godot/modules/gltf/gltf_document.cpp
Thaddeus Crews ef8aafc2df
Merge pull request #94165 from aaronfranke/gltf-khr-anim-ptr
GLTF: Implement `KHR_animation_pointer` for animating custom properties
2024-11-04 21:52:03 -06:00

8629 lines
330 KiB
C++

/**************************************************************************/
/* gltf_document.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "gltf_document.h"
#include "extensions/gltf_spec_gloss.h"
#include "gltf_state.h"
#include "skin_tool.h"
#include "core/config/project_settings.h"
#include "core/crypto/crypto_core.h"
#include "core/io/config_file.h"
#include "core/io/dir_access.h"
#include "core/io/file_access.h"
#include "core/io/file_access_memory.h"
#include "core/io/json.h"
#include "core/io/stream_peer.h"
#include "core/object/object_id.h"
#include "core/version.h"
#include "scene/3d/bone_attachment_3d.h"
#include "scene/3d/camera_3d.h"
#include "scene/3d/importer_mesh_instance_3d.h"
#include "scene/3d/light_3d.h"
#include "scene/3d/mesh_instance_3d.h"
#include "scene/3d/multimesh_instance_3d.h"
#include "scene/resources/3d/skin.h"
#include "scene/resources/image_texture.h"
#include "scene/resources/portable_compressed_texture.h"
#include "scene/resources/surface_tool.h"
#ifdef TOOLS_ENABLED
#include "editor/editor_file_system.h"
#endif
// FIXME: Hardcoded to avoid editor dependency.
#define GLTF_IMPORT_GENERATE_TANGENT_ARRAYS 8
#define GLTF_IMPORT_USE_NAMED_SKIN_BINDS 16
#define GLTF_IMPORT_DISCARD_MESHES_AND_MATERIALS 32
#define GLTF_IMPORT_FORCE_DISABLE_MESH_COMPRESSION 64
#include <stdio.h>
#include <stdlib.h>
#include <cstdint>
constexpr int COMPONENT_COUNT_FOR_ACCESSOR_TYPE[7] = {
1, 2, 3, 4, 4, 9, 16
};
static void _attach_extras_to_meta(const Dictionary &p_extras, Ref<Resource> p_node) {
if (!p_extras.is_empty()) {
p_node->set_meta("extras", p_extras);
}
}
static void _attach_meta_to_extras(Ref<Resource> p_node, Dictionary &p_json) {
if (p_node->has_meta("extras")) {
Dictionary node_extras = p_node->get_meta("extras");
if (p_json.has("extras")) {
Dictionary extras = p_json["extras"];
extras.merge(node_extras);
} else {
p_json["extras"] = node_extras;
}
}
}
static Ref<ImporterMesh> _mesh_to_importer_mesh(Ref<Mesh> p_mesh) {
Ref<ImporterMesh> importer_mesh;
importer_mesh.instantiate();
if (p_mesh.is_null()) {
return importer_mesh;
}
Ref<ArrayMesh> array_mesh = p_mesh;
if (p_mesh->get_blend_shape_count()) {
ArrayMesh::BlendShapeMode shape_mode = ArrayMesh::BLEND_SHAPE_MODE_NORMALIZED;
if (array_mesh.is_valid()) {
shape_mode = array_mesh->get_blend_shape_mode();
}
importer_mesh->set_blend_shape_mode(shape_mode);
for (int morph_i = 0; morph_i < p_mesh->get_blend_shape_count(); morph_i++) {
importer_mesh->add_blend_shape(p_mesh->get_blend_shape_name(morph_i));
}
}
for (int32_t surface_i = 0; surface_i < p_mesh->get_surface_count(); surface_i++) {
Array array = p_mesh->surface_get_arrays(surface_i);
Ref<Material> mat = p_mesh->surface_get_material(surface_i);
String mat_name;
if (mat.is_valid()) {
mat_name = mat->get_name();
} else {
// Assign default material when no material is assigned.
mat = Ref<StandardMaterial3D>(memnew(StandardMaterial3D));
}
importer_mesh->add_surface(p_mesh->surface_get_primitive_type(surface_i),
array, p_mesh->surface_get_blend_shape_arrays(surface_i), p_mesh->surface_get_lods(surface_i), mat,
mat_name, p_mesh->surface_get_format(surface_i));
}
importer_mesh->merge_meta_from(*p_mesh);
return importer_mesh;
}
Error GLTFDocument::_serialize(Ref<GLTFState> p_state) {
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
Error err = ext->export_preserialize(p_state);
ERR_CONTINUE(err != OK);
}
/* STEP CONVERT MESH INSTANCES */
_convert_mesh_instances(p_state);
/* STEP SERIALIZE CAMERAS */
Error err = _serialize_cameras(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP 3 CREATE SKINS */
err = _serialize_skins(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE MESHES (we have enough info now) */
err = _serialize_meshes(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE TEXTURES */
err = _serialize_materials(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE TEXTURE SAMPLERS */
err = _serialize_texture_samplers(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE ANIMATIONS */
err = _serialize_animations(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE ACCESSORS */
err = _encode_accessors(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE IMAGES */
err = _serialize_images(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE TEXTURES */
err = _serialize_textures(p_state);
if (err != OK) {
return Error::FAILED;
}
for (GLTFBufferViewIndex i = 0; i < p_state->buffer_views.size(); i++) {
p_state->buffer_views.write[i]->buffer = 0;
}
/* STEP SERIALIZE BUFFER VIEWS */
err = _encode_buffer_views(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE NODES */
err = _serialize_nodes(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE SCENE */
err = _serialize_scenes(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE LIGHTS */
err = _serialize_lights(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE EXTENSIONS */
err = _serialize_gltf_extensions(p_state);
if (err != OK) {
return Error::FAILED;
}
/* STEP SERIALIZE VERSION */
err = _serialize_asset_header(p_state);
if (err != OK) {
return Error::FAILED;
}
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
err = ext->export_post(p_state);
ERR_FAIL_COND_V(err != OK, err);
}
return OK;
}
Error GLTFDocument::_serialize_gltf_extensions(Ref<GLTFState> p_state) const {
Vector<String> extensions_used = p_state->extensions_used;
Vector<String> extensions_required = p_state->extensions_required;
if (!p_state->lights.is_empty()) {
extensions_used.push_back("KHR_lights_punctual");
}
if (p_state->use_khr_texture_transform) {
extensions_used.push_back("KHR_texture_transform");
extensions_required.push_back("KHR_texture_transform");
}
if (!extensions_used.is_empty()) {
extensions_used.sort();
p_state->json["extensionsUsed"] = extensions_used;
}
if (!extensions_required.is_empty()) {
extensions_required.sort();
p_state->json["extensionsRequired"] = extensions_required;
}
return OK;
}
Error GLTFDocument::_serialize_scenes(Ref<GLTFState> p_state) {
// Godot only supports one scene per glTF file.
Array scenes;
Dictionary scene_dict;
scenes.append(scene_dict);
p_state->json["scenes"] = scenes;
p_state->json["scene"] = 0;
// Add nodes to the scene dict.
if (!p_state->root_nodes.is_empty()) {
scene_dict["nodes"] = p_state->root_nodes;
}
if (!p_state->scene_name.is_empty()) {
scene_dict["name"] = p_state->scene_name;
}
return OK;
}
Error GLTFDocument::_parse_json(const String &p_path, Ref<GLTFState> p_state) {
Error err;
Ref<FileAccess> file = FileAccess::open(p_path, FileAccess::READ, &err);
if (file.is_null()) {
return err;
}
Vector<uint8_t> array;
array.resize(file->get_length());
file->get_buffer(array.ptrw(), array.size());
String text;
text.parse_utf8((const char *)array.ptr(), array.size());
JSON json;
err = json.parse(text);
if (err != OK) {
_err_print_error("", p_path.utf8().get_data(), json.get_error_line(), json.get_error_message().utf8().get_data(), false, ERR_HANDLER_SCRIPT);
return err;
}
p_state->json = json.get_data();
return OK;
}
Error GLTFDocument::_parse_glb(Ref<FileAccess> p_file, Ref<GLTFState> p_state) {
ERR_FAIL_COND_V(p_file.is_null(), ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_state.is_null(), ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_file->get_position() != 0, ERR_FILE_CANT_READ);
uint32_t magic = p_file->get_32();
ERR_FAIL_COND_V(magic != 0x46546C67, ERR_FILE_UNRECOGNIZED); //glTF
p_file->get_32(); // version
p_file->get_32(); // length
uint32_t chunk_length = p_file->get_32();
uint32_t chunk_type = p_file->get_32();
ERR_FAIL_COND_V(chunk_type != 0x4E4F534A, ERR_PARSE_ERROR); //JSON
Vector<uint8_t> json_data;
json_data.resize(chunk_length);
uint32_t len = p_file->get_buffer(json_data.ptrw(), chunk_length);
ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
String text;
text.parse_utf8((const char *)json_data.ptr(), json_data.size());
JSON json;
Error err = json.parse(text);
if (err != OK) {
_err_print_error("", "", json.get_error_line(), json.get_error_message().utf8().get_data(), false, ERR_HANDLER_SCRIPT);
return err;
}
p_state->json = json.get_data();
//data?
chunk_length = p_file->get_32();
chunk_type = p_file->get_32();
if (p_file->eof_reached()) {
return OK; //all good
}
ERR_FAIL_COND_V(chunk_type != 0x004E4942, ERR_PARSE_ERROR); //BIN
p_state->glb_data.resize(chunk_length);
len = p_file->get_buffer(p_state->glb_data.ptrw(), chunk_length);
ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
return OK;
}
static Array _vec3_to_arr(const Vector3 &p_vec3) {
Array array;
array.resize(3);
array[0] = p_vec3.x;
array[1] = p_vec3.y;
array[2] = p_vec3.z;
return array;
}
static Vector3 _arr_to_vec3(const Array &p_array) {
ERR_FAIL_COND_V(p_array.size() != 3, Vector3());
return Vector3(p_array[0], p_array[1], p_array[2]);
}
static Array _quaternion_to_array(const Quaternion &p_quaternion) {
Array array;
array.resize(4);
array[0] = p_quaternion.x;
array[1] = p_quaternion.y;
array[2] = p_quaternion.z;
array[3] = p_quaternion.w;
return array;
}
static Quaternion _arr_to_quaternion(const Array &p_array) {
ERR_FAIL_COND_V(p_array.size() != 4, Quaternion());
return Quaternion(p_array[0], p_array[1], p_array[2], p_array[3]);
}
static Transform3D _arr_to_xform(const Array &p_array) {
ERR_FAIL_COND_V(p_array.size() != 16, Transform3D());
Transform3D xform;
xform.basis.set_column(Vector3::AXIS_X, Vector3(p_array[0], p_array[1], p_array[2]));
xform.basis.set_column(Vector3::AXIS_Y, Vector3(p_array[4], p_array[5], p_array[6]));
xform.basis.set_column(Vector3::AXIS_Z, Vector3(p_array[8], p_array[9], p_array[10]));
xform.set_origin(Vector3(p_array[12], p_array[13], p_array[14]));
return xform;
}
static Vector<real_t> _xform_to_array(const Transform3D p_transform) {
Vector<real_t> array;
array.resize(16);
Vector3 axis_x = p_transform.get_basis().get_column(Vector3::AXIS_X);
array.write[0] = axis_x.x;
array.write[1] = axis_x.y;
array.write[2] = axis_x.z;
array.write[3] = 0.0f;
Vector3 axis_y = p_transform.get_basis().get_column(Vector3::AXIS_Y);
array.write[4] = axis_y.x;
array.write[5] = axis_y.y;
array.write[6] = axis_y.z;
array.write[7] = 0.0f;
Vector3 axis_z = p_transform.get_basis().get_column(Vector3::AXIS_Z);
array.write[8] = axis_z.x;
array.write[9] = axis_z.y;
array.write[10] = axis_z.z;
array.write[11] = 0.0f;
Vector3 origin = p_transform.get_origin();
array.write[12] = origin.x;
array.write[13] = origin.y;
array.write[14] = origin.z;
array.write[15] = 1.0f;
return array;
}
Error GLTFDocument::_serialize_nodes(Ref<GLTFState> p_state) {
Array nodes;
for (int i = 0; i < p_state->nodes.size(); i++) {
Dictionary node;
Ref<GLTFNode> gltf_node = p_state->nodes[i];
Dictionary extensions;
node["extensions"] = extensions;
if (!gltf_node->get_name().is_empty()) {
node["name"] = gltf_node->get_name();
}
if (gltf_node->camera != -1) {
node["camera"] = gltf_node->camera;
}
if (gltf_node->light != -1) {
Dictionary lights_punctual;
extensions["KHR_lights_punctual"] = lights_punctual;
lights_punctual["light"] = gltf_node->light;
}
if (gltf_node->mesh != -1) {
node["mesh"] = gltf_node->mesh;
}
if (gltf_node->skin != -1) {
node["skin"] = gltf_node->skin;
}
if (gltf_node->skeleton != -1 && gltf_node->skin < 0) {
}
if (gltf_node->transform.basis.is_orthogonal()) {
// An orthogonal transform is decomposable into TRS, so prefer that.
const Vector3 position = gltf_node->get_position();
if (!position.is_zero_approx()) {
node["translation"] = _vec3_to_arr(position);
}
const Quaternion rotation = gltf_node->get_rotation();
if (!rotation.is_equal_approx(Quaternion())) {
node["rotation"] = _quaternion_to_array(rotation);
}
const Vector3 scale = gltf_node->get_scale();
if (!scale.is_equal_approx(Vector3(1.0f, 1.0f, 1.0f))) {
node["scale"] = _vec3_to_arr(scale);
}
} else {
node["matrix"] = _xform_to_array(gltf_node->transform);
}
if (gltf_node->children.size()) {
Array children;
for (int j = 0; j < gltf_node->children.size(); j++) {
children.push_back(gltf_node->children[j]);
}
node["children"] = children;
}
Node *scene_node = nullptr;
if (i < (int)p_state->scene_nodes.size()) {
scene_node = p_state->scene_nodes[i];
}
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
Error err = ext->export_node(p_state, gltf_node, node, scene_node);
ERR_CONTINUE(err != OK);
}
if (extensions.is_empty()) {
node.erase("extensions");
}
_attach_meta_to_extras(gltf_node, node);
nodes.push_back(node);
}
if (!nodes.is_empty()) {
p_state->json["nodes"] = nodes;
}
return OK;
}
String GLTFDocument::_gen_unique_name(Ref<GLTFState> p_state, const String &p_name) {
return _gen_unique_name_static(p_state->unique_names, p_name);
}
String GLTFDocument::_sanitize_animation_name(const String &p_name) {
String anim_name = p_name.validate_node_name();
return AnimationLibrary::validate_library_name(anim_name);
}
String GLTFDocument::_gen_unique_animation_name(Ref<GLTFState> p_state, const String &p_name) {
const String s_name = _sanitize_animation_name(p_name);
String u_name;
int index = 1;
while (true) {
u_name = s_name;
if (index > 1) {
u_name += itos(index);
}
if (!p_state->unique_animation_names.has(u_name)) {
break;
}
index++;
}
p_state->unique_animation_names.insert(u_name);
return u_name;
}
String GLTFDocument::_sanitize_bone_name(const String &p_name) {
String bone_name = p_name;
bone_name = bone_name.replace(":", "_");
bone_name = bone_name.replace("/", "_");
return bone_name;
}
String GLTFDocument::_gen_unique_bone_name(Ref<GLTFState> p_state, const GLTFSkeletonIndex p_skel_i, const String &p_name) {
String s_name = _sanitize_bone_name(p_name);
if (s_name.is_empty()) {
s_name = "bone";
}
String u_name;
int index = 1;
while (true) {
u_name = s_name;
if (index > 1) {
u_name += "_" + itos(index);
}
if (!p_state->skeletons[p_skel_i]->unique_names.has(u_name)) {
break;
}
index++;
}
p_state->skeletons.write[p_skel_i]->unique_names.insert(u_name);
return u_name;
}
Error GLTFDocument::_parse_scenes(Ref<GLTFState> p_state) {
p_state->unique_names.insert("Skeleton3D"); // Reserve skeleton name.
ERR_FAIL_COND_V(!p_state->json.has("scenes"), ERR_FILE_CORRUPT);
const Array &scenes = p_state->json["scenes"];
int loaded_scene = 0;
if (p_state->json.has("scene")) {
loaded_scene = p_state->json["scene"];
} else {
WARN_PRINT("The load-time scene is not defined in the glTF2 file. Picking the first scene.");
}
if (scenes.size()) {
ERR_FAIL_COND_V(loaded_scene >= scenes.size(), ERR_FILE_CORRUPT);
const Dictionary &scene_dict = scenes[loaded_scene];
ERR_FAIL_COND_V(!scene_dict.has("nodes"), ERR_UNAVAILABLE);
const Array &nodes = scene_dict["nodes"];
for (int j = 0; j < nodes.size(); j++) {
p_state->root_nodes.push_back(nodes[j]);
}
// Determine what to use for the scene name.
if (scene_dict.has("name") && !String(scene_dict["name"]).is_empty() && !((String)scene_dict["name"]).begins_with("Scene")) {
p_state->scene_name = scene_dict["name"];
} else if (p_state->scene_name.is_empty()) {
p_state->scene_name = p_state->filename;
}
if (_naming_version == 0) {
p_state->scene_name = _gen_unique_name(p_state, p_state->scene_name);
}
}
return OK;
}
Error GLTFDocument::_parse_nodes(Ref<GLTFState> p_state) {
ERR_FAIL_COND_V(!p_state->json.has("nodes"), ERR_FILE_CORRUPT);
const Array &nodes = p_state->json["nodes"];
for (int i = 0; i < nodes.size(); i++) {
Ref<GLTFNode> node;
node.instantiate();
const Dictionary &n = nodes[i];
if (n.has("name")) {
node->set_original_name(n["name"]);
node->set_name(n["name"]);
}
if (n.has("camera")) {
node->camera = n["camera"];
}
if (n.has("mesh")) {
node->mesh = n["mesh"];
}
if (n.has("skin")) {
node->skin = n["skin"];
}
if (n.has("matrix")) {
node->transform = _arr_to_xform(n["matrix"]);
} else {
if (n.has("translation")) {
node->set_position(_arr_to_vec3(n["translation"]));
}
if (n.has("rotation")) {
node->set_rotation(_arr_to_quaternion(n["rotation"]));
}
if (n.has("scale")) {
node->set_scale(_arr_to_vec3(n["scale"]));
}
}
node->set_additional_data("GODOT_rest_transform", node->transform);
if (n.has("extensions")) {
Dictionary extensions = n["extensions"];
if (extensions.has("KHR_lights_punctual")) {
Dictionary lights_punctual = extensions["KHR_lights_punctual"];
if (lights_punctual.has("light")) {
GLTFLightIndex light = lights_punctual["light"];
node->light = light;
}
}
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
Error err = ext->parse_node_extensions(p_state, node, extensions);
ERR_CONTINUE_MSG(err != OK, "glTF: Encountered error " + itos(err) + " when parsing node extensions for node " + node->get_name() + " in file " + p_state->filename + ". Continuing.");
}
}
if (n.has("extras")) {
_attach_extras_to_meta(n["extras"], node);
}
if (n.has("children")) {
const Array &children = n["children"];
for (int j = 0; j < children.size(); j++) {
node->children.push_back(children[j]);
}
}
p_state->nodes.push_back(node);
}
// build the hierarchy
for (GLTFNodeIndex node_i = 0; node_i < p_state->nodes.size(); node_i++) {
for (int j = 0; j < p_state->nodes[node_i]->children.size(); j++) {
GLTFNodeIndex child_i = p_state->nodes[node_i]->children[j];
ERR_FAIL_INDEX_V(child_i, p_state->nodes.size(), ERR_FILE_CORRUPT);
ERR_CONTINUE(p_state->nodes[child_i]->parent != -1); //node already has a parent, wtf.
p_state->nodes.write[child_i]->parent = node_i;
}
}
_compute_node_heights(p_state);
return OK;
}
void GLTFDocument::_compute_node_heights(Ref<GLTFState> p_state) {
p_state->root_nodes.clear();
for (GLTFNodeIndex node_i = 0; node_i < p_state->nodes.size(); ++node_i) {
Ref<GLTFNode> node = p_state->nodes[node_i];
node->height = 0;
GLTFNodeIndex current_i = node_i;
while (current_i >= 0) {
const GLTFNodeIndex parent_i = p_state->nodes[current_i]->parent;
if (parent_i >= 0) {
++node->height;
}
current_i = parent_i;
}
if (node->height == 0) {
p_state->root_nodes.push_back(node_i);
}
}
}
static Vector<uint8_t> _parse_base64_uri(const String &p_uri) {
int start = p_uri.find(",");
ERR_FAIL_COND_V(start == -1, Vector<uint8_t>());
CharString substr = p_uri.substr(start + 1).ascii();
int strlen = substr.length();
Vector<uint8_t> buf;
buf.resize(strlen / 4 * 3 + 1 + 1);
size_t len = 0;
ERR_FAIL_COND_V(CryptoCore::b64_decode(buf.ptrw(), buf.size(), &len, (unsigned char *)substr.get_data(), strlen) != OK, Vector<uint8_t>());
buf.resize(len);
return buf;
}
Error GLTFDocument::_encode_buffer_glb(Ref<GLTFState> p_state, const String &p_path) {
print_verbose("glTF: Total buffers: " + itos(p_state->buffers.size()));
if (p_state->buffers.is_empty()) {
return OK;
}
Array buffers;
if (!p_state->buffers.is_empty()) {
Vector<uint8_t> buffer_data = p_state->buffers[0];
Dictionary gltf_buffer;
gltf_buffer["byteLength"] = buffer_data.size();
buffers.push_back(gltf_buffer);
}
for (GLTFBufferIndex i = 1; i < p_state->buffers.size() - 1; i++) {
Vector<uint8_t> buffer_data = p_state->buffers[i];
Dictionary gltf_buffer;
String filename = p_path.get_basename().get_file() + itos(i) + ".bin";
String path = p_path.get_base_dir() + "/" + filename;
Error err;
Ref<FileAccess> file = FileAccess::open(path, FileAccess::WRITE, &err);
if (file.is_null()) {
return err;
}
if (buffer_data.size() == 0) {
return OK;
}
file->create(FileAccess::ACCESS_RESOURCES);
file->store_buffer(buffer_data.ptr(), buffer_data.size());
gltf_buffer["uri"] = filename;
gltf_buffer["byteLength"] = buffer_data.size();
buffers.push_back(gltf_buffer);
}
p_state->json["buffers"] = buffers;
return OK;
}
Error GLTFDocument::_encode_buffer_bins(Ref<GLTFState> p_state, const String &p_path) {
print_verbose("glTF: Total buffers: " + itos(p_state->buffers.size()));
if (p_state->buffers.is_empty()) {
return OK;
}
Array buffers;
for (GLTFBufferIndex i = 0; i < p_state->buffers.size(); i++) {
Vector<uint8_t> buffer_data = p_state->buffers[i];
Dictionary gltf_buffer;
String filename = p_path.get_basename().get_file() + itos(i) + ".bin";
String path = p_path.get_base_dir() + "/" + filename;
Error err;
Ref<FileAccess> file = FileAccess::open(path, FileAccess::WRITE, &err);
if (file.is_null()) {
return err;
}
if (buffer_data.size() == 0) {
return OK;
}
file->create(FileAccess::ACCESS_RESOURCES);
file->store_buffer(buffer_data.ptr(), buffer_data.size());
gltf_buffer["uri"] = filename;
gltf_buffer["byteLength"] = buffer_data.size();
buffers.push_back(gltf_buffer);
}
p_state->json["buffers"] = buffers;
return OK;
}
Error GLTFDocument::_parse_buffers(Ref<GLTFState> p_state, const String &p_base_path) {
if (!p_state->json.has("buffers")) {
return OK;
}
const Array &buffers = p_state->json["buffers"];
for (GLTFBufferIndex i = 0; i < buffers.size(); i++) {
if (i == 0 && p_state->glb_data.size()) {
p_state->buffers.push_back(p_state->glb_data);
} else {
const Dictionary &buffer = buffers[i];
if (buffer.has("uri")) {
Vector<uint8_t> buffer_data;
String uri = buffer["uri"];
if (uri.begins_with("data:")) { // Embedded data using base64.
// Validate data MIME types and throw an error if it's one we don't know/support.
if (!uri.begins_with("data:application/octet-stream;base64") &&
!uri.begins_with("data:application/gltf-buffer;base64")) {
ERR_PRINT("glTF: Got buffer with an unknown URI data type: " + uri);
}
buffer_data = _parse_base64_uri(uri);
} else { // Relative path to an external image file.
ERR_FAIL_COND_V(p_base_path.is_empty(), ERR_INVALID_PARAMETER);
uri = uri.uri_decode();
uri = p_base_path.path_join(uri).replace("\\", "/"); // Fix for Windows.
ERR_FAIL_COND_V_MSG(!FileAccess::exists(uri), ERR_FILE_NOT_FOUND, "glTF: Binary file not found: " + uri);
buffer_data = FileAccess::get_file_as_bytes(uri);
ERR_FAIL_COND_V_MSG(buffer_data.is_empty(), ERR_PARSE_ERROR, "glTF: Couldn't load binary file as an array: " + uri);
}
ERR_FAIL_COND_V(!buffer.has("byteLength"), ERR_PARSE_ERROR);
int byteLength = buffer["byteLength"];
ERR_FAIL_COND_V(byteLength < buffer_data.size(), ERR_PARSE_ERROR);
p_state->buffers.push_back(buffer_data);
}
}
}
print_verbose("glTF: Total buffers: " + itos(p_state->buffers.size()));
return OK;
}
Error GLTFDocument::_encode_buffer_views(Ref<GLTFState> p_state) {
Array buffers;
for (GLTFBufferViewIndex i = 0; i < p_state->buffer_views.size(); i++) {
Dictionary d;
Ref<GLTFBufferView> buffer_view = p_state->buffer_views[i];
d["buffer"] = buffer_view->buffer;
d["byteLength"] = buffer_view->byte_length;
d["byteOffset"] = buffer_view->byte_offset;
if (buffer_view->byte_stride != -1) {
d["byteStride"] = buffer_view->byte_stride;
}
if (buffer_view->indices) {
d["target"] = GLTFDocument::ELEMENT_ARRAY_BUFFER;
} else if (buffer_view->vertex_attributes) {
d["target"] = GLTFDocument::ARRAY_BUFFER;
}
ERR_FAIL_COND_V(!d.has("buffer"), ERR_INVALID_DATA);
ERR_FAIL_COND_V(!d.has("byteLength"), ERR_INVALID_DATA);
buffers.push_back(d);
}
print_verbose("glTF: Total buffer views: " + itos(p_state->buffer_views.size()));
if (!buffers.size()) {
return OK;
}
p_state->json["bufferViews"] = buffers;
return OK;
}
Error GLTFDocument::_parse_buffer_views(Ref<GLTFState> p_state) {
if (!p_state->json.has("bufferViews")) {
return OK;
}
const Array &buffers = p_state->json["bufferViews"];
for (GLTFBufferViewIndex i = 0; i < buffers.size(); i++) {
const Dictionary &d = buffers[i];
Ref<GLTFBufferView> buffer_view;
buffer_view.instantiate();
ERR_FAIL_COND_V(!d.has("buffer"), ERR_PARSE_ERROR);
buffer_view->buffer = d["buffer"];
ERR_FAIL_COND_V(!d.has("byteLength"), ERR_PARSE_ERROR);
buffer_view->byte_length = d["byteLength"];
if (d.has("byteOffset")) {
buffer_view->byte_offset = d["byteOffset"];
}
if (d.has("byteStride")) {
buffer_view->byte_stride = d["byteStride"];
}
if (d.has("target")) {
const int target = d["target"];
buffer_view->indices = target == GLTFDocument::ELEMENT_ARRAY_BUFFER;
buffer_view->vertex_attributes = target == GLTFDocument::ARRAY_BUFFER;
}
p_state->buffer_views.push_back(buffer_view);
}
print_verbose("glTF: Total buffer views: " + itos(p_state->buffer_views.size()));
return OK;
}
Error GLTFDocument::_encode_accessors(Ref<GLTFState> p_state) {
Array accessors;
for (GLTFAccessorIndex i = 0; i < p_state->accessors.size(); i++) {
Dictionary d;
Ref<GLTFAccessor> accessor = p_state->accessors[i];
d["componentType"] = accessor->component_type;
d["count"] = accessor->count;
d["type"] = _get_accessor_type_name(accessor->accessor_type);
d["normalized"] = accessor->normalized;
d["max"] = accessor->max;
d["min"] = accessor->min;
if (accessor->buffer_view != -1) {
// bufferView may be omitted to zero-initialize the buffer. When this happens, byteOffset MUST also be omitted.
d["byteOffset"] = accessor->byte_offset;
d["bufferView"] = accessor->buffer_view;
}
if (accessor->sparse_count > 0) {
Dictionary s;
s["count"] = accessor->sparse_count;
Dictionary si;
si["bufferView"] = accessor->sparse_indices_buffer_view;
si["componentType"] = accessor->sparse_indices_component_type;
if (accessor->sparse_indices_byte_offset != -1) {
si["byteOffset"] = accessor->sparse_indices_byte_offset;
}
ERR_FAIL_COND_V(!si.has("bufferView") || !si.has("componentType"), ERR_PARSE_ERROR);
s["indices"] = si;
Dictionary sv;
sv["bufferView"] = accessor->sparse_values_buffer_view;
if (accessor->sparse_values_byte_offset != -1) {
sv["byteOffset"] = accessor->sparse_values_byte_offset;
}
ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR);
s["values"] = sv;
ERR_FAIL_COND_V(!s.has("count") || !s.has("indices") || !s.has("values"), ERR_PARSE_ERROR);
d["sparse"] = s;
}
accessors.push_back(d);
}
if (!accessors.size()) {
return OK;
}
p_state->json["accessors"] = accessors;
ERR_FAIL_COND_V(!p_state->json.has("accessors"), ERR_FILE_CORRUPT);
print_verbose("glTF: Total accessors: " + itos(p_state->accessors.size()));
return OK;
}
String GLTFDocument::_get_accessor_type_name(const GLTFAccessor::GLTFAccessorType p_accessor_type) {
if (p_accessor_type == GLTFAccessor::TYPE_SCALAR) {
return "SCALAR";
}
if (p_accessor_type == GLTFAccessor::TYPE_VEC2) {
return "VEC2";
}
if (p_accessor_type == GLTFAccessor::TYPE_VEC3) {
return "VEC3";
}
if (p_accessor_type == GLTFAccessor::TYPE_VEC4) {
return "VEC4";
}
if (p_accessor_type == GLTFAccessor::TYPE_MAT2) {
return "MAT2";
}
if (p_accessor_type == GLTFAccessor::TYPE_MAT3) {
return "MAT3";
}
if (p_accessor_type == GLTFAccessor::TYPE_MAT4) {
return "MAT4";
}
ERR_FAIL_V("SCALAR");
}
GLTFAccessor::GLTFAccessorType GLTFDocument::_get_accessor_type_from_str(const String &p_string) {
if (p_string == "SCALAR") {
return GLTFAccessor::TYPE_SCALAR;
}
if (p_string == "VEC2") {
return GLTFAccessor::TYPE_VEC2;
}
if (p_string == "VEC3") {
return GLTFAccessor::TYPE_VEC3;
}
if (p_string == "VEC4") {
return GLTFAccessor::TYPE_VEC4;
}
if (p_string == "MAT2") {
return GLTFAccessor::TYPE_MAT2;
}
if (p_string == "MAT3") {
return GLTFAccessor::TYPE_MAT3;
}
if (p_string == "MAT4") {
return GLTFAccessor::TYPE_MAT4;
}
ERR_FAIL_V(GLTFAccessor::TYPE_SCALAR);
}
Error GLTFDocument::_parse_accessors(Ref<GLTFState> p_state) {
if (!p_state->json.has("accessors")) {
return OK;
}
const Array &accessors = p_state->json["accessors"];
for (GLTFAccessorIndex i = 0; i < accessors.size(); i++) {
const Dictionary &d = accessors[i];
Ref<GLTFAccessor> accessor;
accessor.instantiate();
ERR_FAIL_COND_V(!d.has("componentType"), ERR_PARSE_ERROR);
accessor->component_type = (GLTFAccessor::GLTFComponentType)(int32_t)d["componentType"];
ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR);
accessor->count = d["count"];
ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
accessor->accessor_type = _get_accessor_type_from_str(d["type"]);
if (d.has("bufferView")) {
accessor->buffer_view = d["bufferView"]; //optional because it may be sparse...
}
if (d.has("byteOffset")) {
accessor->byte_offset = d["byteOffset"];
}
if (d.has("normalized")) {
accessor->normalized = d["normalized"];
}
if (d.has("max")) {
accessor->max = d["max"];
}
if (d.has("min")) {
accessor->min = d["min"];
}
if (d.has("sparse")) {
const Dictionary &s = d["sparse"];
ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR);
accessor->sparse_count = s["count"];
ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR);
const Dictionary &si = s["indices"];
ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR);
accessor->sparse_indices_buffer_view = si["bufferView"];
ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR);
accessor->sparse_indices_component_type = (GLTFAccessor::GLTFComponentType)(int32_t)si["componentType"];
if (si.has("byteOffset")) {
accessor->sparse_indices_byte_offset = si["byteOffset"];
}
ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR);
const Dictionary &sv = s["values"];
ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR);
accessor->sparse_values_buffer_view = sv["bufferView"];
if (sv.has("byteOffset")) {
accessor->sparse_values_byte_offset = sv["byteOffset"];
}
}
p_state->accessors.push_back(accessor);
}
print_verbose("glTF: Total accessors: " + itos(p_state->accessors.size()));
return OK;
}
double GLTFDocument::_filter_number(double p_float) {
if (!Math::is_finite(p_float)) {
// 3.6.2.2. "Values of NaN, +Infinity, and -Infinity MUST NOT be present."
return 0.0f;
}
return (double)(float)p_float;
}
String GLTFDocument::_get_component_type_name(const GLTFAccessor::GLTFComponentType p_component) {
switch (p_component) {
case GLTFAccessor::COMPONENT_TYPE_NONE:
return "None";
case GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE:
return "Byte";
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE:
return "UByte";
case GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT:
return "Short";
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT:
return "UShort";
case GLTFAccessor::COMPONENT_TYPE_SIGNED_INT:
return "Int";
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT:
return "UInt";
case GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT:
return "Float";
case GLTFAccessor::COMPONENT_TYPE_DOUBLE_FLOAT:
return "Double";
case GLTFAccessor::COMPONENT_TYPE_HALF_FLOAT:
return "Half";
case GLTFAccessor::COMPONENT_TYPE_SIGNED_LONG:
return "Long";
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_LONG:
return "ULong";
}
return "<Error>";
}
Error GLTFDocument::_encode_buffer_view(Ref<GLTFState> p_state, const double *p_src, const int p_count, const GLTFAccessor::GLTFAccessorType p_accessor_type, const GLTFAccessor::GLTFComponentType p_component_type, const bool p_normalized, const int p_byte_offset, const bool p_for_vertex, GLTFBufferViewIndex &r_accessor, const bool p_for_vertex_indices) {
const int component_count = COMPONENT_COUNT_FOR_ACCESSOR_TYPE[p_accessor_type];
const int component_size = _get_component_type_size(p_component_type);
ERR_FAIL_COND_V(component_size == 0, FAILED);
int skip_every = 0;
int skip_bytes = 0;
//special case of alignments, as described in spec
switch (p_component_type) {
case GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE:
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE: {
if (p_accessor_type == GLTFAccessor::TYPE_MAT2) {
skip_every = 2;
skip_bytes = 2;
}
if (p_accessor_type == GLTFAccessor::TYPE_MAT3) {
skip_every = 3;
skip_bytes = 1;
}
} break;
case GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT:
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT: {
if (p_accessor_type == GLTFAccessor::TYPE_MAT3) {
skip_every = 6;
skip_bytes = 4;
}
} break;
default: {
}
}
Ref<GLTFBufferView> bv;
bv.instantiate();
const uint32_t offset = bv->byte_offset = p_byte_offset;
Vector<uint8_t> &gltf_buffer = p_state->buffers.write[0];
int stride = component_count * component_size;
if (p_for_vertex && stride % 4) {
stride += 4 - (stride % 4); //according to spec must be multiple of 4
}
//use to debug
print_verbose("glTF: encoding accessor type " + _get_accessor_type_name(p_accessor_type) + " component type: " + _get_component_type_name(p_component_type) + " stride: " + itos(stride) + " amount " + itos(p_count));
print_verbose("glTF: encoding accessor offset " + itos(p_byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(gltf_buffer.size()) + " view len " + itos(bv->byte_length));
const int buffer_end = (stride * (p_count - 1)) + component_size;
// TODO define bv->byte_stride
bv->byte_offset = gltf_buffer.size();
if (p_for_vertex_indices) {
bv->indices = true;
} else if (p_for_vertex) {
bv->vertex_attributes = true;
bv->byte_stride = stride;
}
switch (p_component_type) {
case GLTFAccessor::COMPONENT_TYPE_NONE: {
ERR_FAIL_V_MSG(ERR_INVALID_DATA, "glTF: Failed to encode buffer view, component type not set.");
}
case GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE: {
Vector<int8_t> buffer;
buffer.resize(p_count * component_count);
int32_t dst_i = 0;
for (int i = 0; i < p_count; i++) {
for (int j = 0; j < component_count; j++) {
if (skip_every && j > 0 && (j % skip_every) == 0) {
dst_i += skip_bytes;
}
double d = *p_src;
if (p_normalized) {
buffer.write[dst_i] = d * 128.0;
} else {
buffer.write[dst_i] = d;
}
p_src++;
dst_i++;
}
}
int64_t old_size = gltf_buffer.size();
gltf_buffer.resize(old_size + (buffer.size() * sizeof(int8_t)));
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int8_t));
bv->byte_length = buffer.size() * sizeof(int8_t);
} break;
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE: {
Vector<uint8_t> buffer;
buffer.resize(p_count * component_count);
int32_t dst_i = 0;
for (int i = 0; i < p_count; i++) {
for (int j = 0; j < component_count; j++) {
if (skip_every && j > 0 && (j % skip_every) == 0) {
dst_i += skip_bytes;
}
double d = *p_src;
if (p_normalized) {
buffer.write[dst_i] = d * 255.0;
} else {
buffer.write[dst_i] = d;
}
p_src++;
dst_i++;
}
}
gltf_buffer.append_array(buffer);
bv->byte_length = buffer.size() * sizeof(uint8_t);
} break;
case GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT: {
Vector<int16_t> buffer;
buffer.resize(p_count * component_count);
int32_t dst_i = 0;
for (int i = 0; i < p_count; i++) {
for (int j = 0; j < component_count; j++) {
if (skip_every && j > 0 && (j % skip_every) == 0) {
dst_i += skip_bytes;
}
double d = *p_src;
if (p_normalized) {
buffer.write[dst_i] = d * 32768.0;
} else {
buffer.write[dst_i] = d;
}
p_src++;
dst_i++;
}
}
int64_t old_size = gltf_buffer.size();
gltf_buffer.resize(old_size + (buffer.size() * sizeof(int16_t)));
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int16_t));
bv->byte_length = buffer.size() * sizeof(int16_t);
} break;
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT: {
Vector<uint16_t> buffer;
buffer.resize(p_count * component_count);
int32_t dst_i = 0;
for (int i = 0; i < p_count; i++) {
for (int j = 0; j < component_count; j++) {
if (skip_every && j > 0 && (j % skip_every) == 0) {
dst_i += skip_bytes;
}
double d = *p_src;
if (p_normalized) {
buffer.write[dst_i] = d * 65535.0;
} else {
buffer.write[dst_i] = d;
}
p_src++;
dst_i++;
}
}
int64_t old_size = gltf_buffer.size();
gltf_buffer.resize(old_size + (buffer.size() * sizeof(uint16_t)));
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(uint16_t));
bv->byte_length = buffer.size() * sizeof(uint16_t);
} break;
case GLTFAccessor::COMPONENT_TYPE_SIGNED_INT: {
Vector<int32_t> buffer;
buffer.resize(p_count * component_count);
int32_t dst_i = 0;
for (int i = 0; i < p_count; i++) {
for (int j = 0; j < component_count; j++) {
if (skip_every && j > 0 && (j % skip_every) == 0) {
dst_i += skip_bytes;
}
double d = *p_src;
buffer.write[dst_i] = d;
p_src++;
dst_i++;
}
}
int64_t old_size = gltf_buffer.size();
gltf_buffer.resize(old_size + (buffer.size() * sizeof(uint32_t)));
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(uint32_t));
bv->byte_length = buffer.size() * sizeof(uint32_t);
} break;
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT: {
Vector<uint32_t> buffer;
buffer.resize(p_count * component_count);
int32_t dst_i = 0;
for (int i = 0; i < p_count; i++) {
for (int j = 0; j < component_count; j++) {
if (skip_every && j > 0 && (j % skip_every) == 0) {
dst_i += skip_bytes;
}
double d = *p_src;
buffer.write[dst_i] = d;
p_src++;
dst_i++;
}
}
int64_t old_size = gltf_buffer.size();
gltf_buffer.resize(old_size + (buffer.size() * sizeof(uint32_t)));
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(uint32_t));
bv->byte_length = buffer.size() * sizeof(uint32_t);
} break;
case GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT: {
Vector<float> buffer;
buffer.resize(p_count * component_count);
int32_t dst_i = 0;
for (int i = 0; i < p_count; i++) {
for (int j = 0; j < component_count; j++) {
if (skip_every && j > 0 && (j % skip_every) == 0) {
dst_i += skip_bytes;
}
double d = *p_src;
buffer.write[dst_i] = d;
p_src++;
dst_i++;
}
}
int64_t old_size = gltf_buffer.size();
gltf_buffer.resize(old_size + (buffer.size() * sizeof(float)));
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(float));
bv->byte_length = buffer.size() * sizeof(float);
} break;
case GLTFAccessor::COMPONENT_TYPE_DOUBLE_FLOAT: {
Vector<double> buffer;
buffer.resize(p_count * component_count);
int32_t dst_i = 0;
for (int i = 0; i < p_count; i++) {
for (int j = 0; j < component_count; j++) {
if (skip_every && j > 0 && (j % skip_every) == 0) {
dst_i += skip_bytes;
}
double d = *p_src;
buffer.write[dst_i] = d;
p_src++;
dst_i++;
}
}
int64_t old_size = gltf_buffer.size();
gltf_buffer.resize(old_size + (buffer.size() * sizeof(double)));
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(double));
bv->byte_length = buffer.size() * sizeof(double);
} break;
case GLTFAccessor::COMPONENT_TYPE_HALF_FLOAT: {
ERR_FAIL_V_MSG(ERR_UNAVAILABLE, "glTF: Half float not supported yet.");
} break;
case GLTFAccessor::COMPONENT_TYPE_SIGNED_LONG: {
Vector<int64_t> buffer;
buffer.resize(p_count * component_count);
int32_t dst_i = 0;
for (int i = 0; i < p_count; i++) {
for (int j = 0; j < component_count; j++) {
if (skip_every && j > 0 && (j % skip_every) == 0) {
dst_i += skip_bytes;
}
// FIXME: This can result in precision loss because int64_t can store some values that double can't.
double d = *p_src;
buffer.write[dst_i] = d;
p_src++;
dst_i++;
}
}
int64_t old_size = gltf_buffer.size();
gltf_buffer.resize(old_size + (buffer.size() * sizeof(int64_t)));
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int64_t));
bv->byte_length = buffer.size() * sizeof(int64_t);
} break;
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_LONG: {
Vector<uint64_t> buffer;
buffer.resize(p_count * component_count);
int32_t dst_i = 0;
for (int i = 0; i < p_count; i++) {
for (int j = 0; j < component_count; j++) {
if (skip_every && j > 0 && (j % skip_every) == 0) {
dst_i += skip_bytes;
}
// FIXME: This can result in precision loss because int64_t can store some values that double can't.
double d = *p_src;
buffer.write[dst_i] = d;
p_src++;
dst_i++;
}
}
int64_t old_size = gltf_buffer.size();
gltf_buffer.resize(old_size + (buffer.size() * sizeof(uint64_t)));
memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(uint64_t));
bv->byte_length = buffer.size() * sizeof(uint64_t);
} break;
}
ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_INVALID_DATA);
ERR_FAIL_COND_V((int)(offset + buffer_end) > gltf_buffer.size(), ERR_INVALID_DATA);
int pad_bytes = (4 - gltf_buffer.size()) & 3;
for (int i = 0; i < pad_bytes; i++) {
gltf_buffer.push_back(0);
}
r_accessor = bv->buffer = p_state->buffer_views.size();
p_state->buffer_views.push_back(bv);
return OK;
}
Error GLTFDocument::_decode_buffer_view(Ref<GLTFState> p_state, double *p_dst, const GLTFBufferViewIndex p_buffer_view, const int p_skip_every, const int p_skip_bytes, const int p_element_size, const int p_count, const GLTFAccessor::GLTFAccessorType p_accessor_type, const int p_component_count, const GLTFAccessor::GLTFComponentType p_component_type, const int p_component_size, const bool p_normalized, const int p_byte_offset, const bool p_for_vertex) {
const Ref<GLTFBufferView> bv = p_state->buffer_views[p_buffer_view];
int stride = p_element_size;
if (bv->byte_stride != -1) {
stride = bv->byte_stride;
}
if (p_for_vertex && stride % 4) {
stride += 4 - (stride % 4); //according to spec must be multiple of 4
}
ERR_FAIL_INDEX_V(bv->buffer, p_state->buffers.size(), ERR_PARSE_ERROR);
const uint32_t offset = bv->byte_offset + p_byte_offset;
Vector<uint8_t> buffer = p_state->buffers[bv->buffer]; //copy on write, so no performance hit
const uint8_t *bufptr = buffer.ptr();
//use to debug
print_verbose("glTF: accessor type " + _get_accessor_type_name(p_accessor_type) + " component type: " + _get_component_type_name(p_component_type) + " stride: " + itos(stride) + " amount " + itos(p_count));
print_verbose("glTF: accessor offset " + itos(p_byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(buffer.size()) + " view len " + itos(bv->byte_length));
const int buffer_end = (stride * (p_count - 1)) + p_element_size;
ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_PARSE_ERROR);
ERR_FAIL_COND_V((int)(offset + buffer_end) > buffer.size(), ERR_PARSE_ERROR);
//fill everything as doubles
for (int i = 0; i < p_count; i++) {
const uint8_t *src = &bufptr[offset + i * stride];
for (int j = 0; j < p_component_count; j++) {
if (p_skip_every && j > 0 && (j % p_skip_every) == 0) {
src += p_skip_bytes;
}
double d = 0;
switch (p_component_type) {
case GLTFAccessor::COMPONENT_TYPE_NONE: {
ERR_FAIL_V_MSG(ERR_INVALID_DATA, "glTF: Failed to decode buffer view, component type not set.");
} break;
case GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE: {
int8_t b = int8_t(*src);
if (p_normalized) {
d = (double(b) / 128.0);
} else {
d = double(b);
}
} break;
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE: {
uint8_t b = *src;
if (p_normalized) {
d = (double(b) / 255.0);
} else {
d = double(b);
}
} break;
case GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT: {
int16_t s = *(int16_t *)src;
if (p_normalized) {
d = (double(s) / 32768.0);
} else {
d = double(s);
}
} break;
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT: {
uint16_t s = *(uint16_t *)src;
if (p_normalized) {
d = (double(s) / 65535.0);
} else {
d = double(s);
}
} break;
case GLTFAccessor::COMPONENT_TYPE_SIGNED_INT: {
d = *(int32_t *)src;
} break;
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT: {
d = *(uint32_t *)src;
} break;
case GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT: {
d = *(float *)src;
} break;
case GLTFAccessor::COMPONENT_TYPE_DOUBLE_FLOAT: {
d = *(double *)src;
} break;
case GLTFAccessor::COMPONENT_TYPE_HALF_FLOAT: {
ERR_FAIL_V_MSG(ERR_UNAVAILABLE, "glTF: Half float not supported yet.");
} break;
case GLTFAccessor::COMPONENT_TYPE_SIGNED_LONG: {
d = *(int64_t *)src;
} break;
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_LONG: {
d = *(uint64_t *)src;
} break;
}
*p_dst++ = d;
src += p_component_size;
}
}
return OK;
}
int GLTFDocument::_get_component_type_size(const GLTFAccessor::GLTFComponentType p_component_type) {
switch (p_component_type) {
case GLTFAccessor::COMPONENT_TYPE_NONE:
ERR_FAIL_V(0);
case GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE:
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE:
return 1;
case GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT:
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT:
case GLTFAccessor::COMPONENT_TYPE_HALF_FLOAT:
return 2;
case GLTFAccessor::COMPONENT_TYPE_SIGNED_INT:
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT:
case GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT:
return 4;
case GLTFAccessor::COMPONENT_TYPE_DOUBLE_FLOAT:
case GLTFAccessor::COMPONENT_TYPE_SIGNED_LONG:
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_LONG:
return 8;
}
ERR_FAIL_V(0);
}
Vector<double> GLTFDocument::_decode_accessor(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
//spec, for reference:
//https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment
ERR_FAIL_INDEX_V(p_accessor, p_state->accessors.size(), Vector<double>());
const Ref<GLTFAccessor> a = p_state->accessors[p_accessor];
const int component_count = COMPONENT_COUNT_FOR_ACCESSOR_TYPE[a->accessor_type];
const int component_size = _get_component_type_size(a->component_type);
ERR_FAIL_COND_V(component_size == 0, Vector<double>());
int element_size = component_count * component_size;
int skip_every = 0;
int skip_bytes = 0;
//special case of alignments, as described in spec
switch (a->component_type) {
case GLTFAccessor::COMPONENT_TYPE_SIGNED_BYTE:
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_BYTE: {
if (a->accessor_type == GLTFAccessor::TYPE_MAT2) {
skip_every = 2;
skip_bytes = 2;
element_size = 8; //override for this case
}
if (a->accessor_type == GLTFAccessor::TYPE_MAT3) {
skip_every = 3;
skip_bytes = 1;
element_size = 12; //override for this case
}
} break;
case GLTFAccessor::COMPONENT_TYPE_SIGNED_SHORT:
case GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT: {
if (a->accessor_type == GLTFAccessor::TYPE_MAT3) {
skip_every = 6;
skip_bytes = 4;
element_size = 16; //override for this case
}
} break;
default: {
}
}
Vector<double> dst_buffer;
dst_buffer.resize(component_count * a->count);
double *dst = dst_buffer.ptrw();
if (a->buffer_view >= 0) {
ERR_FAIL_INDEX_V(a->buffer_view, p_state->buffer_views.size(), Vector<double>());
const Error err = _decode_buffer_view(p_state, dst, a->buffer_view, skip_every, skip_bytes, element_size, a->count, a->accessor_type, component_count, a->component_type, component_size, a->normalized, a->byte_offset, p_for_vertex);
if (err != OK) {
return Vector<double>();
}
} else {
//fill with zeros, as bufferview is not defined.
for (int i = 0; i < (a->count * component_count); i++) {
dst_buffer.write[i] = 0;
}
}
if (a->sparse_count > 0) {
// I could not find any file using this, so this code is so far untested
Vector<double> indices;
indices.resize(a->sparse_count);
const int indices_component_size = _get_component_type_size(a->sparse_indices_component_type);
Error err = _decode_buffer_view(p_state, indices.ptrw(), a->sparse_indices_buffer_view, 0, 0, indices_component_size, a->sparse_count, GLTFAccessor::TYPE_SCALAR, 1, a->sparse_indices_component_type, indices_component_size, false, a->sparse_indices_byte_offset, false);
if (err != OK) {
return Vector<double>();
}
Vector<double> data;
data.resize(component_count * a->sparse_count);
err = _decode_buffer_view(p_state, data.ptrw(), a->sparse_values_buffer_view, skip_every, skip_bytes, element_size, a->sparse_count, a->accessor_type, component_count, a->component_type, component_size, a->normalized, a->sparse_values_byte_offset, p_for_vertex);
if (err != OK) {
return Vector<double>();
}
for (int i = 0; i < indices.size(); i++) {
const int write_offset = int(indices[i]) * component_count;
for (int j = 0; j < component_count; j++) {
dst[write_offset + j] = data[i * component_count + j];
}
}
}
return dst_buffer;
}
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_ints(Ref<GLTFState> p_state, const Vector<int32_t> p_attribs, const bool p_for_vertex, const bool p_for_vertex_indices) {
if (p_attribs.size() == 0) {
return -1;
}
const int element_count = 1;
const int ret_size = p_attribs.size();
Vector<double> attribs;
attribs.resize(ret_size);
Vector<double> type_max;
type_max.resize(element_count);
Vector<double> type_min;
type_min.resize(element_count);
int max_index = 0;
for (int i = 0; i < p_attribs.size(); i++) {
attribs.write[i] = p_attribs[i];
if (p_attribs[i] > max_index) {
max_index = p_attribs[i];
}
if (i == 0) {
for (int32_t type_i = 0; type_i < element_count; type_i++) {
type_max.write[type_i] = attribs[(i * element_count) + type_i];
type_min.write[type_i] = attribs[(i * element_count) + type_i];
}
}
for (int32_t type_i = 0; type_i < element_count; type_i++) {
type_max.write[type_i] = MAX(attribs[(i * element_count) + type_i], type_max[type_i]);
type_min.write[type_i] = MIN(attribs[(i * element_count) + type_i], type_min[type_i]);
}
}
ERR_FAIL_COND_V(attribs.is_empty(), -1);
Ref<GLTFAccessor> accessor;
accessor.instantiate();
GLTFBufferIndex buffer_view_i;
if (p_state->buffers.is_empty()) {
p_state->buffers.push_back(Vector<uint8_t>());
}
int64_t size = p_state->buffers[0].size();
const GLTFAccessor::GLTFAccessorType accessor_type = GLTFAccessor::TYPE_SCALAR;
GLTFAccessor::GLTFComponentType component_type;
if (max_index > 65535 || p_for_vertex) {
component_type = GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT;
} else {
component_type = GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT;
}
accessor->max = type_max;
accessor->min = type_min;
accessor->normalized = false;
accessor->count = ret_size;
accessor->accessor_type = accessor_type;
accessor->component_type = component_type;
accessor->byte_offset = 0;
Error err = _encode_buffer_view(p_state, attribs.ptr(), attribs.size(), accessor_type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i, p_for_vertex_indices);
if (err != OK) {
return -1;
}
accessor->buffer_view = buffer_view_i;
p_state->accessors.push_back(accessor);
return p_state->accessors.size() - 1;
}
Vector<int> GLTFDocument::_decode_accessor_as_ints(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex, const Vector<int> &p_packed_vertex_ids) {
const Vector<double> attribs = _decode_accessor(p_state, p_accessor, p_for_vertex);
Vector<int> ret;
if (attribs.size() == 0) {
return ret;
}
const double *attribs_ptr = attribs.ptr();
int ret_size = attribs.size();
if (!p_packed_vertex_ids.is_empty()) {
ERR_FAIL_COND_V(p_packed_vertex_ids[p_packed_vertex_ids.size() - 1] >= ret_size, ret);
ret_size = p_packed_vertex_ids.size();
}
ret.resize(ret_size);
for (int i = 0; i < ret_size; i++) {
int src_i = i;
if (!p_packed_vertex_ids.is_empty()) {
src_i = p_packed_vertex_ids[i];
}
ret.write[i] = int(attribs_ptr[src_i]);
}
return ret;
}
Vector<float> GLTFDocument::_decode_accessor_as_floats(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex, const Vector<int> &p_packed_vertex_ids) {
const Vector<double> attribs = _decode_accessor(p_state, p_accessor, p_for_vertex);
Vector<float> ret;
if (attribs.size() == 0) {
return ret;
}
const double *attribs_ptr = attribs.ptr();
int ret_size = attribs.size();
if (!p_packed_vertex_ids.is_empty()) {
ERR_FAIL_COND_V(p_packed_vertex_ids[p_packed_vertex_ids.size() - 1] >= ret_size, ret);
ret_size = p_packed_vertex_ids.size();
}
ret.resize(ret_size);
for (int i = 0; i < ret_size; i++) {
int src_i = i;
if (!p_packed_vertex_ids.is_empty()) {
src_i = p_packed_vertex_ids[i];
}
ret.write[i] = float(attribs_ptr[src_i]);
}
return ret;
}
void GLTFDocument::_round_min_max_components(Vector<double> &r_type_min, Vector<double> &r_type_max) {
// 3.6.2.5: For floating-point components, JSON-stored minimum and maximum values represent single precision
// floats and SHOULD be rounded to single precision before usage to avoid any potential boundary mismatches.
for (int32_t type_i = 0; type_i < r_type_min.size(); type_i++) {
r_type_min.write[type_i] = (double)(float)r_type_min[type_i];
r_type_max.write[type_i] = (double)(float)r_type_max[type_i];
}
}
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec2(Ref<GLTFState> p_state, const Vector<Vector2> p_attribs, const bool p_for_vertex) {
if (p_attribs.size() == 0) {
return -1;
}
const int element_count = 2;
const int ret_size = p_attribs.size() * element_count;
Vector<double> attribs;
attribs.resize(ret_size);
Vector<double> type_max;
type_max.resize(element_count);
Vector<double> type_min;
type_min.resize(element_count);
for (int i = 0; i < p_attribs.size(); i++) {
Vector2 attrib = p_attribs[i];
attribs.write[(i * element_count) + 0] = _filter_number(attrib.x);
attribs.write[(i * element_count) + 1] = _filter_number(attrib.y);
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
}
_round_min_max_components(type_min, type_max);
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
Ref<GLTFAccessor> accessor;
accessor.instantiate();
GLTFBufferIndex buffer_view_i;
if (p_state->buffers.is_empty()) {
p_state->buffers.push_back(Vector<uint8_t>());
}
int64_t size = p_state->buffers[0].size();
const GLTFAccessor::GLTFAccessorType accessor_type = GLTFAccessor::TYPE_VEC2;
const GLTFAccessor::GLTFComponentType component_type = GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT;
accessor->max = type_max;
accessor->min = type_min;
accessor->normalized = false;
accessor->count = p_attribs.size();
accessor->accessor_type = accessor_type;
accessor->component_type = component_type;
accessor->byte_offset = 0;
Error err = _encode_buffer_view(p_state, attribs.ptr(), p_attribs.size(), accessor_type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
if (err != OK) {
return -1;
}
accessor->buffer_view = buffer_view_i;
p_state->accessors.push_back(accessor);
return p_state->accessors.size() - 1;
}
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_color(Ref<GLTFState> p_state, const Vector<Color> p_attribs, const bool p_for_vertex) {
if (p_attribs.size() == 0) {
return -1;
}
const int ret_size = p_attribs.size() * 4;
Vector<double> attribs;
attribs.resize(ret_size);
const int element_count = 4;
Vector<double> type_max;
type_max.resize(element_count);
Vector<double> type_min;
type_min.resize(element_count);
for (int i = 0; i < p_attribs.size(); i++) {
Color attrib = p_attribs[i];
attribs.write[(i * element_count) + 0] = _filter_number(attrib.r);
attribs.write[(i * element_count) + 1] = _filter_number(attrib.g);
attribs.write[(i * element_count) + 2] = _filter_number(attrib.b);
attribs.write[(i * element_count) + 3] = _filter_number(attrib.a);
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
}
_round_min_max_components(type_min, type_max);
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
Ref<GLTFAccessor> accessor;
accessor.instantiate();
GLTFBufferIndex buffer_view_i;
if (p_state->buffers.is_empty()) {
p_state->buffers.push_back(Vector<uint8_t>());
}
int64_t size = p_state->buffers[0].size();
const GLTFAccessor::GLTFAccessorType accessor_type = GLTFAccessor::TYPE_VEC4;
const GLTFAccessor::GLTFComponentType component_type = GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT;
accessor->max = type_max;
accessor->min = type_min;
accessor->normalized = false;
accessor->count = p_attribs.size();
accessor->accessor_type = accessor_type;
accessor->component_type = component_type;
accessor->byte_offset = 0;
Error err = _encode_buffer_view(p_state, attribs.ptr(), p_attribs.size(), accessor_type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
if (err != OK) {
return -1;
}
accessor->buffer_view = buffer_view_i;
p_state->accessors.push_back(accessor);
return p_state->accessors.size() - 1;
}
void GLTFDocument::_calc_accessor_min_max(int p_i, const int p_element_count, Vector<double> &p_type_max, Vector<double> p_attribs, Vector<double> &p_type_min) {
if (p_i == 0) {
for (int32_t type_i = 0; type_i < p_element_count; type_i++) {
p_type_max.write[type_i] = p_attribs[(p_i * p_element_count) + type_i];
p_type_min.write[type_i] = p_attribs[(p_i * p_element_count) + type_i];
}
}
for (int32_t type_i = 0; type_i < p_element_count; type_i++) {
p_type_max.write[type_i] = MAX(p_attribs[(p_i * p_element_count) + type_i], p_type_max[type_i]);
p_type_min.write[type_i] = MIN(p_attribs[(p_i * p_element_count) + type_i], p_type_min[type_i]);
}
}
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_weights(Ref<GLTFState> p_state, const Vector<Color> p_attribs, const bool p_for_vertex) {
if (p_attribs.size() == 0) {
return -1;
}
const int ret_size = p_attribs.size() * 4;
Vector<double> attribs;
attribs.resize(ret_size);
const int element_count = 4;
Vector<double> type_max;
type_max.resize(element_count);
Vector<double> type_min;
type_min.resize(element_count);
for (int i = 0; i < p_attribs.size(); i++) {
Color attrib = p_attribs[i];
attribs.write[(i * element_count) + 0] = _filter_number(attrib.r);
attribs.write[(i * element_count) + 1] = _filter_number(attrib.g);
attribs.write[(i * element_count) + 2] = _filter_number(attrib.b);
attribs.write[(i * element_count) + 3] = _filter_number(attrib.a);
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
}
_round_min_max_components(type_min, type_max);
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
Ref<GLTFAccessor> accessor;
accessor.instantiate();
GLTFBufferIndex buffer_view_i;
if (p_state->buffers.is_empty()) {
p_state->buffers.push_back(Vector<uint8_t>());
}
int64_t size = p_state->buffers[0].size();
const GLTFAccessor::GLTFAccessorType accessor_type = GLTFAccessor::TYPE_VEC4;
const GLTFAccessor::GLTFComponentType component_type = GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT;
accessor->max = type_max;
accessor->min = type_min;
accessor->normalized = false;
accessor->count = p_attribs.size();
accessor->accessor_type = accessor_type;
accessor->component_type = component_type;
accessor->byte_offset = 0;
Error err = _encode_buffer_view(p_state, attribs.ptr(), p_attribs.size(), accessor_type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
if (err != OK) {
return -1;
}
accessor->buffer_view = buffer_view_i;
p_state->accessors.push_back(accessor);
return p_state->accessors.size() - 1;
}
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_joints(Ref<GLTFState> p_state, const Vector<Color> p_attribs, const bool p_for_vertex) {
if (p_attribs.size() == 0) {
return -1;
}
const int element_count = 4;
const int ret_size = p_attribs.size() * element_count;
Vector<double> attribs;
attribs.resize(ret_size);
Vector<double> type_max;
type_max.resize(element_count);
Vector<double> type_min;
type_min.resize(element_count);
for (int i = 0; i < p_attribs.size(); i++) {
Color attrib = p_attribs[i];
attribs.write[(i * element_count) + 0] = _filter_number(attrib.r);
attribs.write[(i * element_count) + 1] = _filter_number(attrib.g);
attribs.write[(i * element_count) + 2] = _filter_number(attrib.b);
attribs.write[(i * element_count) + 3] = _filter_number(attrib.a);
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
}
_round_min_max_components(type_min, type_max);
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
Ref<GLTFAccessor> accessor;
accessor.instantiate();
GLTFBufferIndex buffer_view_i;
if (p_state->buffers.is_empty()) {
p_state->buffers.push_back(Vector<uint8_t>());
}
int64_t size = p_state->buffers[0].size();
const GLTFAccessor::GLTFAccessorType accessor_type = GLTFAccessor::TYPE_VEC4;
const GLTFAccessor::GLTFComponentType component_type = GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT;
accessor->max = type_max;
accessor->min = type_min;
accessor->normalized = false;
accessor->count = p_attribs.size();
accessor->accessor_type = accessor_type;
accessor->component_type = component_type;
accessor->byte_offset = 0;
Error err = _encode_buffer_view(p_state, attribs.ptr(), p_attribs.size(), accessor_type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
if (err != OK) {
return -1;
}
accessor->buffer_view = buffer_view_i;
p_state->accessors.push_back(accessor);
return p_state->accessors.size() - 1;
}
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_quaternions(Ref<GLTFState> p_state, const Vector<Quaternion> p_attribs, const bool p_for_vertex) {
if (p_attribs.size() == 0) {
return -1;
}
const int element_count = 4;
const int ret_size = p_attribs.size() * element_count;
Vector<double> attribs;
attribs.resize(ret_size);
Vector<double> type_max;
type_max.resize(element_count);
Vector<double> type_min;
type_min.resize(element_count);
for (int i = 0; i < p_attribs.size(); i++) {
Quaternion quaternion = p_attribs[i];
attribs.write[(i * element_count) + 0] = _filter_number(quaternion.x);
attribs.write[(i * element_count) + 1] = _filter_number(quaternion.y);
attribs.write[(i * element_count) + 2] = _filter_number(quaternion.z);
attribs.write[(i * element_count) + 3] = _filter_number(quaternion.w);
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
}
_round_min_max_components(type_min, type_max);
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
Ref<GLTFAccessor> accessor;
accessor.instantiate();
GLTFBufferIndex buffer_view_i;
if (p_state->buffers.is_empty()) {
p_state->buffers.push_back(Vector<uint8_t>());
}
int64_t size = p_state->buffers[0].size();
const GLTFAccessor::GLTFAccessorType accessor_type = GLTFAccessor::TYPE_VEC4;
const GLTFAccessor::GLTFComponentType component_type = GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT;
accessor->max = type_max;
accessor->min = type_min;
accessor->normalized = false;
accessor->count = p_attribs.size();
accessor->accessor_type = accessor_type;
accessor->component_type = component_type;
accessor->byte_offset = 0;
Error err = _encode_buffer_view(p_state, attribs.ptr(), p_attribs.size(), accessor_type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
if (err != OK) {
return -1;
}
accessor->buffer_view = buffer_view_i;
p_state->accessors.push_back(accessor);
return p_state->accessors.size() - 1;
}
Vector<Vector2> GLTFDocument::_decode_accessor_as_vec2(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex, const Vector<int> &p_packed_vertex_ids) {
const Vector<double> attribs = _decode_accessor(p_state, p_accessor, p_for_vertex);
Vector<Vector2> ret;
if (attribs.size() == 0) {
return ret;
}
ERR_FAIL_COND_V(attribs.size() % 2 != 0, ret);
const double *attribs_ptr = attribs.ptr();
int ret_size = attribs.size() / 2;
if (!p_packed_vertex_ids.is_empty()) {
ERR_FAIL_COND_V(p_packed_vertex_ids[p_packed_vertex_ids.size() - 1] >= ret_size, ret);
ret_size = p_packed_vertex_ids.size();
}
ret.resize(ret_size);
for (int i = 0; i < ret_size; i++) {
int src_i = i;
if (!p_packed_vertex_ids.is_empty()) {
src_i = p_packed_vertex_ids[i];
}
ret.write[i] = Vector2(attribs_ptr[src_i * 2 + 0], attribs_ptr[src_i * 2 + 1]);
}
return ret;
}
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_floats(Ref<GLTFState> p_state, const Vector<double> p_attribs, const bool p_for_vertex) {
if (p_attribs.size() == 0) {
return -1;
}
const int element_count = 1;
const int ret_size = p_attribs.size();
Vector<double> attribs;
attribs.resize(ret_size);
Vector<double> type_max;
type_max.resize(element_count);
Vector<double> type_min;
type_min.resize(element_count);
for (int i = 0; i < p_attribs.size(); i++) {
attribs.write[i] = _filter_number(p_attribs[i]);
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
}
_round_min_max_components(type_min, type_max);
ERR_FAIL_COND_V(attribs.is_empty(), -1);
Ref<GLTFAccessor> accessor;
accessor.instantiate();
GLTFBufferIndex buffer_view_i;
if (p_state->buffers.is_empty()) {
p_state->buffers.push_back(Vector<uint8_t>());
}
int64_t size = p_state->buffers[0].size();
const GLTFAccessor::GLTFAccessorType accessor_type = GLTFAccessor::TYPE_SCALAR;
const GLTFAccessor::GLTFComponentType component_type = GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT;
accessor->max = type_max;
accessor->min = type_min;
accessor->normalized = false;
accessor->count = ret_size;
accessor->accessor_type = accessor_type;
accessor->component_type = component_type;
accessor->byte_offset = 0;
Error err = _encode_buffer_view(p_state, attribs.ptr(), attribs.size(), accessor_type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
if (err != OK) {
return -1;
}
accessor->buffer_view = buffer_view_i;
p_state->accessors.push_back(accessor);
return p_state->accessors.size() - 1;
}
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec3(Ref<GLTFState> p_state, const Vector<Vector3> p_attribs, const bool p_for_vertex) {
if (p_attribs.size() == 0) {
return -1;
}
const int element_count = 3;
const int ret_size = p_attribs.size() * element_count;
Vector<double> attribs;
attribs.resize(ret_size);
Vector<double> type_max;
type_max.resize(element_count);
Vector<double> type_min;
type_min.resize(element_count);
for (int i = 0; i < p_attribs.size(); i++) {
Vector3 attrib = p_attribs[i];
attribs.write[(i * element_count) + 0] = _filter_number(attrib.x);
attribs.write[(i * element_count) + 1] = _filter_number(attrib.y);
attribs.write[(i * element_count) + 2] = _filter_number(attrib.z);
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
}
_round_min_max_components(type_min, type_max);
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
Ref<GLTFAccessor> accessor;
accessor.instantiate();
GLTFBufferIndex buffer_view_i;
if (p_state->buffers.is_empty()) {
p_state->buffers.push_back(Vector<uint8_t>());
}
int64_t size = p_state->buffers[0].size();
const GLTFAccessor::GLTFAccessorType accessor_type = GLTFAccessor::TYPE_VEC3;
const GLTFAccessor::GLTFComponentType component_type = GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT;
accessor->max = type_max;
accessor->min = type_min;
accessor->normalized = false;
accessor->count = p_attribs.size();
accessor->accessor_type = accessor_type;
accessor->component_type = component_type;
accessor->byte_offset = 0;
Error err = _encode_buffer_view(p_state, attribs.ptr(), p_attribs.size(), accessor_type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
if (err != OK) {
return -1;
}
accessor->buffer_view = buffer_view_i;
p_state->accessors.push_back(accessor);
return p_state->accessors.size() - 1;
}
GLTFAccessorIndex GLTFDocument::_encode_sparse_accessor_as_vec3(Ref<GLTFState> p_state, const Vector<Vector3> p_attribs, const Vector<Vector3> p_reference_attribs, const float p_reference_multiplier, const bool p_for_vertex, const GLTFAccessorIndex p_reference_accessor) {
if (p_attribs.size() == 0) {
return -1;
}
const int element_count = 3;
Vector<double> attribs;
Vector<double> type_max;
Vector<double> type_min;
attribs.resize(p_attribs.size() * element_count);
type_max.resize(element_count);
type_min.resize(element_count);
Vector<double> changed_indices;
Vector<double> changed_values;
int max_changed_index = 0;
for (int i = 0; i < p_attribs.size(); i++) {
Vector3 attrib = p_attribs[i];
bool is_different = false;
if (i < p_reference_attribs.size()) {
is_different = !(attrib * p_reference_multiplier).is_equal_approx(p_reference_attribs[i]);
if (!is_different) {
attrib = p_reference_attribs[i];
}
} else {
is_different = !(attrib * p_reference_multiplier).is_zero_approx();
if (!is_different) {
attrib = Vector3();
}
}
attribs.write[(i * element_count) + 0] = _filter_number(attrib.x);
attribs.write[(i * element_count) + 1] = _filter_number(attrib.y);
attribs.write[(i * element_count) + 2] = _filter_number(attrib.z);
if (is_different) {
changed_indices.push_back(i);
if (i > max_changed_index) {
max_changed_index = i;
}
changed_values.push_back(_filter_number(attrib.x));
changed_values.push_back(_filter_number(attrib.y));
changed_values.push_back(_filter_number(attrib.z));
}
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
}
_round_min_max_components(type_min, type_max);
if (attribs.size() % element_count != 0) {
return -1;
}
Ref<GLTFAccessor> sparse_accessor;
sparse_accessor.instantiate();
if (p_state->buffers.is_empty()) {
p_state->buffers.push_back(Vector<uint8_t>());
}
int64_t size = p_state->buffers[0].size();
const GLTFAccessor::GLTFAccessorType accessor_type = GLTFAccessor::TYPE_VEC3;
const GLTFAccessor::GLTFComponentType component_type = GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT;
sparse_accessor->normalized = false;
sparse_accessor->count = p_attribs.size();
sparse_accessor->accessor_type = accessor_type;
sparse_accessor->component_type = component_type;
if (p_reference_accessor < p_state->accessors.size() && p_reference_accessor >= 0 && p_state->accessors[p_reference_accessor].is_valid()) {
sparse_accessor->byte_offset = p_state->accessors[p_reference_accessor]->byte_offset;
sparse_accessor->buffer_view = p_state->accessors[p_reference_accessor]->buffer_view;
}
sparse_accessor->max = type_max;
sparse_accessor->min = type_min;
int sparse_accessor_index_stride = max_changed_index > 65535 ? 4 : 2;
int sparse_accessor_storage_size = changed_indices.size() * (sparse_accessor_index_stride + element_count * sizeof(float));
int conventional_storage_size = p_attribs.size() * element_count * sizeof(float);
if (changed_indices.size() > 0 && sparse_accessor_storage_size < conventional_storage_size) {
// It must be worthwhile to use a sparse accessor.
GLTFBufferIndex buffer_view_i_indices = -1;
GLTFBufferIndex buffer_view_i_values = -1;
if (sparse_accessor_index_stride == 4) {
sparse_accessor->sparse_indices_component_type = GLTFAccessor::COMPONENT_TYPE_UNSIGNED_INT;
} else {
sparse_accessor->sparse_indices_component_type = GLTFAccessor::COMPONENT_TYPE_UNSIGNED_SHORT;
}
if (_encode_buffer_view(p_state, changed_indices.ptr(), changed_indices.size(), GLTFAccessor::TYPE_SCALAR, sparse_accessor->sparse_indices_component_type, sparse_accessor->normalized, sparse_accessor->sparse_indices_byte_offset, false, buffer_view_i_indices) != OK) {
return -1;
}
// We use changed_indices.size() here, because we must pass the number of vec3 values rather than the number of components.
if (_encode_buffer_view(p_state, changed_values.ptr(), changed_indices.size(), sparse_accessor->accessor_type, sparse_accessor->component_type, sparse_accessor->normalized, sparse_accessor->sparse_values_byte_offset, false, buffer_view_i_values) != OK) {
return -1;
}
sparse_accessor->sparse_indices_buffer_view = buffer_view_i_indices;
sparse_accessor->sparse_values_buffer_view = buffer_view_i_values;
sparse_accessor->sparse_count = changed_indices.size();
} else if (changed_indices.size() > 0) {
GLTFBufferIndex buffer_view_i;
sparse_accessor->byte_offset = 0;
Error err = _encode_buffer_view(p_state, attribs.ptr(), p_attribs.size(), accessor_type, component_type, sparse_accessor->normalized, size, p_for_vertex, buffer_view_i);
if (err != OK) {
return -1;
}
sparse_accessor->buffer_view = buffer_view_i;
}
p_state->accessors.push_back(sparse_accessor);
return p_state->accessors.size() - 1;
}
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_xform(Ref<GLTFState> p_state, const Vector<Transform3D> p_attribs, const bool p_for_vertex) {
if (p_attribs.size() == 0) {
return -1;
}
const int element_count = 16;
const int ret_size = p_attribs.size() * element_count;
Vector<double> attribs;
attribs.resize(ret_size);
Vector<double> type_max;
type_max.resize(element_count);
Vector<double> type_min;
type_min.resize(element_count);
for (int i = 0; i < p_attribs.size(); i++) {
Transform3D attrib = p_attribs[i];
Basis basis = attrib.get_basis();
Vector3 axis_0 = basis.get_column(Vector3::AXIS_X);
attribs.write[i * element_count + 0] = _filter_number(axis_0.x);
attribs.write[i * element_count + 1] = _filter_number(axis_0.y);
attribs.write[i * element_count + 2] = _filter_number(axis_0.z);
attribs.write[i * element_count + 3] = 0.0;
Vector3 axis_1 = basis.get_column(Vector3::AXIS_Y);
attribs.write[i * element_count + 4] = _filter_number(axis_1.x);
attribs.write[i * element_count + 5] = _filter_number(axis_1.y);
attribs.write[i * element_count + 6] = _filter_number(axis_1.z);
attribs.write[i * element_count + 7] = 0.0;
Vector3 axis_2 = basis.get_column(Vector3::AXIS_Z);
attribs.write[i * element_count + 8] = _filter_number(axis_2.x);
attribs.write[i * element_count + 9] = _filter_number(axis_2.y);
attribs.write[i * element_count + 10] = _filter_number(axis_2.z);
attribs.write[i * element_count + 11] = 0.0;
Vector3 origin = attrib.get_origin();
attribs.write[i * element_count + 12] = _filter_number(origin.x);
attribs.write[i * element_count + 13] = _filter_number(origin.y);
attribs.write[i * element_count + 14] = _filter_number(origin.z);
attribs.write[i * element_count + 15] = 1.0;
_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
}
_round_min_max_components(type_min, type_max);
ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
Ref<GLTFAccessor> accessor;
accessor.instantiate();
GLTFBufferIndex buffer_view_i;
if (p_state->buffers.is_empty()) {
p_state->buffers.push_back(Vector<uint8_t>());
}
int64_t size = p_state->buffers[0].size();
const GLTFAccessor::GLTFAccessorType accessor_type = GLTFAccessor::TYPE_MAT4;
const GLTFAccessor::GLTFComponentType component_type = GLTFAccessor::COMPONENT_TYPE_SINGLE_FLOAT;
accessor->max = type_max;
accessor->min = type_min;
accessor->normalized = false;
accessor->count = p_attribs.size();
accessor->accessor_type = accessor_type;
accessor->component_type = component_type;
accessor->byte_offset = 0;
Error err = _encode_buffer_view(p_state, attribs.ptr(), p_attribs.size(), accessor_type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
if (err != OK) {
return -1;
}
accessor->buffer_view = buffer_view_i;
p_state->accessors.push_back(accessor);
return p_state->accessors.size() - 1;
}
Vector<Vector3> GLTFDocument::_decode_accessor_as_vec3(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex, const Vector<int> &p_packed_vertex_ids) {
const Vector<double> attribs = _decode_accessor(p_state, p_accessor, p_for_vertex);
Vector<Vector3> ret;
if (attribs.size() == 0) {
return ret;
}
ERR_FAIL_COND_V(attribs.size() % 3 != 0, ret);
const double *attribs_ptr = attribs.ptr();
int ret_size = attribs.size() / 3;
if (!p_packed_vertex_ids.is_empty()) {
ERR_FAIL_COND_V(p_packed_vertex_ids[p_packed_vertex_ids.size() - 1] >= ret_size, ret);
ret_size = p_packed_vertex_ids.size();
}
ret.resize(ret_size);
for (int i = 0; i < ret_size; i++) {
int src_i = i;
if (!p_packed_vertex_ids.is_empty()) {
src_i = p_packed_vertex_ids[i];
}
ret.write[i] = Vector3(attribs_ptr[src_i * 3 + 0], attribs_ptr[src_i * 3 + 1], attribs_ptr[src_i * 3 + 2]);
}
return ret;
}
Vector<Color> GLTFDocument::_decode_accessor_as_color(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex, const Vector<int> &p_packed_vertex_ids) {
const Vector<double> attribs = _decode_accessor(p_state, p_accessor, p_for_vertex);
Vector<Color> ret;
if (attribs.size() == 0) {
return ret;
}
const int accessor_type = p_state->accessors[p_accessor]->accessor_type;
ERR_FAIL_COND_V(!(accessor_type == GLTFAccessor::TYPE_VEC3 || accessor_type == GLTFAccessor::TYPE_VEC4), ret);
int vec_len = 3;
if (accessor_type == GLTFAccessor::TYPE_VEC4) {
vec_len = 4;
}
ERR_FAIL_COND_V(attribs.size() % vec_len != 0, ret);
const double *attribs_ptr = attribs.ptr();
int ret_size = attribs.size() / vec_len;
if (!p_packed_vertex_ids.is_empty()) {
ERR_FAIL_COND_V(p_packed_vertex_ids[p_packed_vertex_ids.size() - 1] >= ret_size, ret);
ret_size = p_packed_vertex_ids.size();
}
ret.resize(ret_size);
for (int i = 0; i < ret_size; i++) {
int src_i = i;
if (!p_packed_vertex_ids.is_empty()) {
src_i = p_packed_vertex_ids[i];
}
ret.write[i] = Color(attribs_ptr[src_i * vec_len + 0], attribs_ptr[src_i * vec_len + 1], attribs_ptr[src_i * vec_len + 2], vec_len == 4 ? attribs_ptr[src_i * 4 + 3] : 1.0);
}
return ret;
}
Vector<Quaternion> GLTFDocument::_decode_accessor_as_quaternion(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
const Vector<double> attribs = _decode_accessor(p_state, p_accessor, p_for_vertex);
Vector<Quaternion> ret;
if (attribs.size() == 0) {
return ret;
}
ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
const double *attribs_ptr = attribs.ptr();
const int ret_size = attribs.size() / 4;
ret.resize(ret_size);
{
for (int i = 0; i < ret_size; i++) {
ret.write[i] = Quaternion(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]).normalized();
}
}
return ret;
}
Vector<Transform2D> GLTFDocument::_decode_accessor_as_xform2d(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
const Vector<double> attribs = _decode_accessor(p_state, p_accessor, p_for_vertex);
Vector<Transform2D> ret;
if (attribs.size() == 0) {
return ret;
}
ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
ret.resize(attribs.size() / 4);
for (int i = 0; i < ret.size(); i++) {
ret.write[i][0] = Vector2(attribs[i * 4 + 0], attribs[i * 4 + 1]);
ret.write[i][1] = Vector2(attribs[i * 4 + 2], attribs[i * 4 + 3]);
}
return ret;
}
Vector<Basis> GLTFDocument::_decode_accessor_as_basis(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
const Vector<double> attribs = _decode_accessor(p_state, p_accessor, p_for_vertex);
Vector<Basis> ret;
if (attribs.size() == 0) {
return ret;
}
ERR_FAIL_COND_V(attribs.size() % 9 != 0, ret);
ret.resize(attribs.size() / 9);
for (int i = 0; i < ret.size(); i++) {
ret.write[i].set_column(0, Vector3(attribs[i * 9 + 0], attribs[i * 9 + 1], attribs[i * 9 + 2]));
ret.write[i].set_column(1, Vector3(attribs[i * 9 + 3], attribs[i * 9 + 4], attribs[i * 9 + 5]));
ret.write[i].set_column(2, Vector3(attribs[i * 9 + 6], attribs[i * 9 + 7], attribs[i * 9 + 8]));
}
return ret;
}
Vector<Transform3D> GLTFDocument::_decode_accessor_as_xform(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
const Vector<double> attribs = _decode_accessor(p_state, p_accessor, p_for_vertex);
Vector<Transform3D> ret;
if (attribs.size() == 0) {
return ret;
}
ERR_FAIL_COND_V(attribs.size() % 16 != 0, ret);
ret.resize(attribs.size() / 16);
for (int i = 0; i < ret.size(); i++) {
ret.write[i].basis.set_column(0, Vector3(attribs[i * 16 + 0], attribs[i * 16 + 1], attribs[i * 16 + 2]));
ret.write[i].basis.set_column(1, Vector3(attribs[i * 16 + 4], attribs[i * 16 + 5], attribs[i * 16 + 6]));
ret.write[i].basis.set_column(2, Vector3(attribs[i * 16 + 8], attribs[i * 16 + 9], attribs[i * 16 + 10]));
ret.write[i].set_origin(Vector3(attribs[i * 16 + 12], attribs[i * 16 + 13], attribs[i * 16 + 14]));
}
return ret;
}
Vector<Variant> GLTFDocument::_decode_accessor_as_variant(Ref<GLTFState> p_state, const GLTFAccessorIndex p_accessor, Variant::Type p_variant_type, GLTFAccessor::GLTFAccessorType p_accessor_type) {
const Vector<double> attribs = _decode_accessor(p_state, p_accessor, false);
Vector<Variant> ret;
ERR_FAIL_COND_V_MSG(attribs.is_empty(), ret, "glTF: The accessor was empty.");
const int component_count = COMPONENT_COUNT_FOR_ACCESSOR_TYPE[p_accessor_type];
ERR_FAIL_COND_V_MSG(attribs.size() % component_count != 0, ret, "glTF: The accessor size was not a multiple of the component count.");
const int ret_size = attribs.size() / component_count;
ret.resize(ret_size);
for (int i = 0; i < ret_size; i++) {
switch (p_variant_type) {
case Variant::BOOL: {
ret.write[i] = attribs[i * component_count] != 0.0;
} break;
case Variant::INT: {
ret.write[i] = (int64_t)attribs[i * component_count];
} break;
case Variant::FLOAT: {
ret.write[i] = attribs[i * component_count];
} break;
case Variant::VECTOR2:
case Variant::RECT2:
case Variant::VECTOR3:
case Variant::VECTOR4:
case Variant::PLANE:
case Variant::QUATERNION: {
// General-purpose code for importing glTF accessor data with any component count into structs up to 4 `real_t`s in size.
Variant v;
switch (component_count) {
case 1: {
v = Vector4(attribs[i * component_count], 0.0f, 0.0f, 0.0f);
} break;
case 2: {
v = Vector4(attribs[i * component_count], attribs[i * component_count + 1], 0.0f, 0.0f);
} break;
case 3: {
v = Vector4(attribs[i * component_count], attribs[i * component_count + 1], attribs[i * component_count + 2], 0.0f);
} break;
default: {
v = Vector4(attribs[i * component_count], attribs[i * component_count + 1], attribs[i * component_count + 2], attribs[i * component_count + 3]);
} break;
}
// Evil hack that relies on the structure of Variant, but it's the
// only way to accomplish this without a ton of code duplication.
*(Variant::Type *)&v = p_variant_type;
ret.write[i] = v;
} break;
case Variant::VECTOR2I:
case Variant::RECT2I:
case Variant::VECTOR3I:
case Variant::VECTOR4I: {
// General-purpose code for importing glTF accessor data with any component count into structs up to 4 `int32_t`s in size.
Variant v;
switch (component_count) {
case 1: {
v = Vector4i((int32_t)attribs[i * component_count], 0, 0, 0);
} break;
case 2: {
v = Vector4i((int32_t)attribs[i * component_count], (int32_t)attribs[i * component_count + 1], 0, 0);
} break;
case 3: {
v = Vector4i((int32_t)attribs[i * component_count], (int32_t)attribs[i * component_count + 1], (int32_t)attribs[i * component_count + 2], 0);
} break;
default: {
v = Vector4i((int32_t)attribs[i * component_count], (int32_t)attribs[i * component_count + 1], (int32_t)attribs[i * component_count + 2], (int32_t)attribs[i * component_count + 3]);
} break;
}
// Evil hack that relies on the structure of Variant, but it's the
// only way to accomplish this without a ton of code duplication.
*(Variant::Type *)&v = p_variant_type;
ret.write[i] = v;
} break;
// No more generalized hacks, each of the below types needs a lot of repetitive code.
case Variant::COLOR: {
Variant v;
switch (component_count) {
case 1: {
v = Color(attribs[i * component_count], 0.0f, 0.0f, 1.0f);
} break;
case 2: {
v = Color(attribs[i * component_count], attribs[i * component_count + 1], 0.0f, 1.0f);
} break;
case 3: {
v = Color(attribs[i * component_count], attribs[i * component_count + 1], attribs[i * component_count + 2], 1.0f);
} break;
default: {
v = Color(attribs[i * component_count], attribs[i * component_count + 1], attribs[i * component_count + 2], attribs[i * component_count + 3]);
} break;
}
ret.write[i] = v;
} break;
case Variant::TRANSFORM2D: {
Transform2D t;
switch (component_count) {
case 4: {
t.columns[0] = Vector2(attribs[i * component_count + 0], attribs[i * component_count + 1]);
t.columns[1] = Vector2(attribs[i * component_count + 2], attribs[i * component_count + 3]);
} break;
case 9: {
t.columns[0] = Vector2(attribs[i * component_count + 0], attribs[i * component_count + 1]);
t.columns[1] = Vector2(attribs[i * component_count + 3], attribs[i * component_count + 4]);
t.columns[2] = Vector2(attribs[i * component_count + 6], attribs[i * component_count + 7]);
} break;
case 16: {
t.columns[0] = Vector2(attribs[i * component_count + 0], attribs[i * component_count + 1]);
t.columns[1] = Vector2(attribs[i * component_count + 4], attribs[i * component_count + 5]);
t.columns[2] = Vector2(attribs[i * component_count + 12], attribs[i * component_count + 13]);
} break;
}
ret.write[i] = t;
} break;
case Variant::BASIS: {
Basis b;
switch (component_count) {
case 4: {
b.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 2], 0.0f);
b.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 3], 0.0f);
} break;
case 9: {
b.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 3], attribs[i * component_count + 6]);
b.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 4], attribs[i * component_count + 7]);
b.rows[2] = Vector3(attribs[i * component_count + 2], attribs[i * component_count + 5], attribs[i * component_count + 8]);
} break;
case 16: {
b.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 4], attribs[i * component_count + 8]);
b.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 5], attribs[i * component_count + 9]);
b.rows[2] = Vector3(attribs[i * component_count + 2], attribs[i * component_count + 6], attribs[i * component_count + 10]);
} break;
}
ret.write[i] = b;
} break;
case Variant::TRANSFORM3D: {
Transform3D t;
switch (component_count) {
case 4: {
t.basis.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 2], 0.0f);
t.basis.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 3], 0.0f);
} break;
case 9: {
t.basis.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 3], attribs[i * component_count + 6]);
t.basis.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 4], attribs[i * component_count + 7]);
t.basis.rows[2] = Vector3(attribs[i * component_count + 2], attribs[i * component_count + 5], attribs[i * component_count + 8]);
} break;
case 16: {
t.basis.rows[0] = Vector3(attribs[i * component_count + 0], attribs[i * component_count + 4], attribs[i * component_count + 8]);
t.basis.rows[1] = Vector3(attribs[i * component_count + 1], attribs[i * component_count + 5], attribs[i * component_count + 9]);
t.basis.rows[2] = Vector3(attribs[i * component_count + 2], attribs[i * component_count + 6], attribs[i * component_count + 10]);
t.origin = Vector3(attribs[i * component_count + 12], attribs[i * component_count + 13], attribs[i * component_count + 14]);
} break;
}
ret.write[i] = t;
} break;
case Variant::PROJECTION: {
Projection p;
switch (component_count) {
case 4: {
p.columns[0] = Vector4(attribs[i * component_count + 0], attribs[i * component_count + 1], 0.0f, 0.0f);
p.columns[1] = Vector4(attribs[i * component_count + 4], attribs[i * component_count + 5], 0.0f, 0.0f);
} break;
case 9: {
p.columns[0] = Vector4(attribs[i * component_count + 0], attribs[i * component_count + 1], attribs[i * component_count + 2], 0.0f);
p.columns[1] = Vector4(attribs[i * component_count + 4], attribs[i * component_count + 5], attribs[i * component_count + 6], 0.0f);
p.columns[2] = Vector4(attribs[i * component_count + 8], attribs[i * component_count + 9], attribs[i * component_count + 10], 0.0f);
} break;
case 16: {
p.columns[0] = Vector4(attribs[i * component_count + 0], attribs[i * component_count + 1], attribs[i * component_count + 2], attribs[i * component_count + 3]);
p.columns[1] = Vector4(attribs[i * component_count + 4], attribs[i * component_count + 5], attribs[i * component_count + 6], attribs[i * component_count + 7]);
p.columns[2] = Vector4(attribs[i * component_count + 8], attribs[i * component_count + 9], attribs[i * component_count + 10], attribs[i * component_count + 11]);
p.columns[3] = Vector4(attribs[i * component_count + 12], attribs[i * component_count + 13], attribs[i * component_count + 14], attribs[i * component_count + 15]);
} break;
}
ret.write[i] = p;
} break;
default: {
ERR_FAIL_V_MSG(ret, "glTF: Cannot decode accessor as Variant of type " + Variant::get_type_name(p_variant_type) + ".");
}
}
}
return ret;
}
GLTFAccessorIndex GLTFDocument::_encode_accessor_as_variant(Ref<GLTFState> p_state, Vector<Variant> p_attribs, Variant::Type p_variant_type, GLTFAccessor::GLTFAccessorType p_accessor_type, GLTFAccessor::GLTFComponentType p_component_type) {
const int accessor_component_count = COMPONENT_COUNT_FOR_ACCESSOR_TYPE[p_accessor_type];
Vector<double> encoded_attribs;
for (const Variant &v : p_attribs) {
switch (p_variant_type) {
case Variant::NIL:
case Variant::BOOL:
case Variant::INT:
case Variant::FLOAT: {
// For scalar values, just append them. Variant can convert all of these to double. Some padding may also be needed.
encoded_attribs.append(v);
if (unlikely(accessor_component_count > 1)) {
for (int i = 1; i < accessor_component_count; i++) {
encoded_attribs.append(0.0);
}
}
} break;
case Variant::VECTOR2:
case Variant::VECTOR2I:
case Variant::VECTOR3:
case Variant::VECTOR3I:
case Variant::VECTOR4:
case Variant::VECTOR4I: {
// Variant can handle converting Vector2/2i/3/3i/4/4i to Vector4 for us.
Vector4 vec = v;
if (likely(accessor_component_count < 5)) {
for (int i = 0; i < accessor_component_count; i++) {
encoded_attribs.append(vec[i]);
}
}
} break;
case Variant::PLANE: {
Plane p = v;
if (likely(accessor_component_count == 4)) {
encoded_attribs.append(p.normal.x);
encoded_attribs.append(p.normal.y);
encoded_attribs.append(p.normal.z);
encoded_attribs.append(p.d);
}
} break;
case Variant::QUATERNION: {
Quaternion q = v;
if (likely(accessor_component_count < 5)) {
for (int i = 0; i < accessor_component_count; i++) {
encoded_attribs.append(q[i]);
}
}
} break;
case Variant::COLOR: {
Color c = v;
if (likely(accessor_component_count < 5)) {
for (int i = 0; i < accessor_component_count; i++) {
encoded_attribs.append(c[i]);
}
}
} break;
case Variant::RECT2:
case Variant::RECT2I: {
// Variant can handle converting Rect2i to Rect2 for us.
Rect2 r = v;
if (likely(accessor_component_count == 4)) {
encoded_attribs.append(r.position.x);
encoded_attribs.append(r.position.y);
encoded_attribs.append(r.size.x);
encoded_attribs.append(r.size.y);
}
} break;
case Variant::TRANSFORM2D:
case Variant::BASIS:
case Variant::TRANSFORM3D:
case Variant::PROJECTION: {
// Variant can handle converting Transform2D/Transform3D/Basis to Projection for us.
Projection p = v;
if (accessor_component_count == 16) {
for (int i = 0; i < 4; i++) {
encoded_attribs.append(p.columns[i][0]);
encoded_attribs.append(p.columns[i][1]);
encoded_attribs.append(p.columns[i][2]);
encoded_attribs.append(p.columns[i][3]);
}
} else if (accessor_component_count == 9) {
for (int i = 0; i < 3; i++) {
encoded_attribs.append(p.columns[i][0]);
encoded_attribs.append(p.columns[i][1]);
encoded_attribs.append(p.columns[i][2]);
}
} else if (accessor_component_count == 4) {
encoded_attribs.append(p.columns[0][0]);
encoded_attribs.append(p.columns[0][1]);
encoded_attribs.append(p.columns[1][0]);
encoded_attribs.append(p.columns[1][1]);
}
} break;
default: {
ERR_FAIL_V_MSG(-1, "glTF: Cannot encode accessor from Variant of type " + Variant::get_type_name(p_variant_type) + ".");
}
}
}
// Determine the min and max values for the accessor.
Vector<double> type_max;
type_max.resize(accessor_component_count);
Vector<double> type_min;
type_min.resize(accessor_component_count);
for (int i = 0; i < encoded_attribs.size(); i++) {
if (Math::is_zero_approx(encoded_attribs[i])) {
encoded_attribs.write[i] = 0.0;
} else {
encoded_attribs.write[i] = _filter_number(encoded_attribs[i]);
}
}
for (int i = 0; i < p_attribs.size(); i++) {
_calc_accessor_min_max(i, accessor_component_count, type_max, encoded_attribs, type_min);
}
_round_min_max_components(type_min, type_max);
// Encode the data in a buffer view.
GLTFBufferIndex buffer_view_index = 0;
if (p_state->buffers.is_empty()) {
p_state->buffers.push_back(Vector<uint8_t>());
}
const int64_t buffer_size = p_state->buffers[buffer_view_index].size();
Error err = _encode_buffer_view(p_state, encoded_attribs.ptr(), p_attribs.size(), p_accessor_type, p_component_type, false, buffer_size, false, buffer_view_index);
if (err != OK) {
return -1;
}
// Create the accessor and fill it with the data.
Ref<GLTFAccessor> accessor;
accessor.instantiate();
accessor->max = type_max;
accessor->min = type_min;
accessor->count = p_attribs.size();
accessor->accessor_type = p_accessor_type;
accessor->component_type = p_component_type;
accessor->byte_offset = 0;
accessor->buffer_view = buffer_view_index;
const GLTFAccessorIndex new_accessor_index = p_state->accessors.size();
p_state->accessors.push_back(accessor);
return new_accessor_index;
}
Error GLTFDocument::_serialize_meshes(Ref<GLTFState> p_state) {
Array meshes;
for (GLTFMeshIndex gltf_mesh_i = 0; gltf_mesh_i < p_state->meshes.size(); gltf_mesh_i++) {
print_verbose("glTF: Serializing mesh: " + itos(gltf_mesh_i));
Ref<ImporterMesh> import_mesh = p_state->meshes.write[gltf_mesh_i]->get_mesh();
if (import_mesh.is_null()) {
continue;
}
Array instance_materials = p_state->meshes.write[gltf_mesh_i]->get_instance_materials();
Array primitives;
Dictionary gltf_mesh;
Array target_names;
Array weights;
for (int morph_i = 0; morph_i < import_mesh->get_blend_shape_count(); morph_i++) {
target_names.push_back(import_mesh->get_blend_shape_name(morph_i));
}
for (int surface_i = 0; surface_i < import_mesh->get_surface_count(); surface_i++) {
Array targets;
Dictionary primitive;
Mesh::PrimitiveType primitive_type = import_mesh->get_surface_primitive_type(surface_i);
switch (primitive_type) {
case Mesh::PRIMITIVE_POINTS: {
primitive["mode"] = 0;
break;
}
case Mesh::PRIMITIVE_LINES: {
primitive["mode"] = 1;
break;
}
// case Mesh::PRIMITIVE_LINE_LOOP: {
// primitive["mode"] = 2;
// break;
// }
case Mesh::PRIMITIVE_LINE_STRIP: {
primitive["mode"] = 3;
break;
}
case Mesh::PRIMITIVE_TRIANGLES: {
primitive["mode"] = 4;
break;
}
case Mesh::PRIMITIVE_TRIANGLE_STRIP: {
primitive["mode"] = 5;
break;
}
// case Mesh::PRIMITIVE_TRIANGLE_FAN: {
// primitive["mode"] = 6;
// break;
// }
default: {
ERR_FAIL_V(FAILED);
}
}
Array array = import_mesh->get_surface_arrays(surface_i);
uint64_t format = import_mesh->get_surface_format(surface_i);
int32_t vertex_num = 0;
Dictionary attributes;
{
Vector<Vector3> a = array[Mesh::ARRAY_VERTEX];
ERR_FAIL_COND_V(a.is_empty(), ERR_INVALID_DATA);
attributes["POSITION"] = _encode_accessor_as_vec3(p_state, a, true);
vertex_num = a.size();
}
{
Vector<real_t> a = array[Mesh::ARRAY_TANGENT];
if (a.size()) {
const int ret_size = a.size() / 4;
Vector<Color> attribs;
attribs.resize(ret_size);
for (int i = 0; i < ret_size; i++) {
Color out;
out.r = a[(i * 4) + 0];
out.g = a[(i * 4) + 1];
out.b = a[(i * 4) + 2];
out.a = a[(i * 4) + 3];
attribs.write[i] = out;
}
attributes["TANGENT"] = _encode_accessor_as_color(p_state, attribs, true);
}
}
{
Vector<Vector3> a = array[Mesh::ARRAY_NORMAL];
if (a.size()) {
const int ret_size = a.size();
Vector<Vector3> attribs;
attribs.resize(ret_size);
for (int i = 0; i < ret_size; i++) {
attribs.write[i] = Vector3(a[i]).normalized();
}
attributes["NORMAL"] = _encode_accessor_as_vec3(p_state, attribs, true);
}
}
{
Vector<Vector2> a = array[Mesh::ARRAY_TEX_UV];
if (a.size()) {
attributes["TEXCOORD_0"] = _encode_accessor_as_vec2(p_state, a, true);
}
}
{
Vector<Vector2> a = array[Mesh::ARRAY_TEX_UV2];
if (a.size()) {
attributes["TEXCOORD_1"] = _encode_accessor_as_vec2(p_state, a, true);
}
}
for (int custom_i = 0; custom_i < 3; custom_i++) {
Vector<float> a = array[Mesh::ARRAY_CUSTOM0 + custom_i];
if (a.size()) {
int num_channels = 4;
int custom_shift = Mesh::ARRAY_FORMAT_CUSTOM0_SHIFT + custom_i * Mesh::ARRAY_FORMAT_CUSTOM_BITS;
switch ((format >> custom_shift) & Mesh::ARRAY_FORMAT_CUSTOM_MASK) {
case Mesh::ARRAY_CUSTOM_R_FLOAT:
num_channels = 1;
break;
case Mesh::ARRAY_CUSTOM_RG_FLOAT:
num_channels = 2;
break;
case Mesh::ARRAY_CUSTOM_RGB_FLOAT:
num_channels = 3;
break;
case Mesh::ARRAY_CUSTOM_RGBA_FLOAT:
num_channels = 4;
break;
}
int texcoord_i = 2 + 2 * custom_i;
String gltf_texcoord_key;
for (int prev_texcoord_i = 0; prev_texcoord_i < texcoord_i; prev_texcoord_i++) {
gltf_texcoord_key = vformat("TEXCOORD_%d", prev_texcoord_i);
if (!attributes.has(gltf_texcoord_key)) {
Vector<Vector2> empty;
empty.resize(vertex_num);
attributes[gltf_texcoord_key] = _encode_accessor_as_vec2(p_state, empty, true);
}
}
LocalVector<Vector2> first_channel;
first_channel.resize(vertex_num);
LocalVector<Vector2> second_channel;
second_channel.resize(vertex_num);
for (int32_t vert_i = 0; vert_i < vertex_num; vert_i++) {
float u = a[vert_i * num_channels + 0];
float v = (num_channels == 1 ? 0.0f : a[vert_i * num_channels + 1]);
first_channel[vert_i] = Vector2(u, v);
u = 0;
v = 0;
if (num_channels >= 3) {
u = a[vert_i * num_channels + 2];
v = (num_channels == 3 ? 0.0f : a[vert_i * num_channels + 3]);
second_channel[vert_i] = Vector2(u, v);
}
}
gltf_texcoord_key = vformat("TEXCOORD_%d", texcoord_i);
attributes[gltf_texcoord_key] = _encode_accessor_as_vec2(p_state, first_channel, true);
gltf_texcoord_key = vformat("TEXCOORD_%d", texcoord_i + 1);
attributes[gltf_texcoord_key] = _encode_accessor_as_vec2(p_state, second_channel, true);
}
}
{
Vector<Color> a = array[Mesh::ARRAY_COLOR];
if (a.size()) {
attributes["COLOR_0"] = _encode_accessor_as_color(p_state, a, true);
}
}
HashMap<int, int> joint_i_to_bone_i;
for (GLTFNodeIndex node_i = 0; node_i < p_state->nodes.size(); node_i++) {
GLTFSkinIndex skin_i = -1;
if (p_state->nodes[node_i]->mesh == gltf_mesh_i) {
skin_i = p_state->nodes[node_i]->skin;
}
if (skin_i != -1) {
joint_i_to_bone_i = p_state->skins[skin_i]->joint_i_to_bone_i;
break;
}
}
{
const Array &a = array[Mesh::ARRAY_BONES];
const Vector<Vector3> &vertex_array = array[Mesh::ARRAY_VERTEX];
if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) {
const int ret_size = a.size() / JOINT_GROUP_SIZE;
Vector<Color> attribs;
attribs.resize(ret_size);
{
for (int array_i = 0; array_i < attribs.size(); array_i++) {
int32_t joint_0 = a[(array_i * JOINT_GROUP_SIZE) + 0];
int32_t joint_1 = a[(array_i * JOINT_GROUP_SIZE) + 1];
int32_t joint_2 = a[(array_i * JOINT_GROUP_SIZE) + 2];
int32_t joint_3 = a[(array_i * JOINT_GROUP_SIZE) + 3];
attribs.write[array_i] = Color(joint_0, joint_1, joint_2, joint_3);
}
}
attributes["JOINTS_0"] = _encode_accessor_as_joints(p_state, attribs, true);
} else if ((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size()) {
Vector<Color> joints_0;
joints_0.resize(vertex_num);
Vector<Color> joints_1;
joints_1.resize(vertex_num);
int32_t weights_8_count = JOINT_GROUP_SIZE * 2;
for (int32_t vertex_i = 0; vertex_i < vertex_num; vertex_i++) {
Color joint_0;
joint_0.r = a[vertex_i * weights_8_count + 0];
joint_0.g = a[vertex_i * weights_8_count + 1];
joint_0.b = a[vertex_i * weights_8_count + 2];
joint_0.a = a[vertex_i * weights_8_count + 3];
joints_0.write[vertex_i] = joint_0;
Color joint_1;
joint_1.r = a[vertex_i * weights_8_count + 4];
joint_1.g = a[vertex_i * weights_8_count + 5];
joint_1.b = a[vertex_i * weights_8_count + 6];
joint_1.a = a[vertex_i * weights_8_count + 7];
joints_1.write[vertex_i] = joint_1;
}
attributes["JOINTS_0"] = _encode_accessor_as_joints(p_state, joints_0, true);
attributes["JOINTS_1"] = _encode_accessor_as_joints(p_state, joints_1, true);
}
}
{
const Array &a = array[Mesh::ARRAY_WEIGHTS];
const Vector<Vector3> &vertex_array = array[Mesh::ARRAY_VERTEX];
if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) {
int32_t vertex_count = vertex_array.size();
Vector<Color> attribs;
attribs.resize(vertex_count);
for (int i = 0; i < vertex_count; i++) {
Color weight_0(a[(i * JOINT_GROUP_SIZE) + 0], a[(i * JOINT_GROUP_SIZE) + 1], a[(i * JOINT_GROUP_SIZE) + 2], a[(i * JOINT_GROUP_SIZE) + 3]);
float divisor = weight_0.r + weight_0.g + weight_0.b + weight_0.a;
if (Math::is_zero_approx(divisor) || !Math::is_finite(divisor)) {
divisor = 1.0;
weight_0 = Color(1, 0, 0, 0);
}
attribs.write[i] = weight_0 / divisor;
}
attributes["WEIGHTS_0"] = _encode_accessor_as_weights(p_state, attribs, true);
} else if ((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size()) {
Vector<Color> weights_0;
weights_0.resize(vertex_num);
Vector<Color> weights_1;
weights_1.resize(vertex_num);
int32_t weights_8_count = JOINT_GROUP_SIZE * 2;
for (int32_t vertex_i = 0; vertex_i < vertex_num; vertex_i++) {
Color weight_0;
weight_0.r = a[vertex_i * weights_8_count + 0];
weight_0.g = a[vertex_i * weights_8_count + 1];
weight_0.b = a[vertex_i * weights_8_count + 2];
weight_0.a = a[vertex_i * weights_8_count + 3];
Color weight_1;
weight_1.r = a[vertex_i * weights_8_count + 4];
weight_1.g = a[vertex_i * weights_8_count + 5];
weight_1.b = a[vertex_i * weights_8_count + 6];
weight_1.a = a[vertex_i * weights_8_count + 7];
float divisor = weight_0.r + weight_0.g + weight_0.b + weight_0.a + weight_1.r + weight_1.g + weight_1.b + weight_1.a;
if (Math::is_zero_approx(divisor) || !Math::is_finite(divisor)) {
divisor = 1.0f;
weight_0 = Color(1, 0, 0, 0);
weight_1 = Color(0, 0, 0, 0);
}
weights_0.write[vertex_i] = weight_0 / divisor;
weights_1.write[vertex_i] = weight_1 / divisor;
}
attributes["WEIGHTS_0"] = _encode_accessor_as_weights(p_state, weights_0, true);
attributes["WEIGHTS_1"] = _encode_accessor_as_weights(p_state, weights_1, true);
}
}
{
Vector<int32_t> mesh_indices = array[Mesh::ARRAY_INDEX];
if (mesh_indices.size()) {
if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) {
// Swap around indices, convert ccw to cw for front face.
const int is = mesh_indices.size();
for (int k = 0; k < is; k += 3) {
SWAP(mesh_indices.write[k + 0], mesh_indices.write[k + 2]);
}
}
primitive["indices"] = _encode_accessor_as_ints(p_state, mesh_indices, false, true);
} else {
if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) {
// Generate indices because they need to be swapped for CW/CCW.
const Vector<Vector3> &vertices = array[Mesh::ARRAY_VERTEX];
Ref<SurfaceTool> st;
st.instantiate();
st->create_from_triangle_arrays(array);
st->index();
Vector<int32_t> generated_indices = st->commit_to_arrays()[Mesh::ARRAY_INDEX];
const int vs = vertices.size();
generated_indices.resize(vs);
{
for (int k = 0; k < vs; k += 3) {
generated_indices.write[k] = k;
generated_indices.write[k + 1] = k + 2;
generated_indices.write[k + 2] = k + 1;
}
}
primitive["indices"] = _encode_accessor_as_ints(p_state, generated_indices, false, true);
}
}
}
primitive["attributes"] = attributes;
// Blend shapes
print_verbose("glTF: Mesh has targets");
if (import_mesh->get_blend_shape_count()) {
ArrayMesh::BlendShapeMode shape_mode = import_mesh->get_blend_shape_mode();
const float normal_tangent_sparse_rounding = 0.001;
for (int morph_i = 0; morph_i < import_mesh->get_blend_shape_count(); morph_i++) {
Array array_morph = import_mesh->get_surface_blend_shape_arrays(surface_i, morph_i);
Dictionary t;
Vector<Vector3> varr = array_morph[Mesh::ARRAY_VERTEX];
Vector<Vector3> src_varr = array[Mesh::ARRAY_VERTEX];
Array mesh_arrays = import_mesh->get_surface_arrays(surface_i);
if (varr.size() && varr.size() == src_varr.size()) {
if (shape_mode == ArrayMesh::BlendShapeMode::BLEND_SHAPE_MODE_NORMALIZED) {
const int max_idx = src_varr.size();
for (int blend_i = 0; blend_i < max_idx; blend_i++) {
varr.write[blend_i] = varr[blend_i] - src_varr[blend_i];
}
}
GLTFAccessorIndex position_accessor = attributes["POSITION"];
if (position_accessor != -1) {
int new_accessor = _encode_sparse_accessor_as_vec3(p_state, varr, Vector<Vector3>(), 1.0, true, -1);
if (new_accessor != -1) {
t["POSITION"] = new_accessor;
}
}
}
Vector<Vector3> narr = array_morph[Mesh::ARRAY_NORMAL];
Vector<Vector3> src_narr = array[Mesh::ARRAY_NORMAL];
if (narr.size() && narr.size() == src_narr.size()) {
if (shape_mode == ArrayMesh::BlendShapeMode::BLEND_SHAPE_MODE_NORMALIZED) {
const int max_idx = src_narr.size();
for (int blend_i = 0; blend_i < max_idx; blend_i++) {
narr.write[blend_i] = narr[blend_i] - src_narr[blend_i];
}
}
GLTFAccessorIndex normal_accessor = attributes["NORMAL"];
if (normal_accessor != -1) {
int new_accessor = _encode_sparse_accessor_as_vec3(p_state, narr, Vector<Vector3>(), normal_tangent_sparse_rounding, true, -1);
if (new_accessor != -1) {
t["NORMAL"] = new_accessor;
}
}
}
Vector<real_t> tarr = array_morph[Mesh::ARRAY_TANGENT];
Vector<real_t> src_tarr = array[Mesh::ARRAY_TANGENT];
if (tarr.size() && tarr.size() == src_tarr.size()) {
const int ret_size = tarr.size() / 4;
Vector<Vector3> attribs;
attribs.resize(ret_size);
for (int i = 0; i < ret_size; i++) {
Vector3 vec3;
vec3.x = tarr[(i * 4) + 0] - src_tarr[(i * 4) + 0];
vec3.y = tarr[(i * 4) + 1] - src_tarr[(i * 4) + 1];
vec3.z = tarr[(i * 4) + 2] - src_tarr[(i * 4) + 2];
attribs.write[i] = vec3;
}
GLTFAccessorIndex tangent_accessor = attributes["TANGENT"];
if (tangent_accessor != -1) {
int new_accessor = _encode_sparse_accessor_as_vec3(p_state, attribs, Vector<Vector3>(), normal_tangent_sparse_rounding, true, -1);
if (new_accessor != -1) {
t["TANGENT"] = new_accessor;
}
}
}
targets.push_back(t);
}
}
Variant v;
if (surface_i < instance_materials.size()) {
v = instance_materials.get(surface_i);
}
Ref<Material> mat = v;
if (!mat.is_valid()) {
mat = import_mesh->get_surface_material(surface_i);
}
if (mat.is_valid()) {
HashMap<Ref<Material>, GLTFMaterialIndex>::Iterator material_cache_i = p_state->material_cache.find(mat);
if (material_cache_i && material_cache_i->value != -1) {
primitive["material"] = material_cache_i->value;
} else {
GLTFMaterialIndex mat_i = p_state->materials.size();
p_state->materials.push_back(mat);
primitive["material"] = mat_i;
p_state->material_cache.insert(mat, mat_i);
}
}
if (targets.size()) {
primitive["targets"] = targets;
}
primitives.push_back(primitive);
}
Dictionary e;
e["targetNames"] = target_names;
gltf_mesh["extras"] = e;
_attach_meta_to_extras(import_mesh, gltf_mesh);
weights.resize(target_names.size());
for (int name_i = 0; name_i < target_names.size(); name_i++) {
real_t weight = 0.0;
if (name_i < p_state->meshes.write[gltf_mesh_i]->get_blend_weights().size()) {
weight = p_state->meshes.write[gltf_mesh_i]->get_blend_weights()[name_i];
}
weights[name_i] = weight;
}
if (weights.size()) {
gltf_mesh["weights"] = weights;
}
ERR_FAIL_COND_V(target_names.size() != weights.size(), FAILED);
gltf_mesh["primitives"] = primitives;
meshes.push_back(gltf_mesh);
}
if (!meshes.size()) {
return OK;
}
p_state->json["meshes"] = meshes;
print_verbose("glTF: Total meshes: " + itos(meshes.size()));
return OK;
}
Error GLTFDocument::_parse_meshes(Ref<GLTFState> p_state) {
if (!p_state->json.has("meshes")) {
return OK;
}
Array meshes = p_state->json["meshes"];
for (GLTFMeshIndex i = 0; i < meshes.size(); i++) {
print_verbose("glTF: Parsing mesh: " + itos(i));
Dictionary mesh_dict = meshes[i];
Ref<GLTFMesh> mesh;
mesh.instantiate();
bool has_vertex_color = false;
ERR_FAIL_COND_V(!mesh_dict.has("primitives"), ERR_PARSE_ERROR);
Array primitives = mesh_dict["primitives"];
const Dictionary &extras = mesh_dict.has("extras") ? (Dictionary)mesh_dict["extras"] : Dictionary();
_attach_extras_to_meta(extras, mesh);
Ref<ImporterMesh> import_mesh;
import_mesh.instantiate();
String mesh_name = "mesh";
if (mesh_dict.has("name") && !String(mesh_dict["name"]).is_empty()) {
mesh_name = mesh_dict["name"];
mesh->set_original_name(mesh_name);
}
import_mesh->set_name(_gen_unique_name(p_state, vformat("%s_%s", p_state->scene_name, mesh_name)));
mesh->set_name(import_mesh->get_name());
TypedArray<Material> instance_materials;
for (int j = 0; j < primitives.size(); j++) {
uint64_t flags = RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES;
Dictionary mesh_prim = primitives[j];
Array array;
array.resize(Mesh::ARRAY_MAX);
ERR_FAIL_COND_V(!mesh_prim.has("attributes"), ERR_PARSE_ERROR);
Dictionary a = mesh_prim["attributes"];
Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES;
if (mesh_prim.has("mode")) {
const int mode = mesh_prim["mode"];
ERR_FAIL_INDEX_V(mode, 7, ERR_FILE_CORRUPT);
// Convert mesh.primitive.mode to Godot Mesh enum. See:
// https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#_mesh_primitive_mode
static const Mesh::PrimitiveType primitives2[7] = {
Mesh::PRIMITIVE_POINTS, // 0 POINTS
Mesh::PRIMITIVE_LINES, // 1 LINES
Mesh::PRIMITIVE_LINES, // 2 LINE_LOOP; loop not supported, should be converted
Mesh::PRIMITIVE_LINE_STRIP, // 3 LINE_STRIP
Mesh::PRIMITIVE_TRIANGLES, // 4 TRIANGLES
Mesh::PRIMITIVE_TRIANGLE_STRIP, // 5 TRIANGLE_STRIP
Mesh::PRIMITIVE_TRIANGLES, // 6 TRIANGLE_FAN fan not supported, should be converted
// TODO: Line loop and triangle fan are not supported and need to be converted to lines and triangles.
};
primitive = primitives2[mode];
}
int32_t orig_vertex_num = 0;
ERR_FAIL_COND_V(!a.has("POSITION"), ERR_PARSE_ERROR);
if (a.has("POSITION")) {
PackedVector3Array vertices = _decode_accessor_as_vec3(p_state, a["POSITION"], true);
array[Mesh::ARRAY_VERTEX] = vertices;
orig_vertex_num = vertices.size();
}
int32_t vertex_num = orig_vertex_num;
Vector<int> indices;
Vector<int> indices_mapping;
Vector<int> indices_rev_mapping;
Vector<int> indices_vec4_mapping;
if (mesh_prim.has("indices")) {
indices = _decode_accessor_as_ints(p_state, mesh_prim["indices"], false);
const int is = indices.size();
if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
// Swap around indices, convert ccw to cw for front face.
int *w = indices.ptrw();
for (int k = 0; k < is; k += 3) {
SWAP(w[k + 1], w[k + 2]);
}
}
const int *indices_w = indices.ptrw();
Vector<bool> used_indices;
used_indices.resize_zeroed(orig_vertex_num);
bool *used_w = used_indices.ptrw();
for (int idx_i = 0; idx_i < is; idx_i++) {
ERR_FAIL_INDEX_V(indices_w[idx_i], orig_vertex_num, ERR_INVALID_DATA);
used_w[indices_w[idx_i]] = true;
}
indices_rev_mapping.resize_zeroed(orig_vertex_num);
int *rev_w = indices_rev_mapping.ptrw();
vertex_num = 0;
for (int vert_i = 0; vert_i < orig_vertex_num; vert_i++) {
if (used_w[vert_i]) {
rev_w[vert_i] = indices_mapping.size();
indices_mapping.push_back(vert_i);
indices_vec4_mapping.push_back(vert_i * 4 + 0);
indices_vec4_mapping.push_back(vert_i * 4 + 1);
indices_vec4_mapping.push_back(vert_i * 4 + 2);
indices_vec4_mapping.push_back(vert_i * 4 + 3);
vertex_num++;
}
}
}
ERR_FAIL_COND_V(vertex_num <= 0, ERR_INVALID_DECLARATION);
if (a.has("POSITION")) {
PackedVector3Array vertices = _decode_accessor_as_vec3(p_state, a["POSITION"], true, indices_mapping);
array[Mesh::ARRAY_VERTEX] = vertices;
}
if (a.has("NORMAL")) {
array[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(p_state, a["NORMAL"], true, indices_mapping);
}
if (a.has("TANGENT")) {
array[Mesh::ARRAY_TANGENT] = _decode_accessor_as_floats(p_state, a["TANGENT"], true, indices_vec4_mapping);
}
if (a.has("TEXCOORD_0")) {
array[Mesh::ARRAY_TEX_UV] = _decode_accessor_as_vec2(p_state, a["TEXCOORD_0"], true, indices_mapping);
}
if (a.has("TEXCOORD_1")) {
array[Mesh::ARRAY_TEX_UV2] = _decode_accessor_as_vec2(p_state, a["TEXCOORD_1"], true, indices_mapping);
}
for (int custom_i = 0; custom_i < 3; custom_i++) {
Vector<float> cur_custom;
Vector<Vector2> texcoord_first;
Vector<Vector2> texcoord_second;
int texcoord_i = 2 + 2 * custom_i;
String gltf_texcoord_key = vformat("TEXCOORD_%d", texcoord_i);
int num_channels = 0;
if (a.has(gltf_texcoord_key)) {
texcoord_first = _decode_accessor_as_vec2(p_state, a[gltf_texcoord_key], true, indices_mapping);
num_channels = 2;
}
gltf_texcoord_key = vformat("TEXCOORD_%d", texcoord_i + 1);
if (a.has(gltf_texcoord_key)) {
texcoord_second = _decode_accessor_as_vec2(p_state, a[gltf_texcoord_key], true, indices_mapping);
num_channels = 4;
}
if (!num_channels) {
break;
}
if (num_channels == 2 || num_channels == 4) {
cur_custom.resize(vertex_num * num_channels);
for (int32_t uv_i = 0; uv_i < texcoord_first.size() && uv_i < vertex_num; uv_i++) {
cur_custom.write[uv_i * num_channels + 0] = texcoord_first[uv_i].x;
cur_custom.write[uv_i * num_channels + 1] = texcoord_first[uv_i].y;
}
// Vector.resize seems to not zero-initialize. Ensure all unused elements are 0:
for (int32_t uv_i = texcoord_first.size(); uv_i < vertex_num; uv_i++) {
cur_custom.write[uv_i * num_channels + 0] = 0;
cur_custom.write[uv_i * num_channels + 1] = 0;
}
}
if (num_channels == 4) {
for (int32_t uv_i = 0; uv_i < texcoord_second.size() && uv_i < vertex_num; uv_i++) {
// num_channels must be 4
cur_custom.write[uv_i * num_channels + 2] = texcoord_second[uv_i].x;
cur_custom.write[uv_i * num_channels + 3] = texcoord_second[uv_i].y;
}
// Vector.resize seems to not zero-initialize. Ensure all unused elements are 0:
for (int32_t uv_i = texcoord_second.size(); uv_i < vertex_num; uv_i++) {
cur_custom.write[uv_i * num_channels + 2] = 0;
cur_custom.write[uv_i * num_channels + 3] = 0;
}
}
if (cur_custom.size() > 0) {
array[Mesh::ARRAY_CUSTOM0 + custom_i] = cur_custom;
int custom_shift = Mesh::ARRAY_FORMAT_CUSTOM0_SHIFT + custom_i * Mesh::ARRAY_FORMAT_CUSTOM_BITS;
if (num_channels == 2) {
flags |= Mesh::ARRAY_CUSTOM_RG_FLOAT << custom_shift;
} else {
flags |= Mesh::ARRAY_CUSTOM_RGBA_FLOAT << custom_shift;
}
}
}
if (a.has("COLOR_0")) {
array[Mesh::ARRAY_COLOR] = _decode_accessor_as_color(p_state, a["COLOR_0"], true, indices_mapping);
has_vertex_color = true;
}
if (a.has("JOINTS_0") && !a.has("JOINTS_1")) {
PackedInt32Array joints_0 = _decode_accessor_as_ints(p_state, a["JOINTS_0"], true, indices_vec4_mapping);
ERR_FAIL_COND_V(joints_0.size() != 4 * vertex_num, ERR_INVALID_DATA);
array[Mesh::ARRAY_BONES] = joints_0;
} else if (a.has("JOINTS_0") && a.has("JOINTS_1")) {
PackedInt32Array joints_0 = _decode_accessor_as_ints(p_state, a["JOINTS_0"], true, indices_vec4_mapping);
PackedInt32Array joints_1 = _decode_accessor_as_ints(p_state, a["JOINTS_1"], true, indices_vec4_mapping);
ERR_FAIL_COND_V(joints_0.size() != joints_1.size(), ERR_INVALID_DATA);
ERR_FAIL_COND_V(joints_0.size() != 4 * vertex_num, ERR_INVALID_DATA);
int32_t weight_8_count = JOINT_GROUP_SIZE * 2;
Vector<int> joints;
joints.resize(vertex_num * weight_8_count);
for (int32_t vertex_i = 0; vertex_i < vertex_num; vertex_i++) {
joints.write[vertex_i * weight_8_count + 0] = joints_0[vertex_i * JOINT_GROUP_SIZE + 0];
joints.write[vertex_i * weight_8_count + 1] = joints_0[vertex_i * JOINT_GROUP_SIZE + 1];
joints.write[vertex_i * weight_8_count + 2] = joints_0[vertex_i * JOINT_GROUP_SIZE + 2];
joints.write[vertex_i * weight_8_count + 3] = joints_0[vertex_i * JOINT_GROUP_SIZE + 3];
joints.write[vertex_i * weight_8_count + 4] = joints_1[vertex_i * JOINT_GROUP_SIZE + 0];
joints.write[vertex_i * weight_8_count + 5] = joints_1[vertex_i * JOINT_GROUP_SIZE + 1];
joints.write[vertex_i * weight_8_count + 6] = joints_1[vertex_i * JOINT_GROUP_SIZE + 2];
joints.write[vertex_i * weight_8_count + 7] = joints_1[vertex_i * JOINT_GROUP_SIZE + 3];
}
array[Mesh::ARRAY_BONES] = joints;
}
if (a.has("WEIGHTS_0") && !a.has("WEIGHTS_1")) {
Vector<float> weights = _decode_accessor_as_floats(p_state, a["WEIGHTS_0"], true, indices_vec4_mapping);
ERR_FAIL_COND_V(weights.size() != 4 * vertex_num, ERR_INVALID_DATA);
{ // glTF does not seem to normalize the weights for some reason.
int wc = weights.size();
float *w = weights.ptrw();
for (int k = 0; k < wc; k += 4) {
float total = 0.0;
total += w[k + 0];
total += w[k + 1];
total += w[k + 2];
total += w[k + 3];
if (total > 0.0) {
w[k + 0] /= total;
w[k + 1] /= total;
w[k + 2] /= total;
w[k + 3] /= total;
}
}
}
array[Mesh::ARRAY_WEIGHTS] = weights;
} else if (a.has("WEIGHTS_0") && a.has("WEIGHTS_1")) {
Vector<float> weights_0 = _decode_accessor_as_floats(p_state, a["WEIGHTS_0"], true, indices_vec4_mapping);
Vector<float> weights_1 = _decode_accessor_as_floats(p_state, a["WEIGHTS_1"], true, indices_vec4_mapping);
Vector<float> weights;
ERR_FAIL_COND_V(weights_0.size() != weights_1.size(), ERR_INVALID_DATA);
ERR_FAIL_COND_V(weights_0.size() != 4 * vertex_num, ERR_INVALID_DATA);
int32_t weight_8_count = JOINT_GROUP_SIZE * 2;
weights.resize(vertex_num * weight_8_count);
for (int32_t vertex_i = 0; vertex_i < vertex_num; vertex_i++) {
weights.write[vertex_i * weight_8_count + 0] = weights_0[vertex_i * JOINT_GROUP_SIZE + 0];
weights.write[vertex_i * weight_8_count + 1] = weights_0[vertex_i * JOINT_GROUP_SIZE + 1];
weights.write[vertex_i * weight_8_count + 2] = weights_0[vertex_i * JOINT_GROUP_SIZE + 2];
weights.write[vertex_i * weight_8_count + 3] = weights_0[vertex_i * JOINT_GROUP_SIZE + 3];
weights.write[vertex_i * weight_8_count + 4] = weights_1[vertex_i * JOINT_GROUP_SIZE + 0];
weights.write[vertex_i * weight_8_count + 5] = weights_1[vertex_i * JOINT_GROUP_SIZE + 1];
weights.write[vertex_i * weight_8_count + 6] = weights_1[vertex_i * JOINT_GROUP_SIZE + 2];
weights.write[vertex_i * weight_8_count + 7] = weights_1[vertex_i * JOINT_GROUP_SIZE + 3];
}
{ // glTF does not seem to normalize the weights for some reason.
int wc = weights.size();
float *w = weights.ptrw();
for (int k = 0; k < wc; k += weight_8_count) {
float total = 0.0;
total += w[k + 0];
total += w[k + 1];
total += w[k + 2];
total += w[k + 3];
total += w[k + 4];
total += w[k + 5];
total += w[k + 6];
total += w[k + 7];
if (total > 0.0) {
w[k + 0] /= total;
w[k + 1] /= total;
w[k + 2] /= total;
w[k + 3] /= total;
w[k + 4] /= total;
w[k + 5] /= total;
w[k + 6] /= total;
w[k + 7] /= total;
}
}
}
array[Mesh::ARRAY_WEIGHTS] = weights;
}
if (!indices.is_empty()) {
int *w = indices.ptrw();
const int is = indices.size();
for (int ind_i = 0; ind_i < is; ind_i++) {
w[ind_i] = indices_rev_mapping[indices[ind_i]];
}
array[Mesh::ARRAY_INDEX] = indices;
} else if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
// Generate indices because they need to be swapped for CW/CCW.
const Vector<Vector3> &vertices = array[Mesh::ARRAY_VERTEX];
ERR_FAIL_COND_V(vertices.is_empty(), ERR_PARSE_ERROR);
const int vs = vertices.size();
indices.resize(vs);
{
int *w = indices.ptrw();
for (int k = 0; k < vs; k += 3) {
w[k] = k;
w[k + 1] = k + 2;
w[k + 2] = k + 1;
}
}
array[Mesh::ARRAY_INDEX] = indices;
}
bool generate_tangents = p_state->force_generate_tangents && (primitive == Mesh::PRIMITIVE_TRIANGLES && !a.has("TANGENT") && a.has("NORMAL"));
if (generate_tangents && !a.has("TEXCOORD_0")) {
// If we don't have UVs we provide a dummy tangent array.
Vector<float> tangents;
tangents.resize(vertex_num * 4);
float *tangentsw = tangents.ptrw();
Vector<Vector3> normals = array[Mesh::ARRAY_NORMAL];
for (int k = 0; k < vertex_num; k++) {
Vector3 tan = Vector3(normals[k].z, -normals[k].x, normals[k].y).cross(normals[k].normalized()).normalized();
tangentsw[k * 4 + 0] = tan.x;
tangentsw[k * 4 + 1] = tan.y;
tangentsw[k * 4 + 2] = tan.z;
tangentsw[k * 4 + 3] = 1.0;
}
array[Mesh::ARRAY_TANGENT] = tangents;
}
// Disable compression if all z equals 0 (the mesh is 2D).
const Vector<Vector3> &vertices = array[Mesh::ARRAY_VERTEX];
bool is_mesh_2d = true;
for (int k = 0; k < vertices.size(); k++) {
if (!Math::is_zero_approx(vertices[k].z)) {
is_mesh_2d = false;
break;
}
}
if (p_state->force_disable_compression || is_mesh_2d || !a.has("POSITION") || !a.has("NORMAL") || mesh_prim.has("targets") || (a.has("JOINTS_0") || a.has("JOINTS_1"))) {
flags &= ~RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES;
}
Ref<SurfaceTool> mesh_surface_tool;
mesh_surface_tool.instantiate();
mesh_surface_tool->create_from_triangle_arrays(array);
if (a.has("JOINTS_0") && a.has("JOINTS_1")) {
mesh_surface_tool->set_skin_weight_count(SurfaceTool::SKIN_8_WEIGHTS);
}
mesh_surface_tool->index();
if (generate_tangents && a.has("TEXCOORD_0")) {
//must generate mikktspace tangents.. ergh..
mesh_surface_tool->generate_tangents();
}
array = mesh_surface_tool->commit_to_arrays();
if ((flags & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && a.has("NORMAL") && (a.has("TANGENT") || generate_tangents)) {
// Compression is enabled, so let's validate that the normals and tangents are correct.
Vector<Vector3> normals = array[Mesh::ARRAY_NORMAL];
Vector<float> tangents = array[Mesh::ARRAY_TANGENT];
for (int vert = 0; vert < normals.size(); vert++) {
Vector3 tan = Vector3(tangents[vert * 4 + 0], tangents[vert * 4 + 1], tangents[vert * 4 + 2]);
if (abs(tan.dot(normals[vert])) > 0.0001) {
// Tangent is not perpendicular to the normal, so we can't use compression.
flags &= ~RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES;
}
}
}
Array morphs;
// Blend shapes
if (mesh_prim.has("targets")) {
print_verbose("glTF: Mesh has targets");
const Array &targets = mesh_prim["targets"];
import_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED);
if (j == 0) {
const Array &target_names = extras.has("targetNames") ? (Array)extras["targetNames"] : Array();
for (int k = 0; k < targets.size(); k++) {
String bs_name;
if (k < target_names.size() && ((String)target_names[k]).size() != 0) {
bs_name = (String)target_names[k];
} else {
bs_name = String("morph_") + itos(k);
}
import_mesh->add_blend_shape(bs_name);
}
}
for (int k = 0; k < targets.size(); k++) {
const Dictionary &t = targets[k];
Array array_copy;
array_copy.resize(Mesh::ARRAY_MAX);
for (int l = 0; l < Mesh::ARRAY_MAX; l++) {
array_copy[l] = array[l];
}
if (t.has("POSITION")) {
Vector<Vector3> varr = _decode_accessor_as_vec3(p_state, t["POSITION"], true, indices_mapping);
const Vector<Vector3> src_varr = array[Mesh::ARRAY_VERTEX];
const int size = src_varr.size();
ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR);
{
const int max_idx = varr.size();
varr.resize(size);
Vector3 *w_varr = varr.ptrw();
const Vector3 *r_varr = varr.ptr();
const Vector3 *r_src_varr = src_varr.ptr();
for (int l = 0; l < size; l++) {
if (l < max_idx) {
w_varr[l] = r_varr[l] + r_src_varr[l];
} else {
w_varr[l] = r_src_varr[l];
}
}
}
array_copy[Mesh::ARRAY_VERTEX] = varr;
}
if (t.has("NORMAL")) {
Vector<Vector3> narr = _decode_accessor_as_vec3(p_state, t["NORMAL"], true, indices_mapping);
const Vector<Vector3> src_narr = array[Mesh::ARRAY_NORMAL];
int size = src_narr.size();
ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR);
{
int max_idx = narr.size();
narr.resize(size);
Vector3 *w_narr = narr.ptrw();
const Vector3 *r_narr = narr.ptr();
const Vector3 *r_src_narr = src_narr.ptr();
for (int l = 0; l < size; l++) {
if (l < max_idx) {
w_narr[l] = r_narr[l] + r_src_narr[l];
} else {
w_narr[l] = r_src_narr[l];
}
}
}
array_copy[Mesh::ARRAY_NORMAL] = narr;
}
if (t.has("TANGENT")) {
const Vector<Vector3> tangents_v3 = _decode_accessor_as_vec3(p_state, t["TANGENT"], true, indices_mapping);
const Vector<float> src_tangents = array[Mesh::ARRAY_TANGENT];
ERR_FAIL_COND_V(src_tangents.is_empty(), ERR_PARSE_ERROR);
Vector<float> tangents_v4;
{
int max_idx = tangents_v3.size();
int size4 = src_tangents.size();
tangents_v4.resize(size4);
float *w4 = tangents_v4.ptrw();
const Vector3 *r3 = tangents_v3.ptr();
const float *r4 = src_tangents.ptr();
for (int l = 0; l < size4 / 4; l++) {
if (l < max_idx) {
w4[l * 4 + 0] = r3[l].x + r4[l * 4 + 0];
w4[l * 4 + 1] = r3[l].y + r4[l * 4 + 1];
w4[l * 4 + 2] = r3[l].z + r4[l * 4 + 2];
} else {
w4[l * 4 + 0] = r4[l * 4 + 0];
w4[l * 4 + 1] = r4[l * 4 + 1];
w4[l * 4 + 2] = r4[l * 4 + 2];
}
w4[l * 4 + 3] = r4[l * 4 + 3]; //copy flip value
}
}
array_copy[Mesh::ARRAY_TANGENT] = tangents_v4;
}
Ref<SurfaceTool> blend_surface_tool;
blend_surface_tool.instantiate();
blend_surface_tool->create_from_triangle_arrays(array_copy);
if (a.has("JOINTS_0") && a.has("JOINTS_1")) {
blend_surface_tool->set_skin_weight_count(SurfaceTool::SKIN_8_WEIGHTS);
}
blend_surface_tool->index();
if (generate_tangents) {
blend_surface_tool->generate_tangents();
}
array_copy = blend_surface_tool->commit_to_arrays();
// Enforce blend shape mask array format
for (int l = 0; l < Mesh::ARRAY_MAX; l++) {
if (!(Mesh::ARRAY_FORMAT_BLEND_SHAPE_MASK & (1ULL << l))) {
array_copy[l] = Variant();
}
}
morphs.push_back(array_copy);
}
}
Ref<Material> mat;
String mat_name;
if (!p_state->discard_meshes_and_materials) {
if (mesh_prim.has("material")) {
const int material = mesh_prim["material"];
ERR_FAIL_INDEX_V(material, p_state->materials.size(), ERR_FILE_CORRUPT);
Ref<Material> mat3d = p_state->materials[material];
ERR_FAIL_COND_V(mat3d.is_null(), ERR_FILE_CORRUPT);
Ref<BaseMaterial3D> base_material = mat3d;
if (has_vertex_color && base_material.is_valid()) {
base_material->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
}
mat = mat3d;
} else {
Ref<StandardMaterial3D> mat3d;
mat3d.instantiate();
if (has_vertex_color) {
mat3d->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
}
mat = mat3d;
}
ERR_FAIL_COND_V(mat.is_null(), ERR_FILE_CORRUPT);
instance_materials.append(mat);
mat_name = mat->get_name();
}
import_mesh->add_surface(primitive, array, morphs,
Dictionary(), mat, mat_name, flags);
}
Vector<float> blend_weights;
blend_weights.resize(import_mesh->get_blend_shape_count());
for (int32_t weight_i = 0; weight_i < blend_weights.size(); weight_i++) {
blend_weights.write[weight_i] = 0.0f;
}
if (mesh_dict.has("weights")) {
const Array &weights = mesh_dict["weights"];
for (int j = 0; j < weights.size(); j++) {
if (j >= blend_weights.size()) {
break;
}
blend_weights.write[j] = weights[j];
}
}
mesh->set_blend_weights(blend_weights);
mesh->set_instance_materials(instance_materials);
mesh->set_mesh(import_mesh);
p_state->meshes.push_back(mesh);
}
print_verbose("glTF: Total meshes: " + itos(p_state->meshes.size()));
return OK;
}
void GLTFDocument::set_naming_version(int p_version) {
_naming_version = p_version;
}
int GLTFDocument::get_naming_version() const {
return _naming_version;
}
void GLTFDocument::set_image_format(const String &p_image_format) {
_image_format = p_image_format;
}
String GLTFDocument::get_image_format() const {
return _image_format;
}
void GLTFDocument::set_lossy_quality(float p_lossy_quality) {
_lossy_quality = p_lossy_quality;
}
float GLTFDocument::get_lossy_quality() const {
return _lossy_quality;
}
Error GLTFDocument::_serialize_images(Ref<GLTFState> p_state) {
Array images;
// Check if any extension wants to be the image saver.
_image_save_extension = Ref<GLTFDocumentExtension>();
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
Vector<String> image_formats = ext->get_saveable_image_formats();
if (image_formats.has(_image_format)) {
_image_save_extension = ext;
break;
}
}
// Serialize every image in the state's images array.
for (int i = 0; i < p_state->images.size(); i++) {
Dictionary image_dict;
ERR_CONTINUE(p_state->images[i].is_null());
Ref<Image> image = p_state->images[i]->get_image();
ERR_CONTINUE(image.is_null());
if (image->is_compressed()) {
image->decompress();
ERR_FAIL_COND_V_MSG(image->is_compressed(), ERR_INVALID_DATA, "glTF: Image was compressed, but could not be decompressed.");
}
if (p_state->filename.to_lower().ends_with("gltf")) {
String img_name = p_state->images[i]->get_name();
if (img_name.is_empty()) {
img_name = itos(i);
}
img_name = _gen_unique_name(p_state, img_name);
img_name = img_name.pad_zeros(3);
String relative_texture_dir = "textures";
String full_texture_dir = p_state->base_path.path_join(relative_texture_dir);
Ref<DirAccess> da = DirAccess::open(p_state->base_path);
ERR_FAIL_COND_V(da.is_null(), FAILED);
if (!da->dir_exists(full_texture_dir)) {
da->make_dir(full_texture_dir);
}
if (_image_save_extension.is_valid()) {
img_name = img_name + _image_save_extension->get_image_file_extension();
Error err = _image_save_extension->save_image_at_path(p_state, image, full_texture_dir.path_join(img_name), _image_format, _lossy_quality);
ERR_FAIL_COND_V_MSG(err != OK, err, "glTF: Failed to save image in '" + _image_format + "' format as a separate file.");
} else if (_image_format == "PNG") {
img_name = img_name + ".png";
image->save_png(full_texture_dir.path_join(img_name));
} else if (_image_format == "JPEG") {
img_name = img_name + ".jpg";
image->save_jpg(full_texture_dir.path_join(img_name), _lossy_quality);
} else {
ERR_FAIL_V_MSG(ERR_UNAVAILABLE, "glTF: Unknown image format '" + _image_format + "'.");
}
image_dict["uri"] = relative_texture_dir.path_join(img_name).uri_encode();
} else {
GLTFBufferViewIndex bvi;
Ref<GLTFBufferView> bv;
bv.instantiate();
const GLTFBufferIndex bi = 0;
bv->buffer = bi;
bv->byte_offset = p_state->buffers[bi].size();
ERR_FAIL_INDEX_V(bi, p_state->buffers.size(), ERR_PARAMETER_RANGE_ERROR);
Vector<uint8_t> buffer;
Ref<ImageTexture> img_tex = image;
if (img_tex.is_valid()) {
image = img_tex->get_image();
}
// Save in various image formats. Note that if the format is "None",
// the state's images will be empty, so this code will not be reached.
if (_image_save_extension.is_valid()) {
buffer = _image_save_extension->serialize_image_to_bytes(p_state, image, image_dict, _image_format, _lossy_quality);
} else if (_image_format == "PNG") {
buffer = image->save_png_to_buffer();
image_dict["mimeType"] = "image/png";
} else if (_image_format == "JPEG") {
buffer = image->save_jpg_to_buffer(_lossy_quality);
image_dict["mimeType"] = "image/jpeg";
} else {
ERR_FAIL_V_MSG(ERR_UNAVAILABLE, "glTF: Unknown image format '" + _image_format + "'.");
}
ERR_FAIL_COND_V_MSG(buffer.is_empty(), ERR_INVALID_DATA, "glTF: Failed to save image in '" + _image_format + "' format.");
bv->byte_length = buffer.size();
p_state->buffers.write[bi].resize(p_state->buffers[bi].size() + bv->byte_length);
memcpy(&p_state->buffers.write[bi].write[bv->byte_offset], buffer.ptr(), buffer.size());
ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > p_state->buffers[bi].size(), ERR_FILE_CORRUPT);
p_state->buffer_views.push_back(bv);
bvi = p_state->buffer_views.size() - 1;
image_dict["bufferView"] = bvi;
}
images.push_back(image_dict);
}
print_verbose("Total images: " + itos(p_state->images.size()));
if (!images.size()) {
return OK;
}
p_state->json["images"] = images;
return OK;
}
Ref<Image> GLTFDocument::_parse_image_bytes_into_image(Ref<GLTFState> p_state, const Vector<uint8_t> &p_bytes, const String &p_mime_type, int p_index, String &r_file_extension) {
Ref<Image> r_image;
r_image.instantiate();
// Check if any GLTFDocumentExtensions want to import this data as an image.
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
Error err = ext->parse_image_data(p_state, p_bytes, p_mime_type, r_image);
ERR_CONTINUE_MSG(err != OK, "glTF: Encountered error " + itos(err) + " when parsing image " + itos(p_index) + " in file " + p_state->filename + ". Continuing.");
if (!r_image->is_empty()) {
r_file_extension = ext->get_image_file_extension();
return r_image;
}
}
// If no extension wanted to import this data as an image, try to load a PNG or JPEG.
// First we honor the mime types if they were defined.
if (p_mime_type == "image/png") { // Load buffer as PNG.
r_image->load_png_from_buffer(p_bytes);
r_file_extension = ".png";
} else if (p_mime_type == "image/jpeg") { // Loader buffer as JPEG.
r_image->load_jpg_from_buffer(p_bytes);
r_file_extension = ".jpg";
}
// If we didn't pass the above tests, we attempt loading as PNG and then JPEG directly.
// This covers URIs with base64-encoded data with application/* type but
// no optional mimeType property, or bufferViews with a bogus mimeType
// (e.g. `image/jpeg` but the data is actually PNG).
// That's not *exactly* what the spec mandates but this lets us be
// lenient with bogus glb files which do exist in production.
if (r_image->is_empty()) { // Try PNG first.
r_image->load_png_from_buffer(p_bytes);
}
if (r_image->is_empty()) { // And then JPEG.
r_image->load_jpg_from_buffer(p_bytes);
}
// If it still can't be loaded, give up and insert an empty image as placeholder.
if (r_image->is_empty()) {
ERR_PRINT(vformat("glTF: Couldn't load image index '%d' with its given mimetype: %s.", p_index, p_mime_type));
}
return r_image;
}
void GLTFDocument::_parse_image_save_image(Ref<GLTFState> p_state, const Vector<uint8_t> &p_bytes, const String &p_file_extension, int p_index, Ref<Image> p_image) {
GLTFState::GLTFHandleBinary handling = GLTFState::GLTFHandleBinary(p_state->handle_binary_image);
if (p_image->is_empty() || handling == GLTFState::GLTFHandleBinary::HANDLE_BINARY_DISCARD_TEXTURES) {
p_state->images.push_back(Ref<Texture2D>());
p_state->source_images.push_back(Ref<Image>());
return;
}
#ifdef TOOLS_ENABLED
if (Engine::get_singleton()->is_editor_hint() && handling == GLTFState::GLTFHandleBinary::HANDLE_BINARY_EXTRACT_TEXTURES) {
if (p_state->extract_path.is_empty()) {
WARN_PRINT("glTF: Couldn't extract image because the base and extract paths are empty. It will be loaded directly instead, uncompressed.");
} else if (p_state->extract_path.begins_with("res://.godot/imported")) {
WARN_PRINT(vformat("glTF: Extract path is in the imported directory. Image index '%d' will be loaded directly, uncompressed.", p_index));
} else {
if (p_image->get_name().is_empty()) {
WARN_PRINT(vformat("glTF: Image index '%d' did not have a name. It will be automatically given a name based on its index.", p_index));
p_image->set_name(itos(p_index));
}
bool must_import = true;
Vector<uint8_t> img_data = p_image->get_data();
Dictionary generator_parameters;
String file_path = p_state->get_extract_path().path_join(p_state->get_extract_prefix() + "_" + p_image->get_name());
file_path += p_file_extension.is_empty() ? ".png" : p_file_extension;
if (FileAccess::exists(file_path + ".import")) {
Ref<ConfigFile> config;
config.instantiate();
config->load(file_path + ".import");
if (config->has_section_key("remap", "generator_parameters")) {
generator_parameters = (Dictionary)config->get_value("remap", "generator_parameters");
}
if (!generator_parameters.has("md5")) {
must_import = false; // Didn't come from a gltf document; don't overwrite.
}
}
if (must_import) {
String existing_md5 = generator_parameters["md5"];
unsigned char md5_hash[16];
CryptoCore::md5(img_data.ptr(), img_data.size(), md5_hash);
String new_md5 = String::hex_encode_buffer(md5_hash, 16);
generator_parameters["md5"] = new_md5;
if (new_md5 == existing_md5) {
must_import = false;
}
}
if (must_import) {
Error err = OK;
if (p_file_extension.is_empty()) {
// If a file extension was not specified, save the image data to a PNG file.
err = p_image->save_png(file_path);
ERR_FAIL_COND(err != OK);
} else {
// If a file extension was specified, save the original bytes to a file with that extension.
Ref<FileAccess> file = FileAccess::open(file_path, FileAccess::WRITE, &err);
ERR_FAIL_COND(err != OK);
file->store_buffer(p_bytes);
file->close();
}
// ResourceLoader::import will crash if not is_editor_hint(), so this case is protected above and will fall through to uncompressed.
HashMap<StringName, Variant> custom_options;
custom_options[SNAME("mipmaps/generate")] = true;
// Will only use project settings defaults if custom_importer is empty.
EditorFileSystem::get_singleton()->update_file(file_path);
EditorFileSystem::get_singleton()->reimport_append(file_path, custom_options, String(), generator_parameters);
}
Ref<Texture2D> saved_image = ResourceLoader::load(file_path, "Texture2D");
if (saved_image.is_valid()) {
p_state->images.push_back(saved_image);
p_state->source_images.push_back(saved_image->get_image());
return;
} else {
WARN_PRINT(vformat("glTF: Image index '%d' with the name '%s' couldn't be imported. It will be loaded directly instead, uncompressed.", p_index, p_image->get_name()));
}
}
}
#endif // TOOLS_ENABLED
if (handling == GLTFState::GLTFHandleBinary::HANDLE_BINARY_EMBED_AS_BASISU) {
Ref<PortableCompressedTexture2D> tex;
tex.instantiate();
tex->set_name(p_image->get_name());
tex->set_keep_compressed_buffer(true);
tex->create_from_image(p_image, PortableCompressedTexture2D::COMPRESSION_MODE_BASIS_UNIVERSAL);
p_state->images.push_back(tex);
p_state->source_images.push_back(p_image);
return;
}
// This handles the case of HANDLE_BINARY_EMBED_AS_UNCOMPRESSED, and it also serves
// as a fallback for HANDLE_BINARY_EXTRACT_TEXTURES when this is not the editor.
Ref<ImageTexture> tex;
tex.instantiate();
tex->set_name(p_image->get_name());
tex->set_image(p_image);
p_state->images.push_back(tex);
p_state->source_images.push_back(p_image);
}
Error GLTFDocument::_parse_images(Ref<GLTFState> p_state, const String &p_base_path) {
ERR_FAIL_COND_V(p_state.is_null(), ERR_INVALID_PARAMETER);
if (!p_state->json.has("images")) {
return OK;
}
// Ref: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#images
const Array &images = p_state->json["images"];
HashSet<String> used_names;
for (int i = 0; i < images.size(); i++) {
const Dictionary &dict = images[i];
// glTF 2.0 supports PNG and JPEG types, which can be specified as (from spec):
// "- a URI to an external file in one of the supported images formats, or
// - a URI with embedded base64-encoded data, or
// - a reference to a bufferView; in that case mimeType must be defined."
// Since mimeType is optional for external files and base64 data, we'll have to
// fall back on letting Godot parse the data to figure out if it's PNG or JPEG.
// We'll assume that we use either URI or bufferView, so let's warn the user
// if their image somehow uses both. And fail if it has neither.
ERR_CONTINUE_MSG(!dict.has("uri") && !dict.has("bufferView"), "Invalid image definition in glTF file, it should specify an 'uri' or 'bufferView'.");
if (dict.has("uri") && dict.has("bufferView")) {
WARN_PRINT("Invalid image definition in glTF file using both 'uri' and 'bufferView'. 'uri' will take precedence.");
}
String mime_type;
if (dict.has("mimeType")) { // Should be "image/png", "image/jpeg", or something handled by an extension.
mime_type = dict["mimeType"];
}
String image_name;
if (dict.has("name")) {
image_name = dict["name"];
image_name = image_name.get_file().get_basename().validate_filename();
}
if (image_name.is_empty()) {
image_name = itos(i);
}
while (used_names.has(image_name)) {
image_name += "_" + itos(i);
}
used_names.insert(image_name);
// Load the image data. If we get a byte array, store here for later.
Vector<uint8_t> data;
if (dict.has("uri")) {
// Handles the first two bullet points from the spec (embedded data, or external file).
String uri = dict["uri"];
if (uri.begins_with("data:")) { // Embedded data using base64.
data = _parse_base64_uri(uri);
// mimeType is optional, but if we have it defined in the URI, let's use it.
if (mime_type.is_empty() && uri.contains(";")) {
// Trim "data:" prefix which is 5 characters long, and end at ";base64".
mime_type = uri.substr(5, uri.find(";base64") - 5);
}
} else { // Relative path to an external image file.
ERR_FAIL_COND_V(p_base_path.is_empty(), ERR_INVALID_PARAMETER);
uri = uri.uri_decode();
uri = p_base_path.path_join(uri).replace("\\", "/"); // Fix for Windows.
// If the image is in the .godot/imported directory, we can't use ResourceLoader.
if (!p_base_path.begins_with("res://.godot/imported")) {
// ResourceLoader will rely on the file extension to use the relevant loader.
// The spec says that if mimeType is defined, it should take precedence (e.g.
// there could be a `.png` image which is actually JPEG), but there's no easy
// API for that in Godot, so we'd have to load as a buffer (i.e. embedded in
// the material), so we only do that only as fallback.
Ref<Texture2D> texture = ResourceLoader::load(uri, "Texture2D");
if (texture.is_valid()) {
p_state->images.push_back(texture);
p_state->source_images.push_back(texture->get_image());
continue;
}
}
// mimeType is optional, but if we have it in the file extension, let's use it.
// If the mimeType does not match with the file extension, either it should be
// specified in the file, or the GLTFDocumentExtension should handle it.
if (mime_type.is_empty()) {
mime_type = "image/" + uri.get_extension();
}
// Fallback to loading as byte array. This enables us to support the
// spec's requirement that we honor mimetype regardless of file URI.
data = FileAccess::get_file_as_bytes(uri);
if (data.size() == 0) {
WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded as a buffer of MIME type '%s' from URI: %s because there was no data to load. Skipping it.", i, mime_type, uri));
p_state->images.push_back(Ref<Texture2D>()); // Placeholder to keep count.
p_state->source_images.push_back(Ref<Image>());
continue;
}
}
} else if (dict.has("bufferView")) {
// Handles the third bullet point from the spec (bufferView).
ERR_FAIL_COND_V_MSG(mime_type.is_empty(), ERR_FILE_CORRUPT, vformat("glTF: Image index '%d' specifies 'bufferView' but no 'mimeType', which is invalid.", i));
const GLTFBufferViewIndex bvi = dict["bufferView"];
ERR_FAIL_INDEX_V(bvi, p_state->buffer_views.size(), ERR_PARAMETER_RANGE_ERROR);
Ref<GLTFBufferView> bv = p_state->buffer_views[bvi];
const GLTFBufferIndex bi = bv->buffer;
ERR_FAIL_INDEX_V(bi, p_state->buffers.size(), ERR_PARAMETER_RANGE_ERROR);
ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > p_state->buffers[bi].size(), ERR_FILE_CORRUPT);
const PackedByteArray &buffer = p_state->buffers[bi];
data = buffer.slice(bv->byte_offset, bv->byte_offset + bv->byte_length);
}
// Done loading the image data bytes. Check that we actually got data to parse.
// Note: There are paths above that return early, so this point might not be reached.
if (data.is_empty()) {
WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded, no data found. Skipping it.", i));
p_state->images.push_back(Ref<Texture2D>()); // Placeholder to keep count.
p_state->source_images.push_back(Ref<Image>());
continue;
}
// Parse the image data from bytes into an Image resource and save if needed.
String file_extension;
Ref<Image> img = _parse_image_bytes_into_image(p_state, data, mime_type, i, file_extension);
img->set_name(image_name);
_parse_image_save_image(p_state, data, file_extension, i, img);
}
print_verbose("glTF: Total images: " + itos(p_state->images.size()));
return OK;
}
Error GLTFDocument::_serialize_textures(Ref<GLTFState> p_state) {
if (!p_state->textures.size()) {
return OK;
}
Array textures;
for (int32_t i = 0; i < p_state->textures.size(); i++) {
Dictionary texture_dict;
Ref<GLTFTexture> gltf_texture = p_state->textures[i];
if (_image_save_extension.is_valid()) {
Error err = _image_save_extension->serialize_texture_json(p_state, texture_dict, gltf_texture, _image_format);
ERR_FAIL_COND_V(err != OK, err);
} else {
ERR_CONTINUE(gltf_texture->get_src_image() == -1);
texture_dict["source"] = gltf_texture->get_src_image();
}
GLTFTextureSamplerIndex sampler_index = gltf_texture->get_sampler();
if (sampler_index != -1) {
texture_dict["sampler"] = sampler_index;
}
textures.push_back(texture_dict);
}
p_state->json["textures"] = textures;
return OK;
}
Error GLTFDocument::_parse_textures(Ref<GLTFState> p_state) {
if (!p_state->json.has("textures")) {
return OK;
}
const Array &textures = p_state->json["textures"];
for (GLTFTextureIndex i = 0; i < textures.size(); i++) {
const Dictionary &texture_dict = textures[i];
Ref<GLTFTexture> gltf_texture;
gltf_texture.instantiate();
// Check if any GLTFDocumentExtensions want to handle this texture JSON.
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
Error err = ext->parse_texture_json(p_state, texture_dict, gltf_texture);
ERR_CONTINUE_MSG(err != OK, "glTF: Encountered error " + itos(err) + " when parsing texture JSON " + String(Variant(texture_dict)) + " in file " + p_state->filename + ". Continuing.");
if (gltf_texture->get_src_image() != -1) {
break;
}
}
if (gltf_texture->get_src_image() == -1) {
// No extensions handled it, so use the base glTF source.
// This may be the fallback, or the only option anyway.
ERR_FAIL_COND_V(!texture_dict.has("source"), ERR_PARSE_ERROR);
gltf_texture->set_src_image(texture_dict["source"]);
}
if (gltf_texture->get_sampler() == -1 && texture_dict.has("sampler")) {
gltf_texture->set_sampler(texture_dict["sampler"]);
}
p_state->textures.push_back(gltf_texture);
}
return OK;
}
GLTFTextureIndex GLTFDocument::_set_texture(Ref<GLTFState> p_state, Ref<Texture2D> p_texture, StandardMaterial3D::TextureFilter p_filter_mode, bool p_repeats) {
ERR_FAIL_COND_V(p_texture.is_null(), -1);
Ref<GLTFTexture> gltf_texture;
gltf_texture.instantiate();
ERR_FAIL_COND_V(p_texture->get_image().is_null(), -1);
GLTFImageIndex gltf_src_image_i = p_state->images.size();
p_state->images.push_back(p_texture);
p_state->source_images.push_back(p_texture->get_image());
gltf_texture->set_src_image(gltf_src_image_i);
gltf_texture->set_sampler(_set_sampler_for_mode(p_state, p_filter_mode, p_repeats));
GLTFTextureIndex gltf_texture_i = p_state->textures.size();
p_state->textures.push_back(gltf_texture);
return gltf_texture_i;
}
Ref<Texture2D> GLTFDocument::_get_texture(Ref<GLTFState> p_state, const GLTFTextureIndex p_texture, int p_texture_types) {
ERR_FAIL_INDEX_V(p_texture, p_state->textures.size(), Ref<Texture2D>());
const GLTFImageIndex image = p_state->textures[p_texture]->get_src_image();
ERR_FAIL_INDEX_V(image, p_state->images.size(), Ref<Texture2D>());
if (GLTFState::GLTFHandleBinary(p_state->handle_binary_image) == GLTFState::GLTFHandleBinary::HANDLE_BINARY_EMBED_AS_BASISU) {
ERR_FAIL_INDEX_V(image, p_state->source_images.size(), Ref<Texture2D>());
Ref<PortableCompressedTexture2D> portable_texture;
portable_texture.instantiate();
portable_texture->set_keep_compressed_buffer(true);
Ref<Image> new_img = p_state->source_images[image]->duplicate();
ERR_FAIL_COND_V(new_img.is_null(), Ref<Texture2D>());
new_img->generate_mipmaps();
if (p_texture_types) {
portable_texture->create_from_image(new_img, PortableCompressedTexture2D::COMPRESSION_MODE_BASIS_UNIVERSAL, true);
} else {
portable_texture->create_from_image(new_img, PortableCompressedTexture2D::COMPRESSION_MODE_BASIS_UNIVERSAL, false);
}
p_state->images.write[image] = portable_texture;
p_state->source_images.write[image] = new_img;
}
return p_state->images[image];
}
GLTFTextureSamplerIndex GLTFDocument::_set_sampler_for_mode(Ref<GLTFState> p_state, StandardMaterial3D::TextureFilter p_filter_mode, bool p_repeats) {
for (int i = 0; i < p_state->texture_samplers.size(); ++i) {
if (p_state->texture_samplers[i]->get_filter_mode() == p_filter_mode) {
return i;
}
}
GLTFTextureSamplerIndex gltf_sampler_i = p_state->texture_samplers.size();
Ref<GLTFTextureSampler> gltf_sampler;
gltf_sampler.instantiate();
gltf_sampler->set_filter_mode(p_filter_mode);
gltf_sampler->set_wrap_mode(p_repeats);
p_state->texture_samplers.push_back(gltf_sampler);
return gltf_sampler_i;
}
Ref<GLTFTextureSampler> GLTFDocument::_get_sampler_for_texture(Ref<GLTFState> p_state, const GLTFTextureIndex p_texture) {
ERR_FAIL_INDEX_V(p_texture, p_state->textures.size(), Ref<Texture2D>());
const GLTFTextureSamplerIndex sampler = p_state->textures[p_texture]->get_sampler();
if (sampler == -1) {
return p_state->default_texture_sampler;
} else {
ERR_FAIL_INDEX_V(sampler, p_state->texture_samplers.size(), Ref<GLTFTextureSampler>());
return p_state->texture_samplers[sampler];
}
}
Error GLTFDocument::_serialize_texture_samplers(Ref<GLTFState> p_state) {
if (!p_state->texture_samplers.size()) {
return OK;
}
Array samplers;
for (int32_t i = 0; i < p_state->texture_samplers.size(); ++i) {
Dictionary d;
Ref<GLTFTextureSampler> s = p_state->texture_samplers[i];
d["magFilter"] = s->get_mag_filter();
d["minFilter"] = s->get_min_filter();
d["wrapS"] = s->get_wrap_s();
d["wrapT"] = s->get_wrap_t();
samplers.push_back(d);
}
p_state->json["samplers"] = samplers;
return OK;
}
Error GLTFDocument::_parse_texture_samplers(Ref<GLTFState> p_state) {
p_state->default_texture_sampler.instantiate();
p_state->default_texture_sampler->set_min_filter(GLTFTextureSampler::FilterMode::LINEAR_MIPMAP_LINEAR);
p_state->default_texture_sampler->set_mag_filter(GLTFTextureSampler::FilterMode::LINEAR);
p_state->default_texture_sampler->set_wrap_s(GLTFTextureSampler::WrapMode::REPEAT);
p_state->default_texture_sampler->set_wrap_t(GLTFTextureSampler::WrapMode::REPEAT);
if (!p_state->json.has("samplers")) {
return OK;
}
const Array &samplers = p_state->json["samplers"];
for (int i = 0; i < samplers.size(); ++i) {
const Dictionary &d = samplers[i];
Ref<GLTFTextureSampler> sampler;
sampler.instantiate();
if (d.has("minFilter")) {
sampler->set_min_filter(d["minFilter"]);
} else {
sampler->set_min_filter(GLTFTextureSampler::FilterMode::LINEAR_MIPMAP_LINEAR);
}
if (d.has("magFilter")) {
sampler->set_mag_filter(d["magFilter"]);
} else {
sampler->set_mag_filter(GLTFTextureSampler::FilterMode::LINEAR);
}
if (d.has("wrapS")) {
sampler->set_wrap_s(d["wrapS"]);
} else {
sampler->set_wrap_s(GLTFTextureSampler::WrapMode::DEFAULT);
}
if (d.has("wrapT")) {
sampler->set_wrap_t(d["wrapT"]);
} else {
sampler->set_wrap_t(GLTFTextureSampler::WrapMode::DEFAULT);
}
p_state->texture_samplers.push_back(sampler);
}
return OK;
}
Error GLTFDocument::_serialize_materials(Ref<GLTFState> p_state) {
Array materials;
for (int32_t i = 0; i < p_state->materials.size(); i++) {
Dictionary d;
Ref<Material> material = p_state->materials[i];
if (material.is_null()) {
materials.push_back(d);
continue;
}
if (!material->get_name().is_empty()) {
d["name"] = _gen_unique_name(p_state, material->get_name());
}
Ref<BaseMaterial3D> base_material = material;
if (base_material.is_null()) {
materials.push_back(d);
continue;
}
Dictionary mr;
{
Array arr;
const Color c = base_material->get_albedo().srgb_to_linear();
arr.push_back(c.r);
arr.push_back(c.g);
arr.push_back(c.b);
arr.push_back(c.a);
mr["baseColorFactor"] = arr;
}
if (_image_format != "None") {
Dictionary bct;
Ref<Texture2D> albedo_texture = base_material->get_texture(BaseMaterial3D::TEXTURE_ALBEDO);
GLTFTextureIndex gltf_texture_index = -1;
if (albedo_texture.is_valid() && albedo_texture->get_image().is_valid()) {
albedo_texture->set_name(material->get_name() + "_albedo");
gltf_texture_index = _set_texture(p_state, albedo_texture, base_material->get_texture_filter(), base_material->get_flag(BaseMaterial3D::FLAG_USE_TEXTURE_REPEAT));
}
if (gltf_texture_index != -1) {
bct["index"] = gltf_texture_index;
Dictionary extensions = _serialize_texture_transform_uv1(material);
if (!extensions.is_empty()) {
bct["extensions"] = extensions;
p_state->use_khr_texture_transform = true;
}
mr["baseColorTexture"] = bct;
}
}
mr["metallicFactor"] = base_material->get_metallic();
mr["roughnessFactor"] = base_material->get_roughness();
if (_image_format != "None") {
bool has_roughness = base_material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS).is_valid() && base_material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS)->get_image().is_valid();
bool has_ao = base_material->get_feature(BaseMaterial3D::FEATURE_AMBIENT_OCCLUSION) && base_material->get_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION).is_valid();
bool has_metalness = base_material->get_texture(BaseMaterial3D::TEXTURE_METALLIC).is_valid() && base_material->get_texture(BaseMaterial3D::TEXTURE_METALLIC)->get_image().is_valid();
if (has_ao || has_roughness || has_metalness) {
Dictionary mrt;
Ref<Texture2D> roughness_texture = base_material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS);
BaseMaterial3D::TextureChannel roughness_channel = base_material->get_roughness_texture_channel();
Ref<Texture2D> metallic_texture = base_material->get_texture(BaseMaterial3D::TEXTURE_METALLIC);
BaseMaterial3D::TextureChannel metalness_channel = base_material->get_metallic_texture_channel();
Ref<Texture2D> ao_texture = base_material->get_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION);
BaseMaterial3D::TextureChannel ao_channel = base_material->get_ao_texture_channel();
Ref<ImageTexture> orm_texture;
orm_texture.instantiate();
Ref<Image> orm_image;
orm_image.instantiate();
int32_t height = 0;
int32_t width = 0;
Ref<Image> ao_image;
if (has_ao) {
height = ao_texture->get_height();
width = ao_texture->get_width();
ao_image = ao_texture->get_image();
Ref<ImageTexture> img_tex = ao_image;
if (img_tex.is_valid()) {
ao_image = img_tex->get_image();
}
if (ao_image->is_compressed()) {
ao_image->decompress();
}
}
Ref<Image> roughness_image;
if (has_roughness) {
height = roughness_texture->get_height();
width = roughness_texture->get_width();
roughness_image = roughness_texture->get_image();
Ref<ImageTexture> img_tex = roughness_image;
if (img_tex.is_valid()) {
roughness_image = img_tex->get_image();
}
if (roughness_image->is_compressed()) {
roughness_image->decompress();
}
}
Ref<Image> metallness_image;
if (has_metalness) {
height = metallic_texture->get_height();
width = metallic_texture->get_width();
metallness_image = metallic_texture->get_image();
Ref<ImageTexture> img_tex = metallness_image;
if (img_tex.is_valid()) {
metallness_image = img_tex->get_image();
}
if (metallness_image->is_compressed()) {
metallness_image->decompress();
}
}
Ref<Texture2D> albedo_texture = base_material->get_texture(BaseMaterial3D::TEXTURE_ALBEDO);
if (albedo_texture.is_valid() && albedo_texture->get_image().is_valid()) {
height = albedo_texture->get_height();
width = albedo_texture->get_width();
}
orm_image->initialize_data(width, height, false, Image::FORMAT_RGBA8);
if (ao_image.is_valid() && ao_image->get_size() != Vector2(width, height)) {
ao_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
}
if (roughness_image.is_valid() && roughness_image->get_size() != Vector2(width, height)) {
roughness_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
}
if (metallness_image.is_valid() && metallness_image->get_size() != Vector2(width, height)) {
metallness_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
}
for (int32_t h = 0; h < height; h++) {
for (int32_t w = 0; w < width; w++) {
Color c = Color(1.0f, 1.0f, 1.0f);
if (has_ao) {
if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == ao_channel) {
c.r = ao_image->get_pixel(w, h).r;
} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == ao_channel) {
c.r = ao_image->get_pixel(w, h).g;
} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == ao_channel) {
c.r = ao_image->get_pixel(w, h).b;
} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == ao_channel) {
c.r = ao_image->get_pixel(w, h).a;
}
}
if (has_roughness) {
if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == roughness_channel) {
c.g = roughness_image->get_pixel(w, h).r;
} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == roughness_channel) {
c.g = roughness_image->get_pixel(w, h).g;
} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == roughness_channel) {
c.g = roughness_image->get_pixel(w, h).b;
} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == roughness_channel) {
c.g = roughness_image->get_pixel(w, h).a;
}
}
if (has_metalness) {
if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == metalness_channel) {
c.b = metallness_image->get_pixel(w, h).r;
} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == metalness_channel) {
c.b = metallness_image->get_pixel(w, h).g;
} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == metalness_channel) {
c.b = metallness_image->get_pixel(w, h).b;
} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == metalness_channel) {
c.b = metallness_image->get_pixel(w, h).a;
}
}
orm_image->set_pixel(w, h, c);
}
}
orm_image->generate_mipmaps();
orm_texture->set_image(orm_image);
GLTFTextureIndex orm_texture_index = -1;
if (has_ao || has_roughness || has_metalness) {
orm_texture->set_name(material->get_name() + "_orm");
orm_texture_index = _set_texture(p_state, orm_texture, base_material->get_texture_filter(), base_material->get_flag(BaseMaterial3D::FLAG_USE_TEXTURE_REPEAT));
}
if (has_ao) {
Dictionary occt;
occt["index"] = orm_texture_index;
d["occlusionTexture"] = occt;
}
if (has_roughness || has_metalness) {
mrt["index"] = orm_texture_index;
Dictionary extensions = _serialize_texture_transform_uv1(material);
if (!extensions.is_empty()) {
mrt["extensions"] = extensions;
p_state->use_khr_texture_transform = true;
}
mr["metallicRoughnessTexture"] = mrt;
}
}
}
d["pbrMetallicRoughness"] = mr;
if (base_material->get_feature(BaseMaterial3D::FEATURE_NORMAL_MAPPING) && _image_format != "None") {
Dictionary nt;
Ref<ImageTexture> tex;
tex.instantiate();
{
Ref<Texture2D> normal_texture = base_material->get_texture(BaseMaterial3D::TEXTURE_NORMAL);
if (normal_texture.is_valid()) {
// Code for uncompressing RG normal maps
Ref<Image> img = normal_texture->get_image();
if (img.is_valid()) {
Ref<ImageTexture> img_tex = img;
if (img_tex.is_valid()) {
img = img_tex->get_image();
}
img->decompress();
img->convert(Image::FORMAT_RGBA8);
for (int32_t y = 0; y < img->get_height(); y++) {
for (int32_t x = 0; x < img->get_width(); x++) {
Color c = img->get_pixel(x, y);
Vector2 red_green = Vector2(c.r, c.g);
red_green = red_green * Vector2(2.0f, 2.0f) - Vector2(1.0f, 1.0f);
float blue = 1.0f - red_green.dot(red_green);
blue = MAX(0.0f, blue);
c.b = Math::sqrt(blue);
img->set_pixel(x, y, c);
}
}
tex->set_image(img);
}
}
}
GLTFTextureIndex gltf_texture_index = -1;
if (tex.is_valid() && tex->get_image().is_valid()) {
tex->set_name(material->get_name() + "_normal");
gltf_texture_index = _set_texture(p_state, tex, base_material->get_texture_filter(), base_material->get_flag(BaseMaterial3D::FLAG_USE_TEXTURE_REPEAT));
}
nt["scale"] = base_material->get_normal_scale();
if (gltf_texture_index != -1) {
nt["index"] = gltf_texture_index;
d["normalTexture"] = nt;
}
}
if (base_material->get_feature(BaseMaterial3D::FEATURE_EMISSION)) {
const Color c = base_material->get_emission().linear_to_srgb();
Array arr;
arr.push_back(c.r);
arr.push_back(c.g);
arr.push_back(c.b);
d["emissiveFactor"] = arr;
}
if (base_material->get_feature(BaseMaterial3D::FEATURE_EMISSION) && _image_format != "None") {
Dictionary et;
Ref<Texture2D> emission_texture = base_material->get_texture(BaseMaterial3D::TEXTURE_EMISSION);
GLTFTextureIndex gltf_texture_index = -1;
if (emission_texture.is_valid() && emission_texture->get_image().is_valid()) {
emission_texture->set_name(material->get_name() + "_emission");
gltf_texture_index = _set_texture(p_state, emission_texture, base_material->get_texture_filter(), base_material->get_flag(BaseMaterial3D::FLAG_USE_TEXTURE_REPEAT));
}
if (gltf_texture_index != -1) {
et["index"] = gltf_texture_index;
d["emissiveTexture"] = et;
}
}
const bool ds = base_material->get_cull_mode() == BaseMaterial3D::CULL_DISABLED;
if (ds) {
d["doubleSided"] = ds;
}
if (base_material->get_transparency() == BaseMaterial3D::TRANSPARENCY_ALPHA_SCISSOR) {
d["alphaMode"] = "MASK";
d["alphaCutoff"] = base_material->get_alpha_scissor_threshold();
} else if (base_material->get_transparency() != BaseMaterial3D::TRANSPARENCY_DISABLED) {
d["alphaMode"] = "BLEND";
}
Dictionary extensions;
if (base_material->get_shading_mode() == BaseMaterial3D::SHADING_MODE_UNSHADED) {
Dictionary mat_unlit;
extensions["KHR_materials_unlit"] = mat_unlit;
p_state->add_used_extension("KHR_materials_unlit");
}
if (base_material->get_feature(BaseMaterial3D::FEATURE_EMISSION) && !Math::is_equal_approx(base_material->get_emission_energy_multiplier(), 1.0f)) {
Dictionary mat_emissive_strength;
mat_emissive_strength["emissiveStrength"] = base_material->get_emission_energy_multiplier();
extensions["KHR_materials_emissive_strength"] = mat_emissive_strength;
p_state->add_used_extension("KHR_materials_emissive_strength");
}
d["extensions"] = extensions;
_attach_meta_to_extras(material, d);
materials.push_back(d);
}
if (!materials.size()) {
return OK;
}
p_state->json["materials"] = materials;
print_verbose("Total materials: " + itos(p_state->materials.size()));
return OK;
}
Error GLTFDocument::_parse_materials(Ref<GLTFState> p_state) {
if (!p_state->json.has("materials")) {
return OK;
}
const Array &materials = p_state->json["materials"];
for (GLTFMaterialIndex i = 0; i < materials.size(); i++) {
const Dictionary &material_dict = materials[i];
Ref<StandardMaterial3D> material;
material.instantiate();
if (material_dict.has("name") && !String(material_dict["name"]).is_empty()) {
material->set_name(material_dict["name"]);
} else {
material->set_name(vformat("material_%s", itos(i)));
}
Dictionary material_extensions;
if (material_dict.has("extensions")) {
material_extensions = material_dict["extensions"];
}
if (material_extensions.has("KHR_materials_unlit")) {
material->set_shading_mode(BaseMaterial3D::SHADING_MODE_UNSHADED);
}
if (material_extensions.has("KHR_materials_emissive_strength")) {
Dictionary emissive_strength = material_extensions["KHR_materials_emissive_strength"];
if (emissive_strength.has("emissiveStrength")) {
material->set_emission_energy_multiplier(emissive_strength["emissiveStrength"]);
}
}
if (material_extensions.has("KHR_materials_pbrSpecularGlossiness")) {
WARN_PRINT("Material uses a specular and glossiness workflow. Textures will be converted to roughness and metallic workflow, which may not be 100% accurate.");
Dictionary sgm = material_extensions["KHR_materials_pbrSpecularGlossiness"];
Ref<GLTFSpecGloss> spec_gloss;
spec_gloss.instantiate();
if (sgm.has("diffuseTexture")) {
const Dictionary &diffuse_texture_dict = sgm["diffuseTexture"];
if (diffuse_texture_dict.has("index")) {
Ref<GLTFTextureSampler> diffuse_sampler = _get_sampler_for_texture(p_state, diffuse_texture_dict["index"]);
if (diffuse_sampler.is_valid()) {
material->set_texture_filter(diffuse_sampler->get_filter_mode());
material->set_flag(BaseMaterial3D::FLAG_USE_TEXTURE_REPEAT, diffuse_sampler->get_wrap_mode());
}
Ref<Texture2D> diffuse_texture = _get_texture(p_state, diffuse_texture_dict["index"], TEXTURE_TYPE_GENERIC);
if (diffuse_texture.is_valid()) {
spec_gloss->diffuse_img = diffuse_texture->get_image();
material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, diffuse_texture);
}
}
}
if (sgm.has("diffuseFactor")) {
const Array &arr = sgm["diffuseFactor"];
ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR);
const Color c = Color(arr[0], arr[1], arr[2], arr[3]).linear_to_srgb();
spec_gloss->diffuse_factor = c;
material->set_albedo(spec_gloss->diffuse_factor);
}
if (sgm.has("specularFactor")) {
const Array &arr = sgm["specularFactor"];
ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
spec_gloss->specular_factor = Color(arr[0], arr[1], arr[2]);
}
if (sgm.has("glossinessFactor")) {
spec_gloss->gloss_factor = sgm["glossinessFactor"];
material->set_roughness(1.0f - CLAMP(spec_gloss->gloss_factor, 0.0f, 1.0f));
}
if (sgm.has("specularGlossinessTexture")) {
const Dictionary &spec_gloss_texture = sgm["specularGlossinessTexture"];
if (spec_gloss_texture.has("index")) {
const Ref<Texture2D> orig_texture = _get_texture(p_state, spec_gloss_texture["index"], TEXTURE_TYPE_GENERIC);
if (orig_texture.is_valid()) {
spec_gloss->spec_gloss_img = orig_texture->get_image();
}
}
}
spec_gloss_to_rough_metal(spec_gloss, material);
} else if (material_dict.has("pbrMetallicRoughness")) {
const Dictionary &mr = material_dict["pbrMetallicRoughness"];
if (mr.has("baseColorFactor")) {
const Array &arr = mr["baseColorFactor"];
ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR);
const Color c = Color(arr[0], arr[1], arr[2], arr[3]).linear_to_srgb();
material->set_albedo(c);
}
if (mr.has("baseColorTexture")) {
const Dictionary &bct = mr["baseColorTexture"];
if (bct.has("index")) {
Ref<GLTFTextureSampler> bct_sampler = _get_sampler_for_texture(p_state, bct["index"]);
material->set_texture_filter(bct_sampler->get_filter_mode());
material->set_flag(BaseMaterial3D::FLAG_USE_TEXTURE_REPEAT, bct_sampler->get_wrap_mode());
material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, _get_texture(p_state, bct["index"], TEXTURE_TYPE_GENERIC));
}
if (!mr.has("baseColorFactor")) {
material->set_albedo(Color(1, 1, 1));
}
_set_texture_transform_uv1(bct, material);
}
if (mr.has("metallicFactor")) {
material->set_metallic(mr["metallicFactor"]);
} else {
material->set_metallic(1.0);
}
if (mr.has("roughnessFactor")) {
material->set_roughness(mr["roughnessFactor"]);
} else {
material->set_roughness(1.0);
}
if (mr.has("metallicRoughnessTexture")) {
const Dictionary &bct = mr["metallicRoughnessTexture"];
if (bct.has("index")) {
const Ref<Texture2D> t = _get_texture(p_state, bct["index"], TEXTURE_TYPE_GENERIC);
material->set_texture(BaseMaterial3D::TEXTURE_METALLIC, t);
material->set_metallic_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_BLUE);
material->set_texture(BaseMaterial3D::TEXTURE_ROUGHNESS, t);
material->set_roughness_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_GREEN);
if (!mr.has("metallicFactor")) {
material->set_metallic(1);
}
if (!mr.has("roughnessFactor")) {
material->set_roughness(1);
}
}
}
}
if (material_dict.has("normalTexture")) {
const Dictionary &bct = material_dict["normalTexture"];
if (bct.has("index")) {
material->set_texture(BaseMaterial3D::TEXTURE_NORMAL, _get_texture(p_state, bct["index"], TEXTURE_TYPE_NORMAL));
material->set_feature(BaseMaterial3D::FEATURE_NORMAL_MAPPING, true);
}
if (bct.has("scale")) {
material->set_normal_scale(bct["scale"]);
}
}
if (material_dict.has("occlusionTexture")) {
const Dictionary &bct = material_dict["occlusionTexture"];
if (bct.has("index")) {
material->set_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION, _get_texture(p_state, bct["index"], TEXTURE_TYPE_GENERIC));
material->set_ao_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_RED);
material->set_feature(BaseMaterial3D::FEATURE_AMBIENT_OCCLUSION, true);
}
}
if (material_dict.has("emissiveFactor")) {
const Array &arr = material_dict["emissiveFactor"];
ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
const Color c = Color(arr[0], arr[1], arr[2]).linear_to_srgb();
material->set_feature(BaseMaterial3D::FEATURE_EMISSION, true);
material->set_emission(c);
}
if (material_dict.has("emissiveTexture")) {
const Dictionary &bct = material_dict["emissiveTexture"];
if (bct.has("index")) {
material->set_texture(BaseMaterial3D::TEXTURE_EMISSION, _get_texture(p_state, bct["index"], TEXTURE_TYPE_GENERIC));
material->set_feature(BaseMaterial3D::FEATURE_EMISSION, true);
material->set_emission(Color(0, 0, 0));
}
}
if (material_dict.has("doubleSided")) {
const bool ds = material_dict["doubleSided"];
if (ds) {
material->set_cull_mode(BaseMaterial3D::CULL_DISABLED);
}
}
if (material_dict.has("alphaMode")) {
const String &am = material_dict["alphaMode"];
if (am == "BLEND") {
material->set_transparency(BaseMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS);
} else if (am == "MASK") {
material->set_transparency(BaseMaterial3D::TRANSPARENCY_ALPHA_SCISSOR);
if (material_dict.has("alphaCutoff")) {
material->set_alpha_scissor_threshold(material_dict["alphaCutoff"]);
} else {
material->set_alpha_scissor_threshold(0.5f);
}
}
}
if (material_dict.has("extras")) {
_attach_extras_to_meta(material_dict["extras"], material);
}
p_state->materials.push_back(material);
}
print_verbose("Total materials: " + itos(p_state->materials.size()));
return OK;
}
void GLTFDocument::_set_texture_transform_uv1(const Dictionary &p_dict, Ref<BaseMaterial3D> p_material) {
if (p_dict.has("extensions")) {
const Dictionary &extensions = p_dict["extensions"];
if (extensions.has("KHR_texture_transform")) {
if (p_material.is_valid()) {
const Dictionary &texture_transform = extensions["KHR_texture_transform"];
const Array &offset_arr = texture_transform["offset"];
if (offset_arr.size() == 2) {
const Vector3 offset_vector3 = Vector3(offset_arr[0], offset_arr[1], 0.0f);
p_material->set_uv1_offset(offset_vector3);
}
const Array &scale_arr = texture_transform["scale"];
if (scale_arr.size() == 2) {
const Vector3 scale_vector3 = Vector3(scale_arr[0], scale_arr[1], 1.0f);
p_material->set_uv1_scale(scale_vector3);
}
}
}
}
}
void GLTFDocument::spec_gloss_to_rough_metal(Ref<GLTFSpecGloss> r_spec_gloss, Ref<BaseMaterial3D> p_material) {
if (r_spec_gloss.is_null()) {
return;
}
if (r_spec_gloss->spec_gloss_img.is_null()) {
return;
}
if (r_spec_gloss->diffuse_img.is_null()) {
return;
}
if (p_material.is_null()) {
return;
}
bool has_roughness = false;
bool has_metal = false;
p_material->set_roughness(1.0f);
p_material->set_metallic(1.0f);
Ref<Image> rm_img = Image::create_empty(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), false, Image::FORMAT_RGBA8);
r_spec_gloss->spec_gloss_img->decompress();
if (r_spec_gloss->diffuse_img.is_valid()) {
r_spec_gloss->diffuse_img->decompress();
r_spec_gloss->diffuse_img->resize(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), Image::INTERPOLATE_LANCZOS);
r_spec_gloss->spec_gloss_img->resize(r_spec_gloss->diffuse_img->get_width(), r_spec_gloss->diffuse_img->get_height(), Image::INTERPOLATE_LANCZOS);
}
for (int32_t y = 0; y < r_spec_gloss->spec_gloss_img->get_height(); y++) {
for (int32_t x = 0; x < r_spec_gloss->spec_gloss_img->get_width(); x++) {
const Color specular_pixel = r_spec_gloss->spec_gloss_img->get_pixel(x, y).srgb_to_linear();
Color specular = Color(specular_pixel.r, specular_pixel.g, specular_pixel.b);
specular *= r_spec_gloss->specular_factor;
Color diffuse = Color(1.0f, 1.0f, 1.0f);
diffuse *= r_spec_gloss->diffuse_img->get_pixel(x, y).srgb_to_linear();
float metallic = 0.0f;
Color base_color;
spec_gloss_to_metal_base_color(specular, diffuse, base_color, metallic);
Color mr = Color(1.0f, 1.0f, 1.0f);
mr.g = specular_pixel.a;
mr.b = metallic;
if (!Math::is_equal_approx(mr.g, 1.0f)) {
has_roughness = true;
}
if (!Math::is_zero_approx(mr.b)) {
has_metal = true;
}
mr.g *= r_spec_gloss->gloss_factor;
mr.g = 1.0f - mr.g;
rm_img->set_pixel(x, y, mr);
if (r_spec_gloss->diffuse_img.is_valid()) {
r_spec_gloss->diffuse_img->set_pixel(x, y, base_color.linear_to_srgb());
}
}
}
rm_img->generate_mipmaps();
r_spec_gloss->diffuse_img->generate_mipmaps();
p_material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, ImageTexture::create_from_image(r_spec_gloss->diffuse_img));
Ref<ImageTexture> rm_image_texture = ImageTexture::create_from_image(rm_img);
if (has_roughness) {
p_material->set_texture(BaseMaterial3D::TEXTURE_ROUGHNESS, rm_image_texture);
p_material->set_roughness_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_GREEN);
}
if (has_metal) {
p_material->set_texture(BaseMaterial3D::TEXTURE_METALLIC, rm_image_texture);
p_material->set_metallic_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_BLUE);
}
}
void GLTFDocument::spec_gloss_to_metal_base_color(const Color &p_specular_factor, const Color &p_diffuse, Color &r_base_color, float &r_metallic) {
const Color DIELECTRIC_SPECULAR = Color(0.04f, 0.04f, 0.04f);
Color specular = Color(p_specular_factor.r, p_specular_factor.g, p_specular_factor.b);
const float one_minus_specular_strength = 1.0f - get_max_component(specular);
const float dielectric_specular_red = DIELECTRIC_SPECULAR.r;
float brightness_diffuse = get_perceived_brightness(p_diffuse);
const float brightness_specular = get_perceived_brightness(specular);
r_metallic = solve_metallic(dielectric_specular_red, brightness_diffuse, brightness_specular, one_minus_specular_strength);
const float one_minus_metallic = 1.0f - r_metallic;
const Color base_color_from_diffuse = p_diffuse * (one_minus_specular_strength / (1.0f - dielectric_specular_red) / MAX(one_minus_metallic, CMP_EPSILON));
const Color base_color_from_specular = (specular - (DIELECTRIC_SPECULAR * (one_minus_metallic))) * (1.0f / MAX(r_metallic, CMP_EPSILON));
r_base_color.r = Math::lerp(base_color_from_diffuse.r, base_color_from_specular.r, r_metallic * r_metallic);
r_base_color.g = Math::lerp(base_color_from_diffuse.g, base_color_from_specular.g, r_metallic * r_metallic);
r_base_color.b = Math::lerp(base_color_from_diffuse.b, base_color_from_specular.b, r_metallic * r_metallic);
r_base_color.a = p_diffuse.a;
r_base_color = r_base_color.clamp();
}
Error GLTFDocument::_parse_skins(Ref<GLTFState> p_state) {
if (!p_state->json.has("skins")) {
return OK;
}
const Array &skins = p_state->json["skins"];
// Create the base skins, and mark nodes that are joints
for (int i = 0; i < skins.size(); i++) {
const Dictionary &d = skins[i];
Ref<GLTFSkin> skin;
skin.instantiate();
ERR_FAIL_COND_V(!d.has("joints"), ERR_PARSE_ERROR);
const Array &joints = d["joints"];
if (d.has("inverseBindMatrices")) {
skin->inverse_binds = _decode_accessor_as_xform(p_state, d["inverseBindMatrices"], false);
ERR_FAIL_COND_V(skin->inverse_binds.size() != joints.size(), ERR_PARSE_ERROR);
}
for (int j = 0; j < joints.size(); j++) {
const GLTFNodeIndex node = joints[j];
ERR_FAIL_INDEX_V(node, p_state->nodes.size(), ERR_PARSE_ERROR);
skin->joints.push_back(node);
skin->joints_original.push_back(node);
p_state->nodes.write[node]->joint = true;
}
if (d.has("name") && !String(d["name"]).is_empty()) {
skin->set_name(d["name"]);
} else {
skin->set_name(vformat("skin_%s", itos(i)));
}
if (d.has("skeleton")) {
skin->skin_root = d["skeleton"];
}
p_state->skins.push_back(skin);
}
for (GLTFSkinIndex i = 0; i < p_state->skins.size(); ++i) {
Ref<GLTFSkin> skin = p_state->skins.write[i];
// Expand the skin to capture all the extra non-joints that lie in between the actual joints,
// and expand the hierarchy to ensure multi-rooted trees lie on the same height level
ERR_FAIL_COND_V(SkinTool::_expand_skin(p_state->nodes, skin), ERR_PARSE_ERROR);
ERR_FAIL_COND_V(SkinTool::_verify_skin(p_state->nodes, skin), ERR_PARSE_ERROR);
}
print_verbose("glTF: Total skins: " + itos(p_state->skins.size()));
return OK;
}
Error GLTFDocument::_serialize_skins(Ref<GLTFState> p_state) {
_remove_duplicate_skins(p_state);
Array json_skins;
for (int skin_i = 0; skin_i < p_state->skins.size(); skin_i++) {
Ref<GLTFSkin> gltf_skin = p_state->skins[skin_i];
Dictionary json_skin;
json_skin["inverseBindMatrices"] = _encode_accessor_as_xform(p_state, gltf_skin->inverse_binds, false);
json_skin["joints"] = gltf_skin->get_joints();
json_skin["name"] = gltf_skin->get_name();
json_skins.push_back(json_skin);
}
if (!p_state->skins.size()) {
return OK;
}
p_state->json["skins"] = json_skins;
return OK;
}
Error GLTFDocument::_create_skins(Ref<GLTFState> p_state) {
for (GLTFSkinIndex skin_i = 0; skin_i < p_state->skins.size(); ++skin_i) {
Ref<GLTFSkin> gltf_skin = p_state->skins.write[skin_i];
Ref<Skin> skin;
skin.instantiate();
// Some skins don't have IBM's! What absolute monsters!
const bool has_ibms = !gltf_skin->inverse_binds.is_empty();
for (int joint_i = 0; joint_i < gltf_skin->joints_original.size(); ++joint_i) {
GLTFNodeIndex node = gltf_skin->joints_original[joint_i];
String bone_name = p_state->nodes[node]->get_name();
Transform3D xform;
if (has_ibms) {
xform = gltf_skin->inverse_binds[joint_i];
}
if (p_state->use_named_skin_binds) {
skin->add_named_bind(bone_name, xform);
} else {
int32_t bone_i = gltf_skin->joint_i_to_bone_i[joint_i];
skin->add_bind(bone_i, xform);
}
}
gltf_skin->godot_skin = skin;
}
// Purge the duplicates!
_remove_duplicate_skins(p_state);
// Create unique names now, after removing duplicates
for (GLTFSkinIndex skin_i = 0; skin_i < p_state->skins.size(); ++skin_i) {
Ref<Skin> skin = p_state->skins.write[skin_i]->godot_skin;
if (skin->get_name().is_empty()) {
// Make a unique name, no gltf node represents this skin
skin->set_name(_gen_unique_name(p_state, "Skin"));
}
}
return OK;
}
bool GLTFDocument::_skins_are_same(const Ref<Skin> p_skin_a, const Ref<Skin> p_skin_b) {
if (p_skin_a->get_bind_count() != p_skin_b->get_bind_count()) {
return false;
}
for (int i = 0; i < p_skin_a->get_bind_count(); ++i) {
if (p_skin_a->get_bind_bone(i) != p_skin_b->get_bind_bone(i)) {
return false;
}
if (p_skin_a->get_bind_name(i) != p_skin_b->get_bind_name(i)) {
return false;
}
Transform3D a_xform = p_skin_a->get_bind_pose(i);
Transform3D b_xform = p_skin_b->get_bind_pose(i);
if (a_xform != b_xform) {
return false;
}
}
return true;
}
void GLTFDocument::_remove_duplicate_skins(Ref<GLTFState> p_state) {
for (int i = 0; i < p_state->skins.size(); ++i) {
for (int j = i + 1; j < p_state->skins.size(); ++j) {
const Ref<Skin> skin_i = p_state->skins[i]->godot_skin;
const Ref<Skin> skin_j = p_state->skins[j]->godot_skin;
if (_skins_are_same(skin_i, skin_j)) {
// replace it and delete the old
p_state->skins.write[j]->godot_skin = skin_i;
}
}
}
}
Error GLTFDocument::_serialize_lights(Ref<GLTFState> p_state) {
if (p_state->lights.is_empty()) {
return OK;
}
Array lights;
for (GLTFLightIndex i = 0; i < p_state->lights.size(); i++) {
lights.push_back(p_state->lights[i]->to_dictionary());
}
Dictionary extensions;
if (p_state->json.has("extensions")) {
extensions = p_state->json["extensions"];
} else {
p_state->json["extensions"] = extensions;
}
Dictionary lights_punctual;
extensions["KHR_lights_punctual"] = lights_punctual;
lights_punctual["lights"] = lights;
print_verbose("glTF: Total lights: " + itos(p_state->lights.size()));
return OK;
}
Error GLTFDocument::_serialize_cameras(Ref<GLTFState> p_state) {
Array cameras;
cameras.resize(p_state->cameras.size());
for (GLTFCameraIndex i = 0; i < p_state->cameras.size(); i++) {
cameras[i] = p_state->cameras[i]->to_dictionary();
}
if (!p_state->cameras.size()) {
return OK;
}
p_state->json["cameras"] = cameras;
print_verbose("glTF: Total cameras: " + itos(p_state->cameras.size()));
return OK;
}
Error GLTFDocument::_parse_lights(Ref<GLTFState> p_state) {
if (!p_state->json.has("extensions")) {
return OK;
}
Dictionary extensions = p_state->json["extensions"];
if (!extensions.has("KHR_lights_punctual")) {
return OK;
}
Dictionary lights_punctual = extensions["KHR_lights_punctual"];
if (!lights_punctual.has("lights")) {
return OK;
}
const Array &lights = lights_punctual["lights"];
for (GLTFLightIndex light_i = 0; light_i < lights.size(); light_i++) {
Ref<GLTFLight> light = GLTFLight::from_dictionary(lights[light_i]);
if (light.is_null()) {
return Error::ERR_PARSE_ERROR;
}
p_state->lights.push_back(light);
}
print_verbose("glTF: Total lights: " + itos(p_state->lights.size()));
return OK;
}
Error GLTFDocument::_parse_cameras(Ref<GLTFState> p_state) {
if (!p_state->json.has("cameras")) {
return OK;
}
const Array cameras = p_state->json["cameras"];
for (GLTFCameraIndex i = 0; i < cameras.size(); i++) {
p_state->cameras.push_back(GLTFCamera::from_dictionary(cameras[i]));
}
print_verbose("glTF: Total cameras: " + itos(p_state->cameras.size()));
return OK;
}
String GLTFDocument::interpolation_to_string(const GLTFAnimation::Interpolation p_interp) {
String interp = "LINEAR";
if (p_interp == GLTFAnimation::INTERP_STEP) {
interp = "STEP";
} else if (p_interp == GLTFAnimation::INTERP_LINEAR) {
interp = "LINEAR";
} else if (p_interp == GLTFAnimation::INTERP_CATMULLROMSPLINE) {
interp = "CATMULLROMSPLINE";
} else if (p_interp == GLTFAnimation::INTERP_CUBIC_SPLINE) {
interp = "CUBICSPLINE";
}
return interp;
}
Error GLTFDocument::_serialize_animations(Ref<GLTFState> p_state) {
if (!p_state->animation_players.size()) {
return OK;
}
for (int32_t player_i = 0; player_i < p_state->animation_players.size(); player_i++) {
AnimationPlayer *animation_player = p_state->animation_players[player_i];
List<StringName> animations;
animation_player->get_animation_list(&animations);
for (const StringName &animation_name : animations) {
_convert_animation(p_state, animation_player, animation_name);
}
}
Array animations;
for (GLTFAnimationIndex animation_i = 0; animation_i < p_state->animations.size(); animation_i++) {
Dictionary d;
Ref<GLTFAnimation> gltf_animation = p_state->animations[animation_i];
if (gltf_animation->is_empty_of_tracks()) {
continue;
}
if (!gltf_animation->get_name().is_empty()) {
d["name"] = gltf_animation->get_name();
}
Array channels;
Array samplers;
// Serialize glTF node tracks with the vanilla glTF animation system.
for (KeyValue<int, GLTFAnimation::NodeTrack> &track_i : gltf_animation->get_node_tracks()) {
GLTFAnimation::NodeTrack track = track_i.value;
if (track.position_track.times.size()) {
Dictionary t;
t["sampler"] = samplers.size();
Dictionary s;
s["interpolation"] = interpolation_to_string(track.position_track.interpolation);
Vector<double> times = track.position_track.times;
s["input"] = _encode_accessor_as_floats(p_state, times, false);
Vector<Vector3> values = track.position_track.values;
s["output"] = _encode_accessor_as_vec3(p_state, values, false);
samplers.push_back(s);
Dictionary target;
target["path"] = "translation";
target["node"] = track_i.key;
t["target"] = target;
channels.push_back(t);
}
if (track.rotation_track.times.size()) {
Dictionary t;
t["sampler"] = samplers.size();
Dictionary s;
s["interpolation"] = interpolation_to_string(track.rotation_track.interpolation);
Vector<double> times = track.rotation_track.times;
s["input"] = _encode_accessor_as_floats(p_state, times, false);
Vector<Quaternion> values = track.rotation_track.values;
s["output"] = _encode_accessor_as_quaternions(p_state, values, false);
samplers.push_back(s);
Dictionary target;
target["path"] = "rotation";
target["node"] = track_i.key;
t["target"] = target;
channels.push_back(t);
}
if (track.scale_track.times.size()) {
Dictionary t;
t["sampler"] = samplers.size();
Dictionary s;
s["interpolation"] = interpolation_to_string(track.scale_track.interpolation);
Vector<double> times = track.scale_track.times;
s["input"] = _encode_accessor_as_floats(p_state, times, false);
Vector<Vector3> values = track.scale_track.values;
s["output"] = _encode_accessor_as_vec3(p_state, values, false);
samplers.push_back(s);
Dictionary target;
target["path"] = "scale";
target["node"] = track_i.key;
t["target"] = target;
channels.push_back(t);
}
if (track.weight_tracks.size()) {
double length = 0.0f;
for (int32_t track_idx = 0; track_idx < track.weight_tracks.size(); track_idx++) {
int32_t last_time_index = track.weight_tracks[track_idx].times.size() - 1;
length = MAX(length, track.weight_tracks[track_idx].times[last_time_index]);
}
Dictionary t;
t["sampler"] = samplers.size();
Dictionary s;
Vector<double> times;
const double increment = 1.0 / p_state->get_bake_fps();
{
double time = 0.0;
bool last = false;
while (true) {
times.push_back(time);
if (last) {
break;
}
time += increment;
if (time >= length) {
last = true;
time = length;
}
}
}
for (int32_t track_idx = 0; track_idx < track.weight_tracks.size(); track_idx++) {
double time = 0.0;
bool last = false;
Vector<real_t> weight_track;
while (true) {
float weight = _interpolate_track<real_t>(track.weight_tracks[track_idx].times,
track.weight_tracks[track_idx].values,
time,
track.weight_tracks[track_idx].interpolation);
weight_track.push_back(weight);
if (last) {
break;
}
time += increment;
if (time >= length) {
last = true;
time = length;
}
}
track.weight_tracks.write[track_idx].times = times;
track.weight_tracks.write[track_idx].values = weight_track;
}
Vector<double> all_track_times = times;
Vector<double> all_track_values;
int32_t values_size = track.weight_tracks[0].values.size();
int32_t weight_tracks_size = track.weight_tracks.size();
all_track_values.resize(weight_tracks_size * values_size);
for (int k = 0; k < track.weight_tracks.size(); k++) {
Vector<real_t> wdata = track.weight_tracks[k].values;
for (int l = 0; l < wdata.size(); l++) {
int32_t index = l * weight_tracks_size + k;
ERR_BREAK(index >= all_track_values.size());
all_track_values.write[index] = wdata.write[l];
}
}
s["interpolation"] = interpolation_to_string(track.weight_tracks[track.weight_tracks.size() - 1].interpolation);
s["input"] = _encode_accessor_as_floats(p_state, all_track_times, false);
s["output"] = _encode_accessor_as_floats(p_state, all_track_values, false);
samplers.push_back(s);
Dictionary target;
target["path"] = "weights";
target["node"] = track_i.key;
t["target"] = target;
channels.push_back(t);
}
}
if (!gltf_animation->get_pointer_tracks().is_empty()) {
// Serialize glTF pointer tracks with the KHR_animation_pointer extension.
if (!p_state->extensions_used.has("KHR_animation_pointer")) {
p_state->extensions_used.push_back("KHR_animation_pointer");
}
for (KeyValue<String, GLTFAnimation::Channel<Variant>> &pointer_track_iter : gltf_animation->get_pointer_tracks()) {
const String &json_pointer = pointer_track_iter.key;
const GLTFAnimation::Channel<Variant> &pointer_track = pointer_track_iter.value;
const Ref<GLTFObjectModelProperty> &obj_model_prop = p_state->object_model_properties[json_pointer];
Dictionary channel;
channel["sampler"] = samplers.size();
Dictionary channel_target;
channel_target["path"] = "pointer";
Dictionary channel_target_ext;
Dictionary channel_target_ext_khr_anim_ptr;
channel_target_ext_khr_anim_ptr["pointer"] = json_pointer;
channel_target_ext["KHR_animation_pointer"] = channel_target_ext_khr_anim_ptr;
channel_target["extensions"] = channel_target_ext;
channel["target"] = channel_target;
channels.push_back(channel);
Dictionary sampler;
sampler["input"] = _encode_accessor_as_floats(p_state, pointer_track.times, false);
sampler["interpolation"] = interpolation_to_string(pointer_track.interpolation);
sampler["output"] = _encode_accessor_as_variant(p_state, pointer_track.values, obj_model_prop->get_variant_type(), obj_model_prop->get_accessor_type());
samplers.push_back(sampler);
}
}
if (channels.size() && samplers.size()) {
d["channels"] = channels;
d["samplers"] = samplers;
animations.push_back(d);
}
}
if (!animations.size()) {
return OK;
}
p_state->json["animations"] = animations;
print_verbose("glTF: Total animations '" + itos(p_state->animations.size()) + "'.");
return OK;
}
Error GLTFDocument::_parse_animations(Ref<GLTFState> p_state) {
if (!p_state->json.has("animations")) {
return OK;
}
const Array &animations = p_state->json["animations"];
for (GLTFAnimationIndex anim_index = 0; anim_index < animations.size(); anim_index++) {
const Dictionary &anim_dict = animations[anim_index];
Ref<GLTFAnimation> animation;
animation.instantiate();
if (!anim_dict.has("channels") || !anim_dict.has("samplers")) {
continue;
}
Array channels = anim_dict["channels"];
Array samplers = anim_dict["samplers"];
if (anim_dict.has("name")) {
const String anim_name = anim_dict["name"];
const String anim_name_lower = anim_name.to_lower();
if (anim_name_lower.begins_with("loop") || anim_name_lower.ends_with("loop") || anim_name_lower.begins_with("cycle") || anim_name_lower.ends_with("cycle")) {
animation->set_loop(true);
}
animation->set_original_name(anim_name);
animation->set_name(_gen_unique_animation_name(p_state, anim_name));
}
for (int channel_index = 0; channel_index < channels.size(); channel_index++) {
const Dictionary &anim_channel = channels[channel_index];
ERR_FAIL_COND_V_MSG(!anim_channel.has("sampler"), ERR_PARSE_ERROR, "glTF: Animation channel missing required 'sampler' property.");
ERR_FAIL_COND_V_MSG(!anim_channel.has("target"), ERR_PARSE_ERROR, "glTF: Animation channel missing required 'target' property.");
// Parse sampler.
const int sampler_index = anim_channel["sampler"];
ERR_FAIL_INDEX_V(sampler_index, samplers.size(), ERR_PARSE_ERROR);
const Dictionary &sampler_dict = samplers[sampler_index];
ERR_FAIL_COND_V(!sampler_dict.has("input"), ERR_PARSE_ERROR);
ERR_FAIL_COND_V(!sampler_dict.has("output"), ERR_PARSE_ERROR);
const int input_time_accessor_index = sampler_dict["input"];
const int output_value_accessor_index = sampler_dict["output"];
GLTFAnimation::Interpolation interp = GLTFAnimation::INTERP_LINEAR;
int output_count = 1;
if (sampler_dict.has("interpolation")) {
const String &in = sampler_dict["interpolation"];
if (in == "STEP") {
interp = GLTFAnimation::INTERP_STEP;
} else if (in == "LINEAR") {
interp = GLTFAnimation::INTERP_LINEAR;
} else if (in == "CATMULLROMSPLINE") {
interp = GLTFAnimation::INTERP_CATMULLROMSPLINE;
output_count = 3;
} else if (in == "CUBICSPLINE") {
interp = GLTFAnimation::INTERP_CUBIC_SPLINE;
output_count = 3;
}
}
const Vector<double> times = _decode_accessor(p_state, input_time_accessor_index, false);
// Parse target.
const Dictionary &anim_target = anim_channel["target"];
ERR_FAIL_COND_V_MSG(!anim_target.has("path"), ERR_PARSE_ERROR, "glTF: Animation channel target missing required 'path' property.");
String path = anim_target["path"];
if (path == "pointer") {
ERR_FAIL_COND_V(!anim_target.has("extensions"), ERR_PARSE_ERROR);
Dictionary target_extensions = anim_target["extensions"];
ERR_FAIL_COND_V(!target_extensions.has("KHR_animation_pointer"), ERR_PARSE_ERROR);
Dictionary khr_anim_ptr = target_extensions["KHR_animation_pointer"];
ERR_FAIL_COND_V(!khr_anim_ptr.has("pointer"), ERR_PARSE_ERROR);
String anim_json_ptr = khr_anim_ptr["pointer"];
_parse_animation_pointer(p_state, anim_json_ptr, animation, interp, times, output_value_accessor_index);
} else {
// If it's not a pointer, it's a regular animation channel from vanilla glTF (pos/rot/scale/weights).
if (!anim_target.has("node")) {
WARN_PRINT("glTF: Animation channel target missing 'node' property. Ignoring this channel.");
continue;
}
GLTFNodeIndex node = anim_target["node"];
ERR_FAIL_INDEX_V(node, p_state->nodes.size(), ERR_PARSE_ERROR);
GLTFAnimation::NodeTrack *track = nullptr;
if (!animation->get_node_tracks().has(node)) {
animation->get_node_tracks()[node] = GLTFAnimation::NodeTrack();
}
track = &animation->get_node_tracks()[node];
if (path == "translation") {
const Vector<Vector3> positions = _decode_accessor_as_vec3(p_state, output_value_accessor_index, false);
track->position_track.interpolation = interp;
track->position_track.times = times;
track->position_track.values = positions;
} else if (path == "rotation") {
const Vector<Quaternion> rotations = _decode_accessor_as_quaternion(p_state, output_value_accessor_index, false);
track->rotation_track.interpolation = interp;
track->rotation_track.times = times;
track->rotation_track.values = rotations;
} else if (path == "scale") {
const Vector<Vector3> scales = _decode_accessor_as_vec3(p_state, output_value_accessor_index, false);
track->scale_track.interpolation = interp;
track->scale_track.times = times;
track->scale_track.values = scales;
} else if (path == "weights") {
const Vector<float> weights = _decode_accessor_as_floats(p_state, output_value_accessor_index, false);
ERR_FAIL_INDEX_V(p_state->nodes[node]->mesh, p_state->meshes.size(), ERR_PARSE_ERROR);
Ref<GLTFMesh> mesh = p_state->meshes[p_state->nodes[node]->mesh];
const int wc = mesh->get_blend_weights().size();
ERR_CONTINUE_MSG(wc == 0, "glTF: Animation tried to animate weights, but mesh has no weights.");
track->weight_tracks.resize(wc);
const int expected_value_count = times.size() * output_count * wc;
ERR_CONTINUE_MSG(weights.size() != expected_value_count, "Invalid weight data, expected " + itos(expected_value_count) + " weight values, got " + itos(weights.size()) + " instead.");
const int wlen = weights.size() / wc;
for (int k = 0; k < wc; k++) { //separate tracks, having them together is not such a good idea
GLTFAnimation::Channel<real_t> cf;
cf.interpolation = interp;
cf.times = Variant(times);
Vector<real_t> wdata;
wdata.resize(wlen);
for (int l = 0; l < wlen; l++) {
wdata.write[l] = weights[l * wc + k];
}
cf.values = wdata;
track->weight_tracks.write[k] = cf;
}
} else {
WARN_PRINT("Invalid path '" + path + "'.");
}
}
}
p_state->animations.push_back(animation);
}
print_verbose("glTF: Total animations '" + itos(p_state->animations.size()) + "'.");
return OK;
}
void GLTFDocument::_parse_animation_pointer(Ref<GLTFState> p_state, const String &p_animation_json_pointer, const Ref<GLTFAnimation> p_gltf_animation, const GLTFAnimation::Interpolation p_interp, const Vector<double> &p_times, const int p_output_value_accessor_index) {
// Special case: Convert TRS animation pointers to node track pos/rot/scale.
// This is required to handle skeleton bones, and improves performance for regular nodes.
// Mark this as unlikely because TRS animation pointers are not recommended,
// since vanilla glTF animations can already animate TRS properties directly.
// But having this code exist is required to be spec-compliant and handle all test files.
// Note that TRS still needs to be handled in the general case as well, for KHR_interactivity.
const PackedStringArray split = p_animation_json_pointer.split("/", false, 3);
if (unlikely(split.size() == 3 && split[0] == "nodes" && (split[2] == "translation" || split[2] == "rotation" || split[2] == "scale" || split[2] == "matrix" || split[2] == "weights"))) {
const GLTFNodeIndex node_index = split[1].to_int();
HashMap<int, GLTFAnimation::NodeTrack> &node_tracks = p_gltf_animation->get_node_tracks();
if (!node_tracks.has(node_index)) {
node_tracks[node_index] = GLTFAnimation::NodeTrack();
}
GLTFAnimation::NodeTrack *track = &node_tracks[node_index];
if (split[2] == "translation") {
const Vector<Vector3> positions = _decode_accessor_as_vec3(p_state, p_output_value_accessor_index, false);
track->position_track.interpolation = p_interp;
track->position_track.times = p_times;
track->position_track.values = positions;
} else if (split[2] == "rotation") {
const Vector<Quaternion> rotations = _decode_accessor_as_quaternion(p_state, p_output_value_accessor_index, false);
track->rotation_track.interpolation = p_interp;
track->rotation_track.times = p_times;
track->rotation_track.values = rotations;
} else if (split[2] == "scale") {
const Vector<Vector3> scales = _decode_accessor_as_vec3(p_state, p_output_value_accessor_index, false);
track->scale_track.interpolation = p_interp;
track->scale_track.times = p_times;
track->scale_track.values = scales;
} else if (split[2] == "matrix") {
const Vector<Transform3D> transforms = _decode_accessor_as_xform(p_state, p_output_value_accessor_index, false);
track->position_track.interpolation = p_interp;
track->position_track.times = p_times;
track->position_track.values.resize(transforms.size());
track->rotation_track.interpolation = p_interp;
track->rotation_track.times = p_times;
track->rotation_track.values.resize(transforms.size());
track->scale_track.interpolation = p_interp;
track->scale_track.times = p_times;
track->scale_track.values.resize(transforms.size());
for (int i = 0; i < transforms.size(); i++) {
track->position_track.values.write[i] = transforms[i].get_origin();
track->rotation_track.values.write[i] = transforms[i].basis.get_rotation_quaternion();
track->scale_track.values.write[i] = transforms[i].basis.get_scale();
}
} else { // if (split[2] == "weights")
const Vector<float> accessor_weights = _decode_accessor_as_floats(p_state, p_output_value_accessor_index, false);
const GLTFMeshIndex mesh_index = p_state->nodes[node_index]->mesh;
ERR_FAIL_INDEX(mesh_index, p_state->meshes.size());
const Ref<GLTFMesh> gltf_mesh = p_state->meshes[mesh_index];
const Vector<float> &blend_weights = gltf_mesh->get_blend_weights();
const int blend_weight_count = gltf_mesh->get_blend_weights().size();
const int anim_weights_size = accessor_weights.size();
// For example, if a mesh has 2 blend weights, and the accessor provides 10 values, then there are 5 frames of animation, each with 2 blend weights.
ERR_FAIL_COND_MSG(blend_weight_count == 0 || ((anim_weights_size % blend_weight_count) != 0), "glTF: Cannot apply " + itos(accessor_weights.size()) + " weights to a mesh with " + itos(blend_weights.size()) + " blend weights.");
const int frame_count = anim_weights_size / blend_weight_count;
track->weight_tracks.resize(blend_weight_count);
for (int blend_weight_index = 0; blend_weight_index < blend_weight_count; blend_weight_index++) {
GLTFAnimation::Channel<real_t> weight_track;
weight_track.interpolation = p_interp;
weight_track.times = p_times;
weight_track.values.resize(frame_count);
for (int frame_index = 0; frame_index < frame_count; frame_index++) {
// For example, if a mesh has 2 blend weights, and the accessor provides 10 values,
// then the first frame has indices [0, 1], the second frame has [2, 3], and so on.
// Here we process all frames of one blend weight, so we want [0, 2, 4, 6, 8] or [1, 3, 5, 7, 9].
// For the fist one we calculate 0 * 2 + 0, 1 * 2 + 0, 2 * 2 + 0, etc, then for the second 0 * 2 + 1, 1 * 2 + 1, 2 * 2 + 1, etc.
weight_track.values.write[frame_index] = accessor_weights[frame_index * blend_weight_count + blend_weight_index];
}
track->weight_tracks.write[blend_weight_index] = weight_track;
}
}
// The special case was handled, return to skip the general case.
return;
}
// General case: Convert animation pointers to Variant value pointer tracks.
Ref<GLTFObjectModelProperty> obj_model_prop = import_object_model_property(p_state, p_animation_json_pointer);
if (obj_model_prop.is_null() || !obj_model_prop->has_node_paths()) {
// Exit quietly, `import_object_model_property` already prints a warning if the property is not found.
return;
}
HashMap<String, GLTFAnimation::Channel<Variant>> &anim_ptr_map = p_gltf_animation->get_pointer_tracks();
GLTFAnimation::Channel<Variant> channel;
channel.interpolation = p_interp;
channel.times = p_times;
channel.values = _decode_accessor_as_variant(p_state, p_output_value_accessor_index, obj_model_prop->get_variant_type(), obj_model_prop->get_accessor_type());
anim_ptr_map[p_animation_json_pointer] = channel;
}
void GLTFDocument::_assign_node_names(Ref<GLTFState> p_state) {
for (int i = 0; i < p_state->nodes.size(); i++) {
Ref<GLTFNode> gltf_node = p_state->nodes[i];
// Any joints get unique names generated when the skeleton is made, unique to the skeleton
if (gltf_node->skeleton >= 0) {
continue;
}
String gltf_node_name = gltf_node->get_name();
if (gltf_node_name.is_empty()) {
if (_naming_version == 0) {
if (gltf_node->mesh >= 0) {
gltf_node_name = _gen_unique_name(p_state, "Mesh");
} else if (gltf_node->camera >= 0) {
gltf_node_name = _gen_unique_name(p_state, "Camera3D");
} else {
gltf_node_name = _gen_unique_name(p_state, "Node");
}
} else {
if (gltf_node->mesh >= 0) {
gltf_node_name = "Mesh";
} else if (gltf_node->camera >= 0) {
gltf_node_name = "Camera";
} else {
gltf_node_name = "Node";
}
}
}
gltf_node->set_name(_gen_unique_name(p_state, gltf_node_name));
}
}
BoneAttachment3D *GLTFDocument::_generate_bone_attachment(Ref<GLTFState> p_state, Skeleton3D *p_skeleton, const GLTFNodeIndex p_node_index, const GLTFNodeIndex p_bone_index) {
Ref<GLTFNode> gltf_node = p_state->nodes[p_node_index];
Ref<GLTFNode> bone_node = p_state->nodes[p_bone_index];
BoneAttachment3D *bone_attachment = memnew(BoneAttachment3D);
print_verbose("glTF: Creating bone attachment for: " + gltf_node->get_name());
ERR_FAIL_COND_V(!bone_node->joint, nullptr);
bone_attachment->set_bone_name(bone_node->get_name());
return bone_attachment;
}
GLTFMeshIndex GLTFDocument::_convert_mesh_to_gltf(Ref<GLTFState> p_state, MeshInstance3D *p_mesh_instance) {
ERR_FAIL_NULL_V(p_mesh_instance, -1);
ERR_FAIL_COND_V_MSG(p_mesh_instance->get_mesh().is_null(), -1, "glTF: Tried to export a MeshInstance3D node named " + p_mesh_instance->get_name() + ", but it has no mesh. This node will be exported without a mesh.");
Ref<Mesh> mesh_resource = p_mesh_instance->get_mesh();
ERR_FAIL_COND_V_MSG(mesh_resource->get_surface_count() == 0, -1, "glTF: Tried to export a MeshInstance3D node named " + p_mesh_instance->get_name() + ", but its mesh has no surfaces. This node will be exported without a mesh.");
TypedArray<Material> instance_materials;
for (int32_t surface_i = 0; surface_i < mesh_resource->get_surface_count(); surface_i++) {
Ref<Material> mat = p_mesh_instance->get_active_material(surface_i);
instance_materials.append(mat);
}
Ref<ImporterMesh> current_mesh = _mesh_to_importer_mesh(mesh_resource);
Vector<float> blend_weights;
int32_t blend_count = mesh_resource->get_blend_shape_count();
blend_weights.resize(blend_count);
for (int32_t blend_i = 0; blend_i < blend_count; blend_i++) {
blend_weights.write[blend_i] = 0.0f;
}
Ref<GLTFMesh> gltf_mesh;
gltf_mesh.instantiate();
gltf_mesh->set_instance_materials(instance_materials);
gltf_mesh->set_mesh(current_mesh);
gltf_mesh->set_blend_weights(blend_weights);
GLTFMeshIndex mesh_i = p_state->meshes.size();
p_state->meshes.push_back(gltf_mesh);
return mesh_i;
}
ImporterMeshInstance3D *GLTFDocument::_generate_mesh_instance(Ref<GLTFState> p_state, const GLTFNodeIndex p_node_index) {
Ref<GLTFNode> gltf_node = p_state->nodes[p_node_index];
ERR_FAIL_INDEX_V(gltf_node->mesh, p_state->meshes.size(), nullptr);
ImporterMeshInstance3D *mi = memnew(ImporterMeshInstance3D);
print_verbose("glTF: Creating mesh for: " + gltf_node->get_name());
p_state->scene_mesh_instances.insert(p_node_index, mi);
Ref<GLTFMesh> mesh = p_state->meshes.write[gltf_node->mesh];
if (mesh.is_null()) {
return mi;
}
Ref<ImporterMesh> import_mesh = mesh->get_mesh();
if (import_mesh.is_null()) {
return mi;
}
mi->set_mesh(import_mesh);
import_mesh->merge_meta_from(*mesh);
return mi;
}
Light3D *GLTFDocument::_generate_light(Ref<GLTFState> p_state, const GLTFNodeIndex p_node_index) {
Ref<GLTFNode> gltf_node = p_state->nodes[p_node_index];
ERR_FAIL_INDEX_V(gltf_node->light, p_state->lights.size(), nullptr);
print_verbose("glTF: Creating light for: " + gltf_node->get_name());
Ref<GLTFLight> l = p_state->lights[gltf_node->light];
return l->to_node();
}
Camera3D *GLTFDocument::_generate_camera(Ref<GLTFState> p_state, const GLTFNodeIndex p_node_index) {
Ref<GLTFNode> gltf_node = p_state->nodes[p_node_index];
ERR_FAIL_INDEX_V(gltf_node->camera, p_state->cameras.size(), nullptr);
print_verbose("glTF: Creating camera for: " + gltf_node->get_name());
Ref<GLTFCamera> c = p_state->cameras[gltf_node->camera];
return c->to_node();
}
GLTFCameraIndex GLTFDocument::_convert_camera(Ref<GLTFState> p_state, Camera3D *p_camera) {
print_verbose("glTF: Converting camera: " + p_camera->get_name());
Ref<GLTFCamera> c = GLTFCamera::from_node(p_camera);
GLTFCameraIndex camera_index = p_state->cameras.size();
p_state->cameras.push_back(c);
return camera_index;
}
GLTFLightIndex GLTFDocument::_convert_light(Ref<GLTFState> p_state, Light3D *p_light) {
print_verbose("glTF: Converting light: " + p_light->get_name());
Ref<GLTFLight> l = GLTFLight::from_node(p_light);
GLTFLightIndex light_index = p_state->lights.size();
p_state->lights.push_back(l);
return light_index;
}
void GLTFDocument::_convert_spatial(Ref<GLTFState> p_state, Node3D *p_spatial, Ref<GLTFNode> p_node) {
p_node->transform = p_spatial->get_transform();
}
Node3D *GLTFDocument::_generate_spatial(Ref<GLTFState> p_state, const GLTFNodeIndex p_node_index) {
Ref<GLTFNode> gltf_node = p_state->nodes[p_node_index];
Node3D *spatial = memnew(Node3D);
print_verbose("glTF: Converting spatial: " + gltf_node->get_name());
return spatial;
}
void GLTFDocument::_convert_scene_node(Ref<GLTFState> p_state, Node *p_current, const GLTFNodeIndex p_gltf_parent, const GLTFNodeIndex p_gltf_root) {
bool retflag = true;
_check_visibility(p_current, retflag);
if (retflag) {
return;
}
#ifdef TOOLS_ENABLED
if (Engine::get_singleton()->is_editor_hint() && p_gltf_root != -1 && p_current->get_owner() == nullptr) {
WARN_VERBOSE("glTF export warning: Node '" + p_current->get_name() + "' has no owner. This is likely a temporary node generated by a @tool script. This would not be saved when saving the Godot scene, therefore it will not be exported to glTF.");
return;
}
#endif // TOOLS_ENABLED
Ref<GLTFNode> gltf_node;
gltf_node.instantiate();
gltf_node->set_original_name(p_current->get_name());
gltf_node->set_name(_gen_unique_name(p_state, p_current->get_name()));
gltf_node->merge_meta_from(p_current);
if (Object::cast_to<Node3D>(p_current)) {
Node3D *spatial = Object::cast_to<Node3D>(p_current);
_convert_spatial(p_state, spatial, gltf_node);
}
if (Object::cast_to<MeshInstance3D>(p_current)) {
MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_current);
_convert_mesh_instance_to_gltf(mi, p_state, gltf_node);
} else if (Object::cast_to<BoneAttachment3D>(p_current)) {
BoneAttachment3D *bone = Object::cast_to<BoneAttachment3D>(p_current);
_convert_bone_attachment_to_gltf(bone, p_state, p_gltf_parent, p_gltf_root, gltf_node);
return;
} else if (Object::cast_to<Skeleton3D>(p_current)) {
Skeleton3D *skel = Object::cast_to<Skeleton3D>(p_current);
_convert_skeleton_to_gltf(skel, p_state, p_gltf_parent, p_gltf_root, gltf_node);
// We ignore the Godot Engine node that is the skeleton.
return;
} else if (Object::cast_to<MultiMeshInstance3D>(p_current)) {
MultiMeshInstance3D *multi = Object::cast_to<MultiMeshInstance3D>(p_current);
_convert_multi_mesh_instance_to_gltf(multi, p_gltf_parent, p_gltf_root, gltf_node, p_state);
#ifdef MODULE_CSG_ENABLED
} else if (Object::cast_to<CSGShape3D>(p_current)) {
CSGShape3D *shape = Object::cast_to<CSGShape3D>(p_current);
if (shape->get_parent() && shape->is_root_shape()) {
_convert_csg_shape_to_gltf(shape, p_gltf_parent, gltf_node, p_state);
}
#endif // MODULE_CSG_ENABLED
#ifdef MODULE_GRIDMAP_ENABLED
} else if (Object::cast_to<GridMap>(p_current)) {
GridMap *gridmap = Object::cast_to<GridMap>(p_current);
_convert_grid_map_to_gltf(gridmap, p_gltf_parent, p_gltf_root, gltf_node, p_state);
#endif // MODULE_GRIDMAP_ENABLED
} else if (Object::cast_to<Camera3D>(p_current)) {
Camera3D *camera = Object::cast_to<Camera3D>(p_current);
_convert_camera_to_gltf(camera, p_state, gltf_node);
} else if (Object::cast_to<Light3D>(p_current)) {
Light3D *light = Object::cast_to<Light3D>(p_current);
_convert_light_to_gltf(light, p_state, gltf_node);
} else if (Object::cast_to<AnimationPlayer>(p_current)) {
AnimationPlayer *animation_player = Object::cast_to<AnimationPlayer>(p_current);
p_state->animation_players.push_back(animation_player);
}
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
ext->convert_scene_node(p_state, gltf_node, p_current);
}
GLTFNodeIndex current_node_i;
if (gltf_node->get_parent() == -1) {
current_node_i = p_state->append_gltf_node(gltf_node, p_current, p_gltf_parent);
} else if (gltf_node->get_parent() < -1) {
return;
} else {
current_node_i = p_state->nodes.size() - 1;
while (gltf_node != p_state->nodes[current_node_i]) {
current_node_i--;
}
}
const GLTFNodeIndex gltf_root = (p_gltf_root == -1) ? current_node_i : p_gltf_root;
for (int node_i = 0; node_i < p_current->get_child_count(); node_i++) {
_convert_scene_node(p_state, p_current->get_child(node_i), current_node_i, gltf_root);
}
}
#ifdef MODULE_CSG_ENABLED
void GLTFDocument::_convert_csg_shape_to_gltf(CSGShape3D *p_current, GLTFNodeIndex p_gltf_parent, Ref<GLTFNode> p_gltf_node, Ref<GLTFState> p_state) {
CSGShape3D *csg = p_current;
csg->call("_update_shape");
Array meshes = csg->get_meshes();
if (meshes.size() != 2) {
return;
}
Ref<ImporterMesh> mesh;
mesh.instantiate();
{
Ref<ArrayMesh> csg_mesh = csg->get_meshes()[1];
for (int32_t surface_i = 0; surface_i < csg_mesh->get_surface_count(); surface_i++) {
Array array = csg_mesh->surface_get_arrays(surface_i);
Ref<Material> mat;
Ref<Material> mat_override = csg->get_material_override();
if (mat_override.is_valid()) {
mat = mat_override;
}
Ref<Material> mat_surface_override = csg_mesh->surface_get_material(surface_i);
if (mat_surface_override.is_valid() && mat.is_null()) {
mat = mat_surface_override;
}
String mat_name;
if (mat.is_valid()) {
mat_name = mat->get_name();
} else {
// Assign default material when no material is assigned.
mat = Ref<StandardMaterial3D>(memnew(StandardMaterial3D));
}
mesh->add_surface(csg_mesh->surface_get_primitive_type(surface_i),
array, csg_mesh->surface_get_blend_shape_arrays(surface_i), csg_mesh->surface_get_lods(surface_i), mat,
mat_name, csg_mesh->surface_get_format(surface_i));
}
}
Ref<GLTFMesh> gltf_mesh;
gltf_mesh.instantiate();
gltf_mesh->set_mesh(mesh);
gltf_mesh->set_original_name(csg->get_name());
GLTFMeshIndex mesh_i = p_state->meshes.size();
p_state->meshes.push_back(gltf_mesh);
p_gltf_node->mesh = mesh_i;
p_gltf_node->transform = csg->get_transform();
p_gltf_node->set_original_name(csg->get_name());
p_gltf_node->set_name(_gen_unique_name(p_state, csg->get_name()));
}
#endif // MODULE_CSG_ENABLED
void GLTFDocument::_check_visibility(Node *p_node, bool &r_retflag) {
r_retflag = true;
Node3D *spatial = Object::cast_to<Node3D>(p_node);
Node2D *node_2d = Object::cast_to<Node2D>(p_node);
if (node_2d && !node_2d->is_visible()) {
return;
}
if (spatial && !spatial->is_visible()) {
return;
}
r_retflag = false;
}
void GLTFDocument::_convert_camera_to_gltf(Camera3D *camera, Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node) {
ERR_FAIL_NULL(camera);
GLTFCameraIndex camera_index = _convert_camera(p_state, camera);
if (camera_index != -1) {
p_gltf_node->camera = camera_index;
}
}
void GLTFDocument::_convert_light_to_gltf(Light3D *light, Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node) {
ERR_FAIL_NULL(light);
GLTFLightIndex light_index = _convert_light(p_state, light);
if (light_index != -1) {
p_gltf_node->light = light_index;
}
}
#ifdef MODULE_GRIDMAP_ENABLED
void GLTFDocument::_convert_grid_map_to_gltf(GridMap *p_grid_map, GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_node_index, Ref<GLTFNode> p_gltf_node, Ref<GLTFState> p_state) {
Array cells = p_grid_map->get_used_cells();
for (int32_t k = 0; k < cells.size(); k++) {
GLTFNode *new_gltf_node = memnew(GLTFNode);
p_gltf_node->children.push_back(p_state->nodes.size());
p_state->nodes.push_back(new_gltf_node);
Vector3 cell_location = cells[k];
int32_t cell = p_grid_map->get_cell_item(
Vector3(cell_location.x, cell_location.y, cell_location.z));
Transform3D cell_xform;
cell_xform.basis = p_grid_map->get_basis_with_orthogonal_index(
p_grid_map->get_cell_item_orientation(
Vector3(cell_location.x, cell_location.y, cell_location.z)));
cell_xform.basis.scale(Vector3(p_grid_map->get_cell_scale(),
p_grid_map->get_cell_scale(),
p_grid_map->get_cell_scale()));
cell_xform.set_origin(p_grid_map->map_to_local(
Vector3(cell_location.x, cell_location.y, cell_location.z)));
Ref<GLTFMesh> gltf_mesh;
gltf_mesh.instantiate();
gltf_mesh->set_mesh(_mesh_to_importer_mesh(p_grid_map->get_mesh_library()->get_item_mesh(cell)));
gltf_mesh->set_original_name(p_grid_map->get_mesh_library()->get_item_name(cell));
new_gltf_node->mesh = p_state->meshes.size();
p_state->meshes.push_back(gltf_mesh);
new_gltf_node->transform = cell_xform * p_grid_map->get_transform();
new_gltf_node->set_original_name(p_grid_map->get_mesh_library()->get_item_name(cell));
new_gltf_node->set_name(_gen_unique_name(p_state, p_grid_map->get_mesh_library()->get_item_name(cell)));
}
}
#endif // MODULE_GRIDMAP_ENABLED
void GLTFDocument::_convert_multi_mesh_instance_to_gltf(
MultiMeshInstance3D *p_multi_mesh_instance,
GLTFNodeIndex p_parent_node_index,
GLTFNodeIndex p_root_node_index,
Ref<GLTFNode> p_gltf_node, Ref<GLTFState> p_state) {
ERR_FAIL_NULL(p_multi_mesh_instance);
Ref<MultiMesh> multi_mesh = p_multi_mesh_instance->get_multimesh();
if (multi_mesh.is_null()) {
return;
}
Ref<GLTFMesh> gltf_mesh;
gltf_mesh.instantiate();
Ref<Mesh> mesh = multi_mesh->get_mesh();
if (mesh.is_null()) {
return;
}
gltf_mesh->set_original_name(multi_mesh->get_name());
gltf_mesh->set_name(multi_mesh->get_name());
Ref<ImporterMesh> importer_mesh;
importer_mesh.instantiate();
Ref<ArrayMesh> array_mesh = multi_mesh->get_mesh();
if (array_mesh.is_valid()) {
importer_mesh->set_blend_shape_mode(array_mesh->get_blend_shape_mode());
for (int32_t blend_i = 0; blend_i < array_mesh->get_blend_shape_count(); blend_i++) {
importer_mesh->add_blend_shape(array_mesh->get_blend_shape_name(blend_i));
}
}
for (int32_t surface_i = 0; surface_i < mesh->get_surface_count(); surface_i++) {
Ref<Material> mat = mesh->surface_get_material(surface_i);
String material_name;
if (mat.is_valid()) {
material_name = mat->get_name();
}
Array blend_arrays;
if (array_mesh.is_valid()) {
blend_arrays = array_mesh->surface_get_blend_shape_arrays(surface_i);
}
importer_mesh->add_surface(mesh->surface_get_primitive_type(surface_i), mesh->surface_get_arrays(surface_i),
blend_arrays, mesh->surface_get_lods(surface_i), mat, material_name, mesh->surface_get_format(surface_i));
}
gltf_mesh->set_mesh(importer_mesh);
GLTFMeshIndex mesh_index = p_state->meshes.size();
p_state->meshes.push_back(gltf_mesh);
for (int32_t instance_i = 0; instance_i < multi_mesh->get_instance_count();
instance_i++) {
Transform3D transform;
if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_2D) {
Transform2D xform_2d = multi_mesh->get_instance_transform_2d(instance_i);
transform.origin =
Vector3(xform_2d.get_origin().x, 0, xform_2d.get_origin().y);
real_t rotation = xform_2d.get_rotation();
Quaternion quaternion(Vector3(0, 1, 0), rotation);
Size2 scale = xform_2d.get_scale();
transform.basis.set_quaternion_scale(quaternion,
Vector3(scale.x, 0, scale.y));
transform = p_multi_mesh_instance->get_transform() * transform;
} else if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_3D) {
transform = p_multi_mesh_instance->get_transform() *
multi_mesh->get_instance_transform(instance_i);
}
Ref<GLTFNode> new_gltf_node;
new_gltf_node.instantiate();
new_gltf_node->mesh = mesh_index;
new_gltf_node->transform = transform;
new_gltf_node->set_original_name(p_multi_mesh_instance->get_name());
new_gltf_node->set_name(_gen_unique_name(p_state, p_multi_mesh_instance->get_name()));
p_gltf_node->children.push_back(p_state->nodes.size());
p_state->nodes.push_back(new_gltf_node);
}
}
void GLTFDocument::_convert_skeleton_to_gltf(Skeleton3D *p_skeleton3d, Ref<GLTFState> p_state, GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_node_index, Ref<GLTFNode> p_gltf_node) {
Skeleton3D *skeleton = p_skeleton3d;
Ref<GLTFSkeleton> gltf_skeleton;
gltf_skeleton.instantiate();
// GLTFSkeleton is only used to hold internal p_state data. It will not be written to the document.
//
gltf_skeleton->godot_skeleton = skeleton;
GLTFSkeletonIndex skeleton_i = p_state->skeletons.size();
p_state->skeleton3d_to_gltf_skeleton[skeleton->get_instance_id()] = skeleton_i;
p_state->skeletons.push_back(gltf_skeleton);
BoneId bone_count = skeleton->get_bone_count();
for (BoneId bone_i = 0; bone_i < bone_count; bone_i++) {
Ref<GLTFNode> joint_node;
joint_node.instantiate();
// Note that we cannot use _gen_unique_bone_name here, because glTF spec requires all node
// names to be unique regardless of whether or not they are used as joints.
joint_node->set_original_name(skeleton->get_bone_name(bone_i));
joint_node->set_name(_gen_unique_name(p_state, skeleton->get_bone_name(bone_i)));
joint_node->transform = skeleton->get_bone_pose(bone_i);
joint_node->joint = true;
if (p_skeleton3d->has_bone_meta(bone_i, "extras")) {
joint_node->set_meta("extras", p_skeleton3d->get_bone_meta(bone_i, "extras"));
}
GLTFNodeIndex current_node_i = p_state->nodes.size();
p_state->scene_nodes.insert(current_node_i, skeleton);
p_state->nodes.push_back(joint_node);
gltf_skeleton->joints.push_back(current_node_i);
if (skeleton->get_bone_parent(bone_i) == -1) {
gltf_skeleton->roots.push_back(current_node_i);
}
gltf_skeleton->godot_bone_node.insert(bone_i, current_node_i);
}
for (BoneId bone_i = 0; bone_i < bone_count; bone_i++) {
GLTFNodeIndex current_node_i = gltf_skeleton->godot_bone_node[bone_i];
BoneId parent_bone_id = skeleton->get_bone_parent(bone_i);
if (parent_bone_id == -1) {
if (p_parent_node_index != -1) {
p_state->nodes.write[current_node_i]->parent = p_parent_node_index;
p_state->nodes.write[p_parent_node_index]->children.push_back(current_node_i);
}
} else {
GLTFNodeIndex parent_node_i = gltf_skeleton->godot_bone_node[parent_bone_id];
p_state->nodes.write[current_node_i]->parent = parent_node_i;
p_state->nodes.write[parent_node_i]->children.push_back(current_node_i);
}
}
// Remove placeholder skeleton3d node by not creating the gltf node
// Skins are per mesh
for (int node_i = 0; node_i < skeleton->get_child_count(); node_i++) {
_convert_scene_node(p_state, skeleton->get_child(node_i), p_parent_node_index, p_root_node_index);
}
}
void GLTFDocument::_convert_bone_attachment_to_gltf(BoneAttachment3D *p_bone_attachment, Ref<GLTFState> p_state, GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_node_index, Ref<GLTFNode> p_gltf_node) {
Skeleton3D *skeleton;
// Note that relative transforms to external skeletons and pose overrides are not supported.
if (p_bone_attachment->get_use_external_skeleton()) {
skeleton = Object::cast_to<Skeleton3D>(p_bone_attachment->get_node_or_null(p_bone_attachment->get_external_skeleton()));
} else {
skeleton = Object::cast_to<Skeleton3D>(p_bone_attachment->get_parent());
}
GLTFSkeletonIndex skel_gltf_i = -1;
if (skeleton != nullptr && p_state->skeleton3d_to_gltf_skeleton.has(skeleton->get_instance_id())) {
skel_gltf_i = p_state->skeleton3d_to_gltf_skeleton[skeleton->get_instance_id()];
}
int bone_idx = -1;
if (skeleton != nullptr) {
bone_idx = p_bone_attachment->get_bone_idx();
if (bone_idx == -1) {
bone_idx = skeleton->find_bone(p_bone_attachment->get_bone_name());
}
}
GLTFNodeIndex par_node_index = p_parent_node_index;
if (skeleton != nullptr && bone_idx != -1 && skel_gltf_i != -1) {
Ref<GLTFSkeleton> gltf_skeleton = p_state->skeletons.write[skel_gltf_i];
gltf_skeleton->bone_attachments.push_back(p_bone_attachment);
par_node_index = gltf_skeleton->joints[bone_idx];
}
for (int node_i = 0; node_i < p_bone_attachment->get_child_count(); node_i++) {
_convert_scene_node(p_state, p_bone_attachment->get_child(node_i), par_node_index, p_root_node_index);
}
}
void GLTFDocument::_convert_mesh_instance_to_gltf(MeshInstance3D *p_scene_parent, Ref<GLTFState> p_state, Ref<GLTFNode> p_gltf_node) {
GLTFMeshIndex gltf_mesh_index = _convert_mesh_to_gltf(p_state, p_scene_parent);
if (gltf_mesh_index != -1) {
p_gltf_node->mesh = gltf_mesh_index;
}
}
void GLTFDocument::_generate_scene_node(Ref<GLTFState> p_state, const GLTFNodeIndex p_node_index, Node *p_scene_parent, Node *p_scene_root) {
Ref<GLTFNode> gltf_node = p_state->nodes[p_node_index];
if (gltf_node->skeleton >= 0) {
_generate_skeleton_bone_node(p_state, p_node_index, p_scene_parent, p_scene_root);
return;
}
Node3D *current_node = nullptr;
// Is our parent a skeleton
Skeleton3D *active_skeleton = Object::cast_to<Skeleton3D>(p_scene_parent);
const bool non_bone_parented_to_skeleton = active_skeleton;
// skinned meshes must not be placed in a bone attachment.
if (non_bone_parented_to_skeleton && gltf_node->skin < 0) {
// Bone Attachment - Parent Case
BoneAttachment3D *bone_attachment = _generate_bone_attachment(p_state, active_skeleton, p_node_index, gltf_node->parent);
p_scene_parent->add_child(bone_attachment, true);
// Find the correct bone_idx so we can properly serialize it.
bone_attachment->set_bone_idx(active_skeleton->find_bone(gltf_node->get_name()));
bone_attachment->set_owner(p_scene_root);
// There is no gltf_node that represent this, so just directly create a unique name
bone_attachment->set_name(gltf_node->get_name());
// We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node
// and attach it to the bone_attachment
p_scene_parent = bone_attachment;
}
// Check if any GLTFDocumentExtension classes want to generate a node for us.
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
current_node = ext->generate_scene_node(p_state, gltf_node, p_scene_parent);
if (current_node) {
break;
}
}
// If none of our GLTFDocumentExtension classes generated us a node, we generate one.
if (!current_node) {
if (gltf_node->skin >= 0 && gltf_node->mesh >= 0 && !gltf_node->children.is_empty()) {
// glTF specifies that skinned meshes should ignore their node transforms,
// only being controlled by the skeleton, so Godot will reparent a skinned
// mesh to its skeleton. However, we still need to ensure any child nodes
// keep their place in the tree, so if there are any child nodes, the skinned
// mesh must not be the base node, so generate an empty spatial base.
current_node = _generate_spatial(p_state, p_node_index);
Node3D *mesh_inst = _generate_mesh_instance(p_state, p_node_index);
mesh_inst->set_name(gltf_node->get_name());
current_node->add_child(mesh_inst, true);
} else if (gltf_node->mesh >= 0) {
current_node = _generate_mesh_instance(p_state, p_node_index);
} else if (gltf_node->camera >= 0) {
current_node = _generate_camera(p_state, p_node_index);
} else if (gltf_node->light >= 0) {
current_node = _generate_light(p_state, p_node_index);
} else {
current_node = _generate_spatial(p_state, p_node_index);
}
}
String gltf_node_name = gltf_node->get_name();
if (!gltf_node_name.is_empty()) {
current_node->set_name(gltf_node_name);
}
// Note: p_scene_parent and p_scene_root must either both be null or both be valid.
if (p_scene_root == nullptr) {
// If the root node argument is null, this is the root node.
p_scene_root = current_node;
// If multiple nodes were generated under the root node, ensure they have the owner set.
if (unlikely(current_node->get_child_count() > 0)) {
Array args;
args.append(p_scene_root);
for (int i = 0; i < current_node->get_child_count(); i++) {
Node *child = current_node->get_child(i);
child->propagate_call(StringName("set_owner"), args);
}
}
} else {
// Add the node we generated and set the owner to the scene root.
p_scene_parent->add_child(current_node, true);
Array args;
args.append(p_scene_root);
current_node->propagate_call(StringName("set_owner"), args);
current_node->set_transform(gltf_node->transform);
}
current_node->merge_meta_from(*gltf_node);
p_state->scene_nodes.insert(p_node_index, current_node);
for (int i = 0; i < gltf_node->children.size(); ++i) {
_generate_scene_node(p_state, gltf_node->children[i], current_node, p_scene_root);
}
}
void GLTFDocument::_generate_skeleton_bone_node(Ref<GLTFState> p_state, const GLTFNodeIndex p_node_index, Node *p_scene_parent, Node *p_scene_root) {
Ref<GLTFNode> gltf_node = p_state->nodes[p_node_index];
Node3D *current_node = nullptr;
Skeleton3D *skeleton = p_state->skeletons[gltf_node->skeleton]->godot_skeleton;
// In this case, this node is already a bone in skeleton.
const bool is_skinned_mesh = (gltf_node->skin >= 0 && gltf_node->mesh >= 0);
const bool requires_extra_node = (gltf_node->mesh >= 0 || gltf_node->camera >= 0 || gltf_node->light >= 0);
Skeleton3D *active_skeleton = Object::cast_to<Skeleton3D>(p_scene_parent);
if (active_skeleton != skeleton) {
if (active_skeleton) {
// Should no longer be possible.
ERR_PRINT(vformat("glTF: Generating scene detected direct parented Skeletons at node %d", p_node_index));
BoneAttachment3D *bone_attachment = _generate_bone_attachment(p_state, active_skeleton, p_node_index, gltf_node->parent);
p_scene_parent->add_child(bone_attachment, true);
bone_attachment->set_owner(p_scene_root);
// There is no gltf_node that represent this, so just directly create a unique name
bone_attachment->set_name(_gen_unique_name(p_state, "BoneAttachment3D"));
// We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node
// and attach it to the bone_attachment
p_scene_parent = bone_attachment;
}
if (skeleton->get_parent() == nullptr) {
if (p_scene_root) {
p_scene_parent->add_child(skeleton, true);
skeleton->set_owner(p_scene_root);
} else {
p_scene_parent = skeleton;
p_scene_root = skeleton;
}
}
}
active_skeleton = skeleton;
current_node = active_skeleton;
if (active_skeleton) {
p_scene_parent = active_skeleton;
}
if (requires_extra_node) {
current_node = nullptr;
// skinned meshes must not be placed in a bone attachment.
if (!is_skinned_mesh) {
// Bone Attachment - Same Node Case
BoneAttachment3D *bone_attachment = _generate_bone_attachment(p_state, active_skeleton, p_node_index, p_node_index);
p_scene_parent->add_child(bone_attachment, true);
// Find the correct bone_idx so we can properly serialize it.
bone_attachment->set_bone_idx(active_skeleton->find_bone(gltf_node->get_name()));
bone_attachment->set_owner(p_scene_root);
// There is no gltf_node that represent this, so just directly create a unique name
bone_attachment->set_name(gltf_node->get_name());
// We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node
// and attach it to the bone_attachment
p_scene_parent = bone_attachment;
}
// Check if any GLTFDocumentExtension classes want to generate a node for us.
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
current_node = ext->generate_scene_node(p_state, gltf_node, p_scene_parent);
if (current_node) {
break;
}
}
// If none of our GLTFDocumentExtension classes generated us a node, we generate one.
if (!current_node) {
if (gltf_node->mesh >= 0) {
current_node = _generate_mesh_instance(p_state, p_node_index);
} else if (gltf_node->camera >= 0) {
current_node = _generate_camera(p_state, p_node_index);
} else if (gltf_node->light >= 0) {
current_node = _generate_light(p_state, p_node_index);
} else {
current_node = _generate_spatial(p_state, p_node_index);
}
}
// Add the node we generated and set the owner to the scene root.
p_scene_parent->add_child(current_node, true);
if (current_node != p_scene_root) {
Array args;
args.append(p_scene_root);
current_node->propagate_call(StringName("set_owner"), args);
}
// Do not set transform here. Transform is already applied to our bone.
current_node->set_name(gltf_node->get_name());
}
p_state->scene_nodes.insert(p_node_index, current_node);
for (int i = 0; i < gltf_node->children.size(); ++i) {
_generate_scene_node(p_state, gltf_node->children[i], active_skeleton, p_scene_root);
}
}
template <typename T>
struct SceneFormatImporterGLTFInterpolate {
T lerp(const T &a, const T &b, float c) const {
return a + (b - a) * c;
}
T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) {
const float t2 = t * t;
const float t3 = t2 * t;
return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4.0f * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
}
T hermite(T start, T tan_start, T end, T tan_end, float t) {
/* Formula from the glTF 2.0 specification. */
const real_t t2 = t * t;
const real_t t3 = t2 * t;
const real_t h00 = 2.0 * t3 - 3.0 * t2 + 1.0;
const real_t h10 = t3 - 2.0 * t2 + t;
const real_t h01 = -2.0 * t3 + 3.0 * t2;
const real_t h11 = t3 - t2;
return start * h00 + tan_start * h10 + end * h01 + tan_end * h11;
}
};
// thank you for existing, partial specialization
template <>
struct SceneFormatImporterGLTFInterpolate<Quaternion> {
Quaternion lerp(const Quaternion &a, const Quaternion &b, const float c) const {
ERR_FAIL_COND_V_MSG(!a.is_normalized(), Quaternion(), vformat("The quaternion \"a\" %s must be normalized.", a));
ERR_FAIL_COND_V_MSG(!b.is_normalized(), Quaternion(), vformat("The quaternion \"b\" %s must be normalized.", b));
return a.slerp(b, c).normalized();
}
Quaternion catmull_rom(const Quaternion &p0, const Quaternion &p1, const Quaternion &p2, const Quaternion &p3, const float c) {
ERR_FAIL_COND_V_MSG(!p1.is_normalized(), Quaternion(), vformat("The quaternion \"p1\" (%s) must be normalized.", p1));
ERR_FAIL_COND_V_MSG(!p2.is_normalized(), Quaternion(), vformat("The quaternion \"p2\" (%s) must be normalized.", p2));
return p1.slerp(p2, c).normalized();
}
Quaternion hermite(const Quaternion start, const Quaternion tan_start, const Quaternion end, const Quaternion tan_end, const float t) {
ERR_FAIL_COND_V_MSG(!start.is_normalized(), Quaternion(), vformat("The start quaternion %s must be normalized.", start));
ERR_FAIL_COND_V_MSG(!end.is_normalized(), Quaternion(), vformat("The end quaternion %s must be normalized.", end));
return start.slerp(end, t).normalized();
}
};
template <typename T>
T GLTFDocument::_interpolate_track(const Vector<double> &p_times, const Vector<T> &p_values, const float p_time, const GLTFAnimation::Interpolation p_interp) {
ERR_FAIL_COND_V(p_values.is_empty(), T());
if (p_times.size() != (p_values.size() / (p_interp == GLTFAnimation::INTERP_CUBIC_SPLINE ? 3 : 1))) {
ERR_PRINT_ONCE("The interpolated values are not corresponding to its times.");
return p_values[0];
}
//could use binary search, worth it?
int idx = -1;
for (int i = 0; i < p_times.size(); i++) {
if (p_times[i] > p_time) {
break;
}
idx++;
}
SceneFormatImporterGLTFInterpolate<T> interp;
switch (p_interp) {
case GLTFAnimation::INTERP_LINEAR: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.lerp(p_values[idx], p_values[idx + 1], c);
} break;
case GLTFAnimation::INTERP_STEP: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
return p_values[idx];
} break;
case GLTFAnimation::INTERP_CATMULLROMSPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[1 + p_times.size() - 1];
}
const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c);
} break;
case GLTFAnimation::INTERP_CUBIC_SPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[(p_times.size() - 1) * 3 + 1];
}
const float td = (p_times[idx + 1] - p_times[idx]);
const float c = (p_time - p_times[idx]) / td;
const T &from = p_values[idx * 3 + 1];
const T tan_from = td * p_values[idx * 3 + 2];
const T &to = p_values[idx * 3 + 4];
const T tan_to = td * p_values[idx * 3 + 3];
return interp.hermite(from, tan_from, to, tan_to, c);
} break;
}
ERR_FAIL_V(p_values[0]);
}
NodePath GLTFDocument::_find_material_node_path(Ref<GLTFState> p_state, Ref<Material> p_material) {
int mesh_index = 0;
for (Ref<GLTFMesh> gltf_mesh : p_state->meshes) {
TypedArray<Material> materials = gltf_mesh->get_instance_materials();
for (int mat_index = 0; mat_index < materials.size(); mat_index++) {
if (materials[mat_index] == p_material) {
for (Ref<GLTFNode> gltf_node : p_state->nodes) {
if (gltf_node->mesh == mesh_index) {
NodePath node_path = gltf_node->get_scene_node_path(p_state);
// Example: MyNode:mesh:surface_0/material:albedo_color, so we want the mesh:surface_0/material part.
Vector<StringName> subpath;
subpath.append("mesh");
subpath.append("surface_" + itos(mat_index) + "/material");
return NodePath(node_path.get_names(), subpath, false);
}
}
}
}
mesh_index++;
}
return NodePath();
}
Ref<GLTFObjectModelProperty> GLTFDocument::import_object_model_property(Ref<GLTFState> p_state, const String &p_json_pointer) {
if (p_state->object_model_properties.has(p_json_pointer)) {
return p_state->object_model_properties[p_json_pointer];
}
Ref<GLTFObjectModelProperty> ret;
// Split the JSON pointer into its components.
const PackedStringArray split = p_json_pointer.split("/", false);
ERR_FAIL_COND_V_MSG(split.size() < 3, ret, "glTF: Cannot use JSON pointer '" + p_json_pointer + "' because it does not contain enough elements. The only animatable properties are at least 3 levels deep (ex: '/nodes/0/translation' or '/materials/0/emissiveFactor').");
ret.instantiate();
ret->set_json_pointers({ split });
// Partial paths are passed to GLTFDocumentExtension classes if GLTFDocument cannot handle a given JSON pointer.
TypedArray<NodePath> partial_paths;
// Note: This might not be an integer, but in that case, we don't use this value anyway.
const int top_level_index = split[1].to_int();
// For JSON pointers present in the core glTF Object Model, hard-code them in GLTFDocument.
// https://github.com/KhronosGroup/glTF/blob/main/specification/2.0/ObjectModel.adoc
if (split[0] == "nodes") {
ERR_FAIL_INDEX_V_MSG(top_level_index, p_state->nodes.size(), ret, vformat("glTF: Unable to find node %d for JSON pointer '%s'.", top_level_index, p_json_pointer));
Ref<GLTFNode> pointed_gltf_node = p_state->nodes[top_level_index];
NodePath node_path = pointed_gltf_node->get_scene_node_path(p_state);
partial_paths.append(node_path);
// Check if it's something we should be able to handle.
const String &node_prop = split[2];
if (node_prop == "translation") {
ret->append_path_to_property(node_path, "position");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (node_prop == "rotation") {
ret->append_path_to_property(node_path, "quaternion");
ret->set_types(Variant::QUATERNION, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT4);
} else if (node_prop == "scale") {
ret->append_path_to_property(node_path, "scale");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (node_prop == "matrix") {
ret->append_path_to_property(node_path, "transform");
ret->set_types(Variant::TRANSFORM3D, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT4X4);
} else if (node_prop == "globalMatrix") {
ret->append_path_to_property(node_path, "global_transform");
ret->set_types(Variant::TRANSFORM3D, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT4X4);
} else if (node_prop == "weights") {
if (split.size() > 3) {
const String &weight_index_string = split[3];
ret->append_path_to_property(node_path, "blend_shapes/morph_" + weight_index_string);
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
}
// Else, Godot's MeshInstance3D does not expose the blend shape weights as one property.
// But that's fine, we handle this case in _parse_animation_pointer instead.
}
} else if (split[0] == "cameras") {
const String &camera_prop = split[2];
for (Ref<GLTFNode> gltf_node : p_state->nodes) {
if (gltf_node->camera == top_level_index) {
NodePath node_path = gltf_node->get_scene_node_path(p_state);
partial_paths.append(node_path);
// Check if it's something we should be able to handle.
if (camera_prop == "orthographic" || camera_prop == "perspective") {
ERR_FAIL_COND_V(split.size() < 4, ret);
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
const String &sub_prop = split[3];
if (sub_prop == "xmag" || sub_prop == "ymag") {
ret->append_path_to_property(node_path, "size");
} else if (sub_prop == "yfov") {
ret->append_path_to_property(node_path, "fov");
GLTFCamera::set_fov_conversion_expressions(ret);
} else if (sub_prop == "zfar") {
ret->append_path_to_property(node_path, "far");
} else if (sub_prop == "znear") {
ret->append_path_to_property(node_path, "near");
}
}
}
}
} else if (split[0] == "materials") {
ERR_FAIL_INDEX_V_MSG(top_level_index, p_state->materials.size(), ret, vformat("glTF: Unable to find material %d for JSON pointer '%s'.", top_level_index, p_json_pointer));
Ref<Material> pointed_material = p_state->materials[top_level_index];
NodePath mat_path = _find_material_node_path(p_state, pointed_material);
if (mat_path.is_empty()) {
WARN_PRINT(vformat("glTF: Unable to find a path to the material %d for JSON pointer '%s'. This is likely bad data but it's also possible this is intentional. Continuing anyway.", top_level_index, p_json_pointer));
} else {
partial_paths.append(mat_path);
const String &mat_prop = split[2];
if (mat_prop == "alphaCutoff") {
ret->append_path_to_property(mat_path, "alpha_scissor_threshold");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (mat_prop == "emissiveFactor") {
ret->append_path_to_property(mat_path, "emission");
ret->set_types(Variant::COLOR, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (mat_prop == "extensions") {
ERR_FAIL_COND_V(split.size() < 5, ret);
const String &ext_name = split[3];
const String &ext_prop = split[4];
if (ext_name == "KHR_materials_emissive_strength" && ext_prop == "emissiveStrength") {
ret->append_path_to_property(mat_path, "emission_energy_multiplier");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
}
} else {
ERR_FAIL_COND_V(split.size() < 4, ret);
const String &sub_prop = split[3];
if (mat_prop == "normalTexture") {
if (sub_prop == "scale") {
ret->append_path_to_property(mat_path, "normal_scale");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
}
} else if (mat_prop == "occlusionTexture") {
if (sub_prop == "strength") {
// This is the closest thing Godot has to an occlusion strength property.
ret->append_path_to_property(mat_path, "ao_light_affect");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
}
} else if (mat_prop == "pbrMetallicRoughness") {
if (sub_prop == "baseColorFactor") {
ret->append_path_to_property(mat_path, "albedo_color");
ret->set_types(Variant::COLOR, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT4);
} else if (sub_prop == "metallicFactor") {
ret->append_path_to_property(mat_path, "metallic");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (sub_prop == "roughnessFactor") {
ret->append_path_to_property(mat_path, "roughness");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (sub_prop == "baseColorTexture") {
ERR_FAIL_COND_V(split.size() < 6, ret);
const String &tex_ext_dict = split[4];
const String &tex_ext_name = split[5];
const String &tex_ext_prop = split[6];
if (tex_ext_dict == "extensions" && tex_ext_name == "KHR_texture_transform") {
// Godot only supports UVs for the whole material, not per texture.
// We treat the albedo texture as the main texture, and import as UV1.
// Godot does not support texture rotation, only offset and scale.
if (tex_ext_prop == "offset") {
ret->append_path_to_property(mat_path, "uv1_offset");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT2);
} else if (tex_ext_prop == "scale") {
ret->append_path_to_property(mat_path, "uv1_scale");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT2);
}
}
}
}
}
}
} else if (split[0] == "meshes") {
for (Ref<GLTFNode> gltf_node : p_state->nodes) {
if (gltf_node->mesh == top_level_index) {
NodePath node_path = gltf_node->get_scene_node_path(p_state);
Vector<StringName> subpath;
subpath.append("mesh");
partial_paths.append(NodePath(node_path.get_names(), subpath, false));
break;
}
}
} else if (split[0] == "extensions") {
if (split[1] == "KHR_lights_punctual" && split[2] == "lights" && split.size() > 4) {
const int light_index = split[3].to_int();
ERR_FAIL_INDEX_V_MSG(light_index, p_state->lights.size(), ret, vformat("glTF: Unable to find light %d for JSON pointer '%s'.", light_index, p_json_pointer));
const String &light_prop = split[4];
const Ref<GLTFLight> pointed_light = p_state->lights[light_index];
for (Ref<GLTFNode> gltf_node : p_state->nodes) {
if (gltf_node->light == light_index) {
NodePath node_path = gltf_node->get_scene_node_path(p_state);
partial_paths.append(node_path);
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
// Check if it's something we should be able to handle.
if (light_prop == "color") {
ret->append_path_to_property(node_path, "light_color");
ret->set_types(Variant::COLOR, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (light_prop == "intensity") {
ret->append_path_to_property(node_path, "light_energy");
} else if (light_prop == "range") {
const String &light_type = p_state->lights[light_index]->light_type;
if (light_type == "spot") {
ret->append_path_to_property(node_path, "spot_range");
} else {
ret->append_path_to_property(node_path, "omni_range");
}
} else if (light_prop == "spot") {
ERR_FAIL_COND_V(split.size() < 6, ret);
const String &sub_prop = split[5];
if (sub_prop == "innerConeAngle") {
ret->append_path_to_property(node_path, "spot_angle_attenuation");
GLTFLight::set_cone_inner_attenuation_conversion_expressions(ret);
} else if (sub_prop == "outerConeAngle") {
ret->append_path_to_property(node_path, "spot_angle");
}
}
}
}
}
}
// Additional JSON pointers can be added by GLTFDocumentExtension classes.
// We only need this if no mapping has been found yet from GLTFDocument's internal code.
// When available, we pass the partial paths to the extension to help it generate the full path.
// For example, for `/nodes/3/extensions/MY_ext/prop`, we pass a NodePath that leads to node 3,
// so the GLTFDocumentExtension class only needs to resolve the last `MY_ext/prop` part of the path.
// It should check `split.size() > 4 and split[0] == "nodes" and split[2] == "extensions" and split[3] == "MY_ext"`
// at the start of the function to check if this JSON pointer applies to it, then it can handle `split[4]`.
if (!ret->has_node_paths()) {
for (Ref<GLTFDocumentExtension> ext : all_document_extensions) {
ret = ext->import_object_model_property(p_state, split, partial_paths);
if (ret.is_valid() && ret->has_node_paths()) {
if (!ret->has_json_pointers()) {
ret->set_json_pointers({ split });
}
break;
}
}
if (ret.is_null() || !ret->has_node_paths()) {
if (split.has("KHR_texture_transform")) {
WARN_VERBOSE(vformat("glTF: Texture transforms are only supported per material in Godot. All KHR_texture_transform properties will be ignored except for the albedo texture. Ignoring JSON pointer '%s'.", p_json_pointer));
} else {
WARN_PRINT(vformat("glTF: Animation contained JSON pointer '%s' which could not be resolved. This property will not be animated.", p_json_pointer));
}
}
}
p_state->object_model_properties[p_json_pointer] = ret;
return ret;
}
Ref<GLTFObjectModelProperty> GLTFDocument::export_object_model_property(Ref<GLTFState> p_state, const NodePath &p_node_path, const Node *p_godot_node, GLTFNodeIndex p_gltf_node_index) {
Ref<GLTFObjectModelProperty> ret;
const Object *target_object = p_godot_node;
const Vector<StringName> subpath = p_node_path.get_subnames();
ERR_FAIL_COND_V_MSG(subpath.is_empty(), ret, "glTF: Cannot export empty property. No property was specified in the NodePath: " + p_node_path);
int target_prop_depth = 0;
for (StringName subname : subpath) {
Variant target_property = target_object->get(subname);
if (target_property.get_type() == Variant::OBJECT) {
target_object = target_property;
if (target_object) {
target_prop_depth++;
continue;
}
}
break;
}
const String &target_prop = subpath[target_prop_depth];
ret.instantiate();
ret->set_node_paths({ p_node_path });
Vector<PackedStringArray> split_json_pointers;
PackedStringArray split_json_pointer;
if (Object::cast_to<BaseMaterial3D>(target_object)) {
for (int i = 0; i < p_state->materials.size(); i++) {
if (p_state->materials[i].ptr() == target_object) {
split_json_pointer.append("materials");
split_json_pointer.append(itos(i));
if (target_prop == "alpha_scissor_threshold") {
split_json_pointer.append("alphaCutoff");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (target_prop == "emission") {
split_json_pointer.append("emissiveFactor");
ret->set_types(Variant::COLOR, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (target_prop == "emission_energy_multiplier") {
split_json_pointer.append("extensions");
split_json_pointer.append("KHR_materials_emissive_strength");
split_json_pointer.append("emissiveStrength");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (target_prop == "normal_scale") {
split_json_pointer.append("normalTexture");
split_json_pointer.append("scale");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (target_prop == "ao_light_affect") {
split_json_pointer.append("occlusionTexture");
split_json_pointer.append("strength");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (target_prop == "albedo_color") {
split_json_pointer.append("pbrMetallicRoughness");
split_json_pointer.append("baseColorFactor");
ret->set_types(Variant::COLOR, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT4);
} else if (target_prop == "metallic") {
split_json_pointer.append("pbrMetallicRoughness");
split_json_pointer.append("metallicFactor");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (target_prop == "roughness") {
split_json_pointer.append("pbrMetallicRoughness");
split_json_pointer.append("roughnessFactor");
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
} else if (target_prop == "uv1_offset" || target_prop == "uv1_scale") {
split_json_pointer.append("pbrMetallicRoughness");
split_json_pointer.append("baseColorTexture");
split_json_pointer.append("extensions");
split_json_pointer.append("KHR_texture_transform");
if (target_prop == "uv1_offset") {
split_json_pointer.append("offset");
} else {
split_json_pointer.append("scale");
}
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT2);
} else {
split_json_pointer.clear();
}
break;
}
}
} else {
// Properties directly on Godot nodes.
Ref<GLTFNode> gltf_node = p_state->nodes[p_gltf_node_index];
if (Object::cast_to<Camera3D>(target_object) && gltf_node->camera >= 0) {
split_json_pointer.append("cameras");
split_json_pointer.append(itos(gltf_node->camera));
const Camera3D *camera_node = Object::cast_to<Camera3D>(target_object);
const Camera3D::ProjectionType projection_type = camera_node->get_projection();
if (projection_type == Camera3D::PROJECTION_PERSPECTIVE) {
split_json_pointer.append("perspective");
} else {
split_json_pointer.append("orthographic");
}
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
if (target_prop == "size") {
PackedStringArray xmag = split_json_pointer.duplicate();
xmag.append("xmag");
split_json_pointers.append(xmag);
split_json_pointer.append("ymag");
} else if (target_prop == "fov") {
split_json_pointer.append("yfov");
GLTFCamera::set_fov_conversion_expressions(ret);
} else if (target_prop == "far") {
split_json_pointer.append("zfar");
} else if (target_prop == "near") {
split_json_pointer.append("znear");
} else {
split_json_pointer.clear();
}
} else if (Object::cast_to<Light3D>(target_object) && gltf_node->light >= 0) {
split_json_pointer.append("extensions");
split_json_pointer.append("KHR_lights_punctual");
split_json_pointer.append("lights");
split_json_pointer.append(itos(gltf_node->light));
ret->set_types(Variant::FLOAT, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT);
if (target_prop == "light_color") {
split_json_pointer.append("color");
ret->set_types(Variant::COLOR, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (target_prop == "light_energy") {
split_json_pointer.append("intensity");
} else if (target_prop == "spot_range") {
split_json_pointer.append("range");
} else if (target_prop == "omni_range") {
split_json_pointer.append("range");
} else if (target_prop == "spot_angle") {
split_json_pointer.append("spot");
split_json_pointer.append("outerConeAngle");
} else if (target_prop == "spot_angle_attenuation") {
split_json_pointer.append("spot");
split_json_pointer.append("innerConeAngle");
GLTFLight::set_cone_inner_attenuation_conversion_expressions(ret);
} else {
split_json_pointer.clear();
}
} else if (Object::cast_to<MeshInstance3D>(target_object) && target_prop.begins_with("blend_shapes/morph_")) {
const String &weight_index_string = target_prop.trim_prefix("blend_shapes/morph_");
split_json_pointer.append("nodes");
split_json_pointer.append(itos(p_gltf_node_index));
split_json_pointer.append("weights");
split_json_pointer.append(weight_index_string);
}
// Transform properties. Check for all 3D nodes if we haven't resolved the JSON pointer yet.
// Note: Do not put this in an `else`, because otherwise this will not be reached.
if (split_json_pointer.is_empty() && Object::cast_to<Node3D>(target_object)) {
split_json_pointer.append("nodes");
split_json_pointer.append(itos(p_gltf_node_index));
if (target_prop == "position") {
split_json_pointer.append("translation");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (target_prop == "quaternion") {
// Note: Only Quaternion rotation can be converted from Godot in this mapping.
// Struct methods like from_euler are not accessible from the Expression class. :(
split_json_pointer.append("rotation");
ret->set_types(Variant::QUATERNION, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT4);
} else if (target_prop == "scale") {
split_json_pointer.append("scale");
ret->set_types(Variant::VECTOR3, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT3);
} else if (target_prop == "transform") {
split_json_pointer.append("matrix");
ret->set_types(Variant::TRANSFORM3D, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT4X4);
} else if (target_prop == "global_transform") {
split_json_pointer.append("globalMatrix");
ret->set_types(Variant::TRANSFORM3D, GLTFObjectModelProperty::GLTF_OBJECT_MODEL_TYPE_FLOAT4X4);
} else {
split_json_pointer.clear();
}
}
}
// Additional JSON pointers can be added by GLTFDocumentExtension classes.
// We only need this if no mapping has been found yet from GLTFDocument's internal code.
// We pass as many pieces of information as we can to the extension to give it lots of context.
if (split_json_pointer.is_empty()) {
for (Ref<GLTFDocumentExtension> ext : all_document_extensions) {
ret = ext->export_object_model_property(p_state, p_node_path, p_godot_node, p_gltf_node_index, target_object, target_prop_depth);
if (ret.is_valid() && ret->has_json_pointers()) {
if (!ret->has_node_paths()) {
ret->set_node_paths({ p_node_path });
}
break;
}
}
} else {
// GLTFDocument's internal code found a mapping, so set it and return it.
split_json_pointers.append(split_json_pointer);
ret->set_json_pointers(split_json_pointers);
}
return ret;
}
void GLTFDocument::_import_animation(Ref<GLTFState> p_state, AnimationPlayer *p_animation_player, const GLTFAnimationIndex p_index, const bool p_trimming, const bool p_remove_immutable_tracks) {
ERR_FAIL_COND(p_state.is_null());
Node *scene_root = p_animation_player->get_parent();
ERR_FAIL_NULL(scene_root);
Ref<GLTFAnimation> anim = p_state->animations[p_index];
String anim_name = anim->get_name();
if (anim_name.is_empty()) {
// No node represent these, and they are not in the hierarchy, so just make a unique name
anim_name = _gen_unique_name(p_state, "Animation");
}
Ref<Animation> animation;
animation.instantiate();
animation->set_name(anim_name);
animation->set_step(1.0 / p_state->get_bake_fps());
if (anim->get_loop()) {
animation->set_loop_mode(Animation::LOOP_LINEAR);
}
double anim_start = p_trimming ? INFINITY : 0.0;
double anim_end = 0.0;
for (const KeyValue<int, GLTFAnimation::NodeTrack> &track_i : anim->get_node_tracks()) {
const GLTFAnimation::NodeTrack &track = track_i.value;
//need to find the path: for skeletons, weight tracks will affect the mesh
NodePath node_path;
//for skeletons, transform tracks always affect bones
NodePath transform_node_path;
//for meshes, especially skinned meshes, there are cases where it will be added as a child
NodePath mesh_instance_node_path;
GLTFNodeIndex node_index = track_i.key;
const Ref<GLTFNode> gltf_node = p_state->nodes[track_i.key];
HashMap<GLTFNodeIndex, Node *>::Iterator node_element = p_state->scene_nodes.find(node_index);
ERR_CONTINUE_MSG(!node_element, vformat("Unable to find node %d for animation.", node_index));
node_path = scene_root->get_path_to(node_element->value);
HashMap<GLTFNodeIndex, ImporterMeshInstance3D *>::Iterator mesh_instance_element = p_state->scene_mesh_instances.find(node_index);
if (mesh_instance_element) {
mesh_instance_node_path = scene_root->get_path_to(mesh_instance_element->value);
} else {
mesh_instance_node_path = node_path;
}
if (gltf_node->skeleton >= 0) {
const Skeleton3D *sk = p_state->skeletons[gltf_node->skeleton]->godot_skeleton;
ERR_FAIL_NULL(sk);
const String path = p_animation_player->get_parent()->get_path_to(sk);
const String bone = gltf_node->get_name();
transform_node_path = path + ":" + bone;
} else {
transform_node_path = node_path;
}
if (p_trimming) {
for (int i = 0; i < track.rotation_track.times.size(); i++) {
anim_start = MIN(anim_start, track.rotation_track.times[i]);
anim_end = MAX(anim_end, track.rotation_track.times[i]);
}
for (int i = 0; i < track.position_track.times.size(); i++) {
anim_start = MIN(anim_start, track.position_track.times[i]);
anim_end = MAX(anim_end, track.position_track.times[i]);
}
for (int i = 0; i < track.scale_track.times.size(); i++) {
anim_start = MIN(anim_start, track.scale_track.times[i]);
anim_end = MAX(anim_end, track.scale_track.times[i]);
}
for (int i = 0; i < track.weight_tracks.size(); i++) {
for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
anim_start = MIN(anim_start, track.weight_tracks[i].times[j]);
anim_end = MAX(anim_end, track.weight_tracks[i].times[j]);
}
}
} else {
// If you don't use trimming and the first key time is not at 0.0, fake keys will be inserted.
for (int i = 0; i < track.rotation_track.times.size(); i++) {
anim_end = MAX(anim_end, track.rotation_track.times[i]);
}
for (int i = 0; i < track.position_track.times.size(); i++) {
anim_end = MAX(anim_end, track.position_track.times[i]);
}
for (int i = 0; i < track.scale_track.times.size(); i++) {
anim_end = MAX(anim_end, track.scale_track.times[i]);
}
for (int i = 0; i < track.weight_tracks.size(); i++) {
for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
anim_end = MAX(anim_end, track.weight_tracks[i].times[j]);
}
}
}
// Animated TRS properties will not affect a skinned mesh.
const bool transform_affects_skinned_mesh_instance = gltf_node->skeleton < 0 && gltf_node->skin >= 0;
if ((track.rotation_track.values.size() || track.position_track.values.size() || track.scale_track.values.size()) && !transform_affects_skinned_mesh_instance) {
//make transform track
int base_idx = animation->get_track_count();
int position_idx = -1;
int rotation_idx = -1;
int scale_idx = -1;
if (track.position_track.values.size()) {
bool is_default = true; //discard the track if all it contains is default values
if (p_remove_immutable_tracks) {
Vector3 base_pos = gltf_node->get_position();
for (int i = 0; i < track.position_track.times.size(); i++) {
int value_index = track.position_track.interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE ? (1 + i * 3) : i;
ERR_FAIL_COND_MSG(value_index >= track.position_track.values.size(), "Animation sampler output accessor with 'CUBICSPLINE' interpolation doesn't have enough elements.");
Vector3 value = track.position_track.values[value_index];
if (!value.is_equal_approx(base_pos)) {
is_default = false;
break;
}
}
}
if (!p_remove_immutable_tracks || !is_default) {
position_idx = base_idx;
animation->add_track(Animation::TYPE_POSITION_3D);
animation->track_set_path(position_idx, transform_node_path);
animation->track_set_imported(position_idx, true); //helps merging later
if (track.position_track.interpolation == GLTFAnimation::INTERP_STEP) {
animation->track_set_interpolation_type(position_idx, Animation::InterpolationType::INTERPOLATION_NEAREST);
}
base_idx++;
}
}
if (track.rotation_track.values.size()) {
bool is_default = true; //discard the track if all it contains is default values
if (p_remove_immutable_tracks) {
Quaternion base_rot = gltf_node->get_rotation();
for (int i = 0; i < track.rotation_track.times.size(); i++) {
int value_index = track.rotation_track.interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE ? (1 + i * 3) : i;
ERR_FAIL_COND_MSG(value_index >= track.rotation_track.values.size(), "Animation sampler output accessor with 'CUBICSPLINE' interpolation doesn't have enough elements.");
Quaternion value = track.rotation_track.values[value_index].normalized();
if (!value.is_equal_approx(base_rot)) {
is_default = false;
break;
}
}
}
if (!p_remove_immutable_tracks || !is_default) {
rotation_idx = base_idx;
animation->add_track(Animation::TYPE_ROTATION_3D);
animation->track_set_path(rotation_idx, transform_node_path);
animation->track_set_imported(rotation_idx, true); //helps merging later
if (track.rotation_track.interpolation == GLTFAnimation::INTERP_STEP) {
animation->track_set_interpolation_type(rotation_idx, Animation::InterpolationType::INTERPOLATION_NEAREST);
}
base_idx++;
}
}
if (track.scale_track.values.size()) {
bool is_default = true; //discard the track if all it contains is default values
if (p_remove_immutable_tracks) {
Vector3 base_scale = gltf_node->get_scale();
for (int i = 0; i < track.scale_track.times.size(); i++) {
int value_index = track.scale_track.interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE ? (1 + i * 3) : i;
ERR_FAIL_COND_MSG(value_index >= track.scale_track.values.size(), "Animation sampler output accessor with 'CUBICSPLINE' interpolation doesn't have enough elements.");
Vector3 value = track.scale_track.values[value_index];
if (!value.is_equal_approx(base_scale)) {
is_default = false;
break;
}
}
}
if (!p_remove_immutable_tracks || !is_default) {
scale_idx = base_idx;
animation->add_track(Animation::TYPE_SCALE_3D);
animation->track_set_path(scale_idx, transform_node_path);
animation->track_set_imported(scale_idx, true); //helps merging later
if (track.scale_track.interpolation == GLTFAnimation::INTERP_STEP) {
animation->track_set_interpolation_type(scale_idx, Animation::InterpolationType::INTERPOLATION_NEAREST);
}
base_idx++;
}
}
const double increment = 1.0 / p_state->get_bake_fps();
double time = anim_start;
Vector3 base_pos;
Quaternion base_rot;
Vector3 base_scale = Vector3(1, 1, 1);
if (rotation_idx == -1) {
base_rot = gltf_node->get_rotation();
}
if (position_idx == -1) {
base_pos = gltf_node->get_position();
}
if (scale_idx == -1) {
base_scale = gltf_node->get_scale();
}
bool last = false;
while (true) {
Vector3 pos = base_pos;
Quaternion rot = base_rot;
Vector3 scale = base_scale;
if (position_idx >= 0) {
pos = _interpolate_track<Vector3>(track.position_track.times, track.position_track.values, time, track.position_track.interpolation);
animation->position_track_insert_key(position_idx, time - anim_start, pos);
}
if (rotation_idx >= 0) {
rot = _interpolate_track<Quaternion>(track.rotation_track.times, track.rotation_track.values, time, track.rotation_track.interpolation);
animation->rotation_track_insert_key(rotation_idx, time - anim_start, rot);
}
if (scale_idx >= 0) {
scale = _interpolate_track<Vector3>(track.scale_track.times, track.scale_track.values, time, track.scale_track.interpolation);
animation->scale_track_insert_key(scale_idx, time - anim_start, scale);
}
if (last) {
break;
}
time += increment;
if (time >= anim_end) {
last = true;
time = anim_end;
}
}
}
for (int i = 0; i < track.weight_tracks.size(); i++) {
ERR_CONTINUE(gltf_node->mesh < 0 || gltf_node->mesh >= p_state->meshes.size());
Ref<GLTFMesh> mesh = p_state->meshes[gltf_node->mesh];
ERR_CONTINUE(mesh.is_null());
ERR_CONTINUE(mesh->get_mesh().is_null());
ERR_CONTINUE(mesh->get_mesh()->get_mesh().is_null());
const String blend_path = String(mesh_instance_node_path) + ":" + String(mesh->get_mesh()->get_blend_shape_name(i));
const int track_idx = animation->get_track_count();
animation->add_track(Animation::TYPE_BLEND_SHAPE);
animation->track_set_path(track_idx, blend_path);
animation->track_set_imported(track_idx, true); //helps merging later
// Only LINEAR and STEP (NEAREST) can be supported out of the box by Godot's Animation,
// the other modes have to be baked.
GLTFAnimation::Interpolation gltf_interp = track.weight_tracks[i].interpolation;
if (gltf_interp == GLTFAnimation::INTERP_LINEAR || gltf_interp == GLTFAnimation::INTERP_STEP) {
animation->track_set_interpolation_type(track_idx, gltf_interp == GLTFAnimation::INTERP_STEP ? Animation::INTERPOLATION_NEAREST : Animation::INTERPOLATION_LINEAR);
for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
const float t = track.weight_tracks[i].times[j];
const float attribs = track.weight_tracks[i].values[j];
animation->blend_shape_track_insert_key(track_idx, t, attribs);
}
} else {
// CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies.
const double increment = 1.0 / p_state->get_bake_fps();
double time = 0.0;
bool last = false;
while (true) {
real_t blend = _interpolate_track<real_t>(track.weight_tracks[i].times, track.weight_tracks[i].values, time, gltf_interp);
animation->blend_shape_track_insert_key(track_idx, time - anim_start, blend);
if (last) {
break;
}
time += increment;
if (time >= anim_end) {
last = true;
time = anim_end;
}
}
}
}
}
for (const KeyValue<String, GLTFAnimation::Channel<Variant>> &track_iter : anim->get_pointer_tracks()) {
// Determine the property to animate.
const String json_pointer = track_iter.key;
const Ref<GLTFObjectModelProperty> prop = import_object_model_property(p_state, json_pointer);
ERR_FAIL_COND(prop.is_null());
// Adjust the animation duration to encompass all keyframes.
const GLTFAnimation::Channel<Variant> &channel = track_iter.value;
ERR_CONTINUE_MSG(channel.times.size() != channel.values.size(), vformat("glTF: Animation pointer '%s' has mismatched keyframe times and values.", json_pointer));
if (p_trimming) {
for (int i = 0; i < channel.times.size(); i++) {
anim_start = MIN(anim_start, channel.times[i]);
anim_end = MAX(anim_end, channel.times[i]);
}
} else {
for (int i = 0; i < channel.times.size(); i++) {
anim_end = MAX(anim_end, channel.times[i]);
}
}
// Begin converting the glTF animation to a Godot animation.
const Ref<Expression> gltf_to_godot_expr = prop->get_gltf_to_godot_expression();
const bool is_gltf_to_godot_expr_valid = gltf_to_godot_expr.is_valid();
for (const NodePath node_path : prop->get_node_paths()) {
// If using an expression, determine the base instance to pass to the expression.
Object *base_instance = nullptr;
if (is_gltf_to_godot_expr_valid) {
Ref<Resource> resource;
Vector<StringName> leftover_subpath;
base_instance = scene_root->get_node_and_resource(node_path, resource, leftover_subpath);
if (resource.is_valid()) {
base_instance = resource.ptr();
}
}
// Add a track and insert all keys and values.
const int track_index = animation->get_track_count();
animation->add_track(Animation::TYPE_VALUE);
animation->track_set_interpolation_type(track_index, GLTFAnimation::gltf_to_godot_interpolation(channel.interpolation));
animation->track_set_path(track_index, node_path);
for (int i = 0; i < channel.times.size(); i++) {
const double time = channel.times[i];
Variant value = channel.values[i];
if (is_gltf_to_godot_expr_valid) {
Array inputs;
inputs.append(value);
value = gltf_to_godot_expr->execute(inputs, base_instance);
}
animation->track_insert_key(track_index, time, value);
}
}
}
animation->set_length(anim_end - anim_start);
Ref<AnimationLibrary> library;
if (!p_animation_player->has_animation_library("")) {
library.instantiate();
p_animation_player->add_animation_library("", library);
} else {
library = p_animation_player->get_animation_library("");
}
library->add_animation(anim_name, animation);
}
void GLTFDocument::_convert_mesh_instances(Ref<GLTFState> p_state) {
for (GLTFNodeIndex mi_node_i = 0; mi_node_i < p_state->nodes.size(); ++mi_node_i) {
Ref<GLTFNode> node = p_state->nodes[mi_node_i];
if (node->mesh < 0) {
continue;
}
HashMap<GLTFNodeIndex, Node *>::Iterator mi_element = p_state->scene_nodes.find(mi_node_i);
if (!mi_element) {
continue;
}
MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(mi_element->value);
if (!mi) {
continue;
}
node->transform = mi->get_transform();
Node *skel_node = mi->get_node_or_null(mi->get_skeleton_path());
Skeleton3D *godot_skeleton = Object::cast_to<Skeleton3D>(skel_node);
if (!godot_skeleton || godot_skeleton->get_bone_count() == 0) {
continue;
}
// At this point in the code, we know we have a Skeleton3D with at least one bone.
Ref<Skin> skin = mi->get_skin();
Ref<GLTFSkin> gltf_skin;
gltf_skin.instantiate();
Array json_joints;
if (p_state->skeleton3d_to_gltf_skeleton.has(godot_skeleton->get_instance_id())) {
// This is a skinned mesh. If the mesh has no ARRAY_WEIGHTS or ARRAY_BONES, it will be invisible.
const GLTFSkeletonIndex skeleton_gltf_i = p_state->skeleton3d_to_gltf_skeleton[godot_skeleton->get_instance_id()];
Ref<GLTFSkeleton> gltf_skeleton = p_state->skeletons[skeleton_gltf_i];
int bone_cnt = godot_skeleton->get_bone_count();
ERR_FAIL_COND(bone_cnt != gltf_skeleton->joints.size());
ObjectID gltf_skin_key;
if (skin.is_valid()) {
gltf_skin_key = skin->get_instance_id();
}
ObjectID gltf_skel_key = godot_skeleton->get_instance_id();
GLTFSkinIndex skin_gltf_i = -1;
GLTFNodeIndex root_gltf_i = -1;
if (!gltf_skeleton->roots.is_empty()) {
root_gltf_i = gltf_skeleton->roots[0];
}
if (p_state->skin_and_skeleton3d_to_gltf_skin.has(gltf_skin_key) && p_state->skin_and_skeleton3d_to_gltf_skin[gltf_skin_key].has(gltf_skel_key)) {
skin_gltf_i = p_state->skin_and_skeleton3d_to_gltf_skin[gltf_skin_key][gltf_skel_key];
} else {
if (skin.is_null()) {
// Note that gltf_skin_key should remain null, so these can share a reference.
skin = godot_skeleton->create_skin_from_rest_transforms();
}
gltf_skin.instantiate();
gltf_skin->godot_skin = skin;
gltf_skin->set_name(skin->get_name());
gltf_skin->skeleton = skeleton_gltf_i;
gltf_skin->skin_root = root_gltf_i;
//gltf_state->godot_to_gltf_node[skel_node]
HashMap<StringName, int> bone_name_to_idx;
for (int bone_i = 0; bone_i < bone_cnt; bone_i++) {
bone_name_to_idx[godot_skeleton->get_bone_name(bone_i)] = bone_i;
}
for (int bind_i = 0, cnt = skin->get_bind_count(); bind_i < cnt; bind_i++) {
int bone_i = skin->get_bind_bone(bind_i);
Transform3D bind_pose = skin->get_bind_pose(bind_i);
StringName bind_name = skin->get_bind_name(bind_i);
if (bind_name != StringName()) {
bone_i = bone_name_to_idx[bind_name];
}
ERR_CONTINUE(bone_i < 0 || bone_i >= bone_cnt);
if (bind_name == StringName()) {
bind_name = godot_skeleton->get_bone_name(bone_i);
}
GLTFNodeIndex skeleton_bone_i = gltf_skeleton->joints[bone_i];
gltf_skin->joints_original.push_back(skeleton_bone_i);
gltf_skin->joints.push_back(skeleton_bone_i);
gltf_skin->inverse_binds.push_back(bind_pose);
if (godot_skeleton->get_bone_parent(bone_i) == -1) {
gltf_skin->roots.push_back(skeleton_bone_i);
}
gltf_skin->joint_i_to_bone_i[bind_i] = bone_i;
gltf_skin->joint_i_to_name[bind_i] = bind_name;
}
skin_gltf_i = p_state->skins.size();
p_state->skins.push_back(gltf_skin);
p_state->skin_and_skeleton3d_to_gltf_skin[gltf_skin_key][gltf_skel_key] = skin_gltf_i;
}
node->skin = skin_gltf_i;
node->skeleton = skeleton_gltf_i;
}
}
}
float GLTFDocument::solve_metallic(float p_dielectric_specular, float p_diffuse, float p_specular, float p_one_minus_specular_strength) {
if (p_specular <= p_dielectric_specular) {
return 0.0f;
}
const float a = p_dielectric_specular;
const float b = p_diffuse * p_one_minus_specular_strength / (1.0f - p_dielectric_specular) + p_specular - 2.0f * p_dielectric_specular;
const float c = p_dielectric_specular - p_specular;
const float D = b * b - 4.0f * a * c;
return CLAMP((-b + Math::sqrt(D)) / (2.0f * a), 0.0f, 1.0f);
}
float GLTFDocument::get_perceived_brightness(const Color p_color) {
const Color coeff = Color(R_BRIGHTNESS_COEFF, G_BRIGHTNESS_COEFF, B_BRIGHTNESS_COEFF);
const Color value = coeff * (p_color * p_color);
const float r = value.r;
const float g = value.g;
const float b = value.b;
return Math::sqrt(r + g + b);
}
float GLTFDocument::get_max_component(const Color &p_color) {
const float r = p_color.r;
const float g = p_color.g;
const float b = p_color.b;
return MAX(MAX(r, g), b);
}
void GLTFDocument::_process_mesh_instances(Ref<GLTFState> p_state, Node *p_scene_root) {
for (GLTFNodeIndex node_i = 0; node_i < p_state->nodes.size(); ++node_i) {
Ref<GLTFNode> node = p_state->nodes[node_i];
if (node->skin >= 0 && node->mesh >= 0) {
const GLTFSkinIndex skin_i = node->skin;
ImporterMeshInstance3D *mi = nullptr;
HashMap<GLTFNodeIndex, ImporterMeshInstance3D *>::Iterator mi_element = p_state->scene_mesh_instances.find(node_i);
if (mi_element) {
mi = mi_element->value;
} else {
HashMap<GLTFNodeIndex, Node *>::Iterator si_element = p_state->scene_nodes.find(node_i);
ERR_CONTINUE_MSG(!si_element, vformat("Unable to find node %d", node_i));
mi = Object::cast_to<ImporterMeshInstance3D>(si_element->value);
ERR_CONTINUE_MSG(mi == nullptr, vformat("Unable to cast node %d of type %s to ImporterMeshInstance3D", node_i, si_element->value->get_class_name()));
}
const GLTFSkeletonIndex skel_i = p_state->skins.write[node->skin]->skeleton;
Ref<GLTFSkeleton> gltf_skeleton = p_state->skeletons.write[skel_i];
Skeleton3D *skeleton = gltf_skeleton->godot_skeleton;
ERR_CONTINUE_MSG(skeleton == nullptr, vformat("Unable to find Skeleton for node %d skin %d", node_i, skin_i));
mi->get_parent()->remove_child(mi);
mi->set_owner(nullptr);
skeleton->add_child(mi, true);
mi->set_owner(p_scene_root);
mi->set_skin(p_state->skins.write[skin_i]->godot_skin);
mi->set_skeleton_path(mi->get_path_to(skeleton));
mi->set_transform(Transform3D());
}
}
}
GLTFNodeIndex GLTFDocument::_node_and_or_bone_to_gltf_node_index(Ref<GLTFState> p_state, const Vector<StringName> &p_node_subpath, const Node *p_godot_node) {
const Skeleton3D *skeleton = Object::cast_to<Skeleton3D>(p_godot_node);
if (skeleton && p_node_subpath.size() == 1) {
// Special case: Handle skeleton bone TRS tracks. They use the format `A/B/C/Skeleton3D:bone_name`.
// We have a Skeleton3D, check if it has a bone with the same name as this subpath.
const String &bone_name = p_node_subpath[0];
const int32_t bone_index = skeleton->find_bone(bone_name);
if (bone_index != -1) {
// A bone was found! But we still need to figure out which glTF node it corresponds to.
for (GLTFSkeletonIndex skeleton_i = 0; skeleton_i < p_state->skeletons.size(); skeleton_i++) {
const Ref<GLTFSkeleton> &skeleton_gltf = p_state->skeletons[skeleton_i];
if (skeleton == skeleton_gltf->godot_skeleton) {
GLTFNodeIndex node_i = skeleton_gltf->godot_bone_node[bone_index];
return node_i;
}
}
ERR_FAIL_V_MSG(-1, vformat("glTF: Found a bone %s in a Skeleton3D that wasn't in the GLTFState. Ensure that all nodes referenced by the AnimationPlayer are in the scene you are exporting.", bone_name));
}
}
// General case: Not a skeleton bone, usually this means a normal node, or it could be the Skeleton3D itself.
for (const KeyValue<GLTFNodeIndex, Node *> &scene_node_i : p_state->scene_nodes) {
if (scene_node_i.value == p_godot_node) {
return scene_node_i.key;
}
}
ERR_FAIL_V_MSG(-1, vformat("glTF: A node was animated, but it wasn't found in the GLTFState. Ensure that all nodes referenced by the AnimationPlayer are in the scene you are exporting."));
}
bool GLTFDocument::_convert_animation_node_track(Ref<GLTFState> p_state, GLTFAnimation::NodeTrack &p_gltf_node_track, const Ref<Animation> &p_godot_animation, int32_t p_godot_anim_track_index, Vector<double> &p_times) {
GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::godot_to_gltf_interpolation(p_godot_animation, p_godot_anim_track_index);
const Animation::TrackType track_type = p_godot_animation->track_get_type(p_godot_anim_track_index);
const int32_t key_count = p_godot_animation->track_get_key_count(p_godot_anim_track_index);
const NodePath node_path = p_godot_animation->track_get_path(p_godot_anim_track_index);
const Vector<StringName> subpath = node_path.get_subnames();
double anim_end = p_godot_animation->get_length();
if (track_type == Animation::TYPE_SCALE_3D) {
if (gltf_interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE) {
gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
p_gltf_node_track.scale_track.times.clear();
p_gltf_node_track.scale_track.values.clear();
// CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies.
const double increment = 1.0 / p_state->get_bake_fps();
double time = 0.0;
bool last = false;
while (true) {
Vector3 scale;
Error err = p_godot_animation->try_scale_track_interpolate(p_godot_anim_track_index, time, &scale);
ERR_CONTINUE(err != OK);
p_gltf_node_track.scale_track.values.push_back(scale);
p_gltf_node_track.scale_track.times.push_back(time);
if (last) {
break;
}
time += increment;
if (time >= anim_end) {
last = true;
time = anim_end;
}
}
} else {
p_gltf_node_track.scale_track.times = p_times;
p_gltf_node_track.scale_track.interpolation = gltf_interpolation;
p_gltf_node_track.scale_track.values.resize(key_count);
for (int32_t key_i = 0; key_i < key_count; key_i++) {
Vector3 scale;
Error err = p_godot_animation->scale_track_get_key(p_godot_anim_track_index, key_i, &scale);
ERR_CONTINUE(err != OK);
p_gltf_node_track.scale_track.values.write[key_i] = scale;
}
}
} else if (track_type == Animation::TYPE_POSITION_3D) {
if (gltf_interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE) {
gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
p_gltf_node_track.position_track.times.clear();
p_gltf_node_track.position_track.values.clear();
// CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies.
const double increment = 1.0 / p_state->get_bake_fps();
double time = 0.0;
bool last = false;
while (true) {
Vector3 scale;
Error err = p_godot_animation->try_position_track_interpolate(p_godot_anim_track_index, time, &scale);
ERR_CONTINUE(err != OK);
p_gltf_node_track.position_track.values.push_back(scale);
p_gltf_node_track.position_track.times.push_back(time);
if (last) {
break;
}
time += increment;
if (time >= anim_end) {
last = true;
time = anim_end;
}
}
} else {
p_gltf_node_track.position_track.times = p_times;
p_gltf_node_track.position_track.values.resize(key_count);
p_gltf_node_track.position_track.interpolation = gltf_interpolation;
for (int32_t key_i = 0; key_i < key_count; key_i++) {
Vector3 position;
Error err = p_godot_animation->position_track_get_key(p_godot_anim_track_index, key_i, &position);
ERR_CONTINUE(err != OK);
p_gltf_node_track.position_track.values.write[key_i] = position;
}
}
} else if (track_type == Animation::TYPE_ROTATION_3D) {
if (gltf_interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE) {
gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
p_gltf_node_track.rotation_track.times.clear();
p_gltf_node_track.rotation_track.values.clear();
// CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies.
const double increment = 1.0 / p_state->get_bake_fps();
double time = 0.0;
bool last = false;
while (true) {
Quaternion rotation;
Error err = p_godot_animation->try_rotation_track_interpolate(p_godot_anim_track_index, time, &rotation);
ERR_CONTINUE(err != OK);
p_gltf_node_track.rotation_track.values.push_back(rotation);
p_gltf_node_track.rotation_track.times.push_back(time);
if (last) {
break;
}
time += increment;
if (time >= anim_end) {
last = true;
time = anim_end;
}
}
} else {
p_gltf_node_track.rotation_track.times = p_times;
p_gltf_node_track.rotation_track.values.resize(key_count);
p_gltf_node_track.rotation_track.interpolation = gltf_interpolation;
for (int32_t key_i = 0; key_i < key_count; key_i++) {
Quaternion rotation;
Error err = p_godot_animation->rotation_track_get_key(p_godot_anim_track_index, key_i, &rotation);
ERR_CONTINUE(err != OK);
p_gltf_node_track.rotation_track.values.write[key_i] = rotation;
}
}
} else if (subpath.size() > 0) {
const StringName &node_prop = subpath[0];
if (track_type == Animation::TYPE_VALUE) {
if (node_prop == "position") {
p_gltf_node_track.position_track.interpolation = gltf_interpolation;
p_gltf_node_track.position_track.times = p_times;
p_gltf_node_track.position_track.values.resize(key_count);
if (gltf_interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE) {
gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
p_gltf_node_track.position_track.times.clear();
p_gltf_node_track.position_track.values.clear();
// CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies.
const double increment = 1.0 / p_state->get_bake_fps();
double time = 0.0;
bool last = false;
while (true) {
Vector3 position;
Error err = p_godot_animation->try_position_track_interpolate(p_godot_anim_track_index, time, &position);
ERR_CONTINUE(err != OK);
p_gltf_node_track.position_track.values.push_back(position);
p_gltf_node_track.position_track.times.push_back(time);
if (last) {
break;
}
time += increment;
if (time >= anim_end) {
last = true;
time = anim_end;
}
}
} else {
for (int32_t key_i = 0; key_i < key_count; key_i++) {
Vector3 position = p_godot_animation->track_get_key_value(p_godot_anim_track_index, key_i);
p_gltf_node_track.position_track.values.write[key_i] = position;
}
}
} else if (node_prop == "rotation" || node_prop == "rotation_degrees" || node_prop == "quaternion") {
p_gltf_node_track.rotation_track.interpolation = gltf_interpolation;
p_gltf_node_track.rotation_track.times = p_times;
p_gltf_node_track.rotation_track.values.resize(key_count);
if (gltf_interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE) {
gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
p_gltf_node_track.rotation_track.times.clear();
p_gltf_node_track.rotation_track.values.clear();
// CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies.
const double increment = 1.0 / p_state->get_bake_fps();
double time = 0.0;
bool last = false;
while (true) {
Quaternion rotation;
Error err = p_godot_animation->try_rotation_track_interpolate(p_godot_anim_track_index, time, &rotation);
ERR_CONTINUE(err != OK);
p_gltf_node_track.rotation_track.values.push_back(rotation);
p_gltf_node_track.rotation_track.times.push_back(time);
if (last) {
break;
}
time += increment;
if (time >= anim_end) {
last = true;
time = anim_end;
}
}
} else {
for (int32_t key_i = 0; key_i < key_count; key_i++) {
Quaternion rotation_quaternion;
if (node_prop == "quaternion") {
rotation_quaternion = p_godot_animation->track_get_key_value(p_godot_anim_track_index, key_i);
} else {
Vector3 rotation_euler = p_godot_animation->track_get_key_value(p_godot_anim_track_index, key_i);
if (node_prop == "rotation_degrees") {
rotation_euler *= Math_TAU / 360.0;
}
rotation_quaternion = Quaternion::from_euler(rotation_euler);
}
p_gltf_node_track.rotation_track.values.write[key_i] = rotation_quaternion;
}
}
} else if (node_prop == "scale") {
p_gltf_node_track.scale_track.interpolation = gltf_interpolation;
p_gltf_node_track.scale_track.times = p_times;
p_gltf_node_track.scale_track.values.resize(key_count);
if (gltf_interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE) {
gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
p_gltf_node_track.scale_track.times.clear();
p_gltf_node_track.scale_track.values.clear();
// CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies.
const double increment = 1.0 / p_state->get_bake_fps();
double time = 0.0;
bool last = false;
while (true) {
Vector3 scale;
Error err = p_godot_animation->try_scale_track_interpolate(p_godot_anim_track_index, time, &scale);
ERR_CONTINUE(err != OK);
p_gltf_node_track.scale_track.values.push_back(scale);
p_gltf_node_track.scale_track.times.push_back(time);
if (last) {
break;
}
time += increment;
if (time >= anim_end) {
last = true;
time = anim_end;
}
}
} else {
for (int32_t key_i = 0; key_i < key_count; key_i++) {
Vector3 scale_track = p_godot_animation->track_get_key_value(p_godot_anim_track_index, key_i);
p_gltf_node_track.scale_track.values.write[key_i] = scale_track;
}
}
} else if (node_prop == "transform") {
p_gltf_node_track.position_track.interpolation = gltf_interpolation;
p_gltf_node_track.position_track.times = p_times;
p_gltf_node_track.position_track.values.resize(key_count);
p_gltf_node_track.rotation_track.interpolation = gltf_interpolation;
p_gltf_node_track.rotation_track.times = p_times;
p_gltf_node_track.rotation_track.values.resize(key_count);
p_gltf_node_track.scale_track.interpolation = gltf_interpolation;
p_gltf_node_track.scale_track.times = p_times;
p_gltf_node_track.scale_track.values.resize(key_count);
if (gltf_interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE) {
gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
p_gltf_node_track.position_track.times.clear();
p_gltf_node_track.position_track.values.clear();
p_gltf_node_track.rotation_track.times.clear();
p_gltf_node_track.rotation_track.values.clear();
p_gltf_node_track.scale_track.times.clear();
p_gltf_node_track.scale_track.values.clear();
// CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies.
const double increment = 1.0 / p_state->get_bake_fps();
double time = 0.0;
bool last = false;
while (true) {
Vector3 position;
Quaternion rotation;
Vector3 scale;
Error err = p_godot_animation->try_position_track_interpolate(p_godot_anim_track_index, time, &position);
ERR_CONTINUE(err != OK);
err = p_godot_animation->try_rotation_track_interpolate(p_godot_anim_track_index, time, &rotation);
ERR_CONTINUE(err != OK);
err = p_godot_animation->try_scale_track_interpolate(p_godot_anim_track_index, time, &scale);
ERR_CONTINUE(err != OK);
p_gltf_node_track.position_track.values.push_back(position);
p_gltf_node_track.position_track.times.push_back(time);
p_gltf_node_track.rotation_track.values.push_back(rotation);
p_gltf_node_track.rotation_track.times.push_back(time);
p_gltf_node_track.scale_track.values.push_back(scale);
p_gltf_node_track.scale_track.times.push_back(time);
if (last) {
break;
}
time += increment;
if (time >= anim_end) {
last = true;
time = anim_end;
}
}
} else {
for (int32_t key_i = 0; key_i < key_count; key_i++) {
Transform3D transform = p_godot_animation->track_get_key_value(p_godot_anim_track_index, key_i);
p_gltf_node_track.position_track.values.write[key_i] = transform.get_origin();
p_gltf_node_track.rotation_track.values.write[key_i] = transform.basis.get_rotation_quaternion();
p_gltf_node_track.scale_track.values.write[key_i] = transform.basis.get_scale();
}
}
} else {
// This is a Value track animating a property, but not a TRS property, so it can't be converted into a node track.
return false;
}
} else if (track_type == Animation::TYPE_BEZIER) {
const int32_t keys = anim_end * p_state->get_bake_fps();
if (node_prop == "scale") {
if (p_gltf_node_track.scale_track.times.is_empty()) {
p_gltf_node_track.scale_track.interpolation = gltf_interpolation;
Vector<double> new_times;
new_times.resize(keys);
for (int32_t key_i = 0; key_i < keys; key_i++) {
new_times.write[key_i] = key_i / p_state->get_bake_fps();
}
p_gltf_node_track.scale_track.times = new_times;
p_gltf_node_track.scale_track.values.resize(keys);
for (int32_t key_i = 0; key_i < keys; key_i++) {
p_gltf_node_track.scale_track.values.write[key_i] = Vector3(1.0f, 1.0f, 1.0f);
}
for (int32_t key_i = 0; key_i < keys; key_i++) {
Vector3 bezier_track = p_gltf_node_track.scale_track.values[key_i];
if (subpath.size() == 2) {
if (subpath[1] == StringName("x")) {
bezier_track.x = p_godot_animation->bezier_track_interpolate(p_godot_anim_track_index, key_i / p_state->get_bake_fps());
} else if (subpath[1] == StringName("y")) {
bezier_track.y = p_godot_animation->bezier_track_interpolate(p_godot_anim_track_index, key_i / p_state->get_bake_fps());
} else if (subpath[1] == StringName("z")) {
bezier_track.z = p_godot_animation->bezier_track_interpolate(p_godot_anim_track_index, key_i / p_state->get_bake_fps());
}
}
p_gltf_node_track.scale_track.values.write[key_i] = bezier_track;
}
}
} else if (node_prop == "position") {
if (p_gltf_node_track.position_track.times.is_empty()) {
p_gltf_node_track.position_track.interpolation = gltf_interpolation;
Vector<double> new_times;
new_times.resize(keys);
for (int32_t key_i = 0; key_i < keys; key_i++) {
new_times.write[key_i] = key_i / p_state->get_bake_fps();
}
p_gltf_node_track.position_track.times = new_times;
p_gltf_node_track.position_track.values.resize(keys);
}
for (int32_t key_i = 0; key_i < keys; key_i++) {
Vector3 bezier_track = p_gltf_node_track.position_track.values[key_i];
if (subpath.size() == 2) {
if (subpath[1] == StringName("x")) {
bezier_track.x = p_godot_animation->bezier_track_interpolate(p_godot_anim_track_index, key_i / p_state->get_bake_fps());
} else if (subpath[1] == StringName("y")) {
bezier_track.y = p_godot_animation->bezier_track_interpolate(p_godot_anim_track_index, key_i / p_state->get_bake_fps());
} else if (subpath[1] == StringName("z")) {
bezier_track.z = p_godot_animation->bezier_track_interpolate(p_godot_anim_track_index, key_i / p_state->get_bake_fps());
}
}
p_gltf_node_track.position_track.values.write[key_i] = bezier_track;
}
} else if (node_prop == "quaternion") {
if (p_gltf_node_track.rotation_track.times.is_empty()) {
p_gltf_node_track.rotation_track.interpolation = gltf_interpolation;
Vector<double> new_times;
new_times.resize(keys);
for (int32_t key_i = 0; key_i < keys; key_i++) {
new_times.write[key_i] = key_i / p_state->get_bake_fps();
}
p_gltf_node_track.rotation_track.times = new_times;
p_gltf_node_track.rotation_track.values.resize(keys);
}
for (int32_t key_i = 0; key_i < keys; key_i++) {
Quaternion bezier_track = p_gltf_node_track.rotation_track.values[key_i];
if (subpath.size() == 2) {
if (subpath[1] == StringName("x")) {
bezier_track.x = p_godot_animation->bezier_track_interpolate(p_godot_anim_track_index, key_i / p_state->get_bake_fps());
} else if (subpath[1] == StringName("y")) {
bezier_track.y = p_godot_animation->bezier_track_interpolate(p_godot_anim_track_index, key_i / p_state->get_bake_fps());
} else if (subpath[1] == StringName("z")) {
bezier_track.z = p_godot_animation->bezier_track_interpolate(p_godot_anim_track_index, key_i / p_state->get_bake_fps());
} else if (subpath[1] == StringName("w")) {
bezier_track.w = p_godot_animation->bezier_track_interpolate(p_godot_anim_track_index, key_i / p_state->get_bake_fps());
}
}
p_gltf_node_track.rotation_track.values.write[key_i] = bezier_track;
}
} else {
// This is a Bezier track animating a property, but not a TRS property, so it can't be converted into a node track.
return false;
}
} else {
// This property track isn't a Value track or Bezier track, so it can't be converted into a node track.
return false;
}
} else {
// This isn't a TRS track or a property track, so it can't be converted into a node track.
return false;
}
// If we reached this point, the track was some kind of TRS track and was successfully converted.
// All failure paths should return false before this point to indicate this
// isn't a node track so it can be handled by KHR_animation_pointer instead.
return true;
}
void GLTFDocument::_convert_animation(Ref<GLTFState> p_state, AnimationPlayer *p_animation_player, const String &p_animation_track_name) {
Ref<Animation> animation = p_animation_player->get_animation(p_animation_track_name);
Ref<GLTFAnimation> gltf_animation;
gltf_animation.instantiate();
gltf_animation->set_original_name(p_animation_track_name);
gltf_animation->set_name(_gen_unique_name(p_state, p_animation_track_name));
HashMap<int, GLTFAnimation::NodeTrack> &node_tracks = gltf_animation->get_node_tracks();
for (int32_t track_index = 0; track_index < animation->get_track_count(); track_index++) {
if (!animation->track_is_enabled(track_index)) {
continue;
}
// Get the Godot node and the glTF node index for the animation track.
const NodePath track_path = animation->track_get_path(track_index);
const Node *anim_player_parent = p_animation_player->get_parent();
const Node *animated_node = anim_player_parent->get_node_or_null(track_path);
ERR_CONTINUE_MSG(!animated_node, "glTF: Cannot get node for animated track using path: " + String(track_path));
const GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::godot_to_gltf_interpolation(animation, track_index);
// First, check if it's a Blend Shape track.
if (animation->track_get_type(track_index) == Animation::TYPE_BLEND_SHAPE) {
const MeshInstance3D *mesh_instance = Object::cast_to<MeshInstance3D>(animated_node);
ERR_CONTINUE_MSG(!mesh_instance, "glTF: Animation had a Blend Shape track, but the node wasn't a MeshInstance3D. Ignoring this track.");
Ref<Mesh> mesh = mesh_instance->get_mesh();
ERR_CONTINUE(mesh.is_null());
int32_t mesh_index = -1;
for (const KeyValue<GLTFNodeIndex, Node *> &mesh_track_i : p_state->scene_nodes) {
if (mesh_track_i.value == animated_node) {
mesh_index = mesh_track_i.key;
}
}
ERR_CONTINUE(mesh_index == -1);
GLTFAnimation::NodeTrack track = node_tracks.has(mesh_index) ? node_tracks[mesh_index] : GLTFAnimation::NodeTrack();
if (!node_tracks.has(mesh_index)) {
for (int32_t shape_i = 0; shape_i < mesh->get_blend_shape_count(); shape_i++) {
String shape_name = mesh->get_blend_shape_name(shape_i);
NodePath shape_path = NodePath(track_path.get_names(), { shape_name }, false);
int32_t shape_track_i = animation->find_track(shape_path, Animation::TYPE_BLEND_SHAPE);
if (shape_track_i == -1) {
GLTFAnimation::Channel<real_t> weight;
weight.interpolation = GLTFAnimation::INTERP_LINEAR;
weight.times.push_back(0.0f);
weight.times.push_back(0.0f);
weight.values.push_back(0.0f);
weight.values.push_back(0.0f);
track.weight_tracks.push_back(weight);
continue;
}
int32_t key_count = animation->track_get_key_count(shape_track_i);
GLTFAnimation::Channel<real_t> weight;
weight.interpolation = gltf_interpolation;
weight.times.resize(key_count);
for (int32_t time_i = 0; time_i < key_count; time_i++) {
weight.times.write[time_i] = animation->track_get_key_time(shape_track_i, time_i);
}
weight.values.resize(key_count);
for (int32_t value_i = 0; value_i < key_count; value_i++) {
weight.values.write[value_i] = animation->track_get_key_value(shape_track_i, value_i);
}
track.weight_tracks.push_back(weight);
}
node_tracks[mesh_index] = track;
}
continue;
}
// If it's not a Blend Shape track, it must either be a TRS track, a property Value track, or something we can't handle.
// For the cases we can handle, we will need to know the glTF node index, glTF interpolation, and the times of the track.
const Vector<StringName> subnames = track_path.get_subnames();
const GLTFNodeIndex node_i = _node_and_or_bone_to_gltf_node_index(p_state, subnames, animated_node);
ERR_CONTINUE_MSG(node_i == -1, "glTF: Cannot get glTF node index for animated track using path: " + String(track_path));
const int anim_key_count = animation->track_get_key_count(track_index);
Vector<double> times;
times.resize(anim_key_count);
for (int32_t key_i = 0; key_i < anim_key_count; key_i++) {
times.write[key_i] = animation->track_get_key_time(track_index, key_i);
}
// Try converting the track to a TRS glTF node track. This will only succeed if the Godot animation is a TRS track.
const HashMap<int, GLTFAnimation::NodeTrack>::Iterator node_track_iter = node_tracks.find(node_i);
GLTFAnimation::NodeTrack track;
if (node_track_iter) {
track = node_track_iter->value;
}
if (_convert_animation_node_track(p_state, track, animation, track_index, times)) {
// If the track was successfully converted, save it and continue to the next track.
node_tracks[node_i] = track;
continue;
}
// If the track wasn't a TRS track or Blend Shape track, it might be a Value track animating a property.
// Then this is something that we need to handle with KHR_animation_pointer.
Ref<GLTFObjectModelProperty> obj_model_prop = export_object_model_property(p_state, track_path, animated_node, node_i);
if (obj_model_prop.is_valid() && obj_model_prop->has_json_pointers()) {
// Insert the property track into the KHR_animation_pointer pointer tracks.
GLTFAnimation::Channel<Variant> channel;
channel.interpolation = gltf_interpolation;
channel.times = times;
channel.values.resize(anim_key_count);
// If using an expression, determine the base instance to pass to the expression.
const Ref<Expression> godot_to_gltf_expr = obj_model_prop->get_godot_to_gltf_expression();
const bool is_godot_to_gltf_expr_valid = godot_to_gltf_expr.is_valid();
Object *base_instance = nullptr;
if (is_godot_to_gltf_expr_valid) {
Ref<Resource> resource;
Vector<StringName> leftover_subpath;
base_instance = anim_player_parent->get_node_and_resource(track_path, resource, leftover_subpath);
if (resource.is_valid()) {
base_instance = resource.ptr();
}
}
// Convert the Godot animation values into glTF animation values (still Variant).
for (int32_t key_i = 0; key_i < anim_key_count; key_i++) {
Variant value = animation->track_get_key_value(track_index, key_i);
if (is_godot_to_gltf_expr_valid) {
Array inputs;
inputs.append(value);
value = godot_to_gltf_expr->execute(inputs, base_instance);
}
channel.values.write[key_i] = value;
}
// Use the JSON pointer to insert the property track into the pointer tracks. There will usually be just one JSON pointer.
HashMap<String, GLTFAnimation::Channel<Variant>> &pointer_tracks = gltf_animation->get_pointer_tracks();
Vector<PackedStringArray> split_json_pointers = obj_model_prop->get_json_pointers();
for (const PackedStringArray &split_json_pointer : split_json_pointers) {
String json_pointer_str = "/" + String("/").join(split_json_pointer);
p_state->object_model_properties[json_pointer_str] = obj_model_prop;
pointer_tracks[json_pointer_str] = channel;
}
}
}
if (!gltf_animation->is_empty_of_tracks()) {
p_state->animations.push_back(gltf_animation);
}
}
Error GLTFDocument::_parse(Ref<GLTFState> p_state, String p_path, Ref<FileAccess> p_file) {
Error err;
if (p_file.is_null()) {
return FAILED;
}
p_file->seek(0);
uint32_t magic = p_file->get_32();
if (magic == 0x46546C67) {
//binary file
//text file
p_file->seek(0);
err = _parse_glb(p_file, p_state);
if (err != OK) {
return err;
}
} else {
p_file->seek(0);
String text = p_file->get_as_utf8_string();
JSON json;
err = json.parse(text);
if (err != OK) {
_err_print_error("", "", json.get_error_line(), json.get_error_message().utf8().get_data(), false, ERR_HANDLER_SCRIPT);
}
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
p_state->json = json.get_data();
}
err = _parse_asset_header(p_state);
ERR_FAIL_COND_V(err != OK, err);
document_extensions.clear();
for (Ref<GLTFDocumentExtension> ext : all_document_extensions) {
ERR_CONTINUE(ext.is_null());
err = ext->import_preflight(p_state, p_state->json["extensionsUsed"]);
if (err == OK) {
document_extensions.push_back(ext);
}
}
err = _parse_gltf_state(p_state, p_path);
ERR_FAIL_COND_V(err != OK, err);
return OK;
}
Dictionary _serialize_texture_transform_uv(Vector2 p_offset, Vector2 p_scale) {
Dictionary texture_transform;
bool is_offset = p_offset != Vector2(0.0, 0.0);
if (is_offset) {
Array offset;
offset.resize(2);
offset[0] = p_offset.x;
offset[1] = p_offset.y;
texture_transform["offset"] = offset;
}
bool is_scaled = p_scale != Vector2(1.0, 1.0);
if (is_scaled) {
Array scale;
scale.resize(2);
scale[0] = p_scale.x;
scale[1] = p_scale.y;
texture_transform["scale"] = scale;
}
Dictionary extension;
// Note: Godot doesn't support texture rotation.
if (is_offset || is_scaled) {
extension["KHR_texture_transform"] = texture_transform;
}
return extension;
}
Dictionary GLTFDocument::_serialize_texture_transform_uv1(Ref<BaseMaterial3D> p_material) {
ERR_FAIL_COND_V(p_material.is_null(), Dictionary());
Vector3 offset = p_material->get_uv1_offset();
Vector3 scale = p_material->get_uv1_scale();
return _serialize_texture_transform_uv(Vector2(offset.x, offset.y), Vector2(scale.x, scale.y));
}
Dictionary GLTFDocument::_serialize_texture_transform_uv2(Ref<BaseMaterial3D> p_material) {
ERR_FAIL_COND_V(p_material.is_null(), Dictionary());
Vector3 offset = p_material->get_uv2_offset();
Vector3 scale = p_material->get_uv2_scale();
return _serialize_texture_transform_uv(Vector2(offset.x, offset.y), Vector2(scale.x, scale.y));
}
Error GLTFDocument::_serialize_asset_header(Ref<GLTFState> p_state) {
const String version = "2.0";
p_state->major_version = version.get_slice(".", 0).to_int();
p_state->minor_version = version.get_slice(".", 1).to_int();
Dictionary asset;
asset["version"] = version;
if (!p_state->copyright.is_empty()) {
asset["copyright"] = p_state->copyright;
}
String hash = String(VERSION_HASH);
asset["generator"] = String(VERSION_FULL_NAME) + String("@") + (hash.is_empty() ? String("unknown") : hash);
p_state->json["asset"] = asset;
ERR_FAIL_COND_V(!asset.has("version"), Error::FAILED);
ERR_FAIL_COND_V(!p_state->json.has("asset"), Error::FAILED);
return OK;
}
Error GLTFDocument::_serialize_file(Ref<GLTFState> p_state, const String p_path) {
Error err = FAILED;
if (p_path.to_lower().ends_with("glb")) {
err = _encode_buffer_glb(p_state, p_path);
ERR_FAIL_COND_V(err != OK, err);
Ref<FileAccess> file = FileAccess::open(p_path, FileAccess::WRITE, &err);
ERR_FAIL_COND_V(file.is_null(), FAILED);
String json = Variant(p_state->json).to_json_string();
const uint32_t magic = 0x46546C67; // GLTF
const int32_t header_size = 12;
const int32_t chunk_header_size = 8;
CharString cs = json.utf8();
const uint32_t text_data_length = cs.length();
const uint32_t text_chunk_length = ((text_data_length + 3) & (~3));
const uint32_t text_chunk_type = 0x4E4F534A; //JSON
uint32_t binary_data_length = 0;
if (p_state->buffers.size() > 0) {
binary_data_length = p_state->buffers[0].size();
}
const uint32_t binary_chunk_length = ((binary_data_length + 3) & (~3));
const uint32_t binary_chunk_type = 0x004E4942; //BIN
file->create(FileAccess::ACCESS_RESOURCES);
file->store_32(magic);
file->store_32(p_state->major_version); // version
uint32_t total_length = header_size + chunk_header_size + text_chunk_length;
if (binary_chunk_length) {
total_length += chunk_header_size + binary_chunk_length;
}
file->store_32(total_length);
// Write the JSON text chunk.
file->store_32(text_chunk_length);
file->store_32(text_chunk_type);
file->store_buffer((uint8_t *)&cs[0], cs.length());
for (uint32_t pad_i = text_data_length; pad_i < text_chunk_length; pad_i++) {
file->store_8(' ');
}
// Write a single binary chunk.
if (binary_chunk_length) {
file->store_32(binary_chunk_length);
file->store_32(binary_chunk_type);
file->store_buffer(p_state->buffers[0].ptr(), binary_data_length);
for (uint32_t pad_i = binary_data_length; pad_i < binary_chunk_length; pad_i++) {
file->store_8(0);
}
}
} else {
err = _encode_buffer_bins(p_state, p_path);
ERR_FAIL_COND_V(err != OK, err);
Ref<FileAccess> file = FileAccess::open(p_path, FileAccess::WRITE, &err);
ERR_FAIL_COND_V(file.is_null(), FAILED);
file->create(FileAccess::ACCESS_RESOURCES);
String json = Variant(p_state->json).to_json_string();
file->store_string(json);
}
return err;
}
void GLTFDocument::_bind_methods() {
BIND_ENUM_CONSTANT(ROOT_NODE_MODE_SINGLE_ROOT);
BIND_ENUM_CONSTANT(ROOT_NODE_MODE_KEEP_ROOT);
BIND_ENUM_CONSTANT(ROOT_NODE_MODE_MULTI_ROOT);
ClassDB::bind_method(D_METHOD("set_image_format", "image_format"), &GLTFDocument::set_image_format);
ClassDB::bind_method(D_METHOD("get_image_format"), &GLTFDocument::get_image_format);
ClassDB::bind_method(D_METHOD("set_lossy_quality", "lossy_quality"), &GLTFDocument::set_lossy_quality);
ClassDB::bind_method(D_METHOD("get_lossy_quality"), &GLTFDocument::get_lossy_quality);
ClassDB::bind_method(D_METHOD("set_root_node_mode", "root_node_mode"), &GLTFDocument::set_root_node_mode);
ClassDB::bind_method(D_METHOD("get_root_node_mode"), &GLTFDocument::get_root_node_mode);
ClassDB::bind_method(D_METHOD("append_from_file", "path", "state", "flags", "base_path"),
&GLTFDocument::append_from_file, DEFVAL(0), DEFVAL(String()));
ClassDB::bind_method(D_METHOD("append_from_buffer", "bytes", "base_path", "state", "flags"),
&GLTFDocument::append_from_buffer, DEFVAL(0));
ClassDB::bind_method(D_METHOD("append_from_scene", "node", "state", "flags"),
&GLTFDocument::append_from_scene, DEFVAL(0));
ClassDB::bind_method(D_METHOD("generate_scene", "state", "bake_fps", "trimming", "remove_immutable_tracks"),
&GLTFDocument::generate_scene, DEFVAL(30), DEFVAL(false), DEFVAL(true));
ClassDB::bind_method(D_METHOD("generate_buffer", "state"),
&GLTFDocument::generate_buffer);
ClassDB::bind_method(D_METHOD("write_to_filesystem", "state", "path"),
&GLTFDocument::write_to_filesystem);
ADD_PROPERTY(PropertyInfo(Variant::STRING, "image_format"), "set_image_format", "get_image_format");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "lossy_quality"), "set_lossy_quality", "get_lossy_quality");
ADD_PROPERTY(PropertyInfo(Variant::INT, "root_node_mode"), "set_root_node_mode", "get_root_node_mode");
ClassDB::bind_static_method("GLTFDocument", D_METHOD("import_object_model_property", "state", "json_pointer"), &GLTFDocument::import_object_model_property);
ClassDB::bind_static_method("GLTFDocument", D_METHOD("export_object_model_property", "state", "node_path", "godot_node", "gltf_node_index"), &GLTFDocument::export_object_model_property);
ClassDB::bind_static_method("GLTFDocument", D_METHOD("register_gltf_document_extension", "extension", "first_priority"),
&GLTFDocument::register_gltf_document_extension, DEFVAL(false));
ClassDB::bind_static_method("GLTFDocument", D_METHOD("unregister_gltf_document_extension", "extension"),
&GLTFDocument::unregister_gltf_document_extension);
ClassDB::bind_static_method("GLTFDocument", D_METHOD("get_supported_gltf_extensions"),
&GLTFDocument::get_supported_gltf_extensions);
}
void GLTFDocument::_build_parent_hierachy(Ref<GLTFState> p_state) {
// build the hierarchy
for (GLTFNodeIndex node_i = 0; node_i < p_state->nodes.size(); node_i++) {
for (int j = 0; j < p_state->nodes[node_i]->children.size(); j++) {
GLTFNodeIndex child_i = p_state->nodes[node_i]->children[j];
ERR_FAIL_INDEX(child_i, p_state->nodes.size());
if (p_state->nodes.write[child_i]->parent != -1) {
continue;
}
p_state->nodes.write[child_i]->parent = node_i;
}
}
}
Vector<Ref<GLTFDocumentExtension>> GLTFDocument::all_document_extensions;
void GLTFDocument::register_gltf_document_extension(Ref<GLTFDocumentExtension> p_extension, bool p_first_priority) {
if (!all_document_extensions.has(p_extension)) {
if (p_first_priority) {
all_document_extensions.insert(0, p_extension);
} else {
all_document_extensions.push_back(p_extension);
}
}
}
void GLTFDocument::unregister_gltf_document_extension(Ref<GLTFDocumentExtension> p_extension) {
all_document_extensions.erase(p_extension);
}
void GLTFDocument::unregister_all_gltf_document_extensions() {
all_document_extensions.clear();
}
Vector<Ref<GLTFDocumentExtension>> GLTFDocument::get_all_gltf_document_extensions() {
return all_document_extensions;
}
Vector<String> GLTFDocument::get_supported_gltf_extensions() {
HashSet<String> set = get_supported_gltf_extensions_hashset();
Vector<String> vec;
for (const String &s : set) {
vec.append(s);
}
vec.sort();
return vec;
}
HashSet<String> GLTFDocument::get_supported_gltf_extensions_hashset() {
HashSet<String> supported_extensions;
// If the extension is supported directly in GLTFDocument, list it here.
// Other built-in extensions are supported by GLTFDocumentExtension classes.
supported_extensions.insert("GODOT_single_root");
supported_extensions.insert("KHR_animation_pointer");
supported_extensions.insert("KHR_lights_punctual");
supported_extensions.insert("KHR_materials_emissive_strength");
supported_extensions.insert("KHR_materials_pbrSpecularGlossiness");
supported_extensions.insert("KHR_materials_unlit");
supported_extensions.insert("KHR_texture_transform");
for (Ref<GLTFDocumentExtension> ext : all_document_extensions) {
ERR_CONTINUE(ext.is_null());
Vector<String> ext_supported_extensions = ext->get_supported_extensions();
for (int i = 0; i < ext_supported_extensions.size(); ++i) {
supported_extensions.insert(ext_supported_extensions[i]);
}
}
return supported_extensions;
}
PackedByteArray GLTFDocument::_serialize_glb_buffer(Ref<GLTFState> p_state, Error *r_err) {
Error err = _encode_buffer_glb(p_state, "");
if (r_err) {
*r_err = err;
}
ERR_FAIL_COND_V(err != OK, PackedByteArray());
String json = Variant(p_state->json).to_json_string();
const uint32_t magic = 0x46546C67; // GLTF
const int32_t header_size = 12;
const int32_t chunk_header_size = 8;
int32_t padding = (chunk_header_size + json.utf8().length()) % 4;
json += String(" ").repeat(padding);
CharString cs = json.utf8();
const uint32_t text_chunk_length = cs.length();
const uint32_t text_chunk_type = 0x4E4F534A; //JSON
int32_t binary_data_length = 0;
if (p_state->buffers.size() > 0) {
binary_data_length = p_state->buffers[0].size();
}
const int32_t binary_chunk_length = binary_data_length;
const int32_t binary_chunk_type = 0x004E4942; //BIN
Ref<StreamPeerBuffer> buffer;
buffer.instantiate();
buffer->put_32(magic);
buffer->put_32(p_state->major_version); // version
buffer->put_32(header_size + chunk_header_size + text_chunk_length + chunk_header_size + binary_data_length); // length
buffer->put_32(text_chunk_length);
buffer->put_32(text_chunk_type);
buffer->put_data((uint8_t *)&cs[0], cs.length());
if (binary_chunk_length) {
buffer->put_32(binary_chunk_length);
buffer->put_32(binary_chunk_type);
buffer->put_data(p_state->buffers[0].ptr(), binary_data_length);
}
return buffer->get_data_array();
}
Node *GLTFDocument::_generate_scene_node_tree(Ref<GLTFState> p_state) {
// Generate the skeletons and skins (if any).
HashMap<ObjectID, SkinSkeletonIndex> skeleton_map;
Error err = SkinTool::_create_skeletons(p_state->unique_names, p_state->skins, p_state->nodes,
skeleton_map, p_state->skeletons, p_state->scene_nodes);
ERR_FAIL_COND_V_MSG(err != OK, nullptr, "glTF: Failed to create skeletons.");
err = _create_skins(p_state);
ERR_FAIL_COND_V_MSG(err != OK, nullptr, "glTF: Failed to create skins.");
// Run pre-generate for each extension, in case an extension needs to do something before generating the scene.
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
err = ext->import_pre_generate(p_state);
ERR_CONTINUE(err != OK);
}
// Generate the node tree.
Node *single_root;
if (p_state->extensions_used.has("GODOT_single_root")) {
_generate_scene_node(p_state, 0, nullptr, nullptr);
single_root = p_state->scene_nodes[0];
if (single_root && single_root->get_owner() && single_root->get_owner() != single_root) {
single_root = single_root->get_owner();
}
} else {
single_root = memnew(Node3D);
for (int32_t root_i = 0; root_i < p_state->root_nodes.size(); root_i++) {
_generate_scene_node(p_state, p_state->root_nodes[root_i], single_root, single_root);
}
}
// Assign the scene name and single root name to each other
// if one is missing, or do nothing if both are already set.
if (unlikely(p_state->scene_name.is_empty())) {
p_state->scene_name = single_root->get_name();
} else if (single_root->get_name() == StringName()) {
if (_naming_version == 0) {
single_root->set_name(p_state->scene_name);
} else {
single_root->set_name(_gen_unique_name(p_state, p_state->scene_name));
}
}
return single_root;
}
Error GLTFDocument::_parse_asset_header(Ref<GLTFState> p_state) {
if (!p_state->json.has("asset")) {
return ERR_PARSE_ERROR;
}
Dictionary asset = p_state->json["asset"];
if (!asset.has("version")) {
return ERR_PARSE_ERROR;
}
String version = asset["version"];
p_state->major_version = version.get_slice(".", 0).to_int();
p_state->minor_version = version.get_slice(".", 1).to_int();
if (asset.has("copyright")) {
p_state->copyright = asset["copyright"];
}
return OK;
}
Error GLTFDocument::_parse_gltf_state(Ref<GLTFState> p_state, const String &p_search_path) {
Error err;
/* PARSE EXTENSIONS */
err = _parse_gltf_extensions(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* PARSE SCENE */
err = _parse_scenes(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* PARSE NODES */
err = _parse_nodes(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* PARSE BUFFERS */
err = _parse_buffers(p_state, p_search_path);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* PARSE BUFFER VIEWS */
err = _parse_buffer_views(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* PARSE ACCESSORS */
err = _parse_accessors(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
if (!p_state->discard_meshes_and_materials) {
/* PARSE IMAGES */
err = _parse_images(p_state, p_search_path);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* PARSE TEXTURE SAMPLERS */
err = _parse_texture_samplers(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* PARSE TEXTURES */
err = _parse_textures(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* PARSE TEXTURES */
err = _parse_materials(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
}
/* PARSE SKINS */
err = _parse_skins(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* DETERMINE SKELETONS */
err = SkinTool::_determine_skeletons(p_state->skins, p_state->nodes, p_state->skeletons, p_state->get_import_as_skeleton_bones() ? p_state->root_nodes : Vector<GLTFNodeIndex>());
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* ASSIGN SCENE NODE NAMES */
// This must be run AFTER determining skeletons, and BEFORE parsing animations.
_assign_node_names(p_state);
/* PARSE MESHES (we have enough info now) */
err = _parse_meshes(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* PARSE LIGHTS */
err = _parse_lights(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* PARSE CAMERAS */
err = _parse_cameras(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
/* PARSE ANIMATIONS */
err = _parse_animations(p_state);
ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR);
return OK;
}
PackedByteArray GLTFDocument::generate_buffer(Ref<GLTFState> p_state) {
Ref<GLTFState> state = p_state;
ERR_FAIL_COND_V(state.is_null(), PackedByteArray());
// For buffers, set the state filename to an empty string, but
// don't touch the base path, in case the user set it manually.
state->filename = "";
Error err = _serialize(state);
ERR_FAIL_COND_V(err != OK, PackedByteArray());
PackedByteArray bytes = _serialize_glb_buffer(state, &err);
return bytes;
}
Error GLTFDocument::write_to_filesystem(Ref<GLTFState> p_state, const String &p_path) {
Ref<GLTFState> state = p_state;
ERR_FAIL_COND_V(state.is_null(), ERR_INVALID_PARAMETER);
state->set_base_path(p_path.get_base_dir());
state->filename = p_path.get_file();
Error err = _serialize(state);
if (err != OK) {
return err;
}
err = _serialize_file(state, p_path);
if (err != OK) {
return Error::FAILED;
}
return OK;
}
Node *GLTFDocument::generate_scene(Ref<GLTFState> p_state, float p_bake_fps, bool p_trimming, bool p_remove_immutable_tracks) {
Ref<GLTFState> state = p_state;
ERR_FAIL_COND_V(state.is_null(), nullptr);
ERR_FAIL_INDEX_V(0, state->root_nodes.size(), nullptr);
Error err = OK;
p_state->set_bake_fps(p_bake_fps);
Node *root = _generate_scene_node_tree(state);
ERR_FAIL_NULL_V(root, nullptr);
_process_mesh_instances(state, root);
if (state->get_create_animations() && state->animations.size()) {
AnimationPlayer *ap = memnew(AnimationPlayer);
root->add_child(ap, true);
ap->set_owner(root);
for (int i = 0; i < state->animations.size(); i++) {
_import_animation(state, ap, i, p_trimming, p_remove_immutable_tracks);
}
}
for (KeyValue<GLTFNodeIndex, Node *> E : state->scene_nodes) {
ERR_CONTINUE(!E.value);
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
Dictionary node_json;
if (state->json.has("nodes")) {
Array nodes = state->json["nodes"];
if (0 <= E.key && E.key < nodes.size()) {
node_json = nodes[E.key];
}
}
Ref<GLTFNode> gltf_node = state->nodes[E.key];
err = ext->import_node(p_state, gltf_node, node_json, E.value);
ERR_CONTINUE(err != OK);
}
}
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
err = ext->import_post(p_state, root);
ERR_CONTINUE(err != OK);
}
ERR_FAIL_NULL_V(root, nullptr);
return root;
}
Error GLTFDocument::append_from_scene(Node *p_node, Ref<GLTFState> p_state, uint32_t p_flags) {
ERR_FAIL_NULL_V(p_node, FAILED);
Ref<GLTFState> state = p_state;
ERR_FAIL_COND_V(state.is_null(), FAILED);
state->use_named_skin_binds = p_flags & GLTF_IMPORT_USE_NAMED_SKIN_BINDS;
state->discard_meshes_and_materials = p_flags & GLTF_IMPORT_DISCARD_MESHES_AND_MATERIALS;
state->force_generate_tangents = p_flags & GLTF_IMPORT_GENERATE_TANGENT_ARRAYS;
state->force_disable_compression = p_flags & GLTF_IMPORT_FORCE_DISABLE_MESH_COMPRESSION;
if (!state->buffers.size()) {
state->buffers.push_back(Vector<uint8_t>());
}
// Perform export preflight for document extensions. Only extensions that
// return OK will be used for the rest of the export steps.
document_extensions.clear();
for (Ref<GLTFDocumentExtension> ext : all_document_extensions) {
ERR_CONTINUE(ext.is_null());
Error err = ext->export_preflight(state, p_node);
if (err == OK) {
document_extensions.push_back(ext);
}
}
// Add the root node(s) and their descendants to the state.
if (_root_node_mode == RootNodeMode::ROOT_NODE_MODE_MULTI_ROOT) {
const int child_count = p_node->get_child_count();
if (child_count > 0) {
for (int i = 0; i < child_count; i++) {
_convert_scene_node(state, p_node->get_child(i), -1, -1);
}
state->scene_name = p_node->get_name();
return OK;
}
}
if (_root_node_mode == RootNodeMode::ROOT_NODE_MODE_SINGLE_ROOT) {
state->extensions_used.append("GODOT_single_root");
}
_convert_scene_node(state, p_node, -1, -1);
// Run post-convert for each extension, in case an extension needs to do something after converting the scene.
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
Error err = ext->export_post_convert(p_state, p_node);
ERR_CONTINUE(err != OK);
}
return OK;
}
Error GLTFDocument::append_from_buffer(PackedByteArray p_bytes, String p_base_path, Ref<GLTFState> p_state, uint32_t p_flags) {
Ref<GLTFState> state = p_state;
ERR_FAIL_COND_V(state.is_null(), FAILED);
// TODO Add missing texture and missing .bin file paths to r_missing_deps 2021-09-10 fire
Error err = FAILED;
state->use_named_skin_binds = p_flags & GLTF_IMPORT_USE_NAMED_SKIN_BINDS;
state->discard_meshes_and_materials = p_flags & GLTF_IMPORT_DISCARD_MESHES_AND_MATERIALS;
state->force_generate_tangents = p_flags & GLTF_IMPORT_GENERATE_TANGENT_ARRAYS;
state->force_disable_compression = p_flags & GLTF_IMPORT_FORCE_DISABLE_MESH_COMPRESSION;
Ref<FileAccessMemory> file_access;
file_access.instantiate();
file_access->open_custom(p_bytes.ptr(), p_bytes.size());
state->set_base_path(p_base_path.get_base_dir());
err = _parse(p_state, state->base_path, file_access);
ERR_FAIL_COND_V(err != OK, err);
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
err = ext->import_post_parse(state);
ERR_FAIL_COND_V(err != OK, err);
}
return OK;
}
Error GLTFDocument::append_from_file(String p_path, Ref<GLTFState> p_state, uint32_t p_flags, String p_base_path) {
Ref<GLTFState> state = p_state;
// TODO Add missing texture and missing .bin file paths to r_missing_deps 2021-09-10 fire
if (state == Ref<GLTFState>()) {
state.instantiate();
}
state->set_filename(p_path.get_file().get_basename());
state->use_named_skin_binds = p_flags & GLTF_IMPORT_USE_NAMED_SKIN_BINDS;
state->discard_meshes_and_materials = p_flags & GLTF_IMPORT_DISCARD_MESHES_AND_MATERIALS;
state->force_generate_tangents = p_flags & GLTF_IMPORT_GENERATE_TANGENT_ARRAYS;
state->force_disable_compression = p_flags & GLTF_IMPORT_FORCE_DISABLE_MESH_COMPRESSION;
Error err;
Ref<FileAccess> file = FileAccess::open(p_path, FileAccess::READ, &err);
ERR_FAIL_COND_V(err != OK, ERR_FILE_CANT_OPEN);
ERR_FAIL_COND_V(file.is_null(), ERR_FILE_CANT_OPEN);
String base_path = p_base_path;
if (base_path.is_empty()) {
base_path = p_path.get_base_dir();
}
state->set_base_path(base_path);
err = _parse(p_state, base_path, file);
ERR_FAIL_COND_V(err != OK, err);
for (Ref<GLTFDocumentExtension> ext : document_extensions) {
ERR_CONTINUE(ext.is_null());
err = ext->import_post_parse(p_state);
ERR_FAIL_COND_V(err != OK, err);
}
return OK;
}
Error GLTFDocument::_parse_gltf_extensions(Ref<GLTFState> p_state) {
ERR_FAIL_COND_V(p_state.is_null(), ERR_PARSE_ERROR);
if (p_state->json.has("extensionsUsed")) {
Vector<String> ext_array = p_state->json["extensionsUsed"];
p_state->extensions_used = ext_array;
}
if (p_state->json.has("extensionsRequired")) {
Vector<String> ext_array = p_state->json["extensionsRequired"];
p_state->extensions_required = ext_array;
}
HashSet<String> supported_extensions = get_supported_gltf_extensions_hashset();
Error ret = OK;
for (int i = 0; i < p_state->extensions_required.size(); i++) {
if (!supported_extensions.has(p_state->extensions_required[i])) {
ERR_PRINT("glTF: Can't import file '" + p_state->filename + "', required extension '" + String(p_state->extensions_required[i]) + "' is not supported. Are you missing a GLTFDocumentExtension plugin?");
ret = ERR_UNAVAILABLE;
}
}
return ret;
}
void GLTFDocument::set_root_node_mode(GLTFDocument::RootNodeMode p_root_node_mode) {
_root_node_mode = p_root_node_mode;
}
GLTFDocument::RootNodeMode GLTFDocument::get_root_node_mode() const {
return _root_node_mode;
}
String GLTFDocument::_gen_unique_name_static(HashSet<String> &r_unique_names, const String &p_name) {
const String s_name = p_name.validate_node_name();
String u_name;
int index = 1;
while (true) {
u_name = s_name;
if (index > 1) {
u_name += itos(index);
}
if (!r_unique_names.has(u_name)) {
break;
}
index++;
}
r_unique_names.insert(u_name);
return u_name;
}