camera_attributes(RID p_scenario, RID p_attributes);
virtual void scenario_set_fallback_environment(RID p_scenario, RID p_environment);
virtual void scenario_set_compositor(RID p_scenario, RID p_compositor);
virtual void scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count);
virtual bool is_scenario(RID p_scenario) const;
virtual RID scenario_get_environment(RID p_scenario);
virtual void scenario_add_viewport_visibility_mask(RID p_scenario, RID p_viewport);
virtual void scenario_remove_viewport_visibility_mask(RID p_scenario, RID p_viewport);
/* INSTANCING API */
struct InstancePair {
Instance *a = nullptr;
Instance *b = nullptr;
SelfList<InstancePair> list_a;
SelfList<InstancePair> list_b;
InstancePair() :
list_a(this), list_b(this) {}
};
PagedAllocator<InstancePair> pair_allocator;
struct InstanceBaseData {
virtual ~InstanceBaseData() {}
};
struct Instance {
RS::InstanceType base_type;
RID base;
RID skeleton;
RID material_override;
RID material_overlay;
RID mesh_instance; //only used for meshes and when skeleton/blendshapes exist
// This is the main transform to be drawn with ...
// This will either be the interpolated transform (when using fixed timestep interpolation)
// or the ONLY transform (when not using FTI).
Transform3D transform;
// For interpolation we store the current transform (this physics tick)
// and the transform in the previous tick.
Transform3D transform_curr;
Transform3D transform_prev;
float lod_bias;
bool ignore_occlusion_culling;
bool ignore_all_culling;
Vector<RID> materials;
RS::ShadowCastingSetting cast_shadows;
uint32_t layer_mask;
// Fit in 32 bits.
bool mirror : 1;
bool receive_shadows : 1;
bool visible : 1;
bool baked_light : 1; // This flag is only to know if it actually did use baked light.
bool dynamic_gi : 1; // Same as above for dynamic objects.
bool redraw_if_visible : 1;
bool on_interpolate_list : 1;
bool on_interpolate_transform_list : 1;
bool interpolated : 1;
TransformInterpolator::Method interpolation_method : 3;
// For fixed timestep interpolation.
// Note 32 bits is plenty for checksum, no need for real_t
float transform_checksum_curr;
float transform_checksum_prev;
Instance *lightmap = nullptr;
Rect2 lightmap_uv_scale;
int lightmap_slice_index;
uint32_t lightmap_cull_index;
Vector<Color> lightmap_sh; //spherical harmonic
AABB aabb;
AABB transformed_aabb;
AABB prev_transformed_aabb;
struct InstanceShaderParameter {
int32_t index = -1;
Variant value;
Variant default_value;
PropertyInfo info;
};
HashMap<StringName, InstanceShaderParameter> instance_shader_uniforms;
bool instance_allocated_shader_uniforms = false;
int32_t instance_allocated_shader_uniforms_offset = -1;
//
RID self;
//scenario stuff
DynamicBVH::ID indexer_id;
int32_t array_index = -1;
int32_t visibility_index = -1;
float visibility_range_begin = 0.0f;
float visibility_range_end = 0.0f;
float visibility_range_begin_margin = 0.0f;
float visibility_range_end_margin = 0.0f;
RS::VisibilityRangeFadeMode visibility_range_fade_mode = RS::VISIBILITY_RANGE_FADE_DISABLED;
Instance *visibility_parent = nullptr;
HashSet<Instance *> visibility_dependencies;
uint32_t visibility_dependencies_depth = 0;
float transparency = 0.0f;
Scenario *scenario = nullptr;
SelfList<Instance> scenario_item;
//aabb stuff
bool update_aabb;
bool update_dependencies;
SelfList<Instance> update_item;
AABB *custom_aabb = nullptr; // <Zylann> would using aabb directly with a bool be better?
float extra_margin;
ObjectID object_id;
// sorting
float sorting_offset = 0.0;
bool use_aabb_center = true;
Vector<Color> lightmap_target_sh; //target is used for incrementally changing the SH over time, this avoids pops in some corner cases and when going interior <-> exterior
uint64_t last_frame_pass;
uint64_t version; // changes to this, and changes to base increase version
InstanceBaseData *base_data = nullptr;
SelfList<InstancePair>::List pairs;
uint64_t pair_check;
DependencyTracker dependency_tracker;
static void dependency_changed(Dependency::DependencyChangedNotification p_notification, DependencyTracker *tracker) {
Instance *instance = (Instance *)tracker->userdata;
switch (p_notification) {
case Dependency::DEPENDENCY_CHANGED_SKELETON_DATA:
case Dependency::DEPENDENCY_CHANGED_SKELETON_BONES:
case Dependency::DEPENDENCY_CHANGED_AABB: {
singleton->_instance_queue_update(instance, true, false);
} break;
case Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES:
case Dependency::DEPENDENCY_CHANGED_MATERIAL: {
singleton->_instance_queue_update(instance, false, true);
} break;
case Dependency::DEPENDENCY_CHANGED_MESH:
case Dependency::DEPENDENCY_CHANGED_PARTICLES:
case Dependency::DEPENDENCY_CHANGED_MULTIMESH:
case Dependency::DEPENDENCY_CHANGED_DECAL:
case Dependency::DEPENDENCY_CHANGED_LIGHT:
case Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE: {
singleton->_instance_queue_update(instance, true, true);
} break;
case Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR: {
//requires repairing
if (instance->indexer_id.is_valid()) {
singleton->_unpair_instance(instance);
singleton->_instance_queue_update(instance, true, true);
}
} break;
default: {
// Ignored notifications.
} break;
}
}
static void dependency_deleted(const RID &p_dependency, DependencyTracker *tracker) {
Instance *instance = (Instance *)tracker->userdata;
if (p_dependency == instance->base) {
singleton->instance_set_base(instance->self, RID());
} else if (p_dependency == instance->skeleton) {
singleton->instance_attach_skeleton(instance->self, RID());
} else {
// It's possible the same material is used in multiple slots,
// so we check whether we need to clear them all.
if (p_dependency == instance->material_override) {
singleton->instance_geometry_set_material_override(instance->self, RID());
}
if (p_dependency == instance->material_overlay) {
singleton->instance_geometry_set_material_overlay(instance->self, RID());
}
for (int i = 0; i < instance->materials.size(); i++) {
if (p_dependency == instance->materials[i]) {
singleton->instance_set_surface_override_material(instance->self, i, RID());
}
}
if (instance->base_type == RS::INSTANCE_PARTICLES) {
RID particle_material = RSG::particles_storage->particles_get_process_material(instance->base);
if (p_dependency == particle_material) {
RSG::particles_storage->particles_set_process_material(instance->base, RID());
}
}
// Even if no change is made we still need to call `_instance_queue_update`.
// This dependency could also be a result of the freed material being used
// by the mesh this mesh instance uses.
singleton->_instance_queue_update(instance, false, true);
}
}
Instance() :
scenario_item(this),
update_item(this) {
base_type = RS::INSTANCE_NONE;
cast_shadows = RS::SHADOW_CASTING_SETTING_ON;
receive_shadows = true;
visible = true;
layer_mask = 1;
baked_light = true;
dynamic_gi = false;
redraw_if_visible = false;
on_interpolate_list = false;
on_interpolate_transform_list = false;
interpolated = true;
interpolation_method = TransformInterpolator::INTERP_LERP;
transform_checksum_curr = 0.0;
transform_checksum_prev = 0.0;
lightmap_slice_index = 0;
lightmap = nullptr;
lightmap_cull_index = 0;
lod_bias = 1.0;
ignore_occlusion_culling = false;
ignore_all_culling = false;
scenario = nullptr;
update_aabb = false;
update_dependencies = false;
extra_margin = 0;
visible = true;
visibility_range_begin = 0;
visibility_range_end = 0;
visibility_range_begin_margin = 0;
visibility_range_end_margin = 0;
last_frame_pass = 0;
version = 1;
base_data = nullptr;
custom_aabb = nullptr;
pair_check = 0;
array_index = -1;
dependency_tracker.userdata = this;
dependency_tracker.changed_callback = dependency_changed;
dependency_tracker.deleted_callback = dependency_deleted;
}
~Instance() {
if (base_data) {
memdelete(base_data);
}
if (custom_aabb) {
memdelete(custom_aabb);
}
}
};
SelfList<Instance>::List _instance_update_list;
void _instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies = false);
struct InstanceGeometryData : public InstanceBaseData {
RenderGeometryInstance *geometry_instance = nullptr;
HashSet<Instance *> lights;
bool can_cast_shadows;
bool material_is_animated;
uint32_t projector_count = 0;
uint32_t softshadow_count = 0;
HashSet<Instance *> decals;
HashSet<Instance *> reflection_probes;
HashSet<Instance *> voxel_gi_instances;
HashSet<Instance *> lightmap_captures;
InstanceGeometryData() {
can_cast_shadows = true;
material_is_animated = true;
}
};
struct InstanceReflectionProbeData : public InstanceBaseData {
Instance *owner = nullptr;
HashSet<Instance *> geometries;
RID instance;
SelfList<InstanceReflectionProbeData> update_list;
int render_step;
InstanceReflectionProbeData() :
update_list(this) {
render_step = -1;
}
};
struct InstanceDecalData : public InstanceBaseData {
Instance *owner = nullptr;
RID instance;
HashSet<Instance *> geometries;
InstanceDecalData() {
}
};
SelfList<InstanceReflectionProbeData>::List reflection_probe_render_list;
struct InstanceParticlesCollisionData : public InstanceBaseData {
RID instance;
};
struct InstanceFogVolumeData : public InstanceBaseData {
RID instance;
bool is_global;
};
struct InstanceVisibilityNotifierData : public InstanceBaseData {
bool just_visible = false;
uint64_t visible_in_frame = 0;
RID base;
SelfList<InstanceVisibilityNotifierData> list_element;
InstanceVisibilityNotifierData() :
list_element(this) {}
};
SpinLock visible_notifier_list_lock;
SelfList<InstanceVisibilityNotifierData>::List visible_notifier_list;
struct InstanceLightData : public InstanceBaseData {
RID instance;
uint64_t last_version;
List<Instance *>::Element *D; // directional light in scenario
bool uses_projector = false;
bool uses_softshadow = false;
HashSet<Instance *> geometries;
Instance *baked_light = nullptr;
RS::LightBakeMode bake_mode;
uint32_t max_sdfgi_cascade = 2;
private:
// Instead of a single dirty flag, we maintain a count
// so that we can detect lights that are being made dirty
// each frame, and switch on tighter caster culling.
int32_t shadow_dirty_count;
uint32_t light_update_frame_id;
bool light_intersects_multiple_cameras;
uint32_t light_intersects_multiple_cameras_timeout_frame_id;
public:
bool is_shadow_dirty() const { return shadow_dirty_count != 0; }
void make_shadow_dirty() { shadow_dirty_count = light_intersects_multiple_cameras ? 1 : 2; }
void detect_light_intersects_multiple_cameras(uint32_t p_frame_id) {
// We need to detect the case where shadow updates are occurring
// more than once per frame. In this case, we need to turn off
// tighter caster culling, so situation reverts to one full shadow update
// per frame (light_intersects_multiple_cameras is set).
if (p_frame_id == light_update_frame_id) {
light_intersects_multiple_cameras = true;
light_intersects_multiple_cameras_timeout_frame_id = p_frame_id + 60;
} else {
// When shadow_volume_intersects_multiple_cameras is set, we
// want to detect the situation this is no longer the case, via a timeout.
// The system can go back to tighter caster culling in this situation.
// Having a long-ish timeout prevents rapid cycling.
if (light_intersects_multiple_cameras && (p_frame_id >= light_intersects_multiple_cameras_timeout_frame_id)) {
light_intersects_multiple_cameras = false;
light_intersects_multiple_cameras_timeout_frame_id = UINT32_MAX;
}
}
light_update_frame_id = p_frame_id;
}
void decrement_shadow_dirty() {
shadow_dirty_count--;
DEV_ASSERT(shadow_dirty_count >= 0);
}
// Shadow updates can either full (everything in the shadow volume)
// or closely culled to the camera frustum.
bool is_shadow_update_full() const { return shadow_dirty_count == 0; }
InstanceLightData() {
bake_mode = RS::LIGHT_BAKE_DISABLED;
D = nullptr;
last_version = 0;
baked_light = nullptr;
shadow_dirty_count = 1;
light_update_frame_id = UINT32_MAX;
light_intersects_multiple_cameras_timeout_frame_id = UINT32_MAX;
light_intersects_multiple_cameras = false;
}
};
struct InstanceVoxelGIData : public InstanceBaseData {
Instance *owner = nullptr;
HashSet<Instance *> geometries;
HashSet<Instance *> dynamic_geometries;
HashSet<Instance *> lights;
struct LightCache {
RS::LightType type;
Transform3D transform;
Color color;
float energy;
float intensity;
float bake_energy;
float radius;
float attenuation;
float spot_angle;
float spot_attenuation;
bool has_shadow;
RS::LightDirectionalSkyMode sky_mode;
};
Vector<LightCache> light_cache;
Vector<RID> light_instances;
RID probe_instance;
bool invalid;
uint32_t base_version;
SelfList<InstanceVoxelGIData> update_element;
InstanceVoxelGIData() :
update_element(this) {
invalid = true;
base_version = 0;
}
};
SelfList<InstanceVoxelGIData>::List voxel_gi_update_list;
struct InstanceLightmapData : public InstanceBaseData {
RID instance;
HashSet<Instance *> geometries;
HashSet<Instance *> users;
InstanceLightmapData() {
}
};
uint64_t pair_pass = 1;
struct PairInstances {
Instance *instance = nullptr;
PagedAllocator<InstancePair> *pair_allocator = nullptr;
SelfList<InstancePair>::List pairs_found;
DynamicBVH *bvh = nullptr;
DynamicBVH *bvh2 = nullptr; //some may need to cull in two
uint32_t pair_mask;
uint64_t pair_pass;
uint32_t cull_mask = 0xFFFFFFFF; // Needed for decals and lights in the mobile and compatibility renderers.
_FORCE_INLINE_ bool operator()(void *p_data) {
Instance *p_instance = (Instance *)p_data;
if (instance != p_instance && instance->transformed_aabb.intersects(p_instance->transformed_aabb) && (pair_mask & (1 << p_instance->base_type)) && (cull_mask & p_instance->layer_mask)) {
//test is more coarse in indexer
p_instance->pair_check = pair_pass;
InstancePair *pair = pair_allocator->alloc();
pair->a = instance;
pair->b = p_instance;
pairs_found.add(&pair->list_a);
}
return false;
}
void pair() {
if (bvh) {
bvh->aabb_query(instance->transformed_aabb, *this);
}
if (bvh2) {
bvh2->aabb_query(instance->transformed_aabb, *this);
}
while (instance->pairs.first()) {
InstancePair *pair = instance->pairs.first()->self();
Instance *other_instance = instance == pair->a ? pair->b : pair->a;
if (other_instance->pair_check != pair_pass) {
//unpaired
_instance_unpair(instance, other_instance);
} else {
//kept
other_instance->pair_check = 0; // if kept, then put pair check to zero, so we can distinguish with the newly added ones
}
pair_allocator->free(pair);
}
while (pairs_found.first()) {
InstancePair *pair = pairs_found.first()->self();
pairs_found.remove(pairs_found.first());
if (pair->b->pair_check == pair_pass) {
//paired
_instance_pair(instance, pair->b);
}
pair->a->pairs.add(&pair->list_a);
pair->b->pairs.add(&pair->list_b);
}
}
};
HashSet<Instance *> heightfield_particle_colliders_update_list;
PagedArrayPool<Instance *> instance_cull_page_pool;
PagedArrayPool<RenderGeometryInstance *> geometry_instance_cull_page_pool;
PagedArrayPool<RID> rid_cull_page_pool;
PagedArray<Instance *> instance_cull_result;
PagedArray<Instance *> instance_shadow_cull_result;
struct InstanceCullResult {
PagedArray<RenderGeometryInstance *> geometry_instances;
PagedArray<Instance *> lights;
PagedArray<RID> light_instances;
PagedArray<RID> lightmaps;
PagedArray<RID> reflections;
PagedArray<RID> decals;
PagedArray<RID> voxel_gi_instances;
PagedArray<RID> mesh_instances;
PagedArray<RID> fog_volumes;
struct DirectionalShadow {
PagedArray<RenderGeometryInstance *> cascade_geometry_instances[RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES];
} directional_shadows[RendererSceneRender::MAX_DIRECTIONAL_LIGHTS];
PagedArray<RenderGeometryInstance *> sdfgi_region_geometry_instances[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE];
PagedArray<RID> sdfgi_cascade_lights[SDFGI_MAX_CASCADES];
void clear() {
geometry_instances.clear();
lights.clear();
light_instances.clear();
lightmaps.clear();
reflections.clear();
decals.clear();
voxel_gi_instances.clear();
mesh_instances.clear();
fog_volumes.clear();
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].clear();
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].clear();
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].clear();
}
}
void reset() {
geometry_instances.reset();
lights.reset();
light_instances.reset();
lightmaps.reset();
reflections.reset();
decals.reset();
voxel_gi_instances.reset();
mesh_instances.reset();
fog_volumes.reset();
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].reset();
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].reset();
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].reset();
}
}
void append_from(InstanceCullResult &p_cull_result) {
geometry_instances.merge_unordered(p_cull_result.geometry_instances);
lights.merge_unordered(p_cull_result.lights);
light_instances.merge_unordered(p_cull_result.light_instances);
lightmaps.merge_unordered(p_cull_result.lightmaps);
reflections.merge_unordered(p_cull_result.reflections);
decals.merge_unordered(p_cull_result.decals);
voxel_gi_instances.merge_unordered(p_cull_result.voxel_gi_instances);
mesh_instances.merge_unordered(p_cull_result.mesh_instances);
fog_volumes.merge_unordered(p_cull_result.fog_volumes);
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].merge_unordered(p_cull_result.directional_shadows[i].cascade_geometry_instances[j]);
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].merge_unordered(p_cull_result.sdfgi_region_geometry_instances[i]);
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].merge_unordered(p_cull_result.sdfgi_cascade_lights[i]);
}
}
void init(PagedArrayPool<RID> *p_rid_pool, PagedArrayPool<RenderGeometryInstance *> *p_geometry_instance_pool, PagedArrayPool<Instance *> *p_instance_pool) {
geometry_instances.set_page_pool(p_geometry_instance_pool);
light_instances.set_page_pool(p_rid_pool);
lights.set_page_pool(p_instance_pool);
lightmaps.set_page_pool(p_rid_pool);
reflections.set_page_pool(p_rid_pool);
decals.set_page_pool(p_rid_pool);
voxel_gi_instances.set_page_pool(p_rid_pool);
mesh_instances.set_page_pool(p_rid_pool);
fog_volumes.set_page_pool(p_rid_pool);
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].set_page_pool(p_geometry_instance_pool);
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].set_page_pool(p_geometry_instance_pool);
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].set_page_pool(p_rid_pool);
}
}
};
InstanceCullResult scene_cull_result;
LocalVector<InstanceCullResult> scene_cull_result_threads;
RendererSceneRender::RenderShadowData render_shadow_data[MAX_UPDATE_SHADOWS];
uint32_t max_shadows_used = 0;
RendererSceneRender::RenderSDFGIData render_sdfgi_data[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE];
RendererSceneRender::RenderSDFGIUpdateData sdfgi_update_data;
uint32_t thread_cull_threshold = 200;
RID_Owner<Instance, true> instance_owner;
uint32_t geometry_instance_pair_mask = 0; // used in traditional forward, unnecessary on clustered
LocalVector<Vector2> camera_jitter_array;
RenderingLightCuller *light_culler = nullptr;
virtual RID instance_allocate();
virtual void instance_initialize(RID p_rid);
virtual void instance_set_base(RID p_instance, RID p_base);
virtual void instance_set_scenario(RID p_instance, RID p_scenario);
virtual void instance_set_layer_mask(RID p_instance, uint32_t p_mask);
virtual void instance_set_pivot_data(RID p_instance, float p_sorting_offset, bool p_use_aabb_center);
virtual void instance_set_transform(RID p_instance, const Transform3D &p_transform);
virtual void instance_set_interpolated(RID p_instance, bool p_interpolated);
virtual void instance_reset_physics_interpolation(RID p_instance);
virtual void instance_attach_object_instance_id(RID p_instance, ObjectID p_id);
virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight);
virtual void instance_set_surface_override_material(RID p_instance, int p_surface, RID p_material);
virtual void instance_set_visible(RID p_instance, bool p_visible);
virtual void instance_geometry_set_transparency(RID p_instance, float p_transparency);
virtual void instance_set_custom_aabb(RID p_instance, AABB p_aabb);
virtual void instance_attach_skeleton(RID p_instance, RID p_skeleton);
virtual void instance_set_extra_visibility_margin(RID p_instance, real_t p_margin);
virtual void instance_set_visibility_parent(RID p_instance, RID p_parent_instance);
virtual void instance_set_ignore_culling(RID p_instance, bool p_enabled);
bool _update_instance_visibility_depth(Instance *p_instance);
void _update_instance_visibility_dependencies(Instance *p_instance);
// don't use these in a game!
virtual Vector<ObjectID> instances_cull_aabb(const AABB &p_aabb, RID p_scenario = RID()) const;
virtual Vector<ObjectID> instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario = RID()) const;
virtual Vector<ObjectID> instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario = RID()) const;
virtual void instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled);
virtual void instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting);
virtual void instance_geometry_set_material_override(RID p_instance, RID p_material);
virtual void instance_geometry_set_material_overlay(RID p_instance, RID p_material);
virtual void instance_geometry_set_visibility_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin, RS::VisibilityRangeFadeMode p_fade_mode);
virtual void instance_geometry_set_lightmap(RID p_instance, RID p_lightmap, const Rect2 &p_lightmap_uv_scale, int p_slice_index);
virtual void instance_geometry_set_lod_bias(RID p_instance, float p_lod_bias);
void _update_instance_shader_uniforms_from_material(HashMap<StringName, Instance::InstanceShaderParameter> &isparams, const HashMap<StringName, Instance::InstanceShaderParameter> &existing_isparams, RID p_material);
virtual void instance_geometry_set_shader_parameter(RID p_instance, const StringName &p_parameter, const Variant &p_value);
virtual void instance_geometry_get_shader_parameter_list(RID p_instance, List<PropertyInfo> *p_parameters) const;
virtual Variant instance_geometry_get_shader_parameter(RID p_instance, const StringName &p_parameter) const;
virtual Variant instance_geometry_get_shader_parameter_default_value(RID p_instance, const StringName &p_parameter) const;
_FORCE_INLINE_ void _update_instance(Instance *p_instance);
_FORCE_INLINE_ void _update_instance_aabb(Instance *p_instance);
_FORCE_INLINE_ void _update_dirty_instance(Instance *p_instance);
_FORCE_INLINE_ void _update_instance_lightmap_captures(Instance *p_instance);
void _unpair_instance(Instance *p_instance);
void _light_instance_setup_directional_shadow(int p_shadow_index, Instance *p_instance, const Transform3D p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect);
_FORCE_INLINE_ bool _light_instance_update_shadow(Instance *p_instance, const Transform3D p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_shadow_atlas, Scenario *p_scenario, float p_scren_mesh_lod_threshold, uint32_t p_visible_layers = 0xFFFFFF);
RID _render_get_environment(RID p_camera, RID p_scenario);
RID _render_get_compositor(RID p_camera, RID p_scenario);
struct Cull {
struct Shadow {
RID light_instance;
struct Cascade {
Frustum frustum;
Projection projection;
Transform3D transform;
real_t zfar;
real_t split;
real_t shadow_texel_size;
real_t bias_scale;
real_t range_begin;
Vector2 uv_scale;
} cascades[RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES]; //max 4 cascades
uint32_t cascade_count;
} shadows[RendererSceneRender::MAX_DIRECTIONAL_LIGHTS];
uint32_t shadow_count;
struct SDFGI {
//have arrays here because SDFGI functions expects this, plus regions can have areas
AABB region_aabb[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE]; //max 3 regions per cascade
uint32_t region_cascade[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE]; //max 3 regions per cascade
uint32_t region_count = 0;
uint32_t cascade_light_index[SDFGI_MAX_CASCADES];
uint32_t cascade_light_count = 0;
} sdfgi;
SpinLock lock;
Frustum frustum;
} cull;
struct VisibilityCullData {
uint64_t viewport_mask;
Scenario *scenario = nullptr;
Vector3 camera_position;
uint32_t cull_offset;
uint32_t cull_count;
};
void _visibility_cull_threaded(uint32_t p_thread, VisibilityCullData *cull_data);
void _visibility_cull(const VisibilityCullData &cull_data, uint64_t p_from, uint64_t p_to);
template <bool p_fade_check>
_FORCE_INLINE_ int _visibility_range_check(InstanceVisibilityData &r_vis_data, const Vector3 &p_camera_pos, uint64_t p_viewport_mask);
struct CullData {
Cull *cull = nullptr;
Scenario *scenario = nullptr;
RID shadow_atlas;
Transform3D cam_transform;
uint32_t visible_layers;
Instance *render_reflection_probe = nullptr;
const RendererSceneOcclusionCull::HZBuffer *occlusion_buffer;
const Projection *camera_matrix;
uint64_t visibility_viewport_mask;
};
void _scene_cull_threaded(uint32_t p_thread, CullData *cull_data);
void _scene_cull(CullData &cull_data, InstanceCullResult &cull_result, uint64_t p_from, uint64_t p_to);
_FORCE_INLINE_ bool _visibility_parent_check(const CullData &p_cull_data, const InstanceData &p_instance_data);
bool _render_reflection_probe_step(Instance *p_instance, int p_step);
void _render_scene(const RendererSceneRender::CameraData *p_camera_data, const Ref<RenderSceneBuffers> &p_render_buffers, RID p_environment, RID p_force_camera_attributes, RID p_compositor, uint32_t p_visible_layers, RID p_scenario, RID p_viewport, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, bool p_using_shadows = true, RenderInfo *r_render_info = nullptr);
void render_empty_scene(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_scenario, RID p_shadow_atlas);
void render_camera(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_camera, RID p_scenario, RID p_viewport, Size2 p_viewport_size, uint32_t p_jitter_phase_count, float p_screen_mesh_lod_threshold, RID p_shadow_atlas, Ref<XRInterface> &p_xr_interface, RenderingMethod::RenderInfo *r_render_info = nullptr);
void update_dirty_instances();
void render_particle_colliders();
virtual void render_probes();
TypedArray<Image> bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size);
//pass to scene render
/* ENVIRONMENT API */
#ifdef PASSBASE
#undef PASSBASE
#endif
#define PASSBASE scene_render
PASS1(voxel_gi_set_quality, RS::VoxelGIQuality)
/* SKY API */
PASS0R(RID, sky_allocate)
PASS1(sky_initialize, RID)
PASS2(sky_set_radiance_size, RID, int)
PASS2(sky_set_mode, RID, RS::SkyMode)
PASS2(sky_set_material, RID, RID)
PASS4R(Ref<Image>, sky_bake_panorama, RID, float, bool, const Size2i &)
// Compositor effect
PASS0R(RID, compositor_effect_allocate)
PASS1(compositor_effect_initialize, RID)
PASS1RC(bool, is_compositor_effect, RID)
PASS2(compositor_effect_set_enabled, RID, bool)
PASS3(compositor_effect_set_callback, RID, RS::CompositorEffectCallbackType, const Callable &)
PASS3(compositor_effect_set_flag, RID, RS::CompositorEffectFlags, bool)
// Compositor
PASS0R(RID, compositor_allocate)
PASS1(compositor_initialize, RID)
PASS1RC(bool, is_compositor, RID)
PASS2(compositor_set_compositor_effects, RID, const TypedArray<RID> &)
// Environment
PASS0R(RID, environment_allocate)
PASS1(environment_initialize, RID)
PASS1RC(bool, is_environment, RID)
// Background
PASS2(environment_set_background, RID, RS::EnvironmentBG)
PASS2(environment_set_sky, RID, RID)
PASS2(environment_set_sky_custom_fov, RID, float)
PASS2(environment_set_sky_orientation, RID, const Basis &)
PASS2(environment_set_bg_color, RID, const Color &)
PASS3(environment_set_bg_energy, RID, float, float)
PASS2(environment_set_canvas_max_layer, RID, int)
PASS6(environment_set_ambient_light, RID, const Color &, RS::EnvironmentAmbientSource, float, float, RS::EnvironmentReflectionSource)
PASS1RC(RS::EnvironmentBG, environment_get_background, RID)
PASS1RC(RID, environment_get_sky, RID)
PASS1RC(float, environment_get_sky_custom_fov, RID)
PASS1RC(Basis, environment_get_sky_orientation, RID)
PASS1RC(Color, environment_get_bg_color, RID)
PASS1RC(float, environment_get_bg_energy_multiplier, RID)
PASS1RC(float, environment_get_bg_intensity, RID)
PASS1RC(int, environment_get_canvas_max_layer, RID)
PASS1RC(RS::EnvironmentAmbientSource, environment_get_ambient_source, RID)
PASS1RC(Color, environment_get_ambient_light, RID)
PASS1RC(float, environment_get_ambient_light_energy, RID)
PASS1RC(float, environment_get_ambient_sky_contribution, RID)
PASS1RC(RS::EnvironmentReflectionSource, environment_get_reflection_source, RID)
// Tonemap
PASS4(environment_set_tonemap, RID, RS::EnvironmentToneMapper, float, float)
PASS1RC(RS::EnvironmentToneMapper, environment_get_tone_mapper, RID)
PASS1RC(float, environment_get_exposure, RID)
PASS1RC(float, environment_get_white, RID)
// Fog
PASS11(environment_set_fog, RID, bool, const Color &, float, float, float, float, float, float, float, RS::EnvironmentFogMode)
PASS1RC(bool, environment_get_fog_enabled, RID)
PASS1RC(Color, environment_get_fog_light_color, RID)
PASS1RC(float, environment_get_fog_light_energy, RID)
PASS1RC(float, environment_get_fog_sun_scatter, RID)
PASS1RC(float, environment_get_fog_density, RID)
PASS1RC(float, environment_get_fog_sky_affect, RID)
PASS1RC(float, environment_get_fog_height, RID)
PASS1RC(float, environment_get_fog_height_density, RID)
PASS1RC(float, environment_get_fog_aerial_perspective, RID)
PASS1RC(RS::EnvironmentFogMode, environment_get_fog_mode, RID)
PASS2(environment_set_volumetric_fog_volume_size, int, int)
PASS1(environment_set_volumetric_fog_filter_active, bool)
// Depth Fog
PASS4(environment_set_fog_depth, RID, float, float, float)
PASS1RC(float, environment_get_fog_depth_curve, RID)
PASS1RC(float, environment_get_fog_depth_begin, RID)
PASS1RC(float, environment_get_fog_depth_end, RID)
// Volumentric Fog
PASS14(environment_set_volumetric_fog, RID, bool, float, const Color &, const Color &, float, float, float, float, float, bool, float, float, float)
PASS1RC(bool, environment_get_volumetric_fog_enabled, RID)
PASS1RC(float, environment_get_volumetric_fog_density, RID)
PASS1RC(Color, environment_get_volumetric_fog_scattering, RID)
PASS1RC(Color, environment_get_volumetric_fog_emission, RID)
PASS1RC(float, environment_get_volumetric_fog_emission_energy, RID)
PASS1RC(float, environment_get_volumetric_fog_anisotropy, RID)
PASS1RC(float, environment_get_volumetric_fog_length, RID)
PASS1RC(float, environment_get_volumetric_fog_detail_spread, RID)
PASS1RC(float, environment_get_volumetric_fog_gi_inject, RID)
PASS1RC(float, environment_get_volumetric_fog_sky_affect, RID)
PASS1RC(bool, environment_get_volumetric_fog_temporal_reprojection, RID)
PASS1RC(float, environment_get_volumetric_fog_temporal_reprojection_amount, RID)
PASS1RC(float, environment_get_volumetric_fog_ambient_inject, RID)
// Glow
PASS13(environment_set_glow, RID, bool, Vector<float>, float, float, float, float, RS::EnvironmentGlowBlendMode, float, float, float, float, RID)
PASS1RC(bool, environment_get_glow_enabled, RID)
PASS1RC(Vector<float>, environment_get_glow_levels, RID)
PASS1RC(float, environment_get_glow_intensity, RID)
PASS1RC(float, environment_get_glow_strength, RID)
PASS1RC(float, environment_get_glow_bloom, RID)
PASS1RC(float, environment_get_glow_mix, RID)
PASS1RC(RS::EnvironmentGlowBlendMode, environment_get_glow_blend_mode, RID)
PASS1RC(float, environment_get_glow_hdr_bleed_threshold, RID)
PASS1RC(float, environment_get_glow_hdr_luminance_cap, RID)
PASS1RC(float, environment_get_glow_hdr_bleed_scale, RID)
PASS1RC(float, environment_get_glow_map_strength, RID)
PASS1RC(RID, environment_get_glow_map, RID)
PASS1(environment_glow_set_use_bicubic_upscale, bool)
// SSR
PASS6(environment_set_ssr, RID, bool, int, float, float, float)
PASS1RC(bool, environment_get_ssr_enabled, RID)
PASS1RC(int, environment_get_ssr_max_steps, RID)
PASS1RC(float, environment_get_ssr_fade_in, RID)
PASS1RC(float, environment_get_ssr_fade_out, RID)
PASS1RC(float, environment_get_ssr_depth_tolerance, RID)
PASS1(environment_set_ssr_roughness_quality, RS::EnvironmentSSRRoughnessQuality)
// SSAO
PASS10(environment_set_ssao, RID, bool, float, float, float, float, float, float, float, float)
PASS1RC(bool, environment_get_ssao_enabled, RID)
PASS1RC(float, environment_get_ssao_radius, RID)
PASS1RC(float, environment_get_ssao_intensity, RID)
PASS1RC(float, environment_get_ssao_power, RID)
PASS1RC(float, environment_get_ssao_detail, RID)
PASS1RC(float, environment_get_ssao_horizon, RID)
PASS1RC(float, environment_get_ssao_sharpness, RID)
PASS1RC(float, environment_get_ssao_direct_light_affect, RID)
PASS1RC(float, environment_get_ssao_ao_channel_affect, RID)
PASS6(environment_set_ssao_quality, RS::EnvironmentSSAOQuality, bool, float, int, float, float)
// SSIL
PASS6(environment_set_ssil, RID, bool, float, float, float, float)
PASS1RC(bool, environment_get_ssil_enabled, RID)
PASS1RC(float, environment_get_ssil_radius, RID)
PASS1RC(float, environment_get_ssil_intensity, RID)
PASS1RC(float, environment_get_ssil_sharpness, RID)
PASS1RC(float, environment_get_ssil_normal_rejection, RID)
PASS6(environment_set_ssil_quality, RS::EnvironmentSSILQuality, bool, float, int, float, float)
// SDFGI
PASS11(environment_set_sdfgi, RID, bool, int, float, RS::EnvironmentSDFGIYScale, bool, float, bool, float, float, float)
PASS1RC(bool, environment_get_sdfgi_enabled, RID)
PASS1RC(int, environment_get_sdfgi_cascades, RID)
PASS1RC(float, environment_get_sdfgi_min_cell_size, RID)
PASS1RC(bool, environment_get_sdfgi_use_occlusion, RID)
PASS1RC(float, environment_get_sdfgi_bounce_feedback, RID)
PASS1RC(bool, environment_get_sdfgi_read_sky_light, RID)
PASS1RC(float, environment_get_sdfgi_energy, RID)
PASS1RC(float, environment_get_sdfgi_normal_bias, RID)
PASS1RC(float, environment_get_sdfgi_probe_bias, RID)
PASS1RC(RS::EnvironmentSDFGIYScale, environment_get_sdfgi_y_scale, RID)
PASS1(environment_set_sdfgi_ray_count, RS::EnvironmentSDFGIRayCount)
PASS1(environment_set_sdfgi_frames_to_converge, RS::EnvironmentSDFGIFramesToConverge)
PASS1(environment_set_sdfgi_frames_to_update_light, RS::EnvironmentSDFGIFramesToUpdateLight)
// Adjustment
PASS7(environment_set_adjustment, RID, bool, float, float, float, bool, RID)
PASS1RC(bool, environment_get_adjustments_enabled, RID)
PASS1RC(float, environment_get_adjustments_brightness, RID)
PASS1RC(float, environment_get_adjustments_contrast, RID)
PASS1RC(float, environment_get_adjustments_saturation, RID)
PASS1RC(bool, environment_get_use_1d_color_correction, RID)
PASS1RC(RID, environment_get_color_correction, RID)
PASS3R(Ref<Image>, environment_bake_panorama, RID, bool, const Size2i &)
PASS3(screen_space_roughness_limiter_set_active, bool, float, float)
PASS1(sub_surface_scattering_set_quality, RS::SubSurfaceScatteringQuality)
PASS2(sub_surface_scattering_set_scale, float, float)
PASS1(positional_soft_shadow_filter_set_quality, RS::ShadowQuality)
PASS1(directional_soft_shadow_filter_set_quality, RS::ShadowQuality)
PASS2(sdfgi_set_debug_probe_select, const Vector3 &, const Vector3 &)
/* Render Buffers */
PASS0R(Ref<RenderSceneBuffers>, render_buffers_create)
PASS1(gi_set_use_half_resolution, bool)
/* Misc */
PASS1(set_debug_draw_mode, RS::ViewportDebugDraw)
PASS1(decals_set_filter, RS::DecalFilter)
PASS1(light_projectors_set_filter, RS::LightProjectorFilter)
PASS1(lightmaps_set_bicubic_filter, bool)
virtual void update();
bool free(RID p_rid);
void set_scene_render(RendererSceneRender *p_scene_render);
virtual void update_visibility_notifiers();
/* INTERPOLATION */
void update_interpolation_tick(bool p_process = true);
void update_interpolation_frame(bool p_process = true);
virtual void set_physics_interpolation_enabled(bool p_enabled);
struct InterpolationData {
void notify_free_instance(RID p_rid, Instance &r_instance);
LocalVector<RID> instance_interpolate_update_list;
LocalVector<RID> instance_transform_update_lists[2];
LocalVector<RID> *instance_transform_update_list_curr = &instance_transform_update_lists[0];
LocalVector<RID> *instance_transform_update_list_prev = &instance_transform_update_lists[1];
bool interpolation_enabled = false;
} _interpolation_data;
RendererSceneCull();
virtual ~RendererSceneCull();
};
#endif // RENDERER_SCENE_CULL_H