godot/scene/3d/lightmap_gi.cpp
Thaddeus Crews b748c91e5b
Merge pull request #98289 from BlueCube3310/lightmap-clenaup
LightmapGI: Clean up and improve lightmap atlas storage
2024-10-29 19:25:58 -05:00

1771 lines
64 KiB
C++

/**************************************************************************/
/* lightmap_gi.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "lightmap_gi.h"
#include "core/config/project_settings.h"
#include "core/io/config_file.h"
#include "core/math/delaunay_3d.h"
#include "lightmap_probe.h"
#include "scene/3d/mesh_instance_3d.h"
#include "scene/resources/camera_attributes.h"
#include "scene/resources/environment.h"
#include "scene/resources/image_texture.h"
#include "scene/resources/sky.h"
void LightmapGIData::add_user(const NodePath &p_path, const Rect2 &p_uv_scale, int p_slice_index, int32_t p_sub_instance) {
User user;
user.path = p_path;
user.uv_scale = p_uv_scale;
user.slice_index = p_slice_index;
user.sub_instance = p_sub_instance;
users.push_back(user);
}
int LightmapGIData::get_user_count() const {
return users.size();
}
NodePath LightmapGIData::get_user_path(int p_user) const {
ERR_FAIL_INDEX_V(p_user, users.size(), NodePath());
return users[p_user].path;
}
int32_t LightmapGIData::get_user_sub_instance(int p_user) const {
ERR_FAIL_INDEX_V(p_user, users.size(), -1);
return users[p_user].sub_instance;
}
Rect2 LightmapGIData::get_user_lightmap_uv_scale(int p_user) const {
ERR_FAIL_INDEX_V(p_user, users.size(), Rect2());
return users[p_user].uv_scale;
}
int LightmapGIData::get_user_lightmap_slice_index(int p_user) const {
ERR_FAIL_INDEX_V(p_user, users.size(), -1);
return users[p_user].slice_index;
}
void LightmapGIData::clear_users() {
users.clear();
}
void LightmapGIData::_set_user_data(const Array &p_data) {
ERR_FAIL_COND(p_data.is_empty());
ERR_FAIL_COND((p_data.size() % 4) != 0);
for (int i = 0; i < p_data.size(); i += 4) {
add_user(p_data[i + 0], p_data[i + 1], p_data[i + 2], p_data[i + 3]);
}
}
Array LightmapGIData::_get_user_data() const {
Array ret;
for (int i = 0; i < users.size(); i++) {
ret.push_back(users[i].path);
ret.push_back(users[i].uv_scale);
ret.push_back(users[i].slice_index);
ret.push_back(users[i].sub_instance);
}
return ret;
}
void LightmapGIData::set_lightmap_textures(const TypedArray<TextureLayered> &p_data) {
storage_light_textures = p_data;
if (p_data.is_empty()) {
combined_light_texture = Ref<TextureLayered>();
_reset_lightmap_textures();
return;
}
if (p_data.size() == 1) {
combined_light_texture = p_data[0];
} else {
Vector<Ref<Image>> images;
for (int i = 0; i < p_data.size(); i++) {
Ref<TextureLayered> texture = p_data[i];
ERR_FAIL_COND_MSG(texture.is_null(), vformat("Invalid TextureLayered at index %d.", i));
for (int j = 0; j < texture->get_layers(); j++) {
images.push_back(texture->get_layer_data(j));
}
}
Ref<Texture2DArray> combined_texture;
combined_texture.instantiate();
combined_texture->create_from_images(images);
combined_light_texture = combined_texture;
}
_reset_lightmap_textures();
}
TypedArray<TextureLayered> LightmapGIData::get_lightmap_textures() const {
return storage_light_textures;
}
RID LightmapGIData::get_rid() const {
return lightmap;
}
void LightmapGIData::clear() {
users.clear();
}
void LightmapGIData::_reset_lightmap_textures() {
RS::get_singleton()->lightmap_set_textures(lightmap, combined_light_texture.is_valid() ? combined_light_texture->get_rid() : RID(), uses_spherical_harmonics);
}
void LightmapGIData::set_uses_spherical_harmonics(bool p_enable) {
uses_spherical_harmonics = p_enable;
_reset_lightmap_textures();
}
bool LightmapGIData::is_using_spherical_harmonics() const {
return uses_spherical_harmonics;
}
void LightmapGIData::_set_uses_packed_directional(bool p_enable) {
_uses_packed_directional = p_enable;
}
bool LightmapGIData::_is_using_packed_directional() const {
return _uses_packed_directional;
}
void LightmapGIData::set_capture_data(const AABB &p_bounds, bool p_interior, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree, float p_baked_exposure) {
if (p_points.size()) {
int pc = p_points.size();
ERR_FAIL_COND(pc * 9 != p_point_sh.size());
ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0);
ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0);
RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, p_points, p_point_sh, p_tetrahedra, p_bsp_tree);
RS::get_singleton()->lightmap_set_probe_bounds(lightmap, p_bounds);
RS::get_singleton()->lightmap_set_probe_interior(lightmap, p_interior);
} else {
RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, PackedVector3Array(), PackedColorArray(), PackedInt32Array(), PackedInt32Array());
RS::get_singleton()->lightmap_set_probe_bounds(lightmap, AABB());
RS::get_singleton()->lightmap_set_probe_interior(lightmap, false);
}
RS::get_singleton()->lightmap_set_baked_exposure_normalization(lightmap, p_baked_exposure);
baked_exposure = p_baked_exposure;
interior = p_interior;
bounds = p_bounds;
}
PackedVector3Array LightmapGIData::get_capture_points() const {
return RS::get_singleton()->lightmap_get_probe_capture_points(lightmap);
}
PackedColorArray LightmapGIData::get_capture_sh() const {
return RS::get_singleton()->lightmap_get_probe_capture_sh(lightmap);
}
PackedInt32Array LightmapGIData::get_capture_tetrahedra() const {
return RS::get_singleton()->lightmap_get_probe_capture_tetrahedra(lightmap);
}
PackedInt32Array LightmapGIData::get_capture_bsp_tree() const {
return RS::get_singleton()->lightmap_get_probe_capture_bsp_tree(lightmap);
}
AABB LightmapGIData::get_capture_bounds() const {
return bounds;
}
bool LightmapGIData::is_interior() const {
return interior;
}
float LightmapGIData::get_baked_exposure() const {
return baked_exposure;
}
void LightmapGIData::_set_probe_data(const Dictionary &p_data) {
ERR_FAIL_COND(!p_data.has("bounds"));
ERR_FAIL_COND(!p_data.has("points"));
ERR_FAIL_COND(!p_data.has("tetrahedra"));
ERR_FAIL_COND(!p_data.has("bsp"));
ERR_FAIL_COND(!p_data.has("sh"));
ERR_FAIL_COND(!p_data.has("interior"));
ERR_FAIL_COND(!p_data.has("baked_exposure"));
set_capture_data(p_data["bounds"], p_data["interior"], p_data["points"], p_data["sh"], p_data["tetrahedra"], p_data["bsp"], p_data["baked_exposure"]);
}
Dictionary LightmapGIData::_get_probe_data() const {
Dictionary d;
d["bounds"] = get_capture_bounds();
d["points"] = get_capture_points();
d["tetrahedra"] = get_capture_tetrahedra();
d["bsp"] = get_capture_bsp_tree();
d["sh"] = get_capture_sh();
d["interior"] = is_interior();
d["baked_exposure"] = get_baked_exposure();
return d;
}
#ifndef DISABLE_DEPRECATED
void LightmapGIData::set_light_texture(const Ref<TextureLayered> &p_light_texture) {
TypedArray<TextureLayered> arr;
arr.append(p_light_texture);
set_lightmap_textures(arr);
}
Ref<TextureLayered> LightmapGIData::get_light_texture() const {
if (storage_light_textures.is_empty()) {
return Ref<TextureLayered>();
}
return storage_light_textures.get(0);
}
void LightmapGIData::_set_light_textures_data(const Array &p_data) {
set_lightmap_textures(p_data);
}
Array LightmapGIData::_get_light_textures_data() const {
return Array(storage_light_textures);
}
#endif
void LightmapGIData::_bind_methods() {
ClassDB::bind_method(D_METHOD("_set_user_data", "data"), &LightmapGIData::_set_user_data);
ClassDB::bind_method(D_METHOD("_get_user_data"), &LightmapGIData::_get_user_data);
ClassDB::bind_method(D_METHOD("set_lightmap_textures", "light_textures"), &LightmapGIData::set_lightmap_textures);
ClassDB::bind_method(D_METHOD("get_lightmap_textures"), &LightmapGIData::get_lightmap_textures);
ClassDB::bind_method(D_METHOD("set_uses_spherical_harmonics", "uses_spherical_harmonics"), &LightmapGIData::set_uses_spherical_harmonics);
ClassDB::bind_method(D_METHOD("is_using_spherical_harmonics"), &LightmapGIData::is_using_spherical_harmonics);
ClassDB::bind_method(D_METHOD("_set_uses_packed_directional", "_uses_packed_directional"), &LightmapGIData::_set_uses_packed_directional);
ClassDB::bind_method(D_METHOD("_is_using_packed_directional"), &LightmapGIData::_is_using_packed_directional);
ClassDB::bind_method(D_METHOD("add_user", "path", "uv_scale", "slice_index", "sub_instance"), &LightmapGIData::add_user);
ClassDB::bind_method(D_METHOD("get_user_count"), &LightmapGIData::get_user_count);
ClassDB::bind_method(D_METHOD("get_user_path", "user_idx"), &LightmapGIData::get_user_path);
ClassDB::bind_method(D_METHOD("clear_users"), &LightmapGIData::clear_users);
ClassDB::bind_method(D_METHOD("_set_probe_data", "data"), &LightmapGIData::_set_probe_data);
ClassDB::bind_method(D_METHOD("_get_probe_data"), &LightmapGIData::_get_probe_data);
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "lightmap_textures", PROPERTY_HINT_ARRAY_TYPE, "TextureLayered", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_READ_ONLY), "set_lightmap_textures", "get_lightmap_textures");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "uses_spherical_harmonics", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "set_uses_spherical_harmonics", "is_using_spherical_harmonics");
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "user_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_user_data", "_get_user_data");
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "probe_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_probe_data", "_get_probe_data");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "_uses_packed_directional", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_uses_packed_directional", "_is_using_packed_directional");
#ifndef DISABLE_DEPRECATED
ClassDB::bind_method(D_METHOD("set_light_texture", "light_texture"), &LightmapGIData::set_light_texture);
ClassDB::bind_method(D_METHOD("get_light_texture"), &LightmapGIData::get_light_texture);
ClassDB::bind_method(D_METHOD("_set_light_textures_data", "data"), &LightmapGIData::_set_light_textures_data);
ClassDB::bind_method(D_METHOD("_get_light_textures_data"), &LightmapGIData::_get_light_textures_data);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_texture", PROPERTY_HINT_RESOURCE_TYPE, "TextureLayered", PROPERTY_USAGE_NONE), "set_light_texture", "get_light_texture");
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "light_textures", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_INTERNAL), "_set_light_textures_data", "_get_light_textures_data");
#endif
}
LightmapGIData::LightmapGIData() {
lightmap = RS::get_singleton()->lightmap_create();
}
LightmapGIData::~LightmapGIData() {
ERR_FAIL_NULL(RenderingServer::get_singleton());
RS::get_singleton()->free(lightmap);
}
///////////////////////////
void LightmapGI::_find_meshes_and_lights(Node *p_at_node, Vector<MeshesFound> &meshes, Vector<LightsFound> &lights, Vector<Vector3> &probes) {
MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_at_node);
if (mi && mi->get_gi_mode() == GeometryInstance3D::GI_MODE_STATIC && mi->is_visible_in_tree()) {
Ref<Mesh> mesh = mi->get_mesh();
if (mesh.is_valid()) {
bool all_have_uv2_and_normal = true;
bool surfaces_found = false;
for (int i = 0; i < mesh->get_surface_count(); i++) {
if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
continue;
}
if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_TEX_UV2)) {
all_have_uv2_and_normal = false;
break;
}
if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_NORMAL)) {
all_have_uv2_and_normal = false;
break;
}
surfaces_found = true;
}
if (surfaces_found && all_have_uv2_and_normal) {
//READY TO BAKE! size hint could be computed if not found, actually..
MeshesFound mf;
mf.xform = get_global_transform().affine_inverse() * mi->get_global_transform();
mf.node_path = get_path_to(mi);
mf.subindex = -1;
mf.mesh = mesh;
static const int lightmap_scale[GeometryInstance3D::LIGHTMAP_SCALE_MAX] = { 1, 2, 4, 8 };
mf.lightmap_scale = lightmap_scale[mi->get_lightmap_scale()];
Ref<Material> all_override = mi->get_material_override();
for (int i = 0; i < mesh->get_surface_count(); i++) {
if (all_override.is_valid()) {
mf.overrides.push_back(all_override);
} else {
mf.overrides.push_back(mi->get_surface_override_material(i));
}
}
meshes.push_back(mf);
}
}
}
Node3D *s = Object::cast_to<Node3D>(p_at_node);
if (!mi && s) {
Array bmeshes = p_at_node->call("get_bake_meshes");
if (bmeshes.size() && (bmeshes.size() & 1) == 0) {
Transform3D xf = get_global_transform().affine_inverse() * s->get_global_transform();
for (int i = 0; i < bmeshes.size(); i += 2) {
Ref<Mesh> mesh = bmeshes[i];
if (!mesh.is_valid()) {
continue;
}
MeshesFound mf;
Transform3D mesh_xf = bmeshes[i + 1];
mf.xform = xf * mesh_xf;
mf.node_path = get_path_to(s);
mf.subindex = i / 2;
mf.lightmap_scale = 1;
mf.mesh = mesh;
meshes.push_back(mf);
}
}
}
Light3D *light = Object::cast_to<Light3D>(p_at_node);
if (light && light->get_bake_mode() != Light3D::BAKE_DISABLED) {
LightsFound lf;
lf.xform = get_global_transform().affine_inverse() * light->get_global_transform();
lf.light = light;
lights.push_back(lf);
}
LightmapProbe *probe = Object::cast_to<LightmapProbe>(p_at_node);
if (probe) {
Transform3D xf = get_global_transform().affine_inverse() * probe->get_global_transform();
probes.push_back(xf.origin);
}
for (int i = 0; i < p_at_node->get_child_count(); i++) {
Node *child = p_at_node->get_child(i);
if (!child->get_owner()) {
continue; //maybe a helper
}
_find_meshes_and_lights(child, meshes, lights, probes);
}
}
int LightmapGI::_bsp_get_simplex_side(const Vector<Vector3> &p_points, const LocalVector<BSPSimplex> &p_simplices, const Plane &p_plane, uint32_t p_simplex) const {
int over = 0;
int under = 0;
const BSPSimplex &s = p_simplices[p_simplex];
for (int i = 0; i < 4; i++) {
const Vector3 v = p_points[s.vertices[i]];
// The tolerance used here comes from experiments on scenes up to
// 1000x1000x100 meters. If it's any smaller, some simplices will
// appear to self-intersect due to a lack of precision in Plane.
if (p_plane.has_point(v, 1.0 / (1 << 13))) {
// Coplanar.
} else if (p_plane.is_point_over(v)) {
over++;
} else {
under++;
}
}
ERR_FAIL_COND_V(under == 0 && over == 0, -2); //should never happen, we discarded flat simplices before, but in any case drop it from the bsp tree and throw an error
if (under == 0) {
return 1; // all over
} else if (over == 0) {
return -1; // all under
} else {
return 0; // crossing
}
}
//#define DEBUG_BSP
int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const LocalVector<Plane> &p_planes, LocalVector<int32_t> &planes_tested, const LocalVector<BSPSimplex> &p_simplices, const LocalVector<int32_t> &p_simplex_indices, LocalVector<BSPNode> &bsp_nodes) {
ERR_FAIL_COND_V(p_simplex_indices.size() < 2, -1);
int32_t node_index = (int32_t)bsp_nodes.size();
bsp_nodes.push_back(BSPNode());
//test with all the simplex planes
Plane best_plane;
float best_plane_score = -1.0;
for (const int idx : p_simplex_indices) {
const BSPSimplex &s = p_simplices[idx];
for (int j = 0; j < 4; j++) {
uint32_t plane_index = s.planes[j];
if (planes_tested[plane_index] == node_index) {
continue; //tested this plane already
}
planes_tested[plane_index] = node_index;
static const int face_order[4][3] = {
{ 0, 1, 2 },
{ 0, 2, 3 },
{ 0, 1, 3 },
{ 1, 2, 3 }
};
// despite getting rid of plane duplicates, we should still use here the actual plane to avoid numerical error
// from thinking this same simplex is intersecting rather than on a side
Vector3 v0 = p_points[s.vertices[face_order[j][0]]];
Vector3 v1 = p_points[s.vertices[face_order[j][1]]];
Vector3 v2 = p_points[s.vertices[face_order[j][2]]];
Plane plane(v0, v1, v2);
//test with all the simplices
int over_count = 0;
int under_count = 0;
for (const int &index : p_simplex_indices) {
int side = _bsp_get_simplex_side(p_points, p_simplices, plane, index);
if (side == -2) {
continue; //this simplex is invalid, skip for now
} else if (side < 0) {
under_count++;
} else if (side > 0) {
over_count++;
}
}
if (under_count == 0 && over_count == 0) {
continue; //most likely precision issue with a flat simplex, do not try this plane
}
if (under_count > over_count) { //make sure under is always less than over, so we can compute the same ratio
SWAP(under_count, over_count);
}
float score = 0; //by default, score is 0 (worst)
if (over_count > 0) {
// Simplices that are intersected by the plane are moved into both the over
// and under subtrees which makes the entire tree deeper, so the best plane
// will have the least intersections while separating the simplices evenly.
float balance = float(under_count) / over_count;
float separation = float(over_count + under_count) / p_simplex_indices.size();
score = balance * separation * separation;
}
if (score > best_plane_score) {
best_plane = plane;
best_plane_score = score;
}
}
}
// We often end up with two (or on rare occasions, three) simplices that are
// either disjoint or share one vertex and don't have a separating plane
// among their faces. The fallback is to loop through new planes created
// with one vertex of the first simplex and two vertices of the second until
// we find a winner.
if (best_plane_score == 0) {
const BSPSimplex &simplex0 = p_simplices[p_simplex_indices[0]];
const BSPSimplex &simplex1 = p_simplices[p_simplex_indices[1]];
for (uint32_t i = 0; i < 4 && !best_plane_score; i++) {
Vector3 v0 = p_points[simplex0.vertices[i]];
for (uint32_t j = 0; j < 3 && !best_plane_score; j++) {
if (simplex0.vertices[i] == simplex1.vertices[j]) {
break;
}
Vector3 v1 = p_points[simplex1.vertices[j]];
for (uint32_t k = j + 1; k < 4; k++) {
if (simplex0.vertices[i] == simplex1.vertices[k]) {
break;
}
Vector3 v2 = p_points[simplex1.vertices[k]];
Plane plane = Plane(v0, v1, v2);
if (plane == Plane()) { // When v0, v1, and v2 are collinear, they can't form a plane.
continue;
}
int32_t side0 = _bsp_get_simplex_side(p_points, p_simplices, plane, p_simplex_indices[0]);
int32_t side1 = _bsp_get_simplex_side(p_points, p_simplices, plane, p_simplex_indices[1]);
if ((side0 == 1 && side1 == -1) || (side0 == -1 && side1 == 1)) {
best_plane = plane;
best_plane_score = 1.0;
break;
}
}
}
}
}
LocalVector<int32_t> indices_over;
LocalVector<int32_t> indices_under;
//split again, but add to list
for (const uint32_t index : p_simplex_indices) {
int side = _bsp_get_simplex_side(p_points, p_simplices, best_plane, index);
if (side == -2) {
continue; //simplex sits on the plane, does not make sense to use it
}
if (side <= 0) {
indices_under.push_back(index);
}
if (side >= 0) {
indices_over.push_back(index);
}
}
#ifdef DEBUG_BSP
print_line("node " + itos(node_index) + " found plane: " + best_plane + " score:" + rtos(best_plane_score) + " - over " + itos(indices_over.size()) + " under " + itos(indices_under.size()) + " intersecting " + itos(intersecting));
#endif
if (best_plane_score < 0.0 || indices_over.size() == p_simplex_indices.size() || indices_under.size() == p_simplex_indices.size()) {
// Failed to separate the tetrahedrons using planes
// this means Delaunay broke at some point.
// Luckily, because we are using tetrahedrons, we can resort to
// less precise but still working ways to generate the separating plane
// this will most likely look bad when interpolating, but at least it will not crash.
// and the artifact will most likely also be very small, so too difficult to notice.
//find the longest axis
WARN_PRINT("Inconsistency found in triangulation while building BSP, probe interpolation quality may degrade a bit.");
LocalVector<Vector3> centers;
AABB bounds_all;
for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
AABB bounds;
for (uint32_t j = 0; j < 4; j++) {
Vector3 p = p_points[p_simplices[p_simplex_indices[i]].vertices[j]];
if (j == 0) {
bounds.position = p;
} else {
bounds.expand_to(p);
}
}
if (i == 0) {
centers.push_back(bounds.get_center());
} else {
bounds_all.merge_with(bounds);
}
}
Vector3::Axis longest_axis = Vector3::Axis(bounds_all.get_longest_axis_index());
//find the simplex that will go under
uint32_t min_d_idx = 0xFFFFFFFF;
float min_d_dist = 1e20;
for (uint32_t i = 0; i < centers.size(); i++) {
if (centers[i][longest_axis] < min_d_dist) {
min_d_idx = i;
min_d_dist = centers[i][longest_axis];
}
}
//rebuild best_plane and over/under arrays
best_plane = Plane();
best_plane.normal[longest_axis] = 1.0;
best_plane.d = min_d_dist;
indices_under.clear();
indices_under.push_back(min_d_idx);
indices_over.clear();
for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
if (i == min_d_idx) {
continue;
}
indices_over.push_back(p_simplex_indices[i]);
}
}
BSPNode node;
node.plane = best_plane;
if (indices_under.size() == 0) {
//nothing to do here
node.under = BSPNode::EMPTY_LEAF;
} else if (indices_under.size() == 1) {
node.under = -(indices_under[0] + 1);
} else {
node.under = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_under, bsp_nodes);
}
if (indices_over.size() == 0) {
//nothing to do here
node.over = BSPNode::EMPTY_LEAF;
} else if (indices_over.size() == 1) {
node.over = -(indices_over[0] + 1);
} else {
node.over = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_over, bsp_nodes);
}
bsp_nodes[node_index] = node;
return node_index;
}
bool LightmapGI::_lightmap_bake_step_function(float p_completion, const String &p_text, void *ud, bool p_refresh) {
BakeStepUD *bsud = (BakeStepUD *)ud;
bool ret = false;
if (bsud->func) {
ret = bsud->func(bsud->from_percent + p_completion * (bsud->to_percent - bsud->from_percent), p_text, bsud->ud, p_refresh);
}
return ret;
}
void LightmapGI::_plot_triangle_into_octree(GenProbesOctree *p_cell, float p_cell_size, const Vector3 *p_triangle) {
for (int i = 0; i < 8; i++) {
Vector3i pos = p_cell->offset;
uint32_t half_size = p_cell->size / 2;
if (i & 1) {
pos.x += half_size;
}
if (i & 2) {
pos.y += half_size;
}
if (i & 4) {
pos.z += half_size;
}
AABB subcell;
subcell.position = Vector3(pos) * p_cell_size;
subcell.size = Vector3(half_size, half_size, half_size) * p_cell_size;
if (!Geometry3D::triangle_box_overlap(subcell.get_center(), subcell.size * 0.5, p_triangle)) {
continue;
}
if (p_cell->children[i] == nullptr) {
GenProbesOctree *child = memnew(GenProbesOctree);
child->offset = pos;
child->size = half_size;
p_cell->children[i] = child;
}
if (half_size > 1) {
//still levels missing
_plot_triangle_into_octree(p_cell->children[i], p_cell_size, p_triangle);
}
}
}
void LightmapGI::_gen_new_positions_from_octree(const GenProbesOctree *p_cell, float p_cell_size, const Vector<Vector3> &probe_positions, LocalVector<Vector3> &new_probe_positions, HashMap<Vector3i, bool> &positions_used, const AABB &p_bounds) {
for (int i = 0; i < 8; i++) {
Vector3i pos = p_cell->offset;
if (i & 1) {
pos.x += p_cell->size;
}
if (i & 2) {
pos.y += p_cell->size;
}
if (i & 4) {
pos.z += p_cell->size;
}
if (p_cell->size == 1 && !positions_used.has(pos)) {
//new position to insert!
Vector3 real_pos = p_bounds.position + Vector3(pos) * p_cell_size;
//see if a user submitted probe is too close
int ppcount = probe_positions.size();
const Vector3 *pp = probe_positions.ptr();
bool exists = false;
for (int j = 0; j < ppcount; j++) {
if (pp[j].distance_to(real_pos) < (p_cell_size * 0.5f)) {
exists = true;
break;
}
}
if (!exists) {
new_probe_positions.push_back(real_pos);
}
positions_used[pos] = true;
}
if (p_cell->children[i] != nullptr) {
_gen_new_positions_from_octree(p_cell->children[i], p_cell_size, probe_positions, new_probe_positions, positions_used, p_bounds);
}
}
}
LightmapGI::BakeError LightmapGI::_save_and_reimport_atlas_textures(const Ref<Lightmapper> p_lightmapper, const String &p_base_name, TypedArray<TextureLayered> &r_textures, bool p_compress) const {
Vector<Ref<Image>> images;
images.resize(p_lightmapper->get_bake_texture_count());
for (int i = 0; i < images.size(); i++) {
images.set(i, p_lightmapper->get_bake_texture(i));
}
const int slice_count = images.size();
const int slice_width = images[0]->get_width();
const int slice_height = images[0]->get_height();
const int slices_per_texture = Image::MAX_HEIGHT / slice_height;
const int texture_count = Math::ceil(slice_count / (float)slices_per_texture);
const int last_count = slice_count % slices_per_texture;
r_textures.resize(texture_count);
for (int i = 0; i < texture_count; i++) {
const int texture_slice_count = (i == texture_count - 1 && last_count != 0) ? last_count : slices_per_texture;
Ref<Image> texture_image = Image::create_empty(slice_width, slice_height * texture_slice_count, false, images[0]->get_format());
for (int j = 0; j < texture_slice_count; j++) {
texture_image->blit_rect(images[i * slices_per_texture + j], Rect2i(0, 0, slice_width, slice_height), Point2i(0, slice_height * j));
}
const String atlas_path = (texture_count > 1 ? p_base_name + "_" + itos(i) : p_base_name) + ".exr";
const String config_path = atlas_path + ".import";
Ref<ConfigFile> config;
config.instantiate();
// Load an import configuration if present.
if (FileAccess::exists(config_path)) {
config->load(config_path);
}
config->set_value("remap", "importer", "2d_array_texture");
config->set_value("remap", "type", "CompressedTexture2DArray");
if (!config->has_section_key("params", "compress/mode")) {
// Do not override an existing compression mode.
config->set_value("params", "compress/mode", p_compress ? 2 : 3);
}
config->set_value("params", "compress/channel_pack", 1);
config->set_value("params", "mipmaps/generate", false);
config->set_value("params", "slices/horizontal", 1);
config->set_value("params", "slices/vertical", texture_slice_count);
config->save(config_path);
// Save the file.
Error save_err = texture_image->save_exr(atlas_path, false);
ERR_FAIL_COND_V(save_err, LightmapGI::BAKE_ERROR_CANT_CREATE_IMAGE);
// Reimport the file.
ResourceLoader::import(atlas_path);
Ref<TextureLayered> t = ResourceLoader::load(atlas_path); // If already loaded, it will be updated on refocus?
ERR_FAIL_COND_V(t.is_null(), LightmapGI::BAKE_ERROR_CANT_CREATE_IMAGE);
// Store the atlas in the array.
r_textures[i] = t;
}
return LightmapGI::BAKE_ERROR_OK;
}
LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_path, Lightmapper::BakeStepFunc p_bake_step, void *p_bake_userdata) {
if (p_image_data_path.is_empty()) {
if (get_light_data().is_null()) {
return BAKE_ERROR_NO_SAVE_PATH;
}
p_image_data_path = get_light_data()->get_path();
if (!p_image_data_path.is_resource_file()) {
return BAKE_ERROR_NO_SAVE_PATH;
}
}
Ref<Lightmapper> lightmapper = Lightmapper::create();
ERR_FAIL_COND_V(lightmapper.is_null(), BAKE_ERROR_NO_LIGHTMAPPER);
BakeStepUD bsud;
bsud.func = p_bake_step;
bsud.ud = p_bake_userdata;
bsud.from_percent = 0.2;
bsud.to_percent = 0.8;
if (p_bake_step) {
p_bake_step(0.0, RTR("Finding meshes, lights and probes"), p_bake_userdata, true);
}
/* STEP 1, FIND MESHES, LIGHTS AND PROBES */
Vector<Lightmapper::MeshData> mesh_data;
Vector<LightsFound> lights_found;
Vector<Vector3> probes_found;
AABB bounds;
{
Vector<MeshesFound> meshes_found;
_find_meshes_and_lights(p_from_node ? p_from_node : get_parent(), meshes_found, lights_found, probes_found);
if (meshes_found.size() == 0) {
return BAKE_ERROR_NO_MESHES;
}
// create mesh data for insert
//get the base material textures, help compute atlas size and bounds
for (int m_i = 0; m_i < meshes_found.size(); m_i++) {
if (p_bake_step) {
float p = (float)(m_i) / meshes_found.size();
p_bake_step(p * 0.1, vformat(RTR("Preparing geometry %d/%d"), m_i, meshes_found.size()), p_bake_userdata, false);
}
MeshesFound &mf = meshes_found.write[m_i];
Size2i mesh_lightmap_size = mf.mesh->get_lightmap_size_hint();
if (mesh_lightmap_size == Size2i(0, 0)) {
// TODO we should compute a size if no lightmap hint is set, as we did in 3.x.
// For now set to basic size to avoid crash.
mesh_lightmap_size = Size2i(64, 64);
}
Size2i lightmap_size = Size2i(Size2(mesh_lightmap_size) * mf.lightmap_scale * texel_scale);
ERR_FAIL_COND_V(lightmap_size.x == 0 || lightmap_size.y == 0, BAKE_ERROR_LIGHTMAP_TOO_SMALL);
TypedArray<RID> overrides;
overrides.resize(mf.overrides.size());
for (int i = 0; i < mf.overrides.size(); i++) {
if (mf.overrides[i].is_valid()) {
overrides[i] = mf.overrides[i]->get_rid();
}
}
TypedArray<Image> images = RS::get_singleton()->bake_render_uv2(mf.mesh->get_rid(), overrides, lightmap_size);
ERR_FAIL_COND_V(images.is_empty(), BAKE_ERROR_CANT_CREATE_IMAGE);
Ref<Image> albedo = images[RS::BAKE_CHANNEL_ALBEDO_ALPHA];
Ref<Image> orm = images[RS::BAKE_CHANNEL_ORM];
//multiply albedo by metal
Lightmapper::MeshData md;
{
Dictionary d;
d["path"] = mf.node_path;
if (mf.subindex >= 0) {
d["subindex"] = mf.subindex;
}
md.userdata = d;
}
{
if (albedo->get_format() != Image::FORMAT_RGBA8) {
albedo->convert(Image::FORMAT_RGBA8);
}
if (orm->get_format() != Image::FORMAT_RGBA8) {
orm->convert(Image::FORMAT_RGBA8);
}
Vector<uint8_t> albedo_alpha = albedo->get_data();
Vector<uint8_t> orm_data = orm->get_data();
Vector<uint8_t> albedom;
uint32_t len = albedo_alpha.size();
albedom.resize(len);
const uint8_t *r_aa = albedo_alpha.ptr();
const uint8_t *r_orm = orm_data.ptr();
uint8_t *w_albedo = albedom.ptrw();
for (uint32_t i = 0; i < len; i += 4) {
w_albedo[i + 0] = uint8_t(CLAMP(float(r_aa[i + 0]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
w_albedo[i + 1] = uint8_t(CLAMP(float(r_aa[i + 1]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
w_albedo[i + 2] = uint8_t(CLAMP(float(r_aa[i + 2]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
w_albedo[i + 3] = 255;
}
md.albedo_on_uv2.instantiate();
md.albedo_on_uv2->set_data(lightmap_size.width, lightmap_size.height, false, Image::FORMAT_RGBA8, albedom);
}
md.emission_on_uv2 = images[RS::BAKE_CHANNEL_EMISSION];
if (md.emission_on_uv2->get_format() != Image::FORMAT_RGBAH) {
md.emission_on_uv2->convert(Image::FORMAT_RGBAH);
}
//get geometry
Basis normal_xform = mf.xform.basis.inverse().transposed();
for (int i = 0; i < mf.mesh->get_surface_count(); i++) {
if (mf.mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
continue;
}
Array a = mf.mesh->surface_get_arrays(i);
Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
const Vector3 *vr = vertices.ptr();
Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV2];
const Vector2 *uvr = nullptr;
Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL];
const Vector3 *nr = nullptr;
Vector<int> index = a[Mesh::ARRAY_INDEX];
ERR_CONTINUE(uv.size() == 0);
ERR_CONTINUE(normals.size() == 0);
uvr = uv.ptr();
nr = normals.ptr();
int facecount;
const int *ir = nullptr;
if (index.size()) {
facecount = index.size() / 3;
ir = index.ptr();
} else {
facecount = vertices.size() / 3;
}
for (int j = 0; j < facecount; j++) {
uint32_t vidx[3];
if (ir) {
for (int k = 0; k < 3; k++) {
vidx[k] = ir[j * 3 + k];
}
} else {
for (int k = 0; k < 3; k++) {
vidx[k] = j * 3 + k;
}
}
for (int k = 0; k < 3; k++) {
Vector3 v = mf.xform.xform(vr[vidx[k]]);
if (bounds == AABB()) {
bounds.position = v;
} else {
bounds.expand_to(v);
}
md.points.push_back(v);
md.uv2.push_back(uvr[vidx[k]]);
md.normal.push_back(normal_xform.xform(nr[vidx[k]]).normalized());
}
}
}
mesh_data.push_back(md);
}
}
/* STEP 2, CREATE PROBES */
if (p_bake_step) {
p_bake_step(0.3, RTR("Creating probes"), p_bake_userdata, true);
}
//bounds need to include the user probes
for (int i = 0; i < probes_found.size(); i++) {
bounds.expand_to(probes_found[i]);
}
bounds.grow_by(bounds.size.length() * 0.001);
if (gen_probes == GENERATE_PROBES_DISABLED) {
// generate 8 probes on bound endpoints
for (int i = 0; i < 8; i++) {
probes_found.push_back(bounds.get_endpoint(i));
}
} else {
// detect probes from geometry
static const int subdiv_values[6] = { 0, 4, 8, 16, 32 };
int subdiv = subdiv_values[gen_probes];
float subdiv_cell_size;
Vector3i bound_limit;
{
int longest_axis = bounds.get_longest_axis_index();
subdiv_cell_size = bounds.size[longest_axis] / subdiv;
int axis_n1 = (longest_axis + 1) % 3;
int axis_n2 = (longest_axis + 2) % 3;
bound_limit[longest_axis] = subdiv;
bound_limit[axis_n1] = int(Math::ceil(bounds.size[axis_n1] / subdiv_cell_size));
bound_limit[axis_n2] = int(Math::ceil(bounds.size[axis_n2] / subdiv_cell_size));
//compensate bounds
bounds.size[axis_n1] = bound_limit[axis_n1] * subdiv_cell_size;
bounds.size[axis_n2] = bound_limit[axis_n2] * subdiv_cell_size;
}
GenProbesOctree octree;
octree.size = subdiv;
for (int i = 0; i < mesh_data.size(); i++) {
if (p_bake_step) {
float p = (float)(i) / mesh_data.size();
p_bake_step(0.3 + p * 0.1, vformat(RTR("Creating probes from mesh %d/%d"), i, mesh_data.size()), p_bake_userdata, false);
}
for (int j = 0; j < mesh_data[i].points.size(); j += 3) {
Vector3 points[3] = { mesh_data[i].points[j + 0] - bounds.position, mesh_data[i].points[j + 1] - bounds.position, mesh_data[i].points[j + 2] - bounds.position };
_plot_triangle_into_octree(&octree, subdiv_cell_size, points);
}
}
LocalVector<Vector3> new_probe_positions;
HashMap<Vector3i, bool> positions_used;
for (uint32_t i = 0; i < 8; i++) { //insert bounding endpoints
Vector3i pos;
if (i & 1) {
pos.x += bound_limit.x;
}
if (i & 2) {
pos.y += bound_limit.y;
}
if (i & 4) {
pos.z += bound_limit.z;
}
positions_used[pos] = true;
Vector3 real_pos = bounds.position + Vector3(pos) * subdiv_cell_size; //use same formula for numerical stability
new_probe_positions.push_back(real_pos);
}
//skip first level, since probes are always added at bounds endpoints anyway (code above this)
for (int i = 0; i < 8; i++) {
if (octree.children[i]) {
_gen_new_positions_from_octree(octree.children[i], subdiv_cell_size, probes_found, new_probe_positions, positions_used, bounds);
}
}
for (const Vector3 &position : new_probe_positions) {
probes_found.push_back(position);
}
}
// Add everything to lightmapper
const bool use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units");
if (p_bake_step) {
p_bake_step(0.4, RTR("Preparing Lightmapper"), p_bake_userdata, true);
}
{
for (int i = 0; i < mesh_data.size(); i++) {
lightmapper->add_mesh(mesh_data[i]);
}
for (int i = 0; i < lights_found.size(); i++) {
Light3D *light = lights_found[i].light;
if (light->is_editor_only()) {
// Don't include editor-only lights in the lightmap bake,
// as this results in inconsistent visuals when running the project.
continue;
}
Transform3D xf = lights_found[i].xform;
// For the lightmapper, the indirect energy represents the multiplier for the indirect bounces caused by the light, so the value is not converted when using physical units.
float indirect_energy = light->get_param(Light3D::PARAM_INDIRECT_ENERGY);
Color linear_color = light->get_color().srgb_to_linear();
float energy = light->get_param(Light3D::PARAM_ENERGY);
if (use_physical_light_units) {
energy *= light->get_param(Light3D::PARAM_INTENSITY);
linear_color *= light->get_correlated_color().srgb_to_linear();
}
if (Object::cast_to<DirectionalLight3D>(light)) {
DirectionalLight3D *l = Object::cast_to<DirectionalLight3D>(light);
if (l->get_sky_mode() != DirectionalLight3D::SKY_MODE_SKY_ONLY) {
lightmapper->add_directional_light(light->get_bake_mode() == Light3D::BAKE_STATIC, -xf.basis.get_column(Vector3::AXIS_Z).normalized(), linear_color, energy, indirect_energy, l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
}
} else if (Object::cast_to<OmniLight3D>(light)) {
OmniLight3D *l = Object::cast_to<OmniLight3D>(light);
if (use_physical_light_units) {
energy *= (1.0 / (Math_PI * 4.0));
}
lightmapper->add_omni_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, linear_color, energy, indirect_energy, l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
} else if (Object::cast_to<SpotLight3D>(light)) {
SpotLight3D *l = Object::cast_to<SpotLight3D>(light);
if (use_physical_light_units) {
energy *= (1.0 / Math_PI);
}
lightmapper->add_spot_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, -xf.basis.get_column(Vector3::AXIS_Z).normalized(), linear_color, energy, indirect_energy, l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SPOT_ANGLE), l->get_param(Light3D::PARAM_SPOT_ATTENUATION), l->get_param(Light3D::PARAM_SIZE), l->get_param(Light3D::PARAM_SHADOW_BLUR));
}
}
for (int i = 0; i < probes_found.size(); i++) {
lightmapper->add_probe(probes_found[i]);
}
}
Ref<Image> environment_image;
Basis environment_transform;
// Add everything to lightmapper
if (environment_mode != ENVIRONMENT_MODE_DISABLED) {
if (p_bake_step) {
p_bake_step(4.1, RTR("Preparing Environment"), p_bake_userdata, true);
}
environment_transform = get_global_transform().basis;
switch (environment_mode) {
case ENVIRONMENT_MODE_DISABLED: {
//nothing
} break;
case ENVIRONMENT_MODE_SCENE: {
Ref<World3D> world = get_world_3d();
if (world.is_valid()) {
Ref<Environment> env = world->get_environment();
if (env.is_null()) {
env = world->get_fallback_environment();
}
if (env.is_valid()) {
environment_image = RS::get_singleton()->environment_bake_panorama(env->get_rid(), true, Size2i(128, 64));
environment_transform = Basis::from_euler(env->get_sky_rotation()).inverse();
}
}
} break;
case ENVIRONMENT_MODE_CUSTOM_SKY: {
if (environment_custom_sky.is_valid()) {
environment_image = RS::get_singleton()->sky_bake_panorama(environment_custom_sky->get_rid(), environment_custom_energy, true, Size2i(128, 64));
}
} break;
case ENVIRONMENT_MODE_CUSTOM_COLOR: {
environment_image.instantiate();
environment_image->initialize_data(128, 64, false, Image::FORMAT_RGBAF);
Color c = environment_custom_color;
c.r *= environment_custom_energy;
c.g *= environment_custom_energy;
c.b *= environment_custom_energy;
environment_image->fill(c);
} break;
}
}
float exposure_normalization = 1.0;
if (camera_attributes.is_valid()) {
exposure_normalization = camera_attributes->get_exposure_multiplier();
if (use_physical_light_units) {
exposure_normalization = camera_attributes->calculate_exposure_normalization();
}
}
Lightmapper::BakeError bake_err = lightmapper->bake(Lightmapper::BakeQuality(bake_quality), use_denoiser, denoiser_strength, denoiser_range, bounces, bounce_indirect_energy, bias, max_texture_size, directional, use_texture_for_bounces, Lightmapper::GenerateProbes(gen_probes), environment_image, environment_transform, _lightmap_bake_step_function, &bsud, exposure_normalization);
if (bake_err == Lightmapper::BAKE_ERROR_TEXTURE_EXCEEDS_MAX_SIZE) {
return BAKE_ERROR_TEXTURE_SIZE_TOO_SMALL;
} else if (bake_err == Lightmapper::BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES) {
return BAKE_ERROR_MESHES_INVALID;
} else if (bake_err == Lightmapper::BAKE_ERROR_ATLAS_TOO_SMALL) {
return BAKE_ERROR_ATLAS_TOO_SMALL;
}
// POSTBAKE: Save Textures.
TypedArray<TextureLayered> lightmap_textures;
const String texture_filename = p_image_data_path.get_basename();
// Save the lightmap atlases.
BakeError save_err = _save_and_reimport_atlas_textures(lightmapper, texture_filename, lightmap_textures, false);
ERR_FAIL_COND_V(save_err != BAKE_ERROR_OK, save_err);
// POSTBAKE: Save Light Data.
Ref<LightmapGIData> gi_data;
if (get_light_data().is_valid()) {
gi_data = get_light_data();
set_light_data(Ref<LightmapGIData>()); // Clear.
gi_data->clear();
} else {
gi_data.instantiate();
}
gi_data->set_lightmap_textures(lightmap_textures);
gi_data->set_uses_spherical_harmonics(directional);
gi_data->_set_uses_packed_directional(directional); // New SH lightmaps are packed automatically.
for (int i = 0; i < lightmapper->get_bake_mesh_count(); i++) {
Dictionary d = lightmapper->get_bake_mesh_userdata(i);
NodePath np = d["path"];
int32_t subindex = -1;
if (d.has("subindex")) {
subindex = d["subindex"];
}
Rect2 uv_scale = lightmapper->get_bake_mesh_uv_scale(i);
int slice_index = lightmapper->get_bake_mesh_texture_slice(i);
gi_data->add_user(np, uv_scale, slice_index, subindex);
}
{
// create tetrahedrons
Vector<Vector3> points;
Vector<Color> sh;
points.resize(lightmapper->get_bake_probe_count());
sh.resize(lightmapper->get_bake_probe_count() * 9);
for (int i = 0; i < lightmapper->get_bake_probe_count(); i++) {
points.write[i] = lightmapper->get_bake_probe_point(i);
Vector<Color> colors = lightmapper->get_bake_probe_sh(i);
ERR_CONTINUE(colors.size() != 9);
for (int j = 0; j < 9; j++) {
sh.write[i * 9 + j] = colors[j];
}
}
//Obtain solved simplices
if (p_bake_step) {
p_bake_step(0.8, RTR("Generating Probe Volumes"), p_bake_userdata, true);
}
Vector<Delaunay3D::OutputSimplex> solved_simplices = Delaunay3D::tetrahedralize(points);
LocalVector<BSPSimplex> bsp_simplices;
LocalVector<Plane> bsp_planes;
LocalVector<int32_t> bsp_simplex_indices;
PackedInt32Array tetrahedrons;
for (int i = 0; i < solved_simplices.size(); i++) {
//Prepare a special representation of the simplex, which uses a BSP Tree
BSPSimplex bsp_simplex;
for (int j = 0; j < 4; j++) {
bsp_simplex.vertices[j] = solved_simplices[i].points[j];
}
for (int j = 0; j < 4; j++) {
static const int face_order[4][3] = {
{ 0, 1, 2 },
{ 0, 2, 3 },
{ 0, 1, 3 },
{ 1, 2, 3 }
};
Vector3 a = points[solved_simplices[i].points[face_order[j][0]]];
Vector3 b = points[solved_simplices[i].points[face_order[j][1]]];
Vector3 c = points[solved_simplices[i].points[face_order[j][2]]];
//store planes in an array, but ensure they are reused, to speed up processing
Plane p(a, b, c);
int plane_index = -1;
for (uint32_t k = 0; k < bsp_planes.size(); k++) {
if (bsp_planes[k].is_equal_approx_any_side(p)) {
plane_index = k;
break;
}
}
if (plane_index == -1) {
plane_index = bsp_planes.size();
bsp_planes.push_back(p);
}
bsp_simplex.planes[j] = plane_index;
//also fill simplex array
tetrahedrons.push_back(solved_simplices[i].points[j]);
}
bsp_simplex_indices.push_back(bsp_simplices.size());
bsp_simplices.push_back(bsp_simplex);
}
//#define DEBUG_SIMPLICES_AS_OBJ_FILE
#ifdef DEBUG_SIMPLICES_AS_OBJ_FILE
{
Ref<FileAccess> f = FileAccess::open("res://bsp.obj", FileAccess::WRITE);
for (uint32_t i = 0; i < bsp_simplices.size(); i++) {
f->store_line("o Simplex" + itos(i));
for (int j = 0; j < 4; j++) {
f->store_line(vformat("v %f %f %f", points[bsp_simplices[i].vertices[j]].x, points[bsp_simplices[i].vertices[j]].y, points[bsp_simplices[i].vertices[j]].z));
}
static const int face_order[4][3] = {
{ 1, 2, 3 },
{ 1, 3, 4 },
{ 1, 2, 4 },
{ 2, 3, 4 }
};
for (int j = 0; j < 4; j++) {
f->store_line(vformat("f %d %d %d", 4 * i + face_order[j][0], 4 * i + face_order[j][1], 4 * i + face_order[j][2]));
}
}
}
#endif
LocalVector<BSPNode> bsp_nodes;
LocalVector<int32_t> planes_tested;
planes_tested.resize(bsp_planes.size());
for (int &index : planes_tested) {
index = 0x7FFFFFFF;
}
if (p_bake_step) {
p_bake_step(0.9, RTR("Generating Probe Acceleration Structures"), p_bake_userdata, true);
}
_compute_bsp_tree(points, bsp_planes, planes_tested, bsp_simplices, bsp_simplex_indices, bsp_nodes);
PackedInt32Array bsp_array;
bsp_array.resize(bsp_nodes.size() * 6); // six 32 bits values used for each BSP node
{
float *fptr = (float *)bsp_array.ptrw();
int32_t *iptr = (int32_t *)bsp_array.ptrw();
for (uint32_t i = 0; i < bsp_nodes.size(); i++) {
fptr[i * 6 + 0] = bsp_nodes[i].plane.normal.x;
fptr[i * 6 + 1] = bsp_nodes[i].plane.normal.y;
fptr[i * 6 + 2] = bsp_nodes[i].plane.normal.z;
fptr[i * 6 + 3] = bsp_nodes[i].plane.d;
iptr[i * 6 + 4] = bsp_nodes[i].over;
iptr[i * 6 + 5] = bsp_nodes[i].under;
}
//#define DEBUG_BSP_TREE
#ifdef DEBUG_BSP_TREE
Ref<FileAccess> f = FileAccess::open("res://bsp.txt", FileAccess::WRITE);
for (uint32_t i = 0; i < bsp_nodes.size(); i++) {
f->store_line(itos(i) + " - plane: " + bsp_nodes[i].plane + " over: " + itos(bsp_nodes[i].over) + " under: " + itos(bsp_nodes[i].under));
}
#endif
}
/* Obtain the colors from the images, they will be re-created as cubemaps on the server, depending on the driver */
gi_data->set_capture_data(bounds, interior, points, sh, tetrahedrons, bsp_array, exposure_normalization);
/* Compute a BSP tree of the simplices, so it's easy to find the exact one */
}
gi_data->set_path(p_image_data_path, true);
Error err = ResourceSaver::save(gi_data);
if (err != OK) {
return BAKE_ERROR_CANT_CREATE_IMAGE;
}
set_light_data(gi_data);
return BAKE_ERROR_OK;
}
void LightmapGI::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_POST_ENTER_TREE: {
if (light_data.is_valid()) {
ERR_FAIL_COND_MSG(
light_data->is_using_spherical_harmonics() && !light_data->_is_using_packed_directional(),
vformat(
"%s (%s): The directional lightmap textures are stored in a format that isn't supported anymore. Please bake lightmaps again to make lightmaps display from this node again.",
get_light_data()->get_path(), get_name()));
_assign_lightmaps();
}
} break;
case NOTIFICATION_EXIT_TREE: {
if (light_data.is_valid()) {
_clear_lightmaps();
}
} break;
}
}
void LightmapGI::_assign_lightmaps() {
ERR_FAIL_COND(!light_data.is_valid());
for (int i = 0; i < light_data->get_user_count(); i++) {
Node *node = get_node(light_data->get_user_path(i));
int instance_idx = light_data->get_user_sub_instance(i);
if (instance_idx >= 0) {
RID instance_id = node->call("get_bake_mesh_instance", instance_idx);
if (instance_id.is_valid()) {
RS::get_singleton()->instance_geometry_set_lightmap(instance_id, get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i));
}
} else {
VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node);
ERR_CONTINUE(!vi);
RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i));
}
}
}
void LightmapGI::_clear_lightmaps() {
ERR_FAIL_COND(!light_data.is_valid());
for (int i = 0; i < light_data->get_user_count(); i++) {
Node *node = get_node(light_data->get_user_path(i));
int instance_idx = light_data->get_user_sub_instance(i);
if (instance_idx >= 0) {
RID instance_id = node->call("get_bake_mesh_instance", instance_idx);
if (instance_id.is_valid()) {
RS::get_singleton()->instance_geometry_set_lightmap(instance_id, RID(), Rect2(), 0);
}
} else {
VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node);
ERR_CONTINUE(!vi);
RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), RID(), Rect2(), 0);
}
}
}
void LightmapGI::set_light_data(const Ref<LightmapGIData> &p_data) {
if (light_data.is_valid()) {
if (is_inside_tree()) {
_clear_lightmaps();
}
set_base(RID());
}
light_data = p_data;
if (light_data.is_valid()) {
set_base(light_data->get_rid());
if (is_inside_tree()) {
_assign_lightmaps();
}
}
update_gizmos();
}
Ref<LightmapGIData> LightmapGI::get_light_data() const {
return light_data;
}
void LightmapGI::set_bake_quality(BakeQuality p_quality) {
bake_quality = p_quality;
}
LightmapGI::BakeQuality LightmapGI::get_bake_quality() const {
return bake_quality;
}
AABB LightmapGI::get_aabb() const {
return AABB();
}
void LightmapGI::set_use_denoiser(bool p_enable) {
use_denoiser = p_enable;
notify_property_list_changed();
}
bool LightmapGI::is_using_denoiser() const {
return use_denoiser;
}
void LightmapGI::set_denoiser_strength(float p_denoiser_strength) {
denoiser_strength = p_denoiser_strength;
}
float LightmapGI::get_denoiser_strength() const {
return denoiser_strength;
}
void LightmapGI::set_denoiser_range(int p_denoiser_range) {
denoiser_range = p_denoiser_range;
}
int LightmapGI::get_denoiser_range() const {
return denoiser_range;
}
void LightmapGI::set_directional(bool p_enable) {
directional = p_enable;
}
bool LightmapGI::is_directional() const {
return directional;
}
void LightmapGI::set_use_texture_for_bounces(bool p_enable) {
use_texture_for_bounces = p_enable;
}
bool LightmapGI::is_using_texture_for_bounces() const {
return use_texture_for_bounces;
}
void LightmapGI::set_interior(bool p_enable) {
interior = p_enable;
}
bool LightmapGI::is_interior() const {
return interior;
}
void LightmapGI::set_environment_mode(EnvironmentMode p_mode) {
environment_mode = p_mode;
notify_property_list_changed();
}
LightmapGI::EnvironmentMode LightmapGI::get_environment_mode() const {
return environment_mode;
}
void LightmapGI::set_environment_custom_sky(const Ref<Sky> &p_sky) {
environment_custom_sky = p_sky;
}
Ref<Sky> LightmapGI::get_environment_custom_sky() const {
return environment_custom_sky;
}
void LightmapGI::set_environment_custom_color(const Color &p_color) {
environment_custom_color = p_color;
}
Color LightmapGI::get_environment_custom_color() const {
return environment_custom_color;
}
void LightmapGI::set_environment_custom_energy(float p_energy) {
environment_custom_energy = p_energy;
}
float LightmapGI::get_environment_custom_energy() const {
return environment_custom_energy;
}
void LightmapGI::set_bounces(int p_bounces) {
ERR_FAIL_COND(p_bounces < 0 || p_bounces > 16);
bounces = p_bounces;
}
int LightmapGI::get_bounces() const {
return bounces;
}
void LightmapGI::set_bounce_indirect_energy(float p_indirect_energy) {
ERR_FAIL_COND(p_indirect_energy < 0.0);
bounce_indirect_energy = p_indirect_energy;
}
float LightmapGI::get_bounce_indirect_energy() const {
return bounce_indirect_energy;
}
void LightmapGI::set_bias(float p_bias) {
ERR_FAIL_COND(p_bias < 0.00001);
bias = p_bias;
}
float LightmapGI::get_bias() const {
return bias;
}
void LightmapGI::set_texel_scale(float p_multiplier) {
ERR_FAIL_COND(p_multiplier < (0.01 - CMP_EPSILON));
texel_scale = p_multiplier;
}
float LightmapGI::get_texel_scale() const {
return texel_scale;
}
void LightmapGI::set_max_texture_size(int p_size) {
ERR_FAIL_COND_MSG(p_size < 2048, vformat("The LightmapGI maximum texture size supplied (%d) is too small. The minimum allowed value is 2048.", p_size));
ERR_FAIL_COND_MSG(p_size > 16384, vformat("The LightmapGI maximum texture size supplied (%d) is too large. The maximum allowed value is 16384.", p_size));
max_texture_size = p_size;
}
int LightmapGI::get_max_texture_size() const {
return max_texture_size;
}
void LightmapGI::set_generate_probes(GenerateProbes p_generate_probes) {
gen_probes = p_generate_probes;
}
LightmapGI::GenerateProbes LightmapGI::get_generate_probes() const {
return gen_probes;
}
void LightmapGI::set_camera_attributes(const Ref<CameraAttributes> &p_camera_attributes) {
camera_attributes = p_camera_attributes;
}
Ref<CameraAttributes> LightmapGI::get_camera_attributes() const {
return camera_attributes;
}
PackedStringArray LightmapGI::get_configuration_warnings() const {
PackedStringArray warnings = VisualInstance3D::get_configuration_warnings();
#ifdef MODULE_LIGHTMAPPER_RD_ENABLED
if (!DisplayServer::get_singleton()->can_create_rendering_device()) {
warnings.push_back(vformat(RTR("Lightmaps can only be baked from a GPU that supports the RenderingDevice backends.\nYour GPU (%s) does not support RenderingDevice, as it does not support Vulkan, Direct3D 12, or Metal.\nLightmap baking will not be available on this device, although rendering existing baked lightmaps will work."), RenderingServer::get_singleton()->get_video_adapter_name()));
return warnings;
}
#elif defined(ANDROID_ENABLED) || defined(IOS_ENABLED)
warnings.push_back(vformat(RTR("Lightmaps cannot be baked on %s. Rendering existing baked lightmaps will still work."), OS::get_singleton()->get_name()));
#else
warnings.push_back(RTR("Lightmaps cannot be baked, as the `lightmapper_rd` module was disabled at compile-time. Rendering existing baked lightmaps will still work."));
#endif
return warnings;
}
void LightmapGI::_validate_property(PropertyInfo &p_property) const {
if (p_property.name == "environment_custom_sky" && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if (p_property.name == "environment_custom_color" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if (p_property.name == "environment_custom_energy" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if (p_property.name == "denoiser_strength" && !use_denoiser) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if (p_property.name == "denoiser_range" && !use_denoiser) {
p_property.usage = PROPERTY_USAGE_NONE;
}
}
void LightmapGI::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_light_data", "data"), &LightmapGI::set_light_data);
ClassDB::bind_method(D_METHOD("get_light_data"), &LightmapGI::get_light_data);
ClassDB::bind_method(D_METHOD("set_bake_quality", "bake_quality"), &LightmapGI::set_bake_quality);
ClassDB::bind_method(D_METHOD("get_bake_quality"), &LightmapGI::get_bake_quality);
ClassDB::bind_method(D_METHOD("set_bounces", "bounces"), &LightmapGI::set_bounces);
ClassDB::bind_method(D_METHOD("get_bounces"), &LightmapGI::get_bounces);
ClassDB::bind_method(D_METHOD("set_bounce_indirect_energy", "bounce_indirect_energy"), &LightmapGI::set_bounce_indirect_energy);
ClassDB::bind_method(D_METHOD("get_bounce_indirect_energy"), &LightmapGI::get_bounce_indirect_energy);
ClassDB::bind_method(D_METHOD("set_generate_probes", "subdivision"), &LightmapGI::set_generate_probes);
ClassDB::bind_method(D_METHOD("get_generate_probes"), &LightmapGI::get_generate_probes);
ClassDB::bind_method(D_METHOD("set_bias", "bias"), &LightmapGI::set_bias);
ClassDB::bind_method(D_METHOD("get_bias"), &LightmapGI::get_bias);
ClassDB::bind_method(D_METHOD("set_environment_mode", "mode"), &LightmapGI::set_environment_mode);
ClassDB::bind_method(D_METHOD("get_environment_mode"), &LightmapGI::get_environment_mode);
ClassDB::bind_method(D_METHOD("set_environment_custom_sky", "sky"), &LightmapGI::set_environment_custom_sky);
ClassDB::bind_method(D_METHOD("get_environment_custom_sky"), &LightmapGI::get_environment_custom_sky);
ClassDB::bind_method(D_METHOD("set_environment_custom_color", "color"), &LightmapGI::set_environment_custom_color);
ClassDB::bind_method(D_METHOD("get_environment_custom_color"), &LightmapGI::get_environment_custom_color);
ClassDB::bind_method(D_METHOD("set_environment_custom_energy", "energy"), &LightmapGI::set_environment_custom_energy);
ClassDB::bind_method(D_METHOD("get_environment_custom_energy"), &LightmapGI::get_environment_custom_energy);
ClassDB::bind_method(D_METHOD("set_texel_scale", "texel_scale"), &LightmapGI::set_texel_scale);
ClassDB::bind_method(D_METHOD("get_texel_scale"), &LightmapGI::get_texel_scale);
ClassDB::bind_method(D_METHOD("set_max_texture_size", "max_texture_size"), &LightmapGI::set_max_texture_size);
ClassDB::bind_method(D_METHOD("get_max_texture_size"), &LightmapGI::get_max_texture_size);
ClassDB::bind_method(D_METHOD("set_use_denoiser", "use_denoiser"), &LightmapGI::set_use_denoiser);
ClassDB::bind_method(D_METHOD("is_using_denoiser"), &LightmapGI::is_using_denoiser);
ClassDB::bind_method(D_METHOD("set_denoiser_strength", "denoiser_strength"), &LightmapGI::set_denoiser_strength);
ClassDB::bind_method(D_METHOD("get_denoiser_strength"), &LightmapGI::get_denoiser_strength);
ClassDB::bind_method(D_METHOD("set_denoiser_range", "denoiser_range"), &LightmapGI::set_denoiser_range);
ClassDB::bind_method(D_METHOD("get_denoiser_range"), &LightmapGI::get_denoiser_range);
ClassDB::bind_method(D_METHOD("set_interior", "enable"), &LightmapGI::set_interior);
ClassDB::bind_method(D_METHOD("is_interior"), &LightmapGI::is_interior);
ClassDB::bind_method(D_METHOD("set_directional", "directional"), &LightmapGI::set_directional);
ClassDB::bind_method(D_METHOD("is_directional"), &LightmapGI::is_directional);
ClassDB::bind_method(D_METHOD("set_use_texture_for_bounces", "use_texture_for_bounces"), &LightmapGI::set_use_texture_for_bounces);
ClassDB::bind_method(D_METHOD("is_using_texture_for_bounces"), &LightmapGI::is_using_texture_for_bounces);
ClassDB::bind_method(D_METHOD("set_camera_attributes", "camera_attributes"), &LightmapGI::set_camera_attributes);
ClassDB::bind_method(D_METHOD("get_camera_attributes"), &LightmapGI::get_camera_attributes);
// ClassDB::bind_method(D_METHOD("bake", "from_node"), &LightmapGI::bake, DEFVAL(Variant()));
ADD_GROUP("Tweaks", "");
ADD_PROPERTY(PropertyInfo(Variant::INT, "quality", PROPERTY_HINT_ENUM, "Low,Medium,High,Ultra"), "set_bake_quality", "get_bake_quality");
ADD_PROPERTY(PropertyInfo(Variant::INT, "bounces", PROPERTY_HINT_RANGE, "0,6,1,or_greater"), "set_bounces", "get_bounces");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bounce_indirect_energy", PROPERTY_HINT_RANGE, "0,2,0.01"), "set_bounce_indirect_energy", "get_bounce_indirect_energy");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "directional"), "set_directional", "is_directional");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_texture_for_bounces"), "set_use_texture_for_bounces", "is_using_texture_for_bounces");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_denoiser"), "set_use_denoiser", "is_using_denoiser");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "denoiser_strength", PROPERTY_HINT_RANGE, "0.001,0.2,0.001,or_greater"), "set_denoiser_strength", "get_denoiser_strength");
ADD_PROPERTY(PropertyInfo(Variant::INT, "denoiser_range", PROPERTY_HINT_RANGE, "1,20"), "set_denoiser_range", "get_denoiser_range");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bias", PROPERTY_HINT_RANGE, "0.00001,0.1,0.00001,or_greater"), "set_bias", "get_bias");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "texel_scale", PROPERTY_HINT_RANGE, "0.01,100.0,0.01"), "set_texel_scale", "get_texel_scale");
ADD_PROPERTY(PropertyInfo(Variant::INT, "max_texture_size", PROPERTY_HINT_RANGE, "2048,16384,1"), "set_max_texture_size", "get_max_texture_size");
ADD_GROUP("Environment", "environment_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "environment_mode", PROPERTY_HINT_ENUM, "Disabled,Scene,Custom Sky,Custom Color"), "set_environment_mode", "get_environment_mode");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "environment_custom_sky", PROPERTY_HINT_RESOURCE_TYPE, "Sky"), "set_environment_custom_sky", "get_environment_custom_sky");
ADD_PROPERTY(PropertyInfo(Variant::COLOR, "environment_custom_color", PROPERTY_HINT_COLOR_NO_ALPHA), "set_environment_custom_color", "get_environment_custom_color");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "environment_custom_energy", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_environment_custom_energy", "get_environment_custom_energy");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "camera_attributes", PROPERTY_HINT_RESOURCE_TYPE, "CameraAttributesPractical,CameraAttributesPhysical"), "set_camera_attributes", "get_camera_attributes");
ADD_GROUP("Gen Probes", "generate_probes_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "generate_probes_subdiv", PROPERTY_HINT_ENUM, "Disabled,4,8,16,32"), "set_generate_probes", "get_generate_probes");
ADD_GROUP("Data", "");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_data", PROPERTY_HINT_RESOURCE_TYPE, "LightmapGIData"), "set_light_data", "get_light_data");
BIND_ENUM_CONSTANT(BAKE_QUALITY_LOW);
BIND_ENUM_CONSTANT(BAKE_QUALITY_MEDIUM);
BIND_ENUM_CONSTANT(BAKE_QUALITY_HIGH);
BIND_ENUM_CONSTANT(BAKE_QUALITY_ULTRA);
BIND_ENUM_CONSTANT(GENERATE_PROBES_DISABLED);
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_4);
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_8);
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_16);
BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_32);
BIND_ENUM_CONSTANT(BAKE_ERROR_OK);
BIND_ENUM_CONSTANT(BAKE_ERROR_NO_SCENE_ROOT);
BIND_ENUM_CONSTANT(BAKE_ERROR_FOREIGN_DATA);
BIND_ENUM_CONSTANT(BAKE_ERROR_NO_LIGHTMAPPER);
BIND_ENUM_CONSTANT(BAKE_ERROR_NO_SAVE_PATH);
BIND_ENUM_CONSTANT(BAKE_ERROR_NO_MESHES);
BIND_ENUM_CONSTANT(BAKE_ERROR_MESHES_INVALID);
BIND_ENUM_CONSTANT(BAKE_ERROR_CANT_CREATE_IMAGE);
BIND_ENUM_CONSTANT(BAKE_ERROR_USER_ABORTED);
BIND_ENUM_CONSTANT(BAKE_ERROR_TEXTURE_SIZE_TOO_SMALL);
BIND_ENUM_CONSTANT(BAKE_ERROR_LIGHTMAP_TOO_SMALL);
BIND_ENUM_CONSTANT(BAKE_ERROR_ATLAS_TOO_SMALL);
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_DISABLED);
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_SCENE);
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_SKY);
BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_COLOR);
}
LightmapGI::LightmapGI() {
}