tinyexr: Sync with upstream 4dbd05a

(cherry picked from commit 3a80fce8be)
This commit is contained in:
Rémi Verschelde 2020-04-30 15:24:46 +02:00
parent 8d394f6c01
commit e3d913c79a
2 changed files with 428 additions and 168 deletions

View File

@ -467,7 +467,7 @@ comments and a patch is provided in the squish/ folder.
## tinyexr
- Upstream: https://github.com/syoyo/tinyexr
- Version: git (656bb61, 2019)
- Version: git (4dbd05a22f51a2d7462311569b8b0cba0bbe2ac5, 2020)
- License: BSD-3-Clause
Files extracted from upstream source:

View File

@ -105,6 +105,19 @@ extern "C" {
// http://computation.llnl.gov/projects/floating-point-compression
#endif
#ifndef TINYEXR_USE_THREAD
#define TINYEXR_USE_THREAD (0) // No threaded loading.
// http://computation.llnl.gov/projects/floating-point-compression
#endif
#ifndef TINYEXR_USE_OPENMP
#ifdef _OPENMP
#define TINYEXR_USE_OPENMP (1)
#else
#define TINYEXR_USE_OPENMP (0)
#endif
#endif
#define TINYEXR_SUCCESS (0)
#define TINYEXR_ERROR_INVALID_MAGIC_NUMBER (-1)
#define TINYEXR_ERROR_INVALID_EXR_VERSION (-2)
@ -118,6 +131,7 @@ extern "C" {
#define TINYEXR_ERROR_UNSUPPORTED_FEATURE (-10)
#define TINYEXR_ERROR_CANT_WRITE_FILE (-11)
#define TINYEXR_ERROR_SERIALZATION_FAILED (-12)
#define TINYEXR_ERROR_LAYER_NOT_FOUND (-13)
// @note { OpenEXR file format: http://www.openexr.com/openexrfilelayout.pdf }
@ -263,7 +277,7 @@ typedef struct _DeepImage {
int pad0;
} DeepImage;
// @deprecated { to be removed. }
// @deprecated { For backward compatibility. Not recommended to use. }
// Loads single-frame OpenEXR image. Assume EXR image contains A(single channel
// alpha) or RGB(A) channels.
// Application must free image data as returned by `out_rgba`
@ -273,6 +287,27 @@ typedef struct _DeepImage {
extern int LoadEXR(float **out_rgba, int *width, int *height,
const char *filename, const char **err);
// Loads single-frame OpenEXR image by specifing layer name. Assume EXR image contains A(single channel
// alpha) or RGB(A) channels.
// Application must free image data as returned by `out_rgba`
// Result image format is: float x RGBA x width x hight
// Returns negative value and may set error string in `err` when there's an
// error
// When the specified layer name is not found in the EXR file, the function will return `TINYEXR_ERROR_LAYER_NOT_FOUND`.
extern int LoadEXRWithLayer(float **out_rgba, int *width, int *height,
const char *filename, const char *layer_name, const char **err);
//
// Get layer infos from EXR file.
//
// @param[out] layer_names List of layer names. Application must free memory after using this.
// @param[out] num_layers The number of layers
// @param[out] err Error string(wll be filled when the function returns error code). Free it using FreeEXRErrorMessage after using this value.
//
// @return TINYEXR_SUCCEES upon success.
//
extern int EXRLayers(const char *filename, const char **layer_names[], int *num_layers, const char **err);
// @deprecated { to be removed. }
// Simple wrapper API for ParseEXRHeaderFromFile.
// checking given file is a EXR file(by just look up header)
@ -472,7 +507,7 @@ extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
#include <cstring>
#include <sstream>
//#include <iostream> // debug
// #include <iostream> // debug
#include <limits>
#include <string>
@ -481,9 +516,15 @@ extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
#if __cplusplus > 199711L
// C++11
#include <cstdint>
#if TINYEXR_USE_THREAD
#include <atomic>
#include <thread>
#endif
#endif // __cplusplus > 199711L
#ifdef _OPENMP
#if TINYEXR_USE_OPENMP
#include <omp.h>
#endif
@ -6917,6 +6958,10 @@ void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename,
}
#endif
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // MINIZ_HEADER_FILE_ONLY
/*
@ -6952,9 +6997,6 @@ void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename,
#pragma clang diagnostic pop
#endif
#ifdef _MSC_VER
#pragma warning(pop)
#endif
} // namespace miniz
#else
@ -9954,9 +9996,9 @@ static bool DecodePixelData(/* out */ unsigned char **out_images,
return false;
}
if (!tinyexr::DecompressRle(reinterpret_cast<unsigned char *>(&outBuf.at(0)),
dstLen, data_ptr,
static_cast<unsigned long>(data_len))) {
if (!tinyexr::DecompressRle(
reinterpret_cast<unsigned char *>(&outBuf.at(0)), dstLen, data_ptr,
static_cast<unsigned long>(data_len))) {
return false;
}
@ -10272,7 +10314,7 @@ static bool DecodePixelData(/* out */ unsigned char **out_images,
return true;
}
static void DecodeTiledPixelData(
static bool DecodeTiledPixelData(
unsigned char **out_images, int *width, int *height,
const int *requested_pixel_types, const unsigned char *data_ptr,
size_t data_len, int compression_type, int line_order, int data_width,
@ -10298,11 +10340,11 @@ static void DecodeTiledPixelData(
}
// Image size = tile size.
DecodePixelData(out_images, requested_pixel_types, data_ptr, data_len,
compression_type, line_order, (*width), tile_size_y,
/* stride */ tile_size_x, /* y */ 0, /* line_no */ 0,
(*height), pixel_data_size, num_attributes, attributes,
num_channels, channels, channel_offset_list);
return DecodePixelData(out_images, requested_pixel_types, data_ptr, data_len,
compression_type, line_order, (*width), tile_size_y,
/* stride */ tile_size_x, /* y */ 0, /* line_no */ 0,
(*height), pixel_data_size, num_attributes, attributes,
num_channels, channels, channel_offset_list);
}
static bool ComputeChannelLayout(std::vector<size_t> *channel_offset_list,
@ -10851,85 +10893,141 @@ static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
exr_image->tiles = static_cast<EXRTile *>(
calloc(sizeof(EXRTile), static_cast<size_t>(num_tiles)));
for (size_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
// Allocate memory for each tile.
exr_image->tiles[tile_idx].images = tinyexr::AllocateImage(
num_channels, exr_header->channels, exr_header->requested_pixel_types,
exr_header->tile_size_x, exr_header->tile_size_y);
int err_code = TINYEXR_SUCCESS;
// 16 byte: tile coordinates
// 4 byte : data size
// ~ : data(uncompressed or compressed)
if (offsets[tile_idx] + sizeof(int) * 5 > size) {
if (err) {
(*err) += "Insufficient data size.\n";
}
return TINYEXR_ERROR_INVALID_DATA;
}
#if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
size_t data_size = size_t(size - (offsets[tile_idx] + sizeof(int) * 5));
const unsigned char *data_ptr =
reinterpret_cast<const unsigned char *>(head + offsets[tile_idx]);
std::vector<std::thread> workers;
std::atomic<size_t> tile_count(0);
int tile_coordinates[4];
memcpy(tile_coordinates, data_ptr, sizeof(int) * 4);
tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[0]));
tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[1]));
tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[2]));
tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[3]));
// @todo{ LoD }
if (tile_coordinates[2] != 0) {
return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
}
if (tile_coordinates[3] != 0) {
return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
}
int data_len;
memcpy(&data_len, data_ptr + 16,
sizeof(int)); // 16 = sizeof(tile_coordinates)
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len));
if (data_len < 4 || size_t(data_len) > data_size) {
if (err) {
(*err) += "Insufficient data length.\n";
}
return TINYEXR_ERROR_INVALID_DATA;
}
// Move to data addr: 20 = 16 + 4;
data_ptr += 20;
tinyexr::DecodeTiledPixelData(
exr_image->tiles[tile_idx].images,
&(exr_image->tiles[tile_idx].width),
&(exr_image->tiles[tile_idx].height),
exr_header->requested_pixel_types, data_ptr,
static_cast<size_t>(data_len), exr_header->compression_type,
exr_header->line_order, data_width, data_height, tile_coordinates[0],
tile_coordinates[1], exr_header->tile_size_x, exr_header->tile_size_y,
static_cast<size_t>(pixel_data_size),
static_cast<size_t>(exr_header->num_custom_attributes),
exr_header->custom_attributes,
static_cast<size_t>(exr_header->num_channels), exr_header->channels,
channel_offset_list);
exr_image->tiles[tile_idx].offset_x = tile_coordinates[0];
exr_image->tiles[tile_idx].offset_y = tile_coordinates[1];
exr_image->tiles[tile_idx].level_x = tile_coordinates[2];
exr_image->tiles[tile_idx].level_y = tile_coordinates[3];
exr_image->num_tiles = static_cast<int>(num_tiles);
int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
if (num_threads > int(num_tiles)) {
num_threads = int(num_tiles);
}
for (int t = 0; t < num_threads; t++) {
workers.emplace_back(std::thread([&]() {
size_t tile_idx = 0;
while ((tile_idx = tile_count++) < num_tiles) {
#else
for (size_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
#endif
// Allocate memory for each tile.
exr_image->tiles[tile_idx].images = tinyexr::AllocateImage(
num_channels, exr_header->channels,
exr_header->requested_pixel_types, exr_header->tile_size_x,
exr_header->tile_size_y);
// 16 byte: tile coordinates
// 4 byte : data size
// ~ : data(uncompressed or compressed)
if (offsets[tile_idx] + sizeof(int) * 5 > size) {
// TODO(LTE): atomic
if (err) {
(*err) += "Insufficient data size.\n";
}
err_code = TINYEXR_ERROR_INVALID_DATA;
break;
}
size_t data_size =
size_t(size - (offsets[tile_idx] + sizeof(int) * 5));
const unsigned char *data_ptr =
reinterpret_cast<const unsigned char *>(head + offsets[tile_idx]);
int tile_coordinates[4];
memcpy(tile_coordinates, data_ptr, sizeof(int) * 4);
tinyexr::swap4(
reinterpret_cast<unsigned int *>(&tile_coordinates[0]));
tinyexr::swap4(
reinterpret_cast<unsigned int *>(&tile_coordinates[1]));
tinyexr::swap4(
reinterpret_cast<unsigned int *>(&tile_coordinates[2]));
tinyexr::swap4(
reinterpret_cast<unsigned int *>(&tile_coordinates[3]));
// @todo{ LoD }
if (tile_coordinates[2] != 0) {
err_code = TINYEXR_ERROR_UNSUPPORTED_FEATURE;
break;
}
if (tile_coordinates[3] != 0) {
err_code = TINYEXR_ERROR_UNSUPPORTED_FEATURE;
break;
}
int data_len;
memcpy(&data_len, data_ptr + 16,
sizeof(int)); // 16 = sizeof(tile_coordinates)
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len));
if (data_len < 4 || size_t(data_len) > data_size) {
// TODO(LTE): atomic
if (err) {
(*err) += "Insufficient data length.\n";
}
err_code = TINYEXR_ERROR_INVALID_DATA;
break;
}
// Move to data addr: 20 = 16 + 4;
data_ptr += 20;
bool ret = tinyexr::DecodeTiledPixelData(
exr_image->tiles[tile_idx].images,
&(exr_image->tiles[tile_idx].width),
&(exr_image->tiles[tile_idx].height),
exr_header->requested_pixel_types, data_ptr,
static_cast<size_t>(data_len), exr_header->compression_type,
exr_header->line_order, data_width, data_height,
tile_coordinates[0], tile_coordinates[1], exr_header->tile_size_x,
exr_header->tile_size_y, static_cast<size_t>(pixel_data_size),
static_cast<size_t>(exr_header->num_custom_attributes),
exr_header->custom_attributes,
static_cast<size_t>(exr_header->num_channels),
exr_header->channels, channel_offset_list);
if (!ret) {
// TODO(LTE): atomic
if (err) {
(*err) += "Failed to decode tile data.\n";
}
err_code = TINYEXR_ERROR_INVALID_DATA;
}
exr_image->tiles[tile_idx].offset_x = tile_coordinates[0];
exr_image->tiles[tile_idx].offset_y = tile_coordinates[1];
exr_image->tiles[tile_idx].level_x = tile_coordinates[2];
exr_image->tiles[tile_idx].level_y = tile_coordinates[3];
#if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
}
}));
} // num_thread loop
for (auto &t : workers) {
t.join();
}
#else
}
#endif
if (err_code != TINYEXR_SUCCESS) {
return err_code;
}
exr_image->num_tiles = static_cast<int>(num_tiles);
} else { // scanline format
// Don't allow too large image(256GB * pixel_data_size or more). Workaround
// for #104.
size_t total_data_len =
size_t(data_width) * size_t(data_height) * size_t(num_channels);
const bool total_data_len_overflown = sizeof(void*) == 8 ? (total_data_len >= 0x4000000000) : false;
if ((total_data_len == 0) || total_data_len_overflown ) {
const bool total_data_len_overflown =
sizeof(void *) == 8 ? (total_data_len >= 0x4000000000) : false;
if ((total_data_len == 0) || total_data_len_overflown) {
if (err) {
std::stringstream ss;
ss << "Image data size is zero or too large: width = " << data_width
@ -10944,85 +11042,118 @@ static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
num_channels, exr_header->channels, exr_header->requested_pixel_types,
data_width, data_height);
#ifdef _OPENMP
#if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
std::vector<std::thread> workers;
std::atomic<int> y_count(0);
int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
if (num_threads > int(num_blocks)) {
num_threads = int(num_blocks);
}
for (int t = 0; t < num_threads; t++) {
workers.emplace_back(std::thread([&]() {
int y = 0;
while ((y = y_count++) < int(num_blocks)) {
#else
#if TINYEXR_USE_OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < static_cast<int>(num_blocks); y++) {
size_t y_idx = static_cast<size_t>(y);
if (offsets[y_idx] + sizeof(int) * 2 > size) {
invalid_data = true;
} else {
// 4 byte: scan line
// 4 byte: data size
// ~ : pixel data(uncompressed or compressed)
size_t data_size = size_t(size - (offsets[y_idx] + sizeof(int) * 2));
const unsigned char *data_ptr =
reinterpret_cast<const unsigned char *>(head + offsets[y_idx]);
#endif
size_t y_idx = static_cast<size_t>(y);
int line_no;
memcpy(&line_no, data_ptr, sizeof(int));
int data_len;
memcpy(&data_len, data_ptr + 4, sizeof(int));
tinyexr::swap4(reinterpret_cast<unsigned int *>(&line_no));
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len));
if (size_t(data_len) > data_size) {
invalid_data = true;
} else if ((line_no > (2 << 20)) || (line_no < -(2 << 20))) {
// Too large value. Assume this is invalid
// 2**20 = 1048576 = heuristic value.
invalid_data = true;
} else if (data_len == 0) {
// TODO(syoyo): May be ok to raise the threshold for example `data_len
// < 4`
invalid_data = true;
} else {
// line_no may be negative.
int end_line_no = (std::min)(line_no + num_scanline_blocks,
(exr_header->data_window[3] + 1));
int num_lines = end_line_no - line_no;
if (num_lines <= 0) {
if (offsets[y_idx] + sizeof(int) * 2 > size) {
invalid_data = true;
} else {
// Move to data addr: 8 = 4 + 4;
data_ptr += 8;
// 4 byte: scan line
// 4 byte: data size
// ~ : pixel data(uncompressed or compressed)
size_t data_size =
size_t(size - (offsets[y_idx] + sizeof(int) * 2));
const unsigned char *data_ptr =
reinterpret_cast<const unsigned char *>(head + offsets[y_idx]);
// Adjust line_no with data_window.bmin.y
int line_no;
memcpy(&line_no, data_ptr, sizeof(int));
int data_len;
memcpy(&data_len, data_ptr + 4, sizeof(int));
tinyexr::swap4(reinterpret_cast<unsigned int *>(&line_no));
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len));
// overflow check
tinyexr_int64 lno = static_cast<tinyexr_int64>(line_no) - static_cast<tinyexr_int64>(exr_header->data_window[1]);
if (lno > std::numeric_limits<int>::max()) {
line_no = -1; // invalid
} else if (lno < -std::numeric_limits<int>::max()) {
line_no = -1; // invalid
} else {
line_no -= exr_header->data_window[1];
}
if (size_t(data_len) > data_size) {
invalid_data = true;
if (line_no < 0) {
} else if ((line_no > (2 << 20)) || (line_no < -(2 << 20))) {
// Too large value. Assume this is invalid
// 2**20 = 1048576 = heuristic value.
invalid_data = true;
} else if (data_len == 0) {
// TODO(syoyo): May be ok to raise the threshold for example
// `data_len < 4`
invalid_data = true;
} else {
if (!tinyexr::DecodePixelData(
exr_image->images, exr_header->requested_pixel_types,
data_ptr, static_cast<size_t>(data_len),
exr_header->compression_type, exr_header->line_order,
data_width, data_height, data_width, y, line_no,
num_lines, static_cast<size_t>(pixel_data_size),
static_cast<size_t>(exr_header->num_custom_attributes),
exr_header->custom_attributes,
static_cast<size_t>(exr_header->num_channels),
exr_header->channels, channel_offset_list)) {
// line_no may be negative.
int end_line_no = (std::min)(line_no + num_scanline_blocks,
(exr_header->data_window[3] + 1));
int num_lines = end_line_no - line_no;
if (num_lines <= 0) {
invalid_data = true;
} else {
// Move to data addr: 8 = 4 + 4;
data_ptr += 8;
// Adjust line_no with data_window.bmin.y
// overflow check
tinyexr_int64 lno =
static_cast<tinyexr_int64>(line_no) -
static_cast<tinyexr_int64>(exr_header->data_window[1]);
if (lno > std::numeric_limits<int>::max()) {
line_no = -1; // invalid
} else if (lno < -std::numeric_limits<int>::max()) {
line_no = -1; // invalid
} else {
line_no -= exr_header->data_window[1];
}
if (line_no < 0) {
invalid_data = true;
} else {
if (!tinyexr::DecodePixelData(
exr_image->images, exr_header->requested_pixel_types,
data_ptr, static_cast<size_t>(data_len),
exr_header->compression_type, exr_header->line_order,
data_width, data_height, data_width, y, line_no,
num_lines, static_cast<size_t>(pixel_data_size),
static_cast<size_t>(
exr_header->num_custom_attributes),
exr_header->custom_attributes,
static_cast<size_t>(exr_header->num_channels),
exr_header->channels, channel_offset_list)) {
invalid_data = true;
}
}
}
}
}
#if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
}
}
}));
}
for (auto &t : workers) {
t.join();
}
#else
} // omp parallel
#endif
}
if (invalid_data) {
@ -11219,6 +11350,9 @@ static int DecodeEXRImage(EXRImage *exr_image, const EXRHeader *exr_header,
tinyexr::SetErrorMessage(e, err);
}
#if 1
FreeEXRImage(exr_image);
#else
// release memory(if exists)
if ((exr_header->num_channels > 0) && exr_image && exr_image->images) {
for (size_t c = 0; c < size_t(exr_header->num_channels); c++) {
@ -11230,16 +11364,114 @@ static int DecodeEXRImage(EXRImage *exr_image, const EXRHeader *exr_header,
free(exr_image->images);
exr_image->images = NULL;
}
#endif
}
return ret;
}
}
static void GetLayers(const EXRHeader& exr_header, std::vector<std::string>& layer_names) {
// Naive implementation
// Group channels by layers
// go over all channel names, split by periods
// collect unique names
layer_names.clear();
for (int c = 0; c < exr_header.num_channels; c++) {
std::string full_name(exr_header.channels[c].name);
const size_t pos = full_name.find_last_of('.');
if (pos != std::string::npos && pos != 0 && pos + 1 < full_name.size()) {
full_name.erase(pos);
if (std::find(layer_names.begin(), layer_names.end(), full_name) == layer_names.end())
layer_names.push_back(full_name);
}
}
}
struct LayerChannel {
explicit LayerChannel (size_t i, std::string n)
: index(i)
, name(n)
{}
size_t index;
std::string name;
};
static void ChannelsInLayer(const EXRHeader& exr_header, const std::string layer_name, std::vector<LayerChannel>& channels) {
channels.clear();
for (int c = 0; c < exr_header.num_channels; c++) {
std::string ch_name(exr_header.channels[c].name);
if (layer_name.empty()) {
const size_t pos = ch_name.find_last_of('.');
if (pos != std::string::npos && pos < ch_name.size()) {
ch_name = ch_name.substr(pos + 1);
}
} else {
const size_t pos = ch_name.find(layer_name + '.');
if (pos == std::string::npos)
continue;
if (pos == 0) {
ch_name = ch_name.substr(layer_name.size() + 1);
}
}
LayerChannel ch(size_t(c), ch_name);
channels.push_back(ch);
}
}
} // namespace tinyexr
int EXRLayers(const char *filename, const char **layer_names[], int *num_layers, const char **err) {
EXRVersion exr_version;
EXRHeader exr_header;
InitEXRHeader(&exr_header);
{
int ret = ParseEXRVersionFromFile(&exr_version, filename);
if (ret != TINYEXR_SUCCESS) {
tinyexr::SetErrorMessage("Invalid EXR header.", err);
return ret;
}
if (exr_version.multipart || exr_version.non_image) {
tinyexr::SetErrorMessage(
"Loading multipart or DeepImage is not supported in LoadEXR() API",
err);
return TINYEXR_ERROR_INVALID_DATA; // @fixme.
}
}
int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err);
if (ret != TINYEXR_SUCCESS) {
FreeEXRHeader(&exr_header);
return ret;
}
std::vector<std::string> layer_vec;
tinyexr::GetLayers(exr_header, layer_vec);
(*num_layers) = int(layer_vec.size());
(*layer_names) = static_cast<const char **>(
malloc(sizeof(const char *) * static_cast<size_t>(layer_vec.size())));
for (size_t c = 0; c < static_cast<size_t>(layer_vec.size()); c++) {
#ifdef _MSC_VER
(*layer_names)[c] = _strdup(layer_vec[c].c_str());
#else
(*layer_names)[c] = strdup(layer_vec[c].c_str());
#endif
}
FreeEXRHeader(&exr_header);
return TINYEXR_SUCCESS;
}
int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
const char **err) {
return LoadEXRWithLayer(out_rgba, width, height, filename, /* layername */NULL, err);
}
int LoadEXRWithLayer(float **out_rgba, int *width, int *height, const char *filename, const char *layername,
const char **err) {
if (out_rgba == NULL) {
tinyexr::SetErrorMessage("Invalid argument for LoadEXR()", err);
return TINYEXR_ERROR_INVALID_ARGUMENT;
@ -11254,7 +11486,9 @@ int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
{
int ret = ParseEXRVersionFromFile(&exr_version, filename);
if (ret != TINYEXR_SUCCESS) {
tinyexr::SetErrorMessage("Invalid EXR header.", err);
std::stringstream ss;
ss << "Failed to open EXR file or read version info from EXR file. code(" << ret << ")";
tinyexr::SetErrorMessage(ss.str(), err);
return ret;
}
@ -11281,6 +11515,7 @@ int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
}
}
// TODO: Probably limit loading to layers (channels) selected by layer index
{
int ret = LoadEXRImageFromFile(&exr_image, &exr_header, filename, err);
if (ret != TINYEXR_SUCCESS) {
@ -11294,19 +11529,40 @@ int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
int idxG = -1;
int idxB = -1;
int idxA = -1;
for (int c = 0; c < exr_header.num_channels; c++) {
if (strcmp(exr_header.channels[c].name, "R") == 0) {
idxR = c;
} else if (strcmp(exr_header.channels[c].name, "G") == 0) {
idxG = c;
} else if (strcmp(exr_header.channels[c].name, "B") == 0) {
idxB = c;
} else if (strcmp(exr_header.channels[c].name, "A") == 0) {
idxA = c;
std::vector<std::string> layer_names;
tinyexr::GetLayers(exr_header, layer_names);
std::vector<tinyexr::LayerChannel> channels;
tinyexr::ChannelsInLayer(exr_header, layername == NULL ? "" : std::string(layername), channels);
if (channels.size() < 1) {
tinyexr::SetErrorMessage("Layer Not Found", err);
FreeEXRHeader(&exr_header);
FreeEXRImage(&exr_image);
return TINYEXR_ERROR_LAYER_NOT_FOUND;
}
size_t ch_count = channels.size() < 4 ? channels.size() : 4;
for (size_t c = 0; c < ch_count; c++) {
const tinyexr::LayerChannel &ch = channels[c];
if (ch.name == "R") {
idxR = int(ch.index);
}
else if (ch.name == "G") {
idxG = int(ch.index);
}
else if (ch.name == "B") {
idxB = int(ch.index);
}
else if (ch.name == "A") {
idxA = int(ch.index);
}
}
if (exr_header.num_channels == 1) {
if (channels.size() == 1) {
int chIdx = int(channels.front().index);
// Grayscale channel only.
(*out_rgba) = reinterpret_cast<float *>(
@ -11333,19 +11589,19 @@ int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
const int srcIdx = i + j * exr_header.tile_size_x;
unsigned char **src = exr_image.tiles[it].images;
(*out_rgba)[4 * idx + 0] =
reinterpret_cast<float **>(src)[0][srcIdx];
reinterpret_cast<float **>(src)[chIdx][srcIdx];
(*out_rgba)[4 * idx + 1] =
reinterpret_cast<float **>(src)[0][srcIdx];
reinterpret_cast<float **>(src)[chIdx][srcIdx];
(*out_rgba)[4 * idx + 2] =
reinterpret_cast<float **>(src)[0][srcIdx];
reinterpret_cast<float **>(src)[chIdx][srcIdx];
(*out_rgba)[4 * idx + 3] =
reinterpret_cast<float **>(src)[0][srcIdx];
reinterpret_cast<float **>(src)[chIdx][srcIdx];
}
}
}
} else {
for (int i = 0; i < exr_image.width * exr_image.height; i++) {
const float val = reinterpret_cast<float **>(exr_image.images)[0][i];
const float val = reinterpret_cast<float **>(exr_image.images)[chIdx][i];
(*out_rgba)[4 * i + 0] = val;
(*out_rgba)[4 * i + 1] = val;
(*out_rgba)[4 * i + 2] = val;
@ -11358,22 +11614,22 @@ int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
if (idxR == -1) {
tinyexr::SetErrorMessage("R channel not found", err);
// @todo { free exr_image }
FreeEXRHeader(&exr_header);
FreeEXRImage(&exr_image);
return TINYEXR_ERROR_INVALID_DATA;
}
if (idxG == -1) {
tinyexr::SetErrorMessage("G channel not found", err);
// @todo { free exr_image }
FreeEXRHeader(&exr_header);
FreeEXRImage(&exr_image);
return TINYEXR_ERROR_INVALID_DATA;
}
if (idxB == -1) {
tinyexr::SetErrorMessage("B channel not found", err);
// @todo { free exr_image }
FreeEXRHeader(&exr_header);
FreeEXRImage(&exr_image);
return TINYEXR_ERROR_INVALID_DATA;
}
@ -11446,7 +11702,7 @@ int IsEXR(const char *filename) {
int ret = ParseEXRVersionFromFile(&exr_version, filename);
if (ret != TINYEXR_SUCCESS) {
return TINYEXR_ERROR_INVALID_HEADER;
return ret;
}
return TINYEXR_SUCCESS;
@ -11509,7 +11765,9 @@ int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
int ret = ParseEXRVersionFromMemory(&exr_version, memory, size);
if (ret != TINYEXR_SUCCESS) {
tinyexr::SetErrorMessage("Failed to parse EXR version", err);
std::stringstream ss;
ss << "Failed to parse EXR version. code(" << ret << ")";
tinyexr::SetErrorMessage(ss.str(), err);
return ret;
}
@ -11967,9 +12225,11 @@ size_t SaveEXRImageToMemory(const EXRImage *exr_image,
}
#endif
// TOOD(LTE): C++11 thread
// Use signed int since some OpenMP compiler doesn't allow unsigned type for
// `parallel for`
#ifdef _OPENMP
#if TINYEXR_USE_OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < num_blocks; i++) {