Revert "Update RVO2 to git 2022.09"

This reverts commit c920881105.

Fixes #78826.
This commit is contained in:
Rémi Verschelde 2023-06-29 12:50:49 +02:00
parent c83f912bcb
commit d0c1dd16ee
No known key found for this signature in database
GPG Key ID: C3336907360768E1
33 changed files with 4093 additions and 4877 deletions

View File

@ -425,7 +425,7 @@ License: Zlib
Files: ./thirdparty/rvo2/
Comment: RVO2
Copyright: 2008, University of North Carolina at Chapel Hill
Copyright: 2016, University of North Carolina at Chapel Hill
License: Apache-2.0
Files: ./thirdparty/spirv-reflect/

View File

@ -37,12 +37,10 @@ if env["builtin_recastnavigation"]:
if env["builtin_rvo2_2d"]:
thirdparty_dir = "#thirdparty/rvo2/rvo2_2d/"
thirdparty_sources = [
"Agent2d.cc",
"Obstacle2d.cc",
"KdTree2d.cc",
"Line.cc",
"RVOSimulator2d.cc",
"Vector2.cc",
"Agent2d.cpp",
"Obstacle2d.cpp",
"KdTree2d.cpp",
"RVOSimulator2d.cpp",
]
thirdparty_sources = [thirdparty_dir + file for file in thirdparty_sources]
@ -56,11 +54,9 @@ if env["builtin_rvo2_2d"]:
if env["builtin_rvo2_3d"]:
thirdparty_dir = "#thirdparty/rvo2/rvo2_3d/"
thirdparty_sources = [
"Agent3d.cc",
"KdTree3d.cc",
"Plane.cc",
"RVOSimulator3d.cc",
"Vector3.cc",
"Agent3d.cpp",
"KdTree3d.cpp",
"RVOSimulator3d.cpp",
]
thirdparty_sources = [thirdparty_dir + file for file in thirdparty_sources]

View File

@ -1042,16 +1042,16 @@ void NavMap::_update_rvo_obstacles_tree_2d() {
rvo_2d_obstacle->avoidance_layers_ = _obstacle_avoidance_layers;
if (i != 0) {
rvo_2d_obstacle->previous_ = raw_obstacles.back();
rvo_2d_obstacle->previous_->next_ = rvo_2d_obstacle;
rvo_2d_obstacle->prevObstacle_ = raw_obstacles.back();
rvo_2d_obstacle->prevObstacle_->nextObstacle_ = rvo_2d_obstacle;
}
if (i == rvo_2d_vertices.size() - 1) {
rvo_2d_obstacle->next_ = raw_obstacles[obstacleNo];
rvo_2d_obstacle->next_->previous_ = rvo_2d_obstacle;
rvo_2d_obstacle->nextObstacle_ = raw_obstacles[obstacleNo];
rvo_2d_obstacle->nextObstacle_->prevObstacle_ = rvo_2d_obstacle;
}
rvo_2d_obstacle->direction_ = normalize(rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)] - rvo_2d_vertices[i]);
rvo_2d_obstacle->unitDir_ = normalize(rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)] - rvo_2d_vertices[i]);
if (rvo_2d_vertices.size() == 2) {
rvo_2d_obstacle->isConvex_ = true;
@ -1099,9 +1099,9 @@ void NavMap::_update_rvo_simulation() {
}
void NavMap::compute_single_avoidance_step_2d(uint32_t index, NavAgent **agent) {
(*(agent + index))->get_rvo_agent_2d()->computeNeighbors(rvo_simulation_2d.kdTree_);
(*(agent + index))->get_rvo_agent_2d()->computeNewVelocity(rvo_simulation_2d.timeStep_);
(*(agent + index))->get_rvo_agent_2d()->update(rvo_simulation_2d.timeStep_);
(*(agent + index))->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d);
(*(agent + index))->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d);
(*(agent + index))->get_rvo_agent_2d()->update(&rvo_simulation_2d);
(*(agent + index))->update();
}
@ -1124,9 +1124,9 @@ void NavMap::step(real_t p_deltatime) {
WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task);
} else {
for (NavAgent *agent : active_2d_avoidance_agents) {
agent->get_rvo_agent_2d()->computeNeighbors(rvo_simulation_2d.kdTree_);
agent->get_rvo_agent_2d()->computeNewVelocity(rvo_simulation_2d.timeStep_);
agent->get_rvo_agent_2d()->update(rvo_simulation_2d.timeStep_);
agent->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d);
agent->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d);
agent->get_rvo_agent_2d()->update(&rvo_simulation_2d);
agent->update();
}
}

View File

@ -639,13 +639,13 @@ Files extracted from upstream source:
For 2D in `rvo2_2d` folder
- Upstream: https://github.com/snape/RVO2
- Version: git (5961f05ed310f3a5e902aa70ad54e010ba6dcdfd, 2022)
- Version: git (f7c5380235f6c9ac8d19cbf71fc94e2d4758b0a3, 2021)
- License: Apache 2.0
For 3D in `rvo2_3d` folder
- Upstream: https://github.com/snape/RVO2-3D
- Version: git (8be355eb84dc763267b5acf7070d6d623d752e51, 2022)
- Version: git (bfc048670a4e85066e86a1f923d8ea92e3add3b2, 2021)
- License: Apache 2.0
Files extracted from upstream source:

View File

@ -1,693 +0,0 @@
/*
* Agent2d.cpp
* RVO2 Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
/**
* @file Agent2d.cpp
* @brief Defines the Agent2D class.
*/
#include "Agent2d.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include "KdTree2d.h"
#include "Obstacle2d.h"
namespace RVO2D {
namespace {
/**
* @relates Agent2D
* @brief Solves a one-dimensional linear program on a specified line
* subject to linear constraints defined by lines and a circular
* constraint.
* @param[in] lines Lines defining the linear constraints.
* @param[in] lineNo The specified line constraint.
* @param[in] radius The radius of the circular constraint.
* @param[in] optVelocity The optimization velocity.
* @param[in] directionOpt True if the direction should be optimized.
* @param[in, out] result A reference to the result of the linear program.
* @return True if successful.
*/
bool linearProgram1(const std::vector<Line> &lines, std::size_t lineNo,
float radius, const Vector2 &optVelocity, bool directionOpt,
Vector2 &result) { /* NOLINT(runtime/references) */
const float dotProduct = lines[lineNo].point * lines[lineNo].direction;
const float discriminant =
dotProduct * dotProduct + radius * radius - absSq(lines[lineNo].point);
if (discriminant < 0.0F) {
/* Max speed circle fully invalidates line lineNo. */
return false;
}
const float sqrtDiscriminant = std::sqrt(discriminant);
float tLeft = -dotProduct - sqrtDiscriminant;
float tRight = -dotProduct + sqrtDiscriminant;
for (std::size_t i = 0U; i < lineNo; ++i) {
const float denominator = det(lines[lineNo].direction, lines[i].direction);
const float numerator =
det(lines[i].direction, lines[lineNo].point - lines[i].point);
if (std::fabs(denominator) <= RVO2D_EPSILON) {
/* Lines lineNo and i are (almost) parallel. */
if (numerator < 0.0F) {
return false;
}
continue;
}
const float t = numerator / denominator;
if (denominator >= 0.0F) {
/* Line i bounds line lineNo on the right. */
tRight = std::min(tRight, t);
} else {
/* Line i bounds line lineNo on the left. */
tLeft = std::max(tLeft, t);
}
if (tLeft > tRight) {
return false;
}
}
if (directionOpt) {
/* Optimize direction. */
if (optVelocity * lines[lineNo].direction > 0.0F) {
/* Take right extreme. */
result = lines[lineNo].point + tRight * lines[lineNo].direction;
} else {
/* Take left extreme. */
result = lines[lineNo].point + tLeft * lines[lineNo].direction;
}
} else {
/* Optimize closest point. */
const float t =
lines[lineNo].direction * (optVelocity - lines[lineNo].point);
if (t < tLeft) {
result = lines[lineNo].point + tLeft * lines[lineNo].direction;
} else if (t > tRight) {
result = lines[lineNo].point + tRight * lines[lineNo].direction;
} else {
result = lines[lineNo].point + t * lines[lineNo].direction;
}
}
return true;
}
/**
* @relates Agent2D
* @brief Solves a two-dimensional linear program subject to linear
* constraints defined by lines and a circular constraint.
* @param[in] lines Lines defining the linear constraints.
* @param[in] radius The radius of the circular constraint.
* @param[in] optVelocity The optimization velocity.
* @param[in] directionOpt True if the direction should be optimized.
* @param[in, out] result A reference to the result of the linear program.
* @return The number of the line it fails on, and the number of lines
* if successful.
*/
std::size_t linearProgram2(const std::vector<Line> &lines, float radius,
const Vector2 &optVelocity, bool directionOpt,
Vector2 &result) { /* NOLINT(runtime/references) */
if (directionOpt) {
/* Optimize direction. Note that the optimization velocity is of unit length
* in this case.
*/
result = optVelocity * radius;
} else if (absSq(optVelocity) > radius * radius) {
/* Optimize closest point and outside circle. */
result = normalize(optVelocity) * radius;
} else {
/* Optimize closest point and inside circle. */
result = optVelocity;
}
for (std::size_t i = 0U; i < lines.size(); ++i) {
if (det(lines[i].direction, lines[i].point - result) > 0.0F) {
/* Result does not satisfy constraint i. Compute new optimal result. */
const Vector2 tempResult = result;
if (!linearProgram1(lines, i, radius, optVelocity, directionOpt,
result)) {
result = tempResult;
return i;
}
}
}
return lines.size();
}
/**
* @relates Agent2D
* @brief Solves a two-dimensional linear program subject to linear
* constraints defined by lines and a circular constraint.
* @param[in] lines Lines defining the linear constraints.
* @param[in] numObstLines Count of obstacle lines.
* @param[in] beginLine The line on which the 2-d linear program failed.
* @param[in] radius The radius of the circular constraint.
* @param[in, out] result A reference to the result of the linear program.
*/
void linearProgram3(const std::vector<Line> &lines, std::size_t numObstLines,
std::size_t beginLine, float radius,
Vector2 &result) { /* NOLINT(runtime/references) */
float distance = 0.0F;
for (std::size_t i = beginLine; i < lines.size(); ++i) {
if (det(lines[i].direction, lines[i].point - result) > distance) {
/* Result does not satisfy constraint of line i. */
std::vector<Line> projLines(
lines.begin(),
lines.begin() + static_cast<std::ptrdiff_t>(numObstLines));
for (std::size_t j = numObstLines; j < i; ++j) {
Line line;
const float determinant = det(lines[i].direction, lines[j].direction);
if (std::fabs(determinant) <= RVO2D_EPSILON) {
/* Line i and line j are parallel. */
if (lines[i].direction * lines[j].direction > 0.0F) {
/* Line i and line j point in the same direction. */
continue;
}
/* Line i and line j point in opposite direction. */
line.point = 0.5F * (lines[i].point + lines[j].point);
} else {
line.point = lines[i].point + (det(lines[j].direction,
lines[i].point - lines[j].point) /
determinant) *
lines[i].direction;
}
line.direction = normalize(lines[j].direction - lines[i].direction);
projLines.push_back(line);
}
const Vector2 tempResult = result;
if (linearProgram2(
projLines, radius,
Vector2(-lines[i].direction.y(), lines[i].direction.x()), true,
result) < projLines.size()) {
/* This should in principle not happen. The result is by definition
* already in the feasible region of this linear program. If it fails,
* it is due to small floating point error, and the current result is
* kept. */
result = tempResult;
}
distance = det(lines[i].direction, lines[i].point - result);
}
}
}
} /* namespace */
Agent2D::Agent2D()
: id_(0U),
maxNeighbors_(0U),
maxSpeed_(0.0F),
neighborDist_(0.0F),
radius_(0.0F),
timeHorizon_(0.0F),
timeHorizonObst_(0.0F) {}
Agent2D::~Agent2D() {}
void Agent2D::computeNeighbors(const KdTree2D *kdTree) {
obstacleNeighbors_.clear();
const float range = timeHorizonObst_ * maxSpeed_ + radius_;
kdTree->computeObstacleNeighbors(this, range * range);
agentNeighbors_.clear();
if (maxNeighbors_ > 0U) {
float rangeSq = neighborDist_ * neighborDist_;
kdTree->computeAgentNeighbors(this, rangeSq);
}
}
/* Search for the best new velocity. */
void Agent2D::computeNewVelocity(float timeStep) {
orcaLines_.clear();
const float invTimeHorizonObst = 1.0F / timeHorizonObst_;
/* Create obstacle ORCA lines. */
for (std::size_t i = 0U; i < obstacleNeighbors_.size(); ++i) {
const Obstacle2D *obstacle1 = obstacleNeighbors_[i].second;
const Obstacle2D *obstacle2 = obstacle1->next_;
const Vector2 relativePosition1 = obstacle1->point_ - position_;
const Vector2 relativePosition2 = obstacle2->point_ - position_;
/* Check if velocity obstacle of obstacle is already taken care of by
* previously constructed obstacle ORCA lines. */
bool alreadyCovered = false;
for (std::size_t j = 0U; j < orcaLines_.size(); ++j) {
if (det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point,
orcaLines_[j].direction) -
invTimeHorizonObst * radius_ >=
-RVO2D_EPSILON &&
det(invTimeHorizonObst * relativePosition2 - orcaLines_[j].point,
orcaLines_[j].direction) -
invTimeHorizonObst * radius_ >=
-RVO2D_EPSILON) {
alreadyCovered = true;
break;
}
}
if (alreadyCovered) {
continue;
}
/* Not yet covered. Check for collisions. */
const float distSq1 = absSq(relativePosition1);
const float distSq2 = absSq(relativePosition2);
const float radiusSq = radius_ * radius_;
const Vector2 obstacleVector = obstacle2->point_ - obstacle1->point_;
const float s =
(-relativePosition1 * obstacleVector) / absSq(obstacleVector);
const float distSqLine = absSq(-relativePosition1 - s * obstacleVector);
Line line;
if (s < 0.0F && distSq1 <= radiusSq) {
/* Collision with left vertex. Ignore if non-convex. */
if (obstacle1->isConvex_) {
line.point = Vector2(0.0F, 0.0F);
line.direction =
normalize(Vector2(-relativePosition1.y(), relativePosition1.x()));
orcaLines_.push_back(line);
}
continue;
}
if (s > 1.0F && distSq2 <= radiusSq) {
/* Collision with right vertex. Ignore if non-convex or if it will be
* taken care of by neighoring obstace */
if (obstacle2->isConvex_ &&
det(relativePosition2, obstacle2->direction_) >= 0.0F) {
line.point = Vector2(0.0F, 0.0F);
line.direction =
normalize(Vector2(-relativePosition2.y(), relativePosition2.x()));
orcaLines_.push_back(line);
}
continue;
}
if (s >= 0.0F && s <= 1.0F && distSqLine <= radiusSq) {
/* Collision with obstacle segment. */
line.point = Vector2(0.0F, 0.0F);
line.direction = -obstacle1->direction_;
orcaLines_.push_back(line);
continue;
}
/* No collision. Compute legs. When obliquely viewed, both legs can come
* from a single vertex. Legs extend cut-off line when nonconvex vertex. */
Vector2 leftLegDirection;
Vector2 rightLegDirection;
if (s < 0.0F && distSqLine <= radiusSq) {
/* Obstacle2D viewed obliquely so that left vertex defines velocity
* obstacle. */
if (!obstacle1->isConvex_) {
/* Ignore obstacle. */
continue;
}
obstacle2 = obstacle1;
const float leg1 = std::sqrt(distSq1 - radiusSq);
leftLegDirection =
Vector2(
relativePosition1.x() * leg1 - relativePosition1.y() * radius_,
relativePosition1.x() * radius_ + relativePosition1.y() * leg1) /
distSq1;
rightLegDirection =
Vector2(
relativePosition1.x() * leg1 + relativePosition1.y() * radius_,
-relativePosition1.x() * radius_ + relativePosition1.y() * leg1) /
distSq1;
} else if (s > 1.0F && distSqLine <= radiusSq) {
/* Obstacle2D viewed obliquely so that right vertex defines velocity
* obstacle. */
if (!obstacle2->isConvex_) {
/* Ignore obstacle. */
continue;
}
obstacle1 = obstacle2;
const float leg2 = std::sqrt(distSq2 - radiusSq);
leftLegDirection =
Vector2(
relativePosition2.x() * leg2 - relativePosition2.y() * radius_,
relativePosition2.x() * radius_ + relativePosition2.y() * leg2) /
distSq2;
rightLegDirection =
Vector2(
relativePosition2.x() * leg2 + relativePosition2.y() * radius_,
-relativePosition2.x() * radius_ + relativePosition2.y() * leg2) /
distSq2;
} else {
/* Usual situation. */
if (obstacle1->isConvex_) {
const float leg1 = std::sqrt(distSq1 - radiusSq);
leftLegDirection = Vector2(relativePosition1.x() * leg1 -
relativePosition1.y() * radius_,
relativePosition1.x() * radius_ +
relativePosition1.y() * leg1) /
distSq1;
} else {
/* Left vertex non-convex; left leg extends cut-off line. */
leftLegDirection = -obstacle1->direction_;
}
if (obstacle2->isConvex_) {
const float leg2 = std::sqrt(distSq2 - radiusSq);
rightLegDirection = Vector2(relativePosition2.x() * leg2 +
relativePosition2.y() * radius_,
-relativePosition2.x() * radius_ +
relativePosition2.y() * leg2) /
distSq2;
} else {
/* Right vertex non-convex; right leg extends cut-off line. */
rightLegDirection = obstacle1->direction_;
}
}
/* Legs can never point into neighboring edge when convex vertex, take
* cutoff-line of neighboring edge instead. If velocity projected on
* "foreign" leg, no constraint is added. */
const Obstacle2D *const leftNeighbor = obstacle1->previous_;
bool isLeftLegForeign = false;
bool isRightLegForeign = false;
if (obstacle1->isConvex_ &&
det(leftLegDirection, -leftNeighbor->direction_) >= 0.0F) {
/* Left leg points into obstacle. */
leftLegDirection = -leftNeighbor->direction_;
isLeftLegForeign = true;
}
if (obstacle2->isConvex_ &&
det(rightLegDirection, obstacle2->direction_) <= 0.0F) {
/* Right leg points into obstacle. */
rightLegDirection = obstacle2->direction_;
isRightLegForeign = true;
}
/* Compute cut-off centers. */
const Vector2 leftCutoff =
invTimeHorizonObst * (obstacle1->point_ - position_);
const Vector2 rightCutoff =
invTimeHorizonObst * (obstacle2->point_ - position_);
const Vector2 cutoffVector = rightCutoff - leftCutoff;
/* Project current velocity on velocity obstacle. */
/* Check if current velocity is projected on cutoff circles. */
const float t =
obstacle1 == obstacle2
? 0.5F
: (velocity_ - leftCutoff) * cutoffVector / absSq(cutoffVector);
const float tLeft = (velocity_ - leftCutoff) * leftLegDirection;
const float tRight = (velocity_ - rightCutoff) * rightLegDirection;
if ((t < 0.0F && tLeft < 0.0F) ||
(obstacle1 == obstacle2 && tLeft < 0.0F && tRight < 0.0F)) {
/* Project on left cut-off circle. */
const Vector2 unitW = normalize(velocity_ - leftCutoff);
line.direction = Vector2(unitW.y(), -unitW.x());
line.point = leftCutoff + radius_ * invTimeHorizonObst * unitW;
orcaLines_.push_back(line);
continue;
}
if (t > 1.0F && tRight < 0.0F) {
/* Project on right cut-off circle. */
const Vector2 unitW = normalize(velocity_ - rightCutoff);
line.direction = Vector2(unitW.y(), -unitW.x());
line.point = rightCutoff + radius_ * invTimeHorizonObst * unitW;
orcaLines_.push_back(line);
continue;
}
/* Project on left leg, right leg, or cut-off line, whichever is closest to
* velocity. */
const float distSqCutoff =
(t < 0.0F || t > 1.0F || obstacle1 == obstacle2)
? std::numeric_limits<float>::infinity()
: absSq(velocity_ - (leftCutoff + t * cutoffVector));
const float distSqLeft =
tLeft < 0.0F
? std::numeric_limits<float>::infinity()
: absSq(velocity_ - (leftCutoff + tLeft * leftLegDirection));
const float distSqRight =
tRight < 0.0F
? std::numeric_limits<float>::infinity()
: absSq(velocity_ - (rightCutoff + tRight * rightLegDirection));
if (distSqCutoff <= distSqLeft && distSqCutoff <= distSqRight) {
/* Project on cut-off line. */
line.direction = -obstacle1->direction_;
line.point =
leftCutoff + radius_ * invTimeHorizonObst *
Vector2(-line.direction.y(), line.direction.x());
orcaLines_.push_back(line);
continue;
}
if (distSqLeft <= distSqRight) {
/* Project on left leg. */
if (isLeftLegForeign) {
continue;
}
line.direction = leftLegDirection;
line.point =
leftCutoff + radius_ * invTimeHorizonObst *
Vector2(-line.direction.y(), line.direction.x());
orcaLines_.push_back(line);
continue;
}
/* Project on right leg. */
if (isRightLegForeign) {
continue;
}
line.direction = -rightLegDirection;
line.point =
rightCutoff + radius_ * invTimeHorizonObst *
Vector2(-line.direction.y(), line.direction.x());
orcaLines_.push_back(line);
}
const std::size_t numObstLines = orcaLines_.size();
const float invTimeHorizon = 1.0F / timeHorizon_;
/* Create agent ORCA lines. */
for (std::size_t i = 0U; i < agentNeighbors_.size(); ++i) {
const Agent2D *const other = agentNeighbors_[i].second;
const Vector2 relativePosition = other->position_ - position_;
const Vector2 relativeVelocity = velocity_ - other->velocity_;
const float distSq = absSq(relativePosition);
const float combinedRadius = radius_ + other->radius_;
const float combinedRadiusSq = combinedRadius * combinedRadius;
Line line;
Vector2 u;
if (distSq > combinedRadiusSq) {
/* No collision. */
const Vector2 w = relativeVelocity - invTimeHorizon * relativePosition;
/* Vector from cutoff center to relative velocity. */
const float wLengthSq = absSq(w);
const float dotProduct = w * relativePosition;
if (dotProduct < 0.0F &&
dotProduct * dotProduct > combinedRadiusSq * wLengthSq) {
/* Project on cut-off circle. */
const float wLength = std::sqrt(wLengthSq);
const Vector2 unitW = w / wLength;
line.direction = Vector2(unitW.y(), -unitW.x());
u = (combinedRadius * invTimeHorizon - wLength) * unitW;
} else {
/* Project on legs. */
const float leg = std::sqrt(distSq - combinedRadiusSq);
if (det(relativePosition, w) > 0.0F) {
/* Project on left leg. */
line.direction = Vector2(relativePosition.x() * leg -
relativePosition.y() * combinedRadius,
relativePosition.x() * combinedRadius +
relativePosition.y() * leg) /
distSq;
} else {
/* Project on right leg. */
line.direction = -Vector2(relativePosition.x() * leg +
relativePosition.y() * combinedRadius,
-relativePosition.x() * combinedRadius +
relativePosition.y() * leg) /
distSq;
}
u = (relativeVelocity * line.direction) * line.direction -
relativeVelocity;
}
} else {
/* Collision. Project on cut-off circle of time timeStep. */
const float invTimeStep = 1.0F / timeStep;
/* Vector from cutoff center to relative velocity. */
const Vector2 w = relativeVelocity - invTimeStep * relativePosition;
const float wLength = abs(w);
const Vector2 unitW = w / wLength;
line.direction = Vector2(unitW.y(), -unitW.x());
u = (combinedRadius * invTimeStep - wLength) * unitW;
}
line.point = velocity_ + 0.5F * u;
orcaLines_.push_back(line);
}
const std::size_t lineFail =
linearProgram2(orcaLines_, maxSpeed_, prefVelocity_, false, newVelocity_);
if (lineFail < orcaLines_.size()) {
linearProgram3(orcaLines_, numObstLines, lineFail, maxSpeed_, newVelocity_);
}
}
void Agent2D::insertAgentNeighbor(const Agent2D *agent, float &rangeSq) {
// no point processing same agent
if (this == agent) {
return;
}
// ignore other agent if layers/mask bitmasks have no matching bit
if ((avoidance_mask_ & agent->avoidance_layers_) == 0) {
return;
}
// ignore other agent if this agent is below or above
if ((elevation_ > agent->elevation_ + agent->height_) || (elevation_ + height_ < agent->elevation_)) {
return;
}
if (avoidance_priority_ > agent->avoidance_priority_) {
return;
}
const float distSq = absSq(position_ - agent->position_);
if (distSq < rangeSq) {
if (agentNeighbors_.size() < maxNeighbors_) {
agentNeighbors_.push_back(std::make_pair(distSq, agent));
}
std::size_t i = agentNeighbors_.size() - 1U;
while (i != 0U && distSq < agentNeighbors_[i - 1U].first) {
agentNeighbors_[i] = agentNeighbors_[i - 1U];
--i;
}
agentNeighbors_[i] = std::make_pair(distSq, agent);
if (agentNeighbors_.size() == maxNeighbors_) {
rangeSq = agentNeighbors_.back().first;
}
}
}
void Agent2D::insertObstacleNeighbor(const Obstacle2D *obstacle, float rangeSq) {
const Obstacle2D *const nextObstacle = obstacle->next_;
float distSq = 0.0F;
const float r = ((position_ - obstacle->point_) *
(nextObstacle->point_ - obstacle->point_)) /
absSq(nextObstacle->point_ - obstacle->point_);
if (r < 0.0F) {
distSq = absSq(position_ - obstacle->point_);
} else if (r > 1.0F) {
distSq = absSq(position_ - nextObstacle->point_);
} else {
distSq = absSq(position_ - (obstacle->point_ +
r * (nextObstacle->point_ - obstacle->point_)));
}
if (distSq < rangeSq) {
obstacleNeighbors_.push_back(std::make_pair(distSq, obstacle));
std::size_t i = obstacleNeighbors_.size() - 1U;
while (i != 0U && distSq < obstacleNeighbors_[i - 1U].first) {
obstacleNeighbors_[i] = obstacleNeighbors_[i - 1U];
--i;
}
obstacleNeighbors_[i] = std::make_pair(distSq, obstacle);
}
}
void Agent2D::update(float timeStep) {
velocity_ = newVelocity_;
position_ += velocity_ * timeStep;
}
} /* namespace RVO2D */

594
thirdparty/rvo2/rvo2_2d/Agent2d.cpp vendored Normal file
View File

@ -0,0 +1,594 @@
/*
* Agent2d.cpp
* RVO2 Library
*
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
*/
#include "Agent2d.h"
#include "KdTree2d.h"
#include "Obstacle2d.h"
namespace RVO2D {
Agent2D::Agent2D() : maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f), timeHorizonObst_(0.0f), id_(0) { }
void Agent2D::computeNeighbors(RVOSimulator2D *sim_)
{
obstacleNeighbors_.clear();
float rangeSq = sqr(timeHorizonObst_ * maxSpeed_ + radius_);
sim_->kdTree_->computeObstacleNeighbors(this, rangeSq);
agentNeighbors_.clear();
if (maxNeighbors_ > 0) {
rangeSq = sqr(neighborDist_);
sim_->kdTree_->computeAgentNeighbors(this, rangeSq);
}
}
/* Search for the best new velocity. */
void Agent2D::computeNewVelocity(RVOSimulator2D *sim_)
{
orcaLines_.clear();
const float invTimeHorizonObst = 1.0f / timeHorizonObst_;
/* Create obstacle ORCA lines. */
for (size_t i = 0; i < obstacleNeighbors_.size(); ++i) {
const Obstacle2D *obstacle1 = obstacleNeighbors_[i].second;
const Obstacle2D *obstacle2 = obstacle1->nextObstacle_;
const Vector2 relativePosition1 = obstacle1->point_ - position_;
const Vector2 relativePosition2 = obstacle2->point_ - position_;
/*
* Check if velocity obstacle of obstacle is already taken care of by
* previously constructed obstacle ORCA lines.
*/
bool alreadyCovered = false;
for (size_t j = 0; j < orcaLines_.size(); ++j) {
if (det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVO_EPSILON && det(invTimeHorizonObst * relativePosition2 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVO_EPSILON) {
alreadyCovered = true;
break;
}
}
if (alreadyCovered) {
continue;
}
/* Not yet covered. Check for collisions. */
const float distSq1 = absSq(relativePosition1);
const float distSq2 = absSq(relativePosition2);
const float radiusSq = sqr(radius_);
const Vector2 obstacleVector = obstacle2->point_ - obstacle1->point_;
const float s = (-relativePosition1 * obstacleVector) / absSq(obstacleVector);
const float distSqLine = absSq(-relativePosition1 - s * obstacleVector);
Line line;
if (s < 0.0f && distSq1 <= radiusSq) {
/* Collision with left vertex. Ignore if non-convex. */
if (obstacle1->isConvex_) {
line.point = Vector2(0.0f, 0.0f);
line.direction = normalize(Vector2(-relativePosition1.y(), relativePosition1.x()));
orcaLines_.push_back(line);
}
continue;
}
else if (s > 1.0f && distSq2 <= radiusSq) {
/* Collision with right vertex. Ignore if non-convex
* or if it will be taken care of by neighoring obstace */
if (obstacle2->isConvex_ && det(relativePosition2, obstacle2->unitDir_) >= 0.0f) {
line.point = Vector2(0.0f, 0.0f);
line.direction = normalize(Vector2(-relativePosition2.y(), relativePosition2.x()));
orcaLines_.push_back(line);
}
continue;
}
else if (s >= 0.0f && s < 1.0f && distSqLine <= radiusSq) {
/* Collision with obstacle segment. */
line.point = Vector2(0.0f, 0.0f);
line.direction = -obstacle1->unitDir_;
orcaLines_.push_back(line);
continue;
}
/*
* No collision.
* Compute legs. When obliquely viewed, both legs can come from a single
* vertex. Legs extend cut-off line when nonconvex vertex.
*/
Vector2 leftLegDirection, rightLegDirection;
if (s < 0.0f && distSqLine <= radiusSq) {
/*
* Obstacle viewed obliquely so that left vertex
* defines velocity obstacle.
*/
if (!obstacle1->isConvex_) {
/* Ignore obstacle. */
continue;
}
obstacle2 = obstacle1;
const float leg1 = std::sqrt(distSq1 - radiusSq);
leftLegDirection = Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
rightLegDirection = Vector2(relativePosition1.x() * leg1 + relativePosition1.y() * radius_, -relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
}
else if (s > 1.0f && distSqLine <= radiusSq) {
/*
* Obstacle viewed obliquely so that
* right vertex defines velocity obstacle.
*/
if (!obstacle2->isConvex_) {
/* Ignore obstacle. */
continue;
}
obstacle1 = obstacle2;
const float leg2 = std::sqrt(distSq2 - radiusSq);
leftLegDirection = Vector2(relativePosition2.x() * leg2 - relativePosition2.y() * radius_, relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
rightLegDirection = Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
}
else {
/* Usual situation. */
if (obstacle1->isConvex_) {
const float leg1 = std::sqrt(distSq1 - radiusSq);
leftLegDirection = Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
}
else {
/* Left vertex non-convex; left leg extends cut-off line. */
leftLegDirection = -obstacle1->unitDir_;
}
if (obstacle2->isConvex_) {
const float leg2 = std::sqrt(distSq2 - radiusSq);
rightLegDirection = Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
}
else {
/* Right vertex non-convex; right leg extends cut-off line. */
rightLegDirection = obstacle1->unitDir_;
}
}
/*
* Legs can never point into neighboring edge when convex vertex,
* take cutoff-line of neighboring edge instead. If velocity projected on
* "foreign" leg, no constraint is added.
*/
const Obstacle2D *const leftNeighbor = obstacle1->prevObstacle_;
bool isLeftLegForeign = false;
bool isRightLegForeign = false;
if (obstacle1->isConvex_ && det(leftLegDirection, -leftNeighbor->unitDir_) >= 0.0f) {
/* Left leg points into obstacle. */
leftLegDirection = -leftNeighbor->unitDir_;
isLeftLegForeign = true;
}
if (obstacle2->isConvex_ && det(rightLegDirection, obstacle2->unitDir_) <= 0.0f) {
/* Right leg points into obstacle. */
rightLegDirection = obstacle2->unitDir_;
isRightLegForeign = true;
}
/* Compute cut-off centers. */
const Vector2 leftCutoff = invTimeHorizonObst * (obstacle1->point_ - position_);
const Vector2 rightCutoff = invTimeHorizonObst * (obstacle2->point_ - position_);
const Vector2 cutoffVec = rightCutoff - leftCutoff;
/* Project current velocity on velocity obstacle. */
/* Check if current velocity is projected on cutoff circles. */
const float t = (obstacle1 == obstacle2 ? 0.5f : ((velocity_ - leftCutoff) * cutoffVec) / absSq(cutoffVec));
const float tLeft = ((velocity_ - leftCutoff) * leftLegDirection);
const float tRight = ((velocity_ - rightCutoff) * rightLegDirection);
if ((t < 0.0f && tLeft < 0.0f) || (obstacle1 == obstacle2 && tLeft < 0.0f && tRight < 0.0f)) {
/* Project on left cut-off circle. */
const Vector2 unitW = normalize(velocity_ - leftCutoff);
line.direction = Vector2(unitW.y(), -unitW.x());
line.point = leftCutoff + radius_ * invTimeHorizonObst * unitW;
orcaLines_.push_back(line);
continue;
}
else if (t > 1.0f && tRight < 0.0f) {
/* Project on right cut-off circle. */
const Vector2 unitW = normalize(velocity_ - rightCutoff);
line.direction = Vector2(unitW.y(), -unitW.x());
line.point = rightCutoff + radius_ * invTimeHorizonObst * unitW;
orcaLines_.push_back(line);
continue;
}
/*
* Project on left leg, right leg, or cut-off line, whichever is closest
* to velocity.
*/
const float distSqCutoff = ((t < 0.0f || t > 1.0f || obstacle1 == obstacle2) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + t * cutoffVec)));
const float distSqLeft = ((tLeft < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + tLeft * leftLegDirection)));
const float distSqRight = ((tRight < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (rightCutoff + tRight * rightLegDirection)));
if (distSqCutoff <= distSqLeft && distSqCutoff <= distSqRight) {
/* Project on cut-off line. */
line.direction = -obstacle1->unitDir_;
line.point = leftCutoff + radius_ * invTimeHorizonObst * Vector2(-line.direction.y(), line.direction.x());
orcaLines_.push_back(line);
continue;
}
else if (distSqLeft <= distSqRight) {
/* Project on left leg. */
if (isLeftLegForeign) {
continue;
}
line.direction = leftLegDirection;
line.point = leftCutoff + radius_ * invTimeHorizonObst * Vector2(-line.direction.y(), line.direction.x());
orcaLines_.push_back(line);
continue;
}
else {
/* Project on right leg. */
if (isRightLegForeign) {
continue;
}
line.direction = -rightLegDirection;
line.point = rightCutoff + radius_ * invTimeHorizonObst * Vector2(-line.direction.y(), line.direction.x());
orcaLines_.push_back(line);
continue;
}
}
const size_t numObstLines = orcaLines_.size();
const float invTimeHorizon = 1.0f / timeHorizon_;
/* Create agent ORCA lines. */
for (size_t i = 0; i < agentNeighbors_.size(); ++i) {
const Agent2D *const other = agentNeighbors_[i].second;
//const float timeHorizon_mod = (avoidance_priority_ - other->avoidance_priority_ + 1.0f) * 0.5f;
//const float invTimeHorizon = (1.0f / timeHorizon_) * timeHorizon_mod;
const Vector2 relativePosition = other->position_ - position_;
const Vector2 relativeVelocity = velocity_ - other->velocity_;
const float distSq = absSq(relativePosition);
const float combinedRadius = radius_ + other->radius_;
const float combinedRadiusSq = sqr(combinedRadius);
Line line;
Vector2 u;
if (distSq > combinedRadiusSq) {
/* No collision. */
const Vector2 w = relativeVelocity - invTimeHorizon * relativePosition;
/* Vector from cutoff center to relative velocity. */
const float wLengthSq = absSq(w);
const float dotProduct1 = w * relativePosition;
if (dotProduct1 < 0.0f && sqr(dotProduct1) > combinedRadiusSq * wLengthSq) {
/* Project on cut-off circle. */
const float wLength = std::sqrt(wLengthSq);
const Vector2 unitW = w / wLength;
line.direction = Vector2(unitW.y(), -unitW.x());
u = (combinedRadius * invTimeHorizon - wLength) * unitW;
}
else {
/* Project on legs. */
const float leg = std::sqrt(distSq - combinedRadiusSq);
if (det(relativePosition, w) > 0.0f) {
/* Project on left leg. */
line.direction = Vector2(relativePosition.x() * leg - relativePosition.y() * combinedRadius, relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq;
}
else {
/* Project on right leg. */
line.direction = -Vector2(relativePosition.x() * leg + relativePosition.y() * combinedRadius, -relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq;
}
const float dotProduct2 = relativeVelocity * line.direction;
u = dotProduct2 * line.direction - relativeVelocity;
}
}
else {
/* Collision. Project on cut-off circle of time timeStep. */
const float invTimeStep = 1.0f / sim_->timeStep_;
/* Vector from cutoff center to relative velocity. */
const Vector2 w = relativeVelocity - invTimeStep * relativePosition;
const float wLength = abs(w);
const Vector2 unitW = w / wLength;
line.direction = Vector2(unitW.y(), -unitW.x());
u = (combinedRadius * invTimeStep - wLength) * unitW;
}
line.point = velocity_ + 0.5f * u;
orcaLines_.push_back(line);
}
size_t lineFail = linearProgram2(orcaLines_, maxSpeed_, prefVelocity_, false, newVelocity_);
if (lineFail < orcaLines_.size()) {
linearProgram3(orcaLines_, numObstLines, lineFail, maxSpeed_, newVelocity_);
}
}
void Agent2D::insertAgentNeighbor(const Agent2D *agent, float &rangeSq)
{
// no point processing same agent
if (this == agent) {
return;
}
// ignore other agent if layers/mask bitmasks have no matching bit
if ((avoidance_mask_ & agent->avoidance_layers_) == 0) {
return;
}
// ignore other agent if this agent is below or above
if ((elevation_ > agent->elevation_ + agent->height_) || (elevation_ + height_ < agent->elevation_)) {
return;
}
if (avoidance_priority_ > agent->avoidance_priority_) {
return;
}
const float distSq = absSq(position_ - agent->position_);
if (distSq < rangeSq) {
if (agentNeighbors_.size() < maxNeighbors_) {
agentNeighbors_.push_back(std::make_pair(distSq, agent));
}
size_t i = agentNeighbors_.size() - 1;
while (i != 0 && distSq < agentNeighbors_[i - 1].first) {
agentNeighbors_[i] = agentNeighbors_[i - 1];
--i;
}
agentNeighbors_[i] = std::make_pair(distSq, agent);
if (agentNeighbors_.size() == maxNeighbors_) {
rangeSq = agentNeighbors_.back().first;
}
}
}
void Agent2D::insertObstacleNeighbor(const Obstacle2D *obstacle, float rangeSq)
{
const Obstacle2D *const nextObstacle = obstacle->nextObstacle_;
// ignore obstacle if no matching layer/mask
if ((avoidance_mask_ & nextObstacle->avoidance_layers_) == 0) {
return;
}
// ignore obstacle if below or above
if ((elevation_ > obstacle->elevation_ + obstacle->height_) || (elevation_ + height_ < obstacle->elevation_)) {
return;
}
const float distSq = distSqPointLineSegment(obstacle->point_, nextObstacle->point_, position_);
if (distSq < rangeSq) {
obstacleNeighbors_.push_back(std::make_pair(distSq, obstacle));
size_t i = obstacleNeighbors_.size() - 1;
while (i != 0 && distSq < obstacleNeighbors_[i - 1].first) {
obstacleNeighbors_[i] = obstacleNeighbors_[i - 1];
--i;
}
obstacleNeighbors_[i] = std::make_pair(distSq, obstacle);
}
//}
}
void Agent2D::update(RVOSimulator2D *sim_)
{
velocity_ = newVelocity_;
position_ += velocity_ * sim_->timeStep_;
}
bool linearProgram1(const std::vector<Line> &lines, size_t lineNo, float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result)
{
const float dotProduct = lines[lineNo].point * lines[lineNo].direction;
const float discriminant = sqr(dotProduct) + sqr(radius) - absSq(lines[lineNo].point);
if (discriminant < 0.0f) {
/* Max speed circle fully invalidates line lineNo. */
return false;
}
const float sqrtDiscriminant = std::sqrt(discriminant);
float tLeft = -dotProduct - sqrtDiscriminant;
float tRight = -dotProduct + sqrtDiscriminant;
for (size_t i = 0; i < lineNo; ++i) {
const float denominator = det(lines[lineNo].direction, lines[i].direction);
const float numerator = det(lines[i].direction, lines[lineNo].point - lines[i].point);
if (std::fabs(denominator) <= RVO_EPSILON) {
/* Lines lineNo and i are (almost) parallel. */
if (numerator < 0.0f) {
return false;
}
else {
continue;
}
}
const float t = numerator / denominator;
if (denominator >= 0.0f) {
/* Line i bounds line lineNo on the right. */
tRight = std::min(tRight, t);
}
else {
/* Line i bounds line lineNo on the left. */
tLeft = std::max(tLeft, t);
}
if (tLeft > tRight) {
return false;
}
}
if (directionOpt) {
/* Optimize direction. */
if (optVelocity * lines[lineNo].direction > 0.0f) {
/* Take right extreme. */
result = lines[lineNo].point + tRight * lines[lineNo].direction;
}
else {
/* Take left extreme. */
result = lines[lineNo].point + tLeft * lines[lineNo].direction;
}
}
else {
/* Optimize closest point. */
const float t = lines[lineNo].direction * (optVelocity - lines[lineNo].point);
if (t < tLeft) {
result = lines[lineNo].point + tLeft * lines[lineNo].direction;
}
else if (t > tRight) {
result = lines[lineNo].point + tRight * lines[lineNo].direction;
}
else {
result = lines[lineNo].point + t * lines[lineNo].direction;
}
}
return true;
}
size_t linearProgram2(const std::vector<Line> &lines, float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result)
{
if (directionOpt) {
/*
* Optimize direction. Note that the optimization velocity is of unit
* length in this case.
*/
result = optVelocity * radius;
}
else if (absSq(optVelocity) > sqr(radius)) {
/* Optimize closest point and outside circle. */
result = normalize(optVelocity) * radius;
}
else {
/* Optimize closest point and inside circle. */
result = optVelocity;
}
for (size_t i = 0; i < lines.size(); ++i) {
if (det(lines[i].direction, lines[i].point - result) > 0.0f) {
/* Result does not satisfy constraint i. Compute new optimal result. */
const Vector2 tempResult = result;
if (!linearProgram1(lines, i, radius, optVelocity, directionOpt, result)) {
result = tempResult;
return i;
}
}
}
return lines.size();
}
void linearProgram3(const std::vector<Line> &lines, size_t numObstLines, size_t beginLine, float radius, Vector2 &result)
{
float distance = 0.0f;
for (size_t i = beginLine; i < lines.size(); ++i) {
if (det(lines[i].direction, lines[i].point - result) > distance) {
/* Result does not satisfy constraint of line i. */
std::vector<Line> projLines(lines.begin(), lines.begin() + static_cast<ptrdiff_t>(numObstLines));
for (size_t j = numObstLines; j < i; ++j) {
Line line;
float determinant = det(lines[i].direction, lines[j].direction);
if (std::fabs(determinant) <= RVO_EPSILON) {
/* Line i and line j are parallel. */
if (lines[i].direction * lines[j].direction > 0.0f) {
/* Line i and line j point in the same direction. */
continue;
}
else {
/* Line i and line j point in opposite direction. */
line.point = 0.5f * (lines[i].point + lines[j].point);
}
}
else {
line.point = lines[i].point + (det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction;
}
line.direction = normalize(lines[j].direction - lines[i].direction);
projLines.push_back(line);
}
const Vector2 tempResult = result;
if (linearProgram2(projLines, radius, Vector2(-lines[i].direction.y(), lines[i].direction.x()), true, result) < projLines.size()) {
/* This should in principle not happen. The result is by definition
* already in the feasible region of this linear program. If it fails,
* it is due to small floating point error, and the current result is
* kept.
*/
result = tempResult;
}
distance = det(lines[i].direction, lines[i].point - result);
}
}
}
}

View File

@ -2,14 +2,13 @@
* Agent2d.h
* RVO2 Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -28,110 +27,134 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
* <http://gamma.cs.unc.edu/RVO2/>
*/
#ifndef RVO2D_AGENT_H_
#define RVO2D_AGENT_H_
/**
* @file Agent2d.h
* @brief Declares the Agent2D class.
* \file Agent2d.h
* \brief Contains the Agent class.
*/
#include <cstddef>
#include <cstdint>
#include <utility>
#include <vector>
#include "Line.h"
#include "Vector2.h"
#include "Definitions.h"
#include "RVOSimulator2d.h"
namespace RVO2D {
class KdTree2D;
class Obstacle2D;
/**
* @brief Defines an agent in the simulation.
* \brief Defines an agent in the simulation.
*/
class Agent2D {
public:
/**
* @brief Constructs an agent instance.
* \brief Constructs an agent instance.
* \param sim The simulator instance.
*/
Agent2D();
explicit Agent2D();
/**
* @brief Destroys this agent instance.
* \brief Computes the neighbors of this agent.
*/
~Agent2D();
void computeNeighbors(RVOSimulator2D *sim_);
/**
* @brief Computes the neighbors of this agent.
* @param[in] kdTree A pointer to the k-D trees for agents and static
* obstacles in the simulation.
* \brief Computes the new velocity of this agent.
*/
void computeNeighbors(const KdTree2D *kdTree);
void computeNewVelocity(RVOSimulator2D *sim_);
/**
* @brief Computes the new velocity of this agent.
* @param[in] timeStep The time step of the simulation.
* \brief Inserts an agent neighbor into the set of neighbors of
* this agent.
* \param agent A pointer to the agent to be inserted.
* \param rangeSq The squared range around this agent.
*/
void computeNewVelocity(float timeStep);
void insertAgentNeighbor(const Agent2D *agent, float &rangeSq);
/**
* @brief Inserts an agent neighbor into the set of neighbors of this
* agent.
* @param[in] agent A pointer to the agent to be inserted.
* @param[in, out] rangeSq The squared range around this agent.
*/
void insertAgentNeighbor(const Agent2D *agent,
float &rangeSq); /* NOLINT(runtime/references) */
/**
* @brief Inserts a static obstacle neighbor into the set of
* neighbors of this agent.
* @param[in] obstacle The number of the static obstacle to be inserted.
* @param[in, out] rangeSq The squared range around this agent.
* \brief Inserts a static obstacle neighbor into the set of neighbors
* of this agent.
* \param obstacle The number of the static obstacle to be
* inserted.
* \param rangeSq The squared range around this agent.
*/
void insertObstacleNeighbor(const Obstacle2D *obstacle, float rangeSq);
/**
* @brief Updates the two-dimensional position and two-dimensional
* \brief Updates the two-dimensional position and two-dimensional
* velocity of this agent.
* @param[in] timeStep The time step of the simulation.
*/
void update(float timeStep);
/* Not implemented. */
Agent2D(const Agent2D &other);
/* Not implemented. */
Agent2D &operator=(const Agent2D &other);
void update(RVOSimulator2D *sim_);
std::vector<std::pair<float, const Agent2D *> > agentNeighbors_;
std::vector<std::pair<float, const Obstacle2D *> > obstacleNeighbors_;
std::vector<Line> orcaLines_;
Vector2 newVelocity_;
Vector2 position_;
Vector2 prefVelocity_;
Vector2 velocity_;
std::size_t id_;
std::size_t maxNeighbors_;
size_t maxNeighbors_;
float maxSpeed_;
float neighborDist_;
Vector2 newVelocity_;
std::vector<std::pair<float, const Obstacle2D *> > obstacleNeighbors_;
std::vector<Line> orcaLines_;
Vector2 position_;
Vector2 prefVelocity_;
float radius_;
float timeHorizon_;
float timeHorizonObst_;
Vector2 velocity_;
float height_ = 0.0;
float elevation_ = 0.0;
uint32_t avoidance_layers_ = 1;
uint32_t avoidance_mask_ = 1;
float avoidance_priority_ = 1.0;
size_t id_;
friend class KdTree2D;
friend class RVOSimulator2D;
};
} /* namespace RVO */
/**
* \relates Agent
* \brief Solves a one-dimensional linear program on a specified line
* subject to linear constraints defined by lines and a circular
* constraint.
* \param lines Lines defining the linear constraints.
* \param lineNo The specified line constraint.
* \param radius The radius of the circular constraint.
* \param optVelocity The optimization velocity.
* \param directionOpt True if the direction should be optimized.
* \param result A reference to the result of the linear program.
* \return True if successful.
*/
bool linearProgram1(const std::vector<Line> &lines, size_t lineNo,
float radius, const Vector2 &optVelocity,
bool directionOpt, Vector2 &result);
/**
* \relates Agent
* \brief Solves a two-dimensional linear program subject to linear
* constraints defined by lines and a circular constraint.
* \param lines Lines defining the linear constraints.
* \param radius The radius of the circular constraint.
* \param optVelocity The optimization velocity.
* \param directionOpt True if the direction should be optimized.
* \param result A reference to the result of the linear program.
* \return The number of the line it fails on, and the number of lines if successful.
*/
size_t linearProgram2(const std::vector<Line> &lines, float radius,
const Vector2 &optVelocity, bool directionOpt,
Vector2 &result);
/**
* \relates Agent
* \brief Solves a two-dimensional linear program subject to linear
* constraints defined by lines and a circular constraint.
* \param lines Lines defining the linear constraints.
* \param numObstLines Count of obstacle lines.
* \param beginLine The line on which the 2-d linear program failed.
* \param radius The radius of the circular constraint.
* \param result A reference to the result of the linear program.
*/
void linearProgram3(const std::vector<Line> &lines, size_t numObstLines, size_t beginLine,
float radius, Vector2 &result);
}
#endif /* RVO2D_AGENT_H_ */

110
thirdparty/rvo2/rvo2_2d/Definitions.h vendored Normal file
View File

@ -0,0 +1,110 @@
/*
* Definitions.h
* RVO2 Library
*
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
*/
#ifndef RVO2D_DEFINITIONS_H_
#define RVO2D_DEFINITIONS_H_
/**
* \file Definitions.h
* \brief Contains functions and constants used in multiple classes.
*/
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <vector>
#include "Vector2.h"
/**
* \brief A sufficiently small positive number.
*/
const float RVO_EPSILON = 0.00001f;
namespace RVO2D {
class Agent2D;
class Obstacle2D;
class RVOSimulator2D;
/**
* \brief Computes the squared distance from a line segment with the
* specified endpoints to a specified point.
* \param a The first endpoint of the line segment.
* \param b The second endpoint of the line segment.
* \param c The point to which the squared distance is to
* be calculated.
* \return The squared distance from the line segment to the point.
*/
inline float distSqPointLineSegment(const Vector2 &a, const Vector2 &b,
const Vector2 &c)
{
const float r = ((c - a) * (b - a)) / absSq(b - a);
if (r < 0.0f) {
return absSq(c - a);
}
else if (r > 1.0f) {
return absSq(c - b);
}
else {
return absSq(c - (a + r * (b - a)));
}
}
/**
* \brief Computes the signed distance from a line connecting the
* specified points to a specified point.
* \param a The first point on the line.
* \param b The second point on the line.
* \param c The point to which the signed distance is to
* be calculated.
* \return Positive when the point c lies to the left of the line ab.
*/
inline float leftOf(const Vector2 &a, const Vector2 &b, const Vector2 &c)
{
return det(a - c, b - a);
}
/**
* \brief Computes the square of a float.
* \param a The float to be squared.
* \return The square of the float.
*/
inline float sqr(float a)
{
return a * a;
}
}
#endif /* RVO2D_DEFINITIONS_H_ */

View File

@ -1,517 +0,0 @@
/*
* KdTree2d.cpp
* RVO2 Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
/**
* @file KdTree2d.cpp
* @brief Defines the KdTree2D class.
*/
#include "KdTree2d.h"
#include <algorithm>
#include <utility>
#include "Agent2d.h"
#include "Obstacle2d.h"
#include "RVOSimulator2d.h"
#include "Vector2.h"
namespace RVO2D {
namespace {
/**
* @relates KdTree2D
* @brief The maximum k-D tree node leaf size.
*/
const std::size_t RVO_MAX_LEAF_SIZE = 10U;
} /* namespace */
/**
* @brief Defines an agent k-D tree node.
*/
class KdTree2D::AgentTreeNode {
public:
/**
* @brief Constructs an agent k-D tree node instance.
*/
AgentTreeNode();
/**
* @brief The beginning node number.
*/
std::size_t begin;
/**
* @brief The ending node number.
*/
std::size_t end;
/**
* @brief The left node number.
*/
std::size_t left;
/**
* @brief The right node number.
*/
std::size_t right;
/**
* @brief The maximum x-coordinate.
*/
float maxX;
/**
* @brief The maximum y-coordinate.
*/
float maxY;
/**
* @brief The minimum x-coordinate.
*/
float minX;
/**
* @brief The minimum y-coordinate.
*/
float minY;
};
KdTree2D::AgentTreeNode::AgentTreeNode()
: begin(0U),
end(0U),
left(0U),
right(0U),
maxX(0.0F),
maxY(0.0F),
minX(0.0F),
minY(0.0F) {}
/**
* @brief Defines an obstacle k-D tree node.
*/
class KdTree2D::ObstacleTreeNode {
public:
/**
* @brief Constructs an obstacle k-D tree node instance.
*/
ObstacleTreeNode();
/**
* @brief Destroys this obstacle k-D tree node instance.
*/
~ObstacleTreeNode();
/**
* @brief The obstacle number.
*/
const Obstacle2D *obstacle;
/**
* @brief The left obstacle tree node.
*/
ObstacleTreeNode *left;
/**
* @brief The right obstacle tree node.
*/
ObstacleTreeNode *right;
private:
/* Not implemented. */
ObstacleTreeNode(const ObstacleTreeNode &other);
/* Not implemented. */
ObstacleTreeNode &operator=(const ObstacleTreeNode &other);
};
KdTree2D::ObstacleTreeNode::ObstacleTreeNode()
: obstacle(NULL), left(NULL), right(NULL) {}
KdTree2D::ObstacleTreeNode::~ObstacleTreeNode() {}
KdTree2D::KdTree2D(RVOSimulator2D *simulator)
: obstacleTree_(NULL), simulator_(simulator) {}
KdTree2D::~KdTree2D() { deleteObstacleTree(obstacleTree_); }
void KdTree2D::buildAgentTree(std::vector<Agent2D *> agents) {
agents_.swap(agents);
if (!agents_.empty()) {
agentTree_.resize(2 * agents_.size() - 1);
buildAgentTreeRecursive(0, agents_.size(), 0);
}
}
void KdTree2D::buildAgentTreeRecursive(std::size_t begin, std::size_t end,
std::size_t node) {
agentTree_[node].begin = begin;
agentTree_[node].end = end;
agentTree_[node].minX = agentTree_[node].maxX = agents_[begin]->position_.x();
agentTree_[node].minY = agentTree_[node].maxY = agents_[begin]->position_.y();
for (std::size_t i = begin + 1U; i < end; ++i) {
agentTree_[node].maxX =
std::max(agentTree_[node].maxX, agents_[i]->position_.x());
agentTree_[node].minX =
std::min(agentTree_[node].minX, agents_[i]->position_.x());
agentTree_[node].maxY =
std::max(agentTree_[node].maxY, agents_[i]->position_.y());
agentTree_[node].minY =
std::min(agentTree_[node].minY, agents_[i]->position_.y());
}
if (end - begin > RVO_MAX_LEAF_SIZE) {
/* No leaf node. */
const bool isVertical = agentTree_[node].maxX - agentTree_[node].minX >
agentTree_[node].maxY - agentTree_[node].minY;
const float splitValue =
0.5F * (isVertical ? agentTree_[node].maxX + agentTree_[node].minX
: agentTree_[node].maxY + agentTree_[node].minY);
std::size_t left = begin;
std::size_t right = end;
while (left < right) {
while (left < right &&
(isVertical ? agents_[left]->position_.x()
: agents_[left]->position_.y()) < splitValue) {
++left;
}
while (right > left &&
(isVertical ? agents_[right - 1U]->position_.x()
: agents_[right - 1U]->position_.y()) >= splitValue) {
--right;
}
if (left < right) {
std::swap(agents_[left], agents_[right - 1U]);
++left;
--right;
}
}
if (left == begin) {
++left;
++right;
}
agentTree_[node].left = node + 1U;
agentTree_[node].right = node + 2U * (left - begin);
buildAgentTreeRecursive(begin, left, agentTree_[node].left);
buildAgentTreeRecursive(left, end, agentTree_[node].right);
}
}
void KdTree2D::buildObstacleTree(std::vector<Obstacle2D *> obstacles) {
deleteObstacleTree(obstacleTree_);
obstacleTree_ = buildObstacleTreeRecursive(obstacles);
}
KdTree2D::ObstacleTreeNode *KdTree2D::buildObstacleTreeRecursive(
const std::vector<Obstacle2D *> &obstacles) {
if (!obstacles.empty()) {
ObstacleTreeNode *const node = new ObstacleTreeNode();
std::size_t optimalSplit = 0U;
std::size_t minLeft = obstacles.size();
std::size_t minRight = obstacles.size();
for (std::size_t i = 0U; i < obstacles.size(); ++i) {
std::size_t leftSize = 0U;
std::size_t rightSize = 0U;
const Obstacle2D *const obstacleI1 = obstacles[i];
const Obstacle2D *const obstacleI2 = obstacleI1->next_;
/* Compute optimal split node. */
for (std::size_t j = 0U; j < obstacles.size(); ++j) {
if (i != j) {
const Obstacle2D *const obstacleJ1 = obstacles[j];
const Obstacle2D *const obstacleJ2 = obstacleJ1->next_;
const float j1LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_,
obstacleJ1->point_);
const float j2LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_,
obstacleJ2->point_);
if (j1LeftOfI >= -RVO2D_EPSILON && j2LeftOfI >= -RVO2D_EPSILON) {
++leftSize;
} else if (j1LeftOfI <= RVO2D_EPSILON && j2LeftOfI <= RVO2D_EPSILON) {
++rightSize;
} else {
++leftSize;
++rightSize;
}
if (std::make_pair(std::max(leftSize, rightSize),
std::min(leftSize, rightSize)) >=
std::make_pair(std::max(minLeft, minRight),
std::min(minLeft, minRight))) {
break;
}
}
}
if (std::make_pair(std::max(leftSize, rightSize),
std::min(leftSize, rightSize)) <
std::make_pair(std::max(minLeft, minRight),
std::min(minLeft, minRight))) {
minLeft = leftSize;
minRight = rightSize;
optimalSplit = i;
}
}
/* Build split node. */
std::vector<Obstacle2D *> leftObstacles(minLeft);
std::vector<Obstacle2D *> rightObstacles(minRight);
std::size_t leftCounter = 0U;
std::size_t rightCounter = 0U;
const std::size_t i = optimalSplit;
const Obstacle2D *const obstacleI1 = obstacles[i];
const Obstacle2D *const obstacleI2 = obstacleI1->next_;
for (std::size_t j = 0U; j < obstacles.size(); ++j) {
if (i != j) {
Obstacle2D *const obstacleJ1 = obstacles[j];
Obstacle2D *const obstacleJ2 = obstacleJ1->next_;
const float j1LeftOfI =
leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ1->point_);
const float j2LeftOfI =
leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ2->point_);
if (j1LeftOfI >= -RVO2D_EPSILON && j2LeftOfI >= -RVO2D_EPSILON) {
leftObstacles[leftCounter++] = obstacles[j];
} else if (j1LeftOfI <= RVO2D_EPSILON && j2LeftOfI <= RVO2D_EPSILON) {
rightObstacles[rightCounter++] = obstacles[j];
} else {
/* Split obstacle j. */
const float t = det(obstacleI2->point_ - obstacleI1->point_,
obstacleJ1->point_ - obstacleI1->point_) /
det(obstacleI2->point_ - obstacleI1->point_,
obstacleJ1->point_ - obstacleJ2->point_);
const Vector2 splitPoint =
obstacleJ1->point_ +
t * (obstacleJ2->point_ - obstacleJ1->point_);
Obstacle2D *const newObstacle = new Obstacle2D();
newObstacle->direction_ = obstacleJ1->direction_;
newObstacle->point_ = splitPoint;
newObstacle->next_ = obstacleJ2;
newObstacle->previous_ = obstacleJ1;
newObstacle->id_ = simulator_->obstacles_.size();
newObstacle->isConvex_ = true;
simulator_->obstacles_.push_back(newObstacle);
obstacleJ1->next_ = newObstacle;
obstacleJ2->previous_ = newObstacle;
if (j1LeftOfI > 0.0F) {
leftObstacles[leftCounter++] = obstacleJ1;
rightObstacles[rightCounter++] = newObstacle;
} else {
rightObstacles[rightCounter++] = obstacleJ1;
leftObstacles[leftCounter++] = newObstacle;
}
}
}
}
node->obstacle = obstacleI1;
node->left = buildObstacleTreeRecursive(leftObstacles);
node->right = buildObstacleTreeRecursive(rightObstacles);
return node;
}
return NULL;
}
void KdTree2D::computeAgentNeighbors(Agent2D *agent, float &rangeSq) const {
queryAgentTreeRecursive(agent, rangeSq, 0U);
}
void KdTree2D::computeObstacleNeighbors(Agent2D *agent, float rangeSq) const {
queryObstacleTreeRecursive(agent, rangeSq, obstacleTree_);
}
void KdTree2D::deleteObstacleTree(ObstacleTreeNode *node) {
if (node != NULL) {
deleteObstacleTree(node->left);
deleteObstacleTree(node->right);
delete node;
}
}
void KdTree2D::queryAgentTreeRecursive(Agent2D *agent, float &rangeSq,
std::size_t node) const {
if (agentTree_[node].end - agentTree_[node].begin <= RVO_MAX_LEAF_SIZE) {
for (std::size_t i = agentTree_[node].begin; i < agentTree_[node].end;
++i) {
agent->insertAgentNeighbor(agents_[i], rangeSq);
}
} else {
const float distLeftMinX = std::max(
0.0F, agentTree_[agentTree_[node].left].minX - agent->position_.x());
const float distLeftMaxX = std::max(
0.0F, agent->position_.x() - agentTree_[agentTree_[node].left].maxX);
const float distLeftMinY = std::max(
0.0F, agentTree_[agentTree_[node].left].minY - agent->position_.y());
const float distLeftMaxY = std::max(
0.0F, agent->position_.y() - agentTree_[agentTree_[node].left].maxY);
const float distSqLeft =
distLeftMinX * distLeftMinX + distLeftMaxX * distLeftMaxX +
distLeftMinY * distLeftMinY + distLeftMaxY * distLeftMaxY;
const float distRightMinX = std::max(
0.0F, agentTree_[agentTree_[node].right].minX - agent->position_.x());
const float distRightMaxX = std::max(
0.0F, agent->position_.x() - agentTree_[agentTree_[node].right].maxX);
const float distRightMinY = std::max(
0.0F, agentTree_[agentTree_[node].right].minY - agent->position_.y());
const float distRightMaxY = std::max(
0.0F, agent->position_.y() - agentTree_[agentTree_[node].right].maxY);
const float distSqRight =
distRightMinX * distRightMinX + distRightMaxX * distRightMaxX +
distRightMinY * distRightMinY + distRightMaxY * distRightMaxY;
if (distSqLeft < distSqRight) {
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
}
}
} else if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
}
}
}
}
void KdTree2D::queryObstacleTreeRecursive(Agent2D *agent, float rangeSq,
const ObstacleTreeNode *node) const {
if (node != NULL) {
const Obstacle2D *const obstacle1 = node->obstacle;
const Obstacle2D *const obstacle2 = obstacle1->next_;
const float agentLeftOfLine =
leftOf(obstacle1->point_, obstacle2->point_, agent->position_);
queryObstacleTreeRecursive(
agent, rangeSq, agentLeftOfLine >= 0.0F ? node->left : node->right);
const float distSqLine = agentLeftOfLine * agentLeftOfLine /
absSq(obstacle2->point_ - obstacle1->point_);
if (distSqLine < rangeSq) {
if (agentLeftOfLine < 0.0F) {
/* Try obstacle at this node only if agent is on right side of obstacle
* and can see obstacle. */
agent->insertObstacleNeighbor(node->obstacle, rangeSq);
}
/* Try other side of line. */
queryObstacleTreeRecursive(
agent, rangeSq, agentLeftOfLine >= 0.0F ? node->right : node->left);
}
}
}
bool KdTree2D::queryVisibility(const Vector2 &vector1, const Vector2 &vector2,
float radius) const {
return queryVisibilityRecursive(vector1, vector2, radius, obstacleTree_);
}
bool KdTree2D::queryVisibilityRecursive(const Vector2 &vector1,
const Vector2 &vector2, float radius,
const ObstacleTreeNode *node) const {
if (node != NULL) {
const Obstacle2D *const obstacle1 = node->obstacle;
const Obstacle2D *const obstacle2 = obstacle1->next_;
const float q1LeftOfI =
leftOf(obstacle1->point_, obstacle2->point_, vector1);
const float q2LeftOfI =
leftOf(obstacle1->point_, obstacle2->point_, vector2);
const float invLengthI =
1.0F / absSq(obstacle2->point_ - obstacle1->point_);
if (q1LeftOfI >= 0.0F && q2LeftOfI >= 0.0F) {
return queryVisibilityRecursive(vector1, vector2, radius, node->left) &&
((q1LeftOfI * q1LeftOfI * invLengthI >= radius * radius &&
q2LeftOfI * q2LeftOfI * invLengthI >= radius * radius) ||
queryVisibilityRecursive(vector1, vector2, radius, node->right));
}
if (q1LeftOfI <= 0.0F && q2LeftOfI <= 0.0F) {
return queryVisibilityRecursive(vector1, vector2, radius, node->right) &&
((q1LeftOfI * q1LeftOfI * invLengthI >= radius * radius &&
q2LeftOfI * q2LeftOfI * invLengthI >= radius * radius) ||
queryVisibilityRecursive(vector1, vector2, radius, node->left));
}
if (q1LeftOfI >= 0.0F && q2LeftOfI <= 0.0F) {
/* One can see through obstacle from left to right. */
return queryVisibilityRecursive(vector1, vector2, radius, node->left) &&
queryVisibilityRecursive(vector1, vector2, radius, node->right);
}
const float point1LeftOfQ = leftOf(vector1, vector2, obstacle1->point_);
const float point2LeftOfQ = leftOf(vector1, vector2, obstacle2->point_);
const float invLengthQ = 1.0F / absSq(vector2 - vector1);
return point1LeftOfQ * point2LeftOfQ >= 0.0F &&
point1LeftOfQ * point1LeftOfQ * invLengthQ > radius * radius &&
point2LeftOfQ * point2LeftOfQ * invLengthQ > radius * radius &&
queryVisibilityRecursive(vector1, vector2, radius, node->left) &&
queryVisibilityRecursive(vector1, vector2, radius, node->right);
}
return true;
}
} /* namespace RVO2D */

357
thirdparty/rvo2/rvo2_2d/KdTree2d.cpp vendored Normal file
View File

@ -0,0 +1,357 @@
/*
* KdTree2d.cpp
* RVO2 Library
*
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
*/
#include "KdTree2d.h"
#include "Agent2d.h"
#include "RVOSimulator2d.h"
#include "Obstacle2d.h"
namespace RVO2D {
KdTree2D::KdTree2D(RVOSimulator2D *sim) : obstacleTree_(NULL), sim_(sim) { }
KdTree2D::~KdTree2D()
{
deleteObstacleTree(obstacleTree_);
}
void KdTree2D::buildAgentTree(std::vector<Agent2D *> agents)
{
agents_.swap(agents);
if (!agents_.empty()) {
agentTree_.resize(2 * agents_.size() - 1);
buildAgentTreeRecursive(0, agents_.size(), 0);
}
}
void KdTree2D::buildAgentTreeRecursive(size_t begin, size_t end, size_t node)
{
agentTree_[node].begin = begin;
agentTree_[node].end = end;
agentTree_[node].minX = agentTree_[node].maxX = agents_[begin]->position_.x();
agentTree_[node].minY = agentTree_[node].maxY = agents_[begin]->position_.y();
for (size_t i = begin + 1; i < end; ++i) {
agentTree_[node].maxX = std::max(agentTree_[node].maxX, agents_[i]->position_.x());
agentTree_[node].minX = std::min(agentTree_[node].minX, agents_[i]->position_.x());
agentTree_[node].maxY = std::max(agentTree_[node].maxY, agents_[i]->position_.y());
agentTree_[node].minY = std::min(agentTree_[node].minY, agents_[i]->position_.y());
}
if (end - begin > MAX_LEAF_SIZE) {
/* No leaf node. */
const bool isVertical = (agentTree_[node].maxX - agentTree_[node].minX > agentTree_[node].maxY - agentTree_[node].minY);
const float splitValue = (isVertical ? 0.5f * (agentTree_[node].maxX + agentTree_[node].minX) : 0.5f * (agentTree_[node].maxY + agentTree_[node].minY));
size_t left = begin;
size_t right = end;
while (left < right) {
while (left < right && (isVertical ? agents_[left]->position_.x() : agents_[left]->position_.y()) < splitValue) {
++left;
}
while (right > left && (isVertical ? agents_[right - 1]->position_.x() : agents_[right - 1]->position_.y()) >= splitValue) {
--right;
}
if (left < right) {
std::swap(agents_[left], agents_[right - 1]);
++left;
--right;
}
}
if (left == begin) {
++left;
++right;
}
agentTree_[node].left = node + 1;
agentTree_[node].right = node + 2 * (left - begin);
buildAgentTreeRecursive(begin, left, agentTree_[node].left);
buildAgentTreeRecursive(left, end, agentTree_[node].right);
}
}
void KdTree2D::buildObstacleTree(std::vector<Obstacle2D *> obstacles)
{
deleteObstacleTree(obstacleTree_);
obstacleTree_ = buildObstacleTreeRecursive(obstacles);
}
KdTree2D::ObstacleTreeNode *KdTree2D::buildObstacleTreeRecursive(const std::vector<Obstacle2D *> &obstacles)
{
if (obstacles.empty()) {
return NULL;
}
else {
ObstacleTreeNode *const node = new ObstacleTreeNode;
size_t optimalSplit = 0;
size_t minLeft = obstacles.size();
size_t minRight = obstacles.size();
for (size_t i = 0; i < obstacles.size(); ++i) {
size_t leftSize = 0;
size_t rightSize = 0;
const Obstacle2D *const obstacleI1 = obstacles[i];
const Obstacle2D *const obstacleI2 = obstacleI1->nextObstacle_;
/* Compute optimal split node. */
for (size_t j = 0; j < obstacles.size(); ++j) {
if (i == j) {
continue;
}
const Obstacle2D *const obstacleJ1 = obstacles[j];
const Obstacle2D *const obstacleJ2 = obstacleJ1->nextObstacle_;
const float j1LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ1->point_);
const float j2LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ2->point_);
if (j1LeftOfI >= -RVO_EPSILON && j2LeftOfI >= -RVO_EPSILON) {
++leftSize;
}
else if (j1LeftOfI <= RVO_EPSILON && j2LeftOfI <= RVO_EPSILON) {
++rightSize;
}
else {
++leftSize;
++rightSize;
}
if (std::make_pair(std::max(leftSize, rightSize), std::min(leftSize, rightSize)) >= std::make_pair(std::max(minLeft, minRight), std::min(minLeft, minRight))) {
break;
}
}
if (std::make_pair(std::max(leftSize, rightSize), std::min(leftSize, rightSize)) < std::make_pair(std::max(minLeft, minRight), std::min(minLeft, minRight))) {
minLeft = leftSize;
minRight = rightSize;
optimalSplit = i;
}
}
/* Build split node. */
std::vector<Obstacle2D *> leftObstacles(minLeft);
std::vector<Obstacle2D *> rightObstacles(minRight);
size_t leftCounter = 0;
size_t rightCounter = 0;
const size_t i = optimalSplit;
const Obstacle2D *const obstacleI1 = obstacles[i];
const Obstacle2D *const obstacleI2 = obstacleI1->nextObstacle_;
for (size_t j = 0; j < obstacles.size(); ++j) {
if (i == j) {
continue;
}
Obstacle2D *const obstacleJ1 = obstacles[j];
Obstacle2D *const obstacleJ2 = obstacleJ1->nextObstacle_;
const float j1LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ1->point_);
const float j2LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ2->point_);
if (j1LeftOfI >= -RVO_EPSILON && j2LeftOfI >= -RVO_EPSILON) {
leftObstacles[leftCounter++] = obstacles[j];
}
else if (j1LeftOfI <= RVO_EPSILON && j2LeftOfI <= RVO_EPSILON) {
rightObstacles[rightCounter++] = obstacles[j];
}
else {
/* Split obstacle j. */
const float t = det(obstacleI2->point_ - obstacleI1->point_, obstacleJ1->point_ - obstacleI1->point_) / det(obstacleI2->point_ - obstacleI1->point_, obstacleJ1->point_ - obstacleJ2->point_);
const Vector2 splitpoint = obstacleJ1->point_ + t * (obstacleJ2->point_ - obstacleJ1->point_);
Obstacle2D *const newObstacle = new Obstacle2D();
newObstacle->point_ = splitpoint;
newObstacle->prevObstacle_ = obstacleJ1;
newObstacle->nextObstacle_ = obstacleJ2;
newObstacle->isConvex_ = true;
newObstacle->unitDir_ = obstacleJ1->unitDir_;
newObstacle->id_ = sim_->obstacles_.size();
sim_->obstacles_.push_back(newObstacle);
obstacleJ1->nextObstacle_ = newObstacle;
obstacleJ2->prevObstacle_ = newObstacle;
if (j1LeftOfI > 0.0f) {
leftObstacles[leftCounter++] = obstacleJ1;
rightObstacles[rightCounter++] = newObstacle;
}
else {
rightObstacles[rightCounter++] = obstacleJ1;
leftObstacles[leftCounter++] = newObstacle;
}
}
}
node->obstacle = obstacleI1;
node->left = buildObstacleTreeRecursive(leftObstacles);
node->right = buildObstacleTreeRecursive(rightObstacles);
return node;
}
}
void KdTree2D::computeAgentNeighbors(Agent2D *agent, float &rangeSq) const
{
queryAgentTreeRecursive(agent, rangeSq, 0);
}
void KdTree2D::computeObstacleNeighbors(Agent2D *agent, float rangeSq) const
{
queryObstacleTreeRecursive(agent, rangeSq, obstacleTree_);
}
void KdTree2D::deleteObstacleTree(ObstacleTreeNode *node)
{
if (node != NULL) {
deleteObstacleTree(node->left);
deleteObstacleTree(node->right);
delete node;
}
}
void KdTree2D::queryAgentTreeRecursive(Agent2D *agent, float &rangeSq, size_t node) const
{
if (agentTree_[node].end - agentTree_[node].begin <= MAX_LEAF_SIZE) {
for (size_t i = agentTree_[node].begin; i < agentTree_[node].end; ++i) {
agent->insertAgentNeighbor(agents_[i], rangeSq);
}
}
else {
const float distSqLeft = sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minX - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].left].maxX)) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minY - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].left].maxY));
const float distSqRight = sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minX - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].right].maxX)) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minY - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].right].maxY));
if (distSqLeft < distSqRight) {
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
}
}
}
else {
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
}
}
}
}
}
void KdTree2D::queryObstacleTreeRecursive(Agent2D *agent, float rangeSq, const ObstacleTreeNode *node) const
{
if (node == NULL) {
return;
}
else {
const Obstacle2D *const obstacle1 = node->obstacle;
const Obstacle2D *const obstacle2 = obstacle1->nextObstacle_;
const float agentLeftOfLine = leftOf(obstacle1->point_, obstacle2->point_, agent->position_);
queryObstacleTreeRecursive(agent, rangeSq, (agentLeftOfLine >= 0.0f ? node->left : node->right));
const float distSqLine = sqr(agentLeftOfLine) / absSq(obstacle2->point_ - obstacle1->point_);
if (distSqLine < rangeSq) {
if (agentLeftOfLine < 0.0f) {
/*
* Try obstacle at this node only if agent is on right side of
* obstacle (and can see obstacle).
*/
agent->insertObstacleNeighbor(node->obstacle, rangeSq);
}
/* Try other side of line. */
queryObstacleTreeRecursive(agent, rangeSq, (agentLeftOfLine >= 0.0f ? node->right : node->left));
}
}
}
bool KdTree2D::queryVisibility(const Vector2 &q1, const Vector2 &q2, float radius) const
{
return queryVisibilityRecursive(q1, q2, radius, obstacleTree_);
}
bool KdTree2D::queryVisibilityRecursive(const Vector2 &q1, const Vector2 &q2, float radius, const ObstacleTreeNode *node) const
{
if (node == NULL) {
return true;
}
else {
const Obstacle2D *const obstacle1 = node->obstacle;
const Obstacle2D *const obstacle2 = obstacle1->nextObstacle_;
const float q1LeftOfI = leftOf(obstacle1->point_, obstacle2->point_, q1);
const float q2LeftOfI = leftOf(obstacle1->point_, obstacle2->point_, q2);
const float invLengthI = 1.0f / absSq(obstacle2->point_ - obstacle1->point_);
if (q1LeftOfI >= 0.0f && q2LeftOfI >= 0.0f) {
return queryVisibilityRecursive(q1, q2, radius, node->left) && ((sqr(q1LeftOfI) * invLengthI >= sqr(radius) && sqr(q2LeftOfI) * invLengthI >= sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node->right));
}
else if (q1LeftOfI <= 0.0f && q2LeftOfI <= 0.0f) {
return queryVisibilityRecursive(q1, q2, radius, node->right) && ((sqr(q1LeftOfI) * invLengthI >= sqr(radius) && sqr(q2LeftOfI) * invLengthI >= sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node->left));
}
else if (q1LeftOfI >= 0.0f && q2LeftOfI <= 0.0f) {
/* One can see through obstacle from left to right. */
return queryVisibilityRecursive(q1, q2, radius, node->left) && queryVisibilityRecursive(q1, q2, radius, node->right);
}
else {
const float point1LeftOfQ = leftOf(q1, q2, obstacle1->point_);
const float point2LeftOfQ = leftOf(q1, q2, obstacle2->point_);
const float invLengthQ = 1.0f / absSq(q2 - q1);
return (point1LeftOfQ * point2LeftOfQ >= 0.0f && sqr(point1LeftOfQ) * invLengthQ > sqr(radius) && sqr(point2LeftOfQ) * invLengthQ > sqr(radius) && queryVisibilityRecursive(q1, q2, radius, node->left) && queryVisibilityRecursive(q1, q2, radius, node->right));
}
}
}
}

View File

@ -2,14 +2,13 @@
* KdTree2d.h
* RVO2 Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -28,162 +27,177 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
* <http://gamma.cs.unc.edu/RVO2/>
*/
#ifndef RVO2D_KD_TREE_H_
#define RVO2D_KD_TREE_H_
/**
* @file KdTree2d.h
* @brief Declares the KdTree2D class.
* \file KdTree2d.h
* \brief Contains the KdTree class.
*/
#include <cstddef>
#include <vector>
#include "Definitions.h"
namespace RVO2D {
class Agent2D;
class Obstacle2D;
class RVOSimulator2D;
class Vector2;
/**
* @brief Defines k-D trees for agents and static obstacles in the simulation.
* \brief Defines <i>k</i>d-trees for agents and static obstacles in the
* simulation.
*/
class KdTree2D {
public:
class AgentTreeNode;
class ObstacleTreeNode;
/**
* @brief Constructs a k-D tree instance.
* @param[in] simulator The simulator instance.
* \brief Defines an agent <i>k</i>d-tree node.
*/
explicit KdTree2D(RVOSimulator2D *simulator);
class AgentTreeNode {
public:
/**
* \brief The beginning node number.
*/
size_t begin;
/**
* @brief Destroys this k-D tree instance.
* \brief The ending node number.
*/
size_t end;
/**
* \brief The left node number.
*/
size_t left;
/**
* \brief The maximum x-coordinate.
*/
float maxX;
/**
* \brief The maximum y-coordinate.
*/
float maxY;
/**
* \brief The minimum x-coordinate.
*/
float minX;
/**
* \brief The minimum y-coordinate.
*/
float minY;
/**
* \brief The right node number.
*/
size_t right;
};
/**
* \brief Defines an obstacle <i>k</i>d-tree node.
*/
class ObstacleTreeNode {
public:
/**
* \brief The left obstacle tree node.
*/
ObstacleTreeNode *left;
/**
* \brief The obstacle number.
*/
const Obstacle2D *obstacle;
/**
* \brief The right obstacle tree node.
*/
ObstacleTreeNode *right;
};
/**
* \brief Constructs a <i>k</i>d-tree instance.
* \param sim The simulator instance.
*/
explicit KdTree2D(RVOSimulator2D *sim);
/**
* \brief Destroys this kd-tree instance.
*/
~KdTree2D();
/**
* @brief Builds an agent k-D tree.
* \brief Builds an agent <i>k</i>d-tree.
*/
void buildAgentTree(std::vector<Agent2D *> agents);
/**
* @brief Recursive function to build an agent k-D tree.
* @param[in] begin The beginning agent k-D tree node.
* @param[in] end The ending agent k-D tree node.
* @param[in] node The current agent k-D tree node.
*/
void buildAgentTreeRecursive(std::size_t begin, std::size_t end,
std::size_t node);
void buildAgentTreeRecursive(size_t begin, size_t end, size_t node);
/**
* @brief Builds an obstacle k-D tree.
* \brief Builds an obstacle <i>k</i>d-tree.
*/
void buildObstacleTree(std::vector<Obstacle2D *> obstacles);
/**
* @brief Recursive function to build an obstacle k-D tree.
* @param[in] obstacles List of obstacles from which to build the obstacle k-D
* tree.
*/
ObstacleTreeNode *buildObstacleTreeRecursive(
const std::vector<Obstacle2D *> &obstacles);
ObstacleTreeNode *buildObstacleTreeRecursive(const std::vector<Obstacle2D *> &
obstacles);
/**
* @brief Computes the agent neighbors of the specified agent.
* @param[in] agent A pointer to the agent for which agent neighbors
* are to be computed.
* @param[in, out] rangeSq The squared range around the agent.
* \brief Computes the agent neighbors of the specified agent.
* \param agent A pointer to the agent for which agent
* neighbors are to be computed.
* \param rangeSq The squared range around the agent.
*/
void computeAgentNeighbors(
Agent2D *agent, float &rangeSq) const; /* NOLINT(runtime/references) */
void computeAgentNeighbors(Agent2D *agent, float &rangeSq) const;
/**
* @brief Computes the obstacle neighbors of the specified agent.
* @param[in] agent A pointer to the agent for which obstacle neighbors are
* to be computed.
* @param[in] rangeSq The squared range around the agent.
* \brief Computes the obstacle neighbors of the specified agent.
* \param agent A pointer to the agent for which obstacle
* neighbors are to be computed.
* \param rangeSq The squared range around the agent.
*/
void computeObstacleNeighbors(Agent2D *agent, float rangeSq) const;
/**
* @brief Deletes the specified obstacle tree node.
* @param[in] node A pointer to the obstacle tree node to be deleted.
* \brief Deletes the specified obstacle tree node.
* \param node A pointer to the obstacle tree node to be
* deleted.
*/
void deleteObstacleTree(ObstacleTreeNode *node);
/**
* @brief Recursive function to compute the neighbors of the specified
* agent.
* @param[in] agent A pointer to the agent for which neighbors are to be
* computed.
* @param[in,out] rangeSq The squared range around the agent.
* @param[in] node The current agent k-D tree node.
*/
void queryAgentTreeRecursive(Agent2D *agent,
float &rangeSq, /* NOLINT(runtime/references) */
std::size_t node) const;
void queryAgentTreeRecursive(Agent2D *agent, float &rangeSq,
size_t node) const;
/**
* @brief Recursive function to compute the neighbors of the specified
* obstacle.
* @param[in] agent A pointer to the agent for which neighbors are to be
* computed.
* @param[in,out] rangeSq The squared range around the agent.
* @param[in] node The current obstacle k-D tree node.
*/
void queryObstacleTreeRecursive(Agent2D *agent, float rangeSq,
const ObstacleTreeNode *node) const;
/**
* @brief Queries the visibility between two points within a specified
* radius.
* @param[in] vector1 The first point between which visibility is to be
* \brief Queries the visibility between two points within a
* specified radius.
* \param q1 The first point between which visibility is
* to be tested.
* \param q2 The second point between which visibility is
* to be tested.
* \param radius The radius within which visibility is to be
* tested.
* @param[in] vector2 The second point between which visibility is to be
* tested.
* @param[in] radius The radius within which visibility is to be tested.
* @return True if q1 and q2 are mutually visible within the radius; false
* otherwise.
* \return True if q1 and q2 are mutually visible within the radius;
* false otherwise.
*/
bool queryVisibility(const Vector2 &vector1, const Vector2 &vector2,
bool queryVisibility(const Vector2 &q1, const Vector2 &q2,
float radius) const;
/**
* @brief Recursive function to query the visibility between two points
* within a specified radius.
* @param[in] vector1 The first point between which visibility is to be
* tested.
* @param[in] vector2 The second point between which visibility is to be
* tested.
* @param[in] radius The radius within which visibility is to be tested.
* @param[in] node The current obstacle k-D tree node.
* @return True if q1 and q2 are mutually visible within the radius; false
* otherwise.
*/
bool queryVisibilityRecursive(const Vector2 &vector1, const Vector2 &vector2,
bool queryVisibilityRecursive(const Vector2 &q1, const Vector2 &q2,
float radius,
const ObstacleTreeNode *node) const;
/* Not implemented. */
KdTree2D(const KdTree2D &other);
/* Not implemented. */
KdTree2D &operator=(const KdTree2D &other);
std::vector<Agent2D *> agents_;
std::vector<AgentTreeNode> agentTree_;
ObstacleTreeNode *obstacleTree_;
RVOSimulator2D *simulator_;
RVOSimulator2D *sim_;
static const size_t MAX_LEAF_SIZE = 10;
friend class Agent2D;
friend class RVOSimulator2D;
};
} /* namespace RVO2D */
}
#endif /* RVO2D_KD_TREE_H_ */

View File

@ -1,67 +0,0 @@
/*
* Line.h
* RVO2 Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
#ifndef RVO2D_LINE_H_
#define RVO2D_LINE_H_
/**
* @file Line.h
* @brief Declares the Line class.
*/
#include "Vector2.h"
namespace RVO2D {
/**
* @brief Defines a directed line.
*/
class Line {
public:
/**
* @brief Constructs a directed line instance.
*/
Line();
/**
* @brief The direction of the directed line.
*/
Vector2 direction;
/**
* @brief A point on the directed line.
*/
Vector2 point;
};
} /* namespace RVO2D */
#endif /* RVO2D_LINE_H_ */

View File

@ -1,46 +0,0 @@
/*
* Obstacle2d.cpp
* RVO2 Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
/**
* @file Obstacle2d.cpp
* @brief Defines the Obstacle2D class.
*/
#include "Obstacle2d.h"
namespace RVO2D {
Obstacle2D::Obstacle2D()
: next_(NULL), previous_(NULL), id_(0U), isConvex_(false) {}
Obstacle2D::~Obstacle2D() {}
} /* namespace RVO2D */

View File

@ -1,15 +1,14 @@
/*
* Line.cc
* Obstacle2d.cpp
* RVO2 Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -28,16 +27,12 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
* <http://gamma.cs.unc.edu/RVO2/>
*/
/**
* @file Line.cc
* @brief Defines the Line class.
*/
#include "Line.h"
#include "Obstacle2d.h"
#include "RVOSimulator2d.h"
namespace RVO2D {
Line::Line() {}
} /* namespace RVO2D */
Obstacle2D::Obstacle2D() : isConvex_(false), nextObstacle_(NULL), prevObstacle_(NULL), id_(0) { }
}

View File

@ -2,14 +2,13 @@
* Obstacle2d.h
* RVO2 Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -28,59 +27,46 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
* <http://gamma.cs.unc.edu/RVO2/>
*/
#ifndef RVO2D_OBSTACLE_H_
#define RVO2D_OBSTACLE_H_
/**
* @file Obstacle2d.h
* @brief Declares the Obstacle2D class.
* \file Obstacle2d.h
* \brief Contains the Obstacle class.
*/
#include <cstddef>
#include <cstdint>
#include "Vector2.h"
#include "Definitions.h"
namespace RVO2D {
/**
* @brief Defines static obstacles in the simulation.
* \brief Defines static obstacles in the simulation.
*/
class Obstacle2D {
public:
/**
* @brief Constructs a static obstacle instance.
* \brief Constructs a static obstacle instance.
*/
Obstacle2D();
/**
* @brief Destroys this static obstacle instance.
*/
~Obstacle2D();
/* Not implemented. */
Obstacle2D(const Obstacle2D &other);
/* Not implemented. */
Obstacle2D &operator=(const Obstacle2D &other);
Vector2 direction_;
Vector2 point_;
Obstacle2D *next_;
Obstacle2D *previous_;
std::size_t id_;
bool isConvex_;
Obstacle2D *nextObstacle_;
Vector2 point_;
Obstacle2D *prevObstacle_;
Vector2 unitDir_;
float height_ = 1.0;
float elevation_ = 0.0;
uint32_t avoidance_layers_ = 1;
size_t id_;
friend class Agent2D;
friend class KdTree2D;
friend class RVOSimulator2D;
};
} /* namespace RVO2D */
}
#endif /* RVO2D_OBSTACLE_H_ */

View File

@ -1,371 +0,0 @@
/*
* RVOSimulator2d.cpp
* RVO2 Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
/**
* @file RVOSimulator2d.cpp
* @brief Defines the RVOSimulator2D class.
*/
#include "RVOSimulator2d.h"
#include <limits>
#include <utility>
#include "Agent2d.h"
#include "KdTree2d.h"
#include "Line.h"
#include "Obstacle2d.h"
#include "Vector2.h"
#ifdef _OPENMP
#include <omp.h>
#endif /* _OPENMP */
namespace RVO2D {
const std::size_t RVO2D_ERROR = std::numeric_limits<std::size_t>::max();
RVOSimulator2D::RVOSimulator2D()
: defaultAgent_(NULL),
kdTree_(new KdTree2D(this)),
globalTime_(0.0F),
timeStep_(0.0F) {}
RVOSimulator2D::RVOSimulator2D(float timeStep, float neighborDist,
std::size_t maxNeighbors, float timeHorizon,
float timeHorizonObst, float radius, float maxSpeed)
: defaultAgent_(new Agent2D()),
kdTree_(new KdTree2D(this)),
globalTime_(0.0F),
timeStep_(timeStep) {
defaultAgent_->maxNeighbors_ = maxNeighbors;
defaultAgent_->maxSpeed_ = maxSpeed;
defaultAgent_->neighborDist_ = neighborDist;
defaultAgent_->radius_ = radius;
defaultAgent_->timeHorizon_ = timeHorizon;
defaultAgent_->timeHorizonObst_ = timeHorizonObst;
}
RVOSimulator2D::RVOSimulator2D(float timeStep, float neighborDist,
std::size_t maxNeighbors, float timeHorizon,
float timeHorizonObst, float radius, float maxSpeed,
const Vector2 &velocity)
: defaultAgent_(new Agent2D()),
kdTree_(new KdTree2D(this)),
globalTime_(0.0F),
timeStep_(timeStep) {
defaultAgent_->velocity_ = velocity;
defaultAgent_->maxNeighbors_ = maxNeighbors;
defaultAgent_->maxSpeed_ = maxSpeed;
defaultAgent_->neighborDist_ = neighborDist;
defaultAgent_->radius_ = radius;
defaultAgent_->timeHorizon_ = timeHorizon;
defaultAgent_->timeHorizonObst_ = timeHorizonObst;
}
RVOSimulator2D::~RVOSimulator2D() {
delete defaultAgent_;
delete kdTree_;
for (std::size_t i = 0U; i < agents_.size(); ++i) {
delete agents_[i];
}
for (std::size_t i = 0U; i < obstacles_.size(); ++i) {
delete obstacles_[i];
}
}
std::size_t RVOSimulator2D::addAgent(const Vector2 &position) {
if (defaultAgent_ != NULL) {
Agent2D *const agent = new Agent2D();
agent->position_ = position;
agent->velocity_ = defaultAgent_->velocity_;
agent->id_ = agents_.size();
agent->maxNeighbors_ = defaultAgent_->maxNeighbors_;
agent->maxSpeed_ = defaultAgent_->maxSpeed_;
agent->neighborDist_ = defaultAgent_->neighborDist_;
agent->radius_ = defaultAgent_->radius_;
agent->timeHorizon_ = defaultAgent_->timeHorizon_;
agent->timeHorizonObst_ = defaultAgent_->timeHorizonObst_;
agents_.push_back(agent);
return agents_.size() - 1U;
}
return RVO2D_ERROR;
}
std::size_t RVOSimulator2D::addAgent(const Vector2 &position, float neighborDist,
std::size_t maxNeighbors, float timeHorizon,
float timeHorizonObst, float radius,
float maxSpeed) {
return addAgent(position, neighborDist, maxNeighbors, timeHorizon,
timeHorizonObst, radius, maxSpeed, Vector2());
}
std::size_t RVOSimulator2D::addAgent(const Vector2 &position, float neighborDist,
std::size_t maxNeighbors, float timeHorizon,
float timeHorizonObst, float radius,
float maxSpeed, const Vector2 &velocity) {
Agent2D *const agent = new Agent2D();
agent->position_ = position;
agent->velocity_ = velocity;
agent->id_ = agents_.size();
agent->maxNeighbors_ = maxNeighbors;
agent->maxSpeed_ = maxSpeed;
agent->neighborDist_ = neighborDist;
agent->radius_ = radius;
agent->timeHorizon_ = timeHorizon;
agent->timeHorizonObst_ = timeHorizonObst;
agents_.push_back(agent);
return agents_.size() - 1U;
}
std::size_t RVOSimulator2D::addObstacle(const std::vector<Vector2> &vertices) {
if (vertices.size() > 1U) {
const std::size_t obstacleNo = obstacles_.size();
for (std::size_t i = 0U; i < vertices.size(); ++i) {
Obstacle2D *const obstacle = new Obstacle2D();
obstacle->point_ = vertices[i];
if (i != 0U) {
obstacle->previous_ = obstacles_.back();
obstacle->previous_->next_ = obstacle;
}
if (i == vertices.size() - 1U) {
obstacle->next_ = obstacles_[obstacleNo];
obstacle->next_->previous_ = obstacle;
}
obstacle->direction_ = normalize(
vertices[(i == vertices.size() - 1U ? 0U : i + 1U)] - vertices[i]);
if (vertices.size() == 2U) {
obstacle->isConvex_ = true;
} else {
obstacle->isConvex_ =
leftOf(vertices[i == 0U ? vertices.size() - 1U : i - 1U],
vertices[i],
vertices[i == vertices.size() - 1U ? 0U : i + 1U]) >= 0.0F;
}
obstacle->id_ = obstacles_.size();
obstacles_.push_back(obstacle);
}
return obstacleNo;
}
return RVO2D_ERROR;
}
void RVOSimulator2D::doStep() {
kdTree_->buildAgentTree(agents_);
#ifdef _OPENMP
#pragma omp parallel for
#endif /* _OPENMP */
for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {
agents_[i]->computeNeighbors(kdTree_);
agents_[i]->computeNewVelocity(timeStep_);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif /* _OPENMP */
for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {
agents_[i]->update(timeStep_);
}
globalTime_ += timeStep_;
}
std::size_t RVOSimulator2D::getAgentAgentNeighbor(std::size_t agentNo,
std::size_t neighborNo) const {
return agents_[agentNo]->agentNeighbors_[neighborNo].second->id_;
}
std::size_t RVOSimulator2D::getAgentMaxNeighbors(std::size_t agentNo) const {
return agents_[agentNo]->maxNeighbors_;
}
float RVOSimulator2D::getAgentMaxSpeed(std::size_t agentNo) const {
return agents_[agentNo]->maxSpeed_;
}
float RVOSimulator2D::getAgentNeighborDist(std::size_t agentNo) const {
return agents_[agentNo]->neighborDist_;
}
std::size_t RVOSimulator2D::getAgentNumAgentNeighbors(std::size_t agentNo) const {
return agents_[agentNo]->agentNeighbors_.size();
}
std::size_t RVOSimulator2D::getAgentNumObstacleNeighbors(
std::size_t agentNo) const {
return agents_[agentNo]->obstacleNeighbors_.size();
}
std::size_t RVOSimulator2D::getAgentNumORCALines(std::size_t agentNo) const {
return agents_[agentNo]->orcaLines_.size();
}
std::size_t RVOSimulator2D::getAgentObstacleNeighbor(
std::size_t agentNo, std::size_t neighborNo) const {
return agents_[agentNo]->obstacleNeighbors_[neighborNo].second->id_;
}
const Line &RVOSimulator2D::getAgentORCALine(std::size_t agentNo,
std::size_t lineNo) const {
return agents_[agentNo]->orcaLines_[lineNo];
}
const Vector2 &RVOSimulator2D::getAgentPosition(std::size_t agentNo) const {
return agents_[agentNo]->position_;
}
const Vector2 &RVOSimulator2D::getAgentPrefVelocity(std::size_t agentNo) const {
return agents_[agentNo]->prefVelocity_;
}
float RVOSimulator2D::getAgentRadius(std::size_t agentNo) const {
return agents_[agentNo]->radius_;
}
float RVOSimulator2D::getAgentTimeHorizon(std::size_t agentNo) const {
return agents_[agentNo]->timeHorizon_;
}
float RVOSimulator2D::getAgentTimeHorizonObst(std::size_t agentNo) const {
return agents_[agentNo]->timeHorizonObst_;
}
const Vector2 &RVOSimulator2D::getAgentVelocity(std::size_t agentNo) const {
return agents_[agentNo]->velocity_;
}
const Vector2 &RVOSimulator2D::getObstacleVertex(std::size_t vertexNo) const {
return obstacles_[vertexNo]->point_;
}
std::size_t RVOSimulator2D::getNextObstacleVertexNo(std::size_t vertexNo) const {
return obstacles_[vertexNo]->next_->id_;
}
std::size_t RVOSimulator2D::getPrevObstacleVertexNo(std::size_t vertexNo) const {
return obstacles_[vertexNo]->previous_->id_;
}
void RVOSimulator2D::processObstacles() { kdTree_->buildObstacleTree(obstacles_); }
bool RVOSimulator2D::queryVisibility(const Vector2 &point1,
const Vector2 &point2) const {
return kdTree_->queryVisibility(point1, point2, 0.0F);
}
bool RVOSimulator2D::queryVisibility(const Vector2 &point1, const Vector2 &point2,
float radius) const {
return kdTree_->queryVisibility(point1, point2, radius);
}
void RVOSimulator2D::setAgentDefaults(float neighborDist,
std::size_t maxNeighbors, float timeHorizon,
float timeHorizonObst, float radius,
float maxSpeed) {
setAgentDefaults(neighborDist, maxNeighbors, timeHorizon, timeHorizonObst,
radius, maxSpeed, Vector2());
}
void RVOSimulator2D::setAgentDefaults(float neighborDist,
std::size_t maxNeighbors, float timeHorizon,
float timeHorizonObst, float radius,
float maxSpeed, const Vector2 &velocity) {
if (defaultAgent_ == NULL) {
defaultAgent_ = new Agent2D();
}
defaultAgent_->maxNeighbors_ = maxNeighbors;
defaultAgent_->maxSpeed_ = maxSpeed;
defaultAgent_->neighborDist_ = neighborDist;
defaultAgent_->radius_ = radius;
defaultAgent_->timeHorizon_ = timeHorizon;
defaultAgent_->timeHorizonObst_ = timeHorizonObst;
defaultAgent_->velocity_ = velocity;
}
void RVOSimulator2D::setAgentMaxNeighbors(std::size_t agentNo,
std::size_t maxNeighbors) {
agents_[agentNo]->maxNeighbors_ = maxNeighbors;
}
void RVOSimulator2D::setAgentMaxSpeed(std::size_t agentNo, float maxSpeed) {
agents_[agentNo]->maxSpeed_ = maxSpeed;
}
void RVOSimulator2D::setAgentNeighborDist(std::size_t agentNo,
float neighborDist) {
agents_[agentNo]->neighborDist_ = neighborDist;
}
void RVOSimulator2D::setAgentPosition(std::size_t agentNo,
const Vector2 &position) {
agents_[agentNo]->position_ = position;
}
void RVOSimulator2D::setAgentPrefVelocity(std::size_t agentNo,
const Vector2 &prefVelocity) {
agents_[agentNo]->prefVelocity_ = prefVelocity;
}
void RVOSimulator2D::setAgentRadius(std::size_t agentNo, float radius) {
agents_[agentNo]->radius_ = radius;
}
void RVOSimulator2D::setAgentTimeHorizon(std::size_t agentNo, float timeHorizon) {
agents_[agentNo]->timeHorizon_ = timeHorizon;
}
void RVOSimulator2D::setAgentTimeHorizonObst(std::size_t agentNo,
float timeHorizonObst) {
agents_[agentNo]->timeHorizonObst_ = timeHorizonObst;
}
void RVOSimulator2D::setAgentVelocity(std::size_t agentNo,
const Vector2 &velocity) {
agents_[agentNo]->velocity_ = velocity;
}
} /* namespace RVO2D */

View File

@ -0,0 +1,363 @@
/*
* RVOSimulator2d.cpp
* RVO2 Library
*
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
*/
#include "RVOSimulator2d.h"
#include "Agent2d.h"
#include "KdTree2d.h"
#include "Obstacle2d.h"
#ifdef _OPENMP
#include <omp.h>
#endif
namespace RVO2D {
RVOSimulator2D::RVOSimulator2D() : defaultAgent_(NULL), globalTime_(0.0f), kdTree_(NULL), timeStep_(0.0f)
{
kdTree_ = new KdTree2D(this);
}
RVOSimulator2D::RVOSimulator2D(float timeStep, float neighborDist, size_t maxNeighbors, float timeHorizon, float timeHorizonObst, float radius, float maxSpeed, const Vector2 &velocity) : defaultAgent_(NULL), globalTime_(0.0f), kdTree_(NULL), timeStep_(timeStep)
{
kdTree_ = new KdTree2D(this);
defaultAgent_ = new Agent2D();
defaultAgent_->maxNeighbors_ = maxNeighbors;
defaultAgent_->maxSpeed_ = maxSpeed;
defaultAgent_->neighborDist_ = neighborDist;
defaultAgent_->radius_ = radius;
defaultAgent_->timeHorizon_ = timeHorizon;
defaultAgent_->timeHorizonObst_ = timeHorizonObst;
defaultAgent_->velocity_ = velocity;
}
RVOSimulator2D::~RVOSimulator2D()
{
if (defaultAgent_ != NULL) {
delete defaultAgent_;
}
for (size_t i = 0; i < agents_.size(); ++i) {
delete agents_[i];
}
for (size_t i = 0; i < obstacles_.size(); ++i) {
delete obstacles_[i];
}
delete kdTree_;
}
size_t RVOSimulator2D::addAgent(const Vector2 &position)
{
if (defaultAgent_ == NULL) {
return RVO2D_ERROR;
}
Agent2D *agent = new Agent2D();
agent->position_ = position;
agent->maxNeighbors_ = defaultAgent_->maxNeighbors_;
agent->maxSpeed_ = defaultAgent_->maxSpeed_;
agent->neighborDist_ = defaultAgent_->neighborDist_;
agent->radius_ = defaultAgent_->radius_;
agent->timeHorizon_ = defaultAgent_->timeHorizon_;
agent->timeHorizonObst_ = defaultAgent_->timeHorizonObst_;
agent->velocity_ = defaultAgent_->velocity_;
agent->id_ = agents_.size();
agents_.push_back(agent);
return agents_.size() - 1;
}
size_t RVOSimulator2D::addAgent(const Vector2 &position, float neighborDist, size_t maxNeighbors, float timeHorizon, float timeHorizonObst, float radius, float maxSpeed, const Vector2 &velocity)
{
Agent2D *agent = new Agent2D();
agent->position_ = position;
agent->maxNeighbors_ = maxNeighbors;
agent->maxSpeed_ = maxSpeed;
agent->neighborDist_ = neighborDist;
agent->radius_ = radius;
agent->timeHorizon_ = timeHorizon;
agent->timeHorizonObst_ = timeHorizonObst;
agent->velocity_ = velocity;
agent->id_ = agents_.size();
agents_.push_back(agent);
return agents_.size() - 1;
}
size_t RVOSimulator2D::addObstacle(const std::vector<Vector2> &vertices)
{
if (vertices.size() < 2) {
return RVO2D_ERROR;
}
const size_t obstacleNo = obstacles_.size();
for (size_t i = 0; i < vertices.size(); ++i) {
Obstacle2D *obstacle = new Obstacle2D();
obstacle->point_ = vertices[i];
if (i != 0) {
obstacle->prevObstacle_ = obstacles_.back();
obstacle->prevObstacle_->nextObstacle_ = obstacle;
}
if (i == vertices.size() - 1) {
obstacle->nextObstacle_ = obstacles_[obstacleNo];
obstacle->nextObstacle_->prevObstacle_ = obstacle;
}
obstacle->unitDir_ = normalize(vertices[(i == vertices.size() - 1 ? 0 : i + 1)] - vertices[i]);
if (vertices.size() == 2) {
obstacle->isConvex_ = true;
}
else {
obstacle->isConvex_ = (leftOf(vertices[(i == 0 ? vertices.size() - 1 : i - 1)], vertices[i], vertices[(i == vertices.size() - 1 ? 0 : i + 1)]) >= 0.0f);
}
obstacle->id_ = obstacles_.size();
obstacles_.push_back(obstacle);
}
return obstacleNo;
}
void RVOSimulator2D::doStep()
{
kdTree_->buildAgentTree(agents_);
for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {
agents_[i]->computeNeighbors(this);
agents_[i]->computeNewVelocity(this);
}
for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {
agents_[i]->update(this);
}
globalTime_ += timeStep_;
}
size_t RVOSimulator2D::getAgentAgentNeighbor(size_t agentNo, size_t neighborNo) const
{
return agents_[agentNo]->agentNeighbors_[neighborNo].second->id_;
}
size_t RVOSimulator2D::getAgentMaxNeighbors(size_t agentNo) const
{
return agents_[agentNo]->maxNeighbors_;
}
float RVOSimulator2D::getAgentMaxSpeed(size_t agentNo) const
{
return agents_[agentNo]->maxSpeed_;
}
float RVOSimulator2D::getAgentNeighborDist(size_t agentNo) const
{
return agents_[agentNo]->neighborDist_;
}
size_t RVOSimulator2D::getAgentNumAgentNeighbors(size_t agentNo) const
{
return agents_[agentNo]->agentNeighbors_.size();
}
size_t RVOSimulator2D::getAgentNumObstacleNeighbors(size_t agentNo) const
{
return agents_[agentNo]->obstacleNeighbors_.size();
}
size_t RVOSimulator2D::getAgentNumORCALines(size_t agentNo) const
{
return agents_[agentNo]->orcaLines_.size();
}
size_t RVOSimulator2D::getAgentObstacleNeighbor(size_t agentNo, size_t neighborNo) const
{
return agents_[agentNo]->obstacleNeighbors_[neighborNo].second->id_;
}
const Line &RVOSimulator2D::getAgentORCALine(size_t agentNo, size_t lineNo) const
{
return agents_[agentNo]->orcaLines_[lineNo];
}
const Vector2 &RVOSimulator2D::getAgentPosition(size_t agentNo) const
{
return agents_[agentNo]->position_;
}
const Vector2 &RVOSimulator2D::getAgentPrefVelocity(size_t agentNo) const
{
return agents_[agentNo]->prefVelocity_;
}
float RVOSimulator2D::getAgentRadius(size_t agentNo) const
{
return agents_[agentNo]->radius_;
}
float RVOSimulator2D::getAgentTimeHorizon(size_t agentNo) const
{
return agents_[agentNo]->timeHorizon_;
}
float RVOSimulator2D::getAgentTimeHorizonObst(size_t agentNo) const
{
return agents_[agentNo]->timeHorizonObst_;
}
const Vector2 &RVOSimulator2D::getAgentVelocity(size_t agentNo) const
{
return agents_[agentNo]->velocity_;
}
float RVOSimulator2D::getGlobalTime() const
{
return globalTime_;
}
size_t RVOSimulator2D::getNumAgents() const
{
return agents_.size();
}
size_t RVOSimulator2D::getNumObstacleVertices() const
{
return obstacles_.size();
}
const Vector2 &RVOSimulator2D::getObstacleVertex(size_t vertexNo) const
{
return obstacles_[vertexNo]->point_;
}
size_t RVOSimulator2D::getNextObstacleVertexNo(size_t vertexNo) const
{
return obstacles_[vertexNo]->nextObstacle_->id_;
}
size_t RVOSimulator2D::getPrevObstacleVertexNo(size_t vertexNo) const
{
return obstacles_[vertexNo]->prevObstacle_->id_;
}
float RVOSimulator2D::getTimeStep() const
{
return timeStep_;
}
void RVOSimulator2D::processObstacles()
{
kdTree_->buildObstacleTree(obstacles_);
}
bool RVOSimulator2D::queryVisibility(const Vector2 &point1, const Vector2 &point2, float radius) const
{
return kdTree_->queryVisibility(point1, point2, radius);
}
void RVOSimulator2D::setAgentDefaults(float neighborDist, size_t maxNeighbors, float timeHorizon, float timeHorizonObst, float radius, float maxSpeed, const Vector2 &velocity)
{
if (defaultAgent_ == NULL) {
defaultAgent_ = new Agent2D();
}
defaultAgent_->maxNeighbors_ = maxNeighbors;
defaultAgent_->maxSpeed_ = maxSpeed;
defaultAgent_->neighborDist_ = neighborDist;
defaultAgent_->radius_ = radius;
defaultAgent_->timeHorizon_ = timeHorizon;
defaultAgent_->timeHorizonObst_ = timeHorizonObst;
defaultAgent_->velocity_ = velocity;
}
void RVOSimulator2D::setAgentMaxNeighbors(size_t agentNo, size_t maxNeighbors)
{
agents_[agentNo]->maxNeighbors_ = maxNeighbors;
}
void RVOSimulator2D::setAgentMaxSpeed(size_t agentNo, float maxSpeed)
{
agents_[agentNo]->maxSpeed_ = maxSpeed;
}
void RVOSimulator2D::setAgentNeighborDist(size_t agentNo, float neighborDist)
{
agents_[agentNo]->neighborDist_ = neighborDist;
}
void RVOSimulator2D::setAgentPosition(size_t agentNo, const Vector2 &position)
{
agents_[agentNo]->position_ = position;
}
void RVOSimulator2D::setAgentPrefVelocity(size_t agentNo, const Vector2 &prefVelocity)
{
agents_[agentNo]->prefVelocity_ = prefVelocity;
}
void RVOSimulator2D::setAgentRadius(size_t agentNo, float radius)
{
agents_[agentNo]->radius_ = radius;
}
void RVOSimulator2D::setAgentTimeHorizon(size_t agentNo, float timeHorizon)
{
agents_[agentNo]->timeHorizon_ = timeHorizon;
}
void RVOSimulator2D::setAgentTimeHorizonObst(size_t agentNo, float timeHorizonObst)
{
agents_[agentNo]->timeHorizonObst_ = timeHorizonObst;
}
void RVOSimulator2D::setAgentVelocity(size_t agentNo, const Vector2 &velocity)
{
agents_[agentNo]->velocity_ = velocity;
}
void RVOSimulator2D::setTimeStep(float timeStep)
{
timeStep_ = timeStep;
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,136 +0,0 @@
/*
* Vector2.cpp
* RVO2 Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
/**
* @file Vector2.cc
* @brief Defines the Vector2 class.
*/
#include "Vector2.h"
#include <cmath>
#include <ostream>
namespace RVO2D {
const float RVO2D_EPSILON = 0.00001F;
Vector2::Vector2() : x_(0.0F), y_(0.0F) {}
Vector2::Vector2(float x, float y) : x_(x), y_(y) {}
Vector2 Vector2::operator-() const { return Vector2(-x_, -y_); }
float Vector2::operator*(const Vector2 &vector) const {
return x_ * vector.x_ + y_ * vector.y_;
}
Vector2 Vector2::operator*(float scalar) const {
return Vector2(x_ * scalar, y_ * scalar);
}
Vector2 Vector2::operator/(float scalar) const {
const float invScalar = 1.0F / scalar;
return Vector2(x_ * invScalar, y_ * invScalar);
}
Vector2 Vector2::operator+(const Vector2 &vector) const {
return Vector2(x_ + vector.x_, y_ + vector.y_);
}
Vector2 Vector2::operator-(const Vector2 &vector) const {
return Vector2(x_ - vector.x_, y_ - vector.y_);
}
bool Vector2::operator==(const Vector2 &vector) const {
return x_ == vector.x_ && y_ == vector.y_;
}
bool Vector2::operator!=(const Vector2 &vector) const {
return x_ != vector.x_ || y_ != vector.y_;
}
Vector2 &Vector2::operator*=(float scalar) {
x_ *= scalar;
y_ *= scalar;
return *this;
}
Vector2 &Vector2::operator/=(float scalar) {
const float invScalar = 1.0F / scalar;
x_ *= invScalar;
y_ *= invScalar;
return *this;
}
Vector2 &Vector2::operator+=(const Vector2 &vector) {
x_ += vector.x_;
y_ += vector.y_;
return *this;
}
Vector2 &Vector2::operator-=(const Vector2 &vector) {
x_ -= vector.x_;
y_ -= vector.y_;
return *this;
}
Vector2 operator*(float scalar, const Vector2 &vector) {
return Vector2(scalar * vector.x(), scalar * vector.y());
}
std::ostream &operator<<(std::ostream &stream, const Vector2 &vector) {
stream << "(" << vector.x() << "," << vector.y() << ")";
return stream;
}
float abs(const Vector2 &vector) { return std::sqrt(vector * vector); }
float absSq(const Vector2 &vector) { return vector * vector; }
float det(const Vector2 &vector1, const Vector2 &vector2) {
return vector1.x() * vector2.y() - vector1.y() * vector2.x();
}
float leftOf(const Vector2 &vector1, const Vector2 &vector2,
const Vector2 &vector3) {
return det(vector1 - vector3, vector2 - vector1);
}
Vector2 normalize(const Vector2 &vector) { return vector / abs(vector); }
} /* namespace RVO */

View File

@ -2,14 +2,13 @@
* Vector2.h
* RVO2 Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -28,165 +27,229 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
* <http://gamma.cs.unc.edu/RVO2/>
*/
#ifndef RVO_VECTOR2_H_
#define RVO_VECTOR2_H_
/**
* @file Vector2.h
* @brief Declares and defines the Vector2 class.
* \file Vector2.h
* \brief Contains the Vector2 class.
*/
#include <iosfwd>
#include <cmath>
#include <ostream>
namespace RVO2D {
/**
* @brief A sufficiently small positive number.
*/
extern const float RVO2D_EPSILON;
/**
* @brief Defines a two-dimensional vector.
* \brief Defines a two-dimensional vector.
*/
class Vector2 {
public:
/**
* @brief Constructs and initializes a two-dimensional vector instance to
* (0.0, 0.0).
* \brief Constructs and initializes a two-dimensional vector instance
* to (0.0, 0.0).
*/
Vector2();
inline Vector2() : x_(0.0f), y_(0.0f) { }
/**
* @brief Constructs and initializes a two-dimensional vector from the
* specified xy-coordinates.
* @param[in] x The x-coordinate of the two-dimensional vector.
* @param[in] y The y-coordinate of the two-dimensional vector.
* \brief Constructs and initializes a two-dimensional vector from
* the specified xy-coordinates.
* \param x The x-coordinate of the two-dimensional
* vector.
* \param y The y-coordinate of the two-dimensional
* vector.
*/
Vector2(float x, float y);
inline Vector2(float x, float y) : x_(x), y_(y) { }
inline Vector2(const Vector2 &vector)
{
x_ = vector.x();
y_ = vector.y();
}
/**
* @brief Returns the x-coordinate of this two-dimensional vector.
* @return The x-coordinate of the two-dimensional vector.
* \brief Returns the x-coordinate of this two-dimensional vector.
* \return The x-coordinate of the two-dimensional vector.
*/
float x() const { return x_; }
inline float x() const { return x_; }
/**
* @brief Returns the y-coordinate of this two-dimensional vector.
* @return The y-coordinate of the two-dimensional vector.
* \brief Returns the y-coordinate of this two-dimensional vector.
* \return The y-coordinate of the two-dimensional vector.
*/
float y() const { return y_; }
inline float y() const { return y_; }
/**
* @brief Computes the negation of this two-dimensional vector.
* @return The negation of this two-dimensional vector.
* \brief Computes the negation of this two-dimensional vector.
* \return The negation of this two-dimensional vector.
*/
Vector2 operator-() const;
inline Vector2 operator-() const
{
return Vector2(-x_, -y_);
}
/**
* @brief Computes the dot product of this two-dimensional vector with the
* \brief Computes the dot product of this two-dimensional vector with
* the specified two-dimensional vector.
* \param vector The two-dimensional vector with which the
* dot product should be computed.
* \return The dot product of this two-dimensional vector with a
* specified two-dimensional vector.
* @param[in] vector The two-dimensional vector with which the dot product
* should be computed.
* @return The dot product of this two-dimensional vector with a specified
* two-dimensional vector.
*/
float operator*(const Vector2 &vector) const;
inline float operator*(const Vector2 &vector) const
{
return x_ * vector.x() + y_ * vector.y();
}
/**
* @brief Computes the scalar multiplication of this two-dimensional
* vector with the specified scalar value.
* @param[in] scalar The scalar value with which the scalar multiplication
* should be computed.
* @return The scalar multiplication of this two-dimensional vector with a
* \brief Computes the scalar multiplication of this
* two-dimensional vector with the specified scalar value.
* \param s The scalar value with which the scalar
* multiplication should be computed.
* \return The scalar multiplication of this two-dimensional vector
* with a specified scalar value.
*/
inline Vector2 operator*(float s) const
{
return Vector2(x_ * s, y_ * s);
}
/**
* \brief Computes the scalar division of this two-dimensional vector
* with the specified scalar value.
* \param s The scalar value with which the scalar
* division should be computed.
* \return The scalar division of this two-dimensional vector with a
* specified scalar value.
*/
Vector2 operator*(float scalar) const;
inline Vector2 operator/(float s) const
{
const float invS = 1.0f / s;
return Vector2(x_ * invS, y_ * invS);
}
/**
* @brief Computes the scalar division of this two-dimensional vector with
* the specified scalar value.
* @param[in] scalar The scalar value with which the scalar division should be
* computed.
* @return The scalar division of this two-dimensional vector with a
* specified scalar value.
*/
Vector2 operator/(float scalar) const;
/**
* @brief Computes the vector sum of this two-dimensional vector with the
* specified two-dimensional vector.
* @param[in] vector The two-dimensional vector with which the vector sum
* should be computed.
* @return The vector sum of this two-dimensional vector with a specified
* two-dimensional vector.
*/
Vector2 operator+(const Vector2 &vector) const;
/**
* @brief Computes the vector difference of this two-dimensional vector
* with the specified two-dimensional vector.
* @param[in] vector The two-dimensional vector with which the vector
* difference should be computed.
* @return The vector difference of this two-dimensional vector with a
* \brief Computes the vector sum of this two-dimensional vector with
* the specified two-dimensional vector.
* \param vector The two-dimensional vector with which the
* vector sum should be computed.
* \return The vector sum of this two-dimensional vector with a
* specified two-dimensional vector.
*/
Vector2 operator-(const Vector2 &vector) const;
inline Vector2 operator+(const Vector2 &vector) const
{
return Vector2(x_ + vector.x(), y_ + vector.y());
}
/**
* @brief Tests this two-dimensional vector for equality with the
* \brief Computes the vector difference of this two-dimensional
* vector with the specified two-dimensional vector.
* \param vector The two-dimensional vector with which the
* vector difference should be computed.
* \return The vector difference of this two-dimensional vector with a
* specified two-dimensional vector.
* @param[in] vector The two-dimensional vector with which to test for
* equality.
* @return True if the two-dimensional vectors are equal.
*/
bool operator==(const Vector2 &vector) const;
inline Vector2 operator-(const Vector2 &vector) const
{
return Vector2(x_ - vector.x(), y_ - vector.y());
}
/**
* @brief Tests this two-dimensional vector for inequality with the
* \brief Tests this two-dimensional vector for equality with the
* specified two-dimensional vector.
* @param[in] vector The two-dimensional vector with which to test for
* inequality.
* @return True if the two-dimensional vectors are not equal.
* \param vector The two-dimensional vector with which to
* test for equality.
* \return True if the two-dimensional vectors are equal.
*/
bool operator!=(const Vector2 &vector) const;
inline bool operator==(const Vector2 &vector) const
{
return x_ == vector.x() && y_ == vector.y();
}
/**
* @brief Sets the value of this two-dimensional vector to the scalar
* \brief Tests this two-dimensional vector for inequality with the
* specified two-dimensional vector.
* \param vector The two-dimensional vector with which to
* test for inequality.
* \return True if the two-dimensional vectors are not equal.
*/
inline bool operator!=(const Vector2 &vector) const
{
return x_ != vector.x() || y_ != vector.y();
}
/**
* \brief Sets the value of this two-dimensional vector to the scalar
* multiplication of itself with the specified scalar value.
* @param[in] scalar The scalar value with which the scalar multiplication
* should be computed.
* @return A reference to this two-dimensional vector.
* \param s The scalar value with which the scalar
* multiplication should be computed.
* \return A reference to this two-dimensional vector.
*/
Vector2 &operator*=(float scalar);
inline Vector2 &operator*=(float s)
{
x_ *= s;
y_ *= s;
return *this;
}
/**
* @brief Sets the value of this two-dimensional vector to the scalar
* \brief Sets the value of this two-dimensional vector to the scalar
* division of itself with the specified scalar value.
* @param[in] scalar The scalar value with which the scalar division should be
* computed.
* @return A reference to this two-dimensional vector.
* \param s The scalar value with which the scalar
* division should be computed.
* \return A reference to this two-dimensional vector.
*/
Vector2 &operator/=(float scalar);
inline Vector2 &operator/=(float s)
{
const float invS = 1.0f / s;
x_ *= invS;
y_ *= invS;
return *this;
}
/**
* @brief Sets the value of this two-dimensional vector to the vector sum
* of itself with the specified two-dimensional vector.
* @param[in] vector The two-dimensional vector with which the vector sum
* should be computed.
* @return A reference to this two-dimensional vector.
* \brief Sets the value of this two-dimensional vector to the vector
* sum of itself with the specified two-dimensional vector.
* \param vector The two-dimensional vector with which the
* vector sum should be computed.
* \return A reference to this two-dimensional vector.
*/
Vector2 &operator+=(const Vector2 &vector);
inline Vector2 &operator+=(const Vector2 &vector)
{
x_ += vector.x();
y_ += vector.y();
return *this;
}
/**
* @brief Sets the value of this two-dimensional vector to the vector
* difference of itself with the specified two-dimensional vector.
* @param[in] vector The two-dimensional vector with which the vector
* difference should be computed.
* @return A reference to this two-dimensional vector.
* \brief Sets the value of this two-dimensional vector to the vector
* difference of itself with the specified two-dimensional
* vector.
* \param vector The two-dimensional vector with which the
* vector difference should be computed.
* \return A reference to this two-dimensional vector.
*/
Vector2 &operator-=(const Vector2 &vector);
inline Vector2 &operator-=(const Vector2 &vector)
{
x_ -= vector.x();
y_ -= vector.y();
return *this;
}
inline Vector2 &operator=(const Vector2 &vector)
{
x_ = vector.x();
y_ = vector.y();
return *this;
}
private:
float x_;
@ -194,80 +257,90 @@ class Vector2 {
};
/**
* @relates Vector2
* @brief Computes the scalar multiplication of the specified
* \relates Vector2
* \brief Computes the scalar multiplication of the specified
* two-dimensional vector with the specified scalar value.
* @param[in] scalar The scalar value with which the scalar multiplication
* should be computed.
* @param[in] vector The two-dimensional vector with which the scalar
* \param s The scalar value with which the scalar
* multiplication should be computed.
* @return The scalar multiplication of the two-dimensional vector with the
* \param vector The two-dimensional vector with which the scalar
* multiplication should be computed.
* \return The scalar multiplication of the two-dimensional vector with the
* scalar value.
*/
Vector2 operator*(float scalar, const Vector2 &vector);
inline Vector2 operator*(float s, const Vector2 &vector)
{
return Vector2(s * vector.x(), s * vector.y());
}
/**
* @relates Vector2
* @brief Inserts the specified two-dimensional vector into the
* specified output stream.
* @param[in, out] stream The output stream into which the two-dimensional
* vector should be inserted.
* @param[in] vector The two-dimensional vector which to insert into the
* \relates Vector2
* \brief Inserts the specified two-dimensional vector into the specified
* output stream.
* @return A reference to the output stream.
* \param os The output stream into which the two-dimensional
* vector should be inserted.
* \param vector The two-dimensional vector which to insert into
* the output stream.
* \return A reference to the output stream.
*/
std::ostream &operator<<(std::ostream &stream,
const Vector2 &vector);
inline std::ostream &operator<<(std::ostream &os, const Vector2 &vector)
{
os << "(" << vector.x() << "," << vector.y() << ")";
return os;
}
/**
* @relates Vector2
* @brief Computes the length of a specified two-dimensional vector.
* @param[in] vector The two-dimensional vector whose length is to be computed.
* @return The length of the two-dimensional vector.
*/
float abs(const Vector2 &vector);
/**
* @relates Vector2
* @brief Computes the squared length of a specified two-dimensional vector.
* @param[in] vector The two-dimensional vector whose squared length is to be
* \relates Vector2
* \brief Computes the length of a specified two-dimensional vector.
* \param vector The two-dimensional vector whose length is to be
* computed.
* @return The squared length of the two-dimensional vector.
* \return The length of the two-dimensional vector.
*/
float absSq(const Vector2 &vector);
inline float abs(const Vector2 &vector)
{
return std::sqrt(vector * vector);
}
/**
* @relates Vector2
* @brief Computes the determinant of a two-dimensional square matrix with
* rows consisting of the specified two-dimensional vectors.
* @param[in] vector1 The top row of the two-dimensional square matrix.
* @param[in] vector2 The bottom row of the two-dimensional square matrix.
* @return The determinant of the two-dimensional square matrix.
*/
float det(const Vector2 &vector1, const Vector2 &vector2);
/**
* @brief Computes the signed distance from a line connecting th specified
* points to a specified point.
* @param[in] vector1 The first point on the line.
* @param[in] vector2 The second point on the line.
* @param[in] vector3 The point to which the signed distance is to be
* calculated.
* @return Positive when the point vector3 lies to the left of the line
* vector1-vector2.
*/
float leftOf(const Vector2 &vector1, const Vector2 &vector2,
const Vector2 &vector3);
/**
* @relates Vector2
* @brief Computes the normalization of the specified two-dimensional
* \relates Vector2
* \brief Computes the squared length of a specified two-dimensional
* vector.
* @param[in] vector The two-dimensional vector whose normalization is to be
* computed.
* @return The normalization of the two-dimensional vector.
* \param vector The two-dimensional vector whose squared length
* is to be computed.
* \return The squared length of the two-dimensional vector.
*/
Vector2 normalize(const Vector2 &vector);
} /* namespace RVO2D */
inline float absSq(const Vector2 &vector)
{
return vector * vector;
}
/**
* \relates Vector2
* \brief Computes the determinant of a two-dimensional square matrix with
* rows consisting of the specified two-dimensional vectors.
* \param vector1 The top row of the two-dimensional square
* matrix.
* \param vector2 The bottom row of the two-dimensional square
* matrix.
* \return The determinant of the two-dimensional square matrix.
*/
inline float det(const Vector2 &vector1, const Vector2 &vector2)
{
return vector1.x() * vector2.y() - vector1.y() * vector2.x();
}
/**
* \relates Vector2
* \brief Computes the normalization of the specified two-dimensional
* vector.
* \param vector The two-dimensional vector whose normalization
* is to be computed.
* \return The normalization of the two-dimensional vector.
*/
inline Vector2 normalize(const Vector2 &vector)
{
return vector / abs(vector);
}
}
#endif /* RVO_VECTOR2_H_ */

View File

@ -1,474 +0,0 @@
/*
* Agent3d.cc
* RVO2-3D Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
#include "Agent3d.h"
#include <algorithm>
#include <cmath>
#include "KdTree3d.h"
#include "RVOSimulator3d.h"
namespace RVO3D {
namespace {
/**
* @brief A sufficiently small positive number.
*/
const float RVO3D_EPSILON = 0.00001F;
/**
* @brief Defines a directed line.
*/
class Line3D {
public:
/**
* @brief Constructs a directed line.``
*/
Line3D();
/**
* @brief The direction of the directed line.
*/
Vector3 direction;
/**
* @brief A point on the directed line.
*/
Vector3 point;
};
Line3D::Line3D() {}
/**
* @brief Solves a one-dimensional linear program on a specified line
* subject to linear constraints defined by planes and a spherical
* constraint.
* @param[in] planes Planes defining the linear constraints.
* @param[in] planeNo The plane on which the line lies.
* @param[in] line The line on which the one-dimensional linear program
* is solved.
* @param[in] radius The radius of the spherical constraint.
* @param[in] optVelocity The optimization velocity.
* @param[in] directionOpt True if the direction should be optimized.
* @param[in] result A reference to the result of the linear program.
* @return True if successful.
*/
bool linearProgram1(const std::vector<Plane> &planes, std::size_t planeNo,
const Line3D &line, float radius, const Vector3 &optVelocity,
bool directionOpt,
Vector3 &result) { /* NOLINT(runtime/references) */
const float dotProduct = line.point * line.direction;
const float discriminant =
dotProduct * dotProduct + radius * radius - absSq(line.point);
if (discriminant < 0.0F) {
/* Max speed sphere fully invalidates line. */
return false;
}
const float sqrtDiscriminant = std::sqrt(discriminant);
float tLeft = -dotProduct - sqrtDiscriminant;
float tRight = -dotProduct + sqrtDiscriminant;
for (std::size_t i = 0U; i < planeNo; ++i) {
const float numerator = (planes[i].point - line.point) * planes[i].normal;
const float denominator = line.direction * planes[i].normal;
if (denominator * denominator <= RVO3D_EPSILON) {
/* Lines line is (almost) parallel to plane i. */
if (numerator > 0.0F) {
return false;
}
continue;
}
const float t = numerator / denominator;
if (denominator >= 0.0F) {
/* Plane i bounds line on the left. */
tLeft = std::max(tLeft, t);
} else {
/* Plane i bounds line on the right. */
tRight = std::min(tRight, t);
}
if (tLeft > tRight) {
return false;
}
}
if (directionOpt) {
/* Optimize direction. */
if (optVelocity * line.direction > 0.0F) {
/* Take right extreme. */
result = line.point + tRight * line.direction;
} else {
/* Take left extreme. */
result = line.point + tLeft * line.direction;
}
} else {
/* Optimize closest point. */
const float t = line.direction * (optVelocity - line.point);
if (t < tLeft) {
result = line.point + tLeft * line.direction;
} else if (t > tRight) {
result = line.point + tRight * line.direction;
} else {
result = line.point + t * line.direction;
}
}
return true;
}
/**
* @brief Solves a two-dimensional linear program on a specified plane
* subject to linear constraints defined by planes and a spherical
* constraint.
* @param[in] planes Planes defining the linear constraints.
* @param[in] planeNo The plane on which the two-dimensional linear
* program is solved.
* @param[in] radius The radius of the spherical constraint.
* @param[in] optVelocity The optimization velocity.
* @param[in] directionOpt True if the direction should be optimized.
* @param[out] result A reference to the result of the linear program.
* @return True if successful.
*/
bool linearProgram2(const std::vector<Plane> &planes, std::size_t planeNo,
float radius, const Vector3 &optVelocity, bool directionOpt,
Vector3 &result) { /* NOLINT(runtime/references) */
const float planeDist = planes[planeNo].point * planes[planeNo].normal;
const float planeDistSq = planeDist * planeDist;
const float radiusSq = radius * radius;
if (planeDistSq > radiusSq) {
/* Max speed sphere fully invalidates plane planeNo. */
return false;
}
const float planeRadiusSq = radiusSq - planeDistSq;
const Vector3 planeCenter = planeDist * planes[planeNo].normal;
if (directionOpt) {
/* Project direction optVelocity on plane planeNo. */
const Vector3 planeOptVelocity =
optVelocity -
(optVelocity * planes[planeNo].normal) * planes[planeNo].normal;
const float planeOptVelocityLengthSq = absSq(planeOptVelocity);
if (planeOptVelocityLengthSq <= RVO3D_EPSILON) {
result = planeCenter;
} else {
result =
planeCenter + std::sqrt(planeRadiusSq / planeOptVelocityLengthSq) *
planeOptVelocity;
}
} else {
/* Project point optVelocity on plane planeNo. */
result = optVelocity +
((planes[planeNo].point - optVelocity) * planes[planeNo].normal) *
planes[planeNo].normal;
/* If outside planeCircle, project on planeCircle. */
if (absSq(result) > radiusSq) {
const Vector3 planeResult = result - planeCenter;
const float planeResultLengthSq = absSq(planeResult);
result = planeCenter +
std::sqrt(planeRadiusSq / planeResultLengthSq) * planeResult;
}
}
for (std::size_t i = 0U; i < planeNo; ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0F) {
/* Result does not satisfy constraint i. Compute new optimal result.
* Compute intersection line of plane i and plane planeNo.
*/
Vector3 crossProduct = cross(planes[i].normal, planes[planeNo].normal);
if (absSq(crossProduct) <= RVO3D_EPSILON) {
/* Planes planeNo and i are (almost) parallel, and plane i fully
* invalidates plane planeNo.
*/
return false;
}
Line3D line;
line.direction = normalize(crossProduct);
const Vector3 lineNormal = cross(line.direction, planes[planeNo].normal);
line.point =
planes[planeNo].point +
(((planes[i].point - planes[planeNo].point) * planes[i].normal) /
(lineNormal * planes[i].normal)) *
lineNormal;
if (!linearProgram1(planes, i, line, radius, optVelocity, directionOpt,
result)) {
return false;
}
}
}
return true;
}
/**
* @brief Solves a three-dimensional linear program subject to linear
* constraints defined by planes and a spherical constraint.
* @param[in] planes Planes defining the linear constraints.
* @param[in] radius The radius of the spherical constraint.
* @param[in] optVelocity The optimization velocity.
* @param[in] directionOpt True if the direction should be optimized.
* @param[out] result A reference to the result of the linear program.
* @return The number of the plane it fails on, and the number of planes if
* successful.
*/
std::size_t linearProgram3(const std::vector<Plane> &planes, float radius,
const Vector3 &optVelocity, bool directionOpt,
Vector3 &result) { /* NOLINT(runtime/references) */
if (directionOpt) {
/* Optimize direction. Note that the optimization velocity is of unit length
* in this case.
*/
result = optVelocity * radius;
} else if (absSq(optVelocity) > radius * radius) {
/* Optimize closest point and outside circle. */
result = normalize(optVelocity) * radius;
} else {
/* Optimize closest point and inside circle. */
result = optVelocity;
}
for (std::size_t i = 0U; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0F) {
/* Result does not satisfy constraint i. Compute new optimal result. */
const Vector3 tempResult = result;
if (!linearProgram2(planes, i, radius, optVelocity, directionOpt,
result)) {
result = tempResult;
return i;
}
}
}
return planes.size();
}
/**
* @brief Solves a four-dimensional linear program subject to linear
* constraints defined by planes and a spherical constraint.
* @param[in] planes Planes defining the linear constraints.
* @param[in] beginPlane The plane on which the three-dimensional linear
* program failed.
* @param[in] radius The radius of the spherical constraint.
* @param[out] result A reference to the result of the linear program.
*/
void linearProgram4(const std::vector<Plane> &planes, std::size_t beginPlane,
float radius,
Vector3 &result) { /* NOLINT(runtime/references) */
float distance = 0.0F;
for (std::size_t i = beginPlane; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > distance) {
/* Result does not satisfy constraint of plane i. */
std::vector<Plane> projPlanes;
for (std::size_t j = 0U; j < i; ++j) {
Plane plane;
const Vector3 crossProduct = cross(planes[j].normal, planes[i].normal);
if (absSq(crossProduct) <= RVO3D_EPSILON) {
/* Plane i and plane j are (almost) parallel. */
if (planes[i].normal * planes[j].normal > 0.0F) {
/* Plane i and plane j point in the same direction. */
continue;
}
/* Plane i and plane j point in opposite direction. */
plane.point = 0.5F * (planes[i].point + planes[j].point);
} else {
/* Plane.point is point on line of intersection between plane i and
* plane j.
*/
const Vector3 lineNormal = cross(crossProduct, planes[i].normal);
plane.point =
planes[i].point +
(((planes[j].point - planes[i].point) * planes[j].normal) /
(lineNormal * planes[j].normal)) *
lineNormal;
}
plane.normal = normalize(planes[j].normal - planes[i].normal);
projPlanes.push_back(plane);
}
const Vector3 tempResult = result;
if (linearProgram3(projPlanes, radius, planes[i].normal, true, result) <
projPlanes.size()) {
/* This should in principle not happen. The result is by definition
* already in the feasible region of this linear program. If it fails,
* it is due to small floating point error, and the current result is
* kept.
*/
result = tempResult;
}
distance = planes[i].normal * (planes[i].point - result);
}
}
}
} /* namespace */
Agent3D::Agent3D()
: id_(0U),
maxNeighbors_(0U),
maxSpeed_(0.0F),
neighborDist_(0.0F),
radius_(0.0F),
timeHorizon_(0.0F) {}
Agent3D::~Agent3D() {}
void Agent3D::computeNeighbors(RVOSimulator3D *sim_) {
agentNeighbors_.clear();
if (maxNeighbors_ > 0) {
sim_->kdTree_->computeAgentNeighbors(this, neighborDist_ * neighborDist_);
}
}
void Agent3D::computeNewVelocity(RVOSimulator3D *sim_) {
orcaPlanes_.clear();
const float invTimeHorizon = 1.0F / timeHorizon_;
/* Create agent ORCA planes. */
for (std::size_t i = 0U; i < agentNeighbors_.size(); ++i) {
const Agent3D *const other = agentNeighbors_[i].second;
const Vector3 relativePosition = other->position_ - position_;
const Vector3 relativeVelocity = velocity_ - other->velocity_;
const float distSq = absSq(relativePosition);
const float combinedRadius = radius_ + other->radius_;
const float combinedRadiusSq = combinedRadius * combinedRadius;
Plane plane;
Vector3 u;
if (distSq > combinedRadiusSq) {
/* No collision. */
const Vector3 w = relativeVelocity - invTimeHorizon * relativePosition;
/* Vector from cutoff center to relative velocity. */
const float wLengthSq = absSq(w);
const float dotProduct = w * relativePosition;
if (dotProduct < 0.0F &&
dotProduct * dotProduct > combinedRadiusSq * wLengthSq) {
/* Project on cut-off circle. */
const float wLength = std::sqrt(wLengthSq);
const Vector3 unitW = w / wLength;
plane.normal = unitW;
u = (combinedRadius * invTimeHorizon - wLength) * unitW;
} else {
/* Project on cone. */
const float a = distSq;
const float b = relativePosition * relativeVelocity;
const float c = absSq(relativeVelocity) -
absSq(cross(relativePosition, relativeVelocity)) /
(distSq - combinedRadiusSq);
const float t = (b + std::sqrt(b * b - a * c)) / a;
const Vector3 ww = relativeVelocity - t * relativePosition;
const float wwLength = abs(ww);
const Vector3 unitWW = ww / wwLength;
plane.normal = unitWW;
u = (combinedRadius * t - wwLength) * unitWW;
}
} else {
/* Collision. */
const float invTimeStep = 1.0F / sim_->timeStep_;
const Vector3 w = relativeVelocity - invTimeStep * relativePosition;
const float wLength = abs(w);
const Vector3 unitW = w / wLength;
plane.normal = unitW;
u = (combinedRadius * invTimeStep - wLength) * unitW;
}
plane.point = velocity_ + 0.5F * u;
orcaPlanes_.push_back(plane);
}
const std::size_t planeFail = linearProgram3(
orcaPlanes_, maxSpeed_, prefVelocity_, false, newVelocity_);
if (planeFail < orcaPlanes_.size()) {
linearProgram4(orcaPlanes_, planeFail, maxSpeed_, newVelocity_);
}
}
void Agent3D::insertAgentNeighbor(const Agent3D *agent, float &rangeSq) {
if (this != agent) {
const float distSq = absSq(position_ - agent->position_);
if (distSq < rangeSq) {
if (agentNeighbors_.size() < maxNeighbors_) {
agentNeighbors_.push_back(std::make_pair(distSq, agent));
}
std::size_t i = agentNeighbors_.size() - 1U;
while (i != 0U && distSq < agentNeighbors_[i - 1U].first) {
agentNeighbors_[i] = agentNeighbors_[i - 1U];
--i;
}
agentNeighbors_[i] = std::make_pair(distSq, agent);
if (agentNeighbors_.size() == maxNeighbors_) {
rangeSq = agentNeighbors_.back().first;
}
}
}
}
void Agent3D::update(RVOSimulator3D *sim_) {
velocity_ = newVelocity_;
position_ += velocity_ * sim_->timeStep_;
}
} /* namespace RVO3D */

449
thirdparty/rvo2/rvo2_3d/Agent3d.cpp vendored Normal file
View File

@ -0,0 +1,449 @@
/*
* Agent.cpp
* RVO2-3D Library
*
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
#include "Agent3d.h"
#include <cmath>
#include <algorithm>
#include "Definitions.h"
#include "KdTree3d.h"
namespace RVO3D {
/**
* \brief A sufficiently small positive number.
*/
const float RVO3D_EPSILON = 0.00001f;
/**
* \brief Defines a directed line.
*/
class Line3D {
public:
/**
* \brief The direction of the directed line.
*/
Vector3 direction;
/**
* \brief A point on the directed line.
*/
Vector3 point;
};
/**
* \brief Solves a one-dimensional linear program on a specified line subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints.
* \param planeNo The plane on which the line lies.
* \param line The line on which the 1-d linear program is solved
* \param radius The radius of the spherical constraint.
* \param optVelocity The optimization velocity.
* \param directionOpt True if the direction should be optimized.
* \param result A reference to the result of the linear program.
* \return True if successful.
*/
bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line3D &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
/**
* \brief Solves a two-dimensional linear program on a specified plane subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints.
* \param planeNo The plane on which the 2-d linear program is solved
* \param radius The radius of the spherical constraint.
* \param optVelocity The optimization velocity.
* \param directionOpt True if the direction should be optimized.
* \param result A reference to the result of the linear program.
* \return True if successful.
*/
bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
/**
* \brief Solves a three-dimensional linear program subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints.
* \param radius The radius of the spherical constraint.
* \param optVelocity The optimization velocity.
* \param directionOpt True if the direction should be optimized.
* \param result A reference to the result of the linear program.
* \return The number of the plane it fails on, and the number of planes if successful.
*/
size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
/**
* \brief Solves a four-dimensional linear program subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints.
* \param beginPlane The plane on which the 3-d linear program failed.
* \param radius The radius of the spherical constraint.
* \param result A reference to the result of the linear program.
*/
void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result);
Agent3D::Agent3D() : id_(0), maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f) { }
void Agent3D::computeNeighbors(RVOSimulator3D *sim_)
{
agentNeighbors_.clear();
if (maxNeighbors_ > 0) {
sim_->kdTree_->computeAgentNeighbors(this, neighborDist_ * neighborDist_);
}
}
void Agent3D::computeNewVelocity(RVOSimulator3D *sim_)
{
orcaPlanes_.clear();
const float invTimeHorizon = 1.0f / timeHorizon_;
/* Create agent ORCA planes. */
for (size_t i = 0; i < agentNeighbors_.size(); ++i) {
const Agent3D *const other = agentNeighbors_[i].second;
//const float timeHorizon_mod = (avoidance_priority_ - other->avoidance_priority_ + 1.0f) * 0.5f;
//const float invTimeHorizon = (1.0f / timeHorizon_) * timeHorizon_mod;
const Vector3 relativePosition = other->position_ - position_;
const Vector3 relativeVelocity = velocity_ - other->velocity_;
const float distSq = absSq(relativePosition);
const float combinedRadius = radius_ + other->radius_;
const float combinedRadiusSq = sqr(combinedRadius);
Plane plane;
Vector3 u;
if (distSq > combinedRadiusSq) {
/* No collision. */
const Vector3 w = relativeVelocity - invTimeHorizon * relativePosition;
/* Vector from cutoff center to relative velocity. */
const float wLengthSq = absSq(w);
const float dotProduct = w * relativePosition;
if (dotProduct < 0.0f && sqr(dotProduct) > combinedRadiusSq * wLengthSq) {
/* Project on cut-off circle. */
const float wLength = std::sqrt(wLengthSq);
const Vector3 unitW = w / wLength;
plane.normal = unitW;
u = (combinedRadius * invTimeHorizon - wLength) * unitW;
}
else {
/* Project on cone. */
const float a = distSq;
const float b = relativePosition * relativeVelocity;
const float c = absSq(relativeVelocity) - absSq(cross(relativePosition, relativeVelocity)) / (distSq - combinedRadiusSq);
const float t = (b + std::sqrt(sqr(b) - a * c)) / a;
const Vector3 w = relativeVelocity - t * relativePosition;
const float wLength = abs(w);
const Vector3 unitW = w / wLength;
plane.normal = unitW;
u = (combinedRadius * t - wLength) * unitW;
}
}
else {
/* Collision. */
const float invTimeStep = 1.0f / sim_->timeStep_;
const Vector3 w = relativeVelocity - invTimeStep * relativePosition;
const float wLength = abs(w);
const Vector3 unitW = w / wLength;
plane.normal = unitW;
u = (combinedRadius * invTimeStep - wLength) * unitW;
}
plane.point = velocity_ + 0.5f * u;
orcaPlanes_.push_back(plane);
}
const size_t planeFail = linearProgram3(orcaPlanes_, maxSpeed_, prefVelocity_, false, newVelocity_);
if (planeFail < orcaPlanes_.size()) {
linearProgram4(orcaPlanes_, planeFail, maxSpeed_, newVelocity_);
}
}
void Agent3D::insertAgentNeighbor(const Agent3D *agent, float &rangeSq)
{
// no point processing same agent
if (this == agent) {
return;
}
// ignore other agent if layers/mask bitmasks have no matching bit
if ((avoidance_mask_ & agent->avoidance_layers_) == 0) {
return;
}
if (avoidance_priority_ > agent->avoidance_priority_) {
return;
}
const float distSq = absSq(position_ - agent->position_);
if (distSq < rangeSq) {
if (agentNeighbors_.size() < maxNeighbors_) {
agentNeighbors_.push_back(std::make_pair(distSq, agent));
}
size_t i = agentNeighbors_.size() - 1;
while (i != 0 && distSq < agentNeighbors_[i - 1].first) {
agentNeighbors_[i] = agentNeighbors_[i - 1];
--i;
}
agentNeighbors_[i] = std::make_pair(distSq, agent);
if (agentNeighbors_.size() == maxNeighbors_) {
rangeSq = agentNeighbors_.back().first;
}
}
}
void Agent3D::update(RVOSimulator3D *sim_)
{
velocity_ = newVelocity_;
position_ += velocity_ * sim_->timeStep_;
}
bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line3D &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result)
{
const float dotProduct = line.point * line.direction;
const float discriminant = sqr(dotProduct) + sqr(radius) - absSq(line.point);
if (discriminant < 0.0f) {
/* Max speed sphere fully invalidates line. */
return false;
}
const float sqrtDiscriminant = std::sqrt(discriminant);
float tLeft = -dotProduct - sqrtDiscriminant;
float tRight = -dotProduct + sqrtDiscriminant;
for (size_t i = 0; i < planeNo; ++i) {
const float numerator = (planes[i].point - line.point) * planes[i].normal;
const float denominator = line.direction * planes[i].normal;
if (sqr(denominator) <= RVO3D_EPSILON) {
/* Lines3D line is (almost) parallel to plane i. */
if (numerator > 0.0f) {
return false;
}
else {
continue;
}
}
const float t = numerator / denominator;
if (denominator >= 0.0f) {
/* Plane i bounds line on the left. */
tLeft = std::max(tLeft, t);
}
else {
/* Plane i bounds line on the right. */
tRight = std::min(tRight, t);
}
if (tLeft > tRight) {
return false;
}
}
if (directionOpt) {
/* Optimize direction. */
if (optVelocity * line.direction > 0.0f) {
/* Take right extreme. */
result = line.point + tRight * line.direction;
}
else {
/* Take left extreme. */
result = line.point + tLeft * line.direction;
}
}
else {
/* Optimize closest point. */
const float t = line.direction * (optVelocity - line.point);
if (t < tLeft) {
result = line.point + tLeft * line.direction;
}
else if (t > tRight) {
result = line.point + tRight * line.direction;
}
else {
result = line.point + t * line.direction;
}
}
return true;
}
bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result)
{
const float planeDist = planes[planeNo].point * planes[planeNo].normal;
const float planeDistSq = sqr(planeDist);
const float radiusSq = sqr(radius);
if (planeDistSq > radiusSq) {
/* Max speed sphere fully invalidates plane planeNo. */
return false;
}
const float planeRadiusSq = radiusSq - planeDistSq;
const Vector3 planeCenter = planeDist * planes[planeNo].normal;
if (directionOpt) {
/* Project direction optVelocity on plane planeNo. */
const Vector3 planeOptVelocity = optVelocity - (optVelocity * planes[planeNo].normal) * planes[planeNo].normal;
const float planeOptVelocityLengthSq = absSq(planeOptVelocity);
if (planeOptVelocityLengthSq <= RVO3D_EPSILON) {
result = planeCenter;
}
else {
result = planeCenter + std::sqrt(planeRadiusSq / planeOptVelocityLengthSq) * planeOptVelocity;
}
}
else {
/* Project point optVelocity on plane planeNo. */
result = optVelocity + ((planes[planeNo].point - optVelocity) * planes[planeNo].normal) * planes[planeNo].normal;
/* If outside planeCircle, project on planeCircle. */
if (absSq(result) > radiusSq) {
const Vector3 planeResult = result - planeCenter;
const float planeResultLengthSq = absSq(planeResult);
result = planeCenter + std::sqrt(planeRadiusSq / planeResultLengthSq) * planeResult;
}
}
for (size_t i = 0; i < planeNo; ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0f) {
/* Result does not satisfy constraint i. Compute new optimal result. */
/* Compute intersection line of plane i and plane planeNo. */
Vector3 crossProduct = cross(planes[i].normal, planes[planeNo].normal);
if (absSq(crossProduct) <= RVO3D_EPSILON) {
/* Planes planeNo and i are (almost) parallel, and plane i fully invalidates plane planeNo. */
return false;
}
Line3D line;
line.direction = normalize(crossProduct);
const Vector3 lineNormal = cross(line.direction, planes[planeNo].normal);
line.point = planes[planeNo].point + (((planes[i].point - planes[planeNo].point) * planes[i].normal) / (lineNormal * planes[i].normal)) * lineNormal;
if (!linearProgram1(planes, i, line, radius, optVelocity, directionOpt, result)) {
return false;
}
}
}
return true;
}
size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result)
{
if (directionOpt) {
/* Optimize direction. Note that the optimization velocity is of unit length in this case. */
result = optVelocity * radius;
}
else if (absSq(optVelocity) > sqr(radius)) {
/* Optimize closest point and outside circle. */
result = normalize(optVelocity) * radius;
}
else {
/* Optimize closest point and inside circle. */
result = optVelocity;
}
for (size_t i = 0; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0f) {
/* Result does not satisfy constraint i. Compute new optimal result. */
const Vector3 tempResult = result;
if (!linearProgram2(planes, i, radius, optVelocity, directionOpt, result)) {
result = tempResult;
return i;
}
}
}
return planes.size();
}
void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result)
{
float distance = 0.0f;
for (size_t i = beginPlane; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > distance) {
/* Result does not satisfy constraint of plane i. */
std::vector<Plane> projPlanes;
for (size_t j = 0; j < i; ++j) {
Plane plane;
const Vector3 crossProduct = cross(planes[j].normal, planes[i].normal);
if (absSq(crossProduct) <= RVO3D_EPSILON) {
/* Plane i and plane j are (almost) parallel. */
if (planes[i].normal * planes[j].normal > 0.0f) {
/* Plane i and plane j point in the same direction. */
continue;
}
else {
/* Plane i and plane j point in opposite direction. */
plane.point = 0.5f * (planes[i].point + planes[j].point);
}
}
else {
/* Plane.point is point on line of intersection between plane i and plane j. */
const Vector3 lineNormal = cross(crossProduct, planes[i].normal);
plane.point = planes[i].point + (((planes[j].point - planes[i].point) * planes[j].normal) / (lineNormal * planes[j].normal)) * lineNormal;
}
plane.normal = normalize(planes[j].normal - planes[i].normal);
projPlanes.push_back(plane);
}
const Vector3 tempResult = result;
if (linearProgram3(projPlanes, radius, planes[i].normal, true, result) < projPlanes.size()) {
/* This should in principle not happen. The result is by definition already in the feasible region of this linear program. If it fails, it is due to small floating point error, and the current result is kept. */
result = tempResult;
}
distance = planes[i].normal * (planes[i].point - result);
}
}
}
}

View File

@ -1,15 +1,14 @@
/*
* Agent3d.h
* Agent.h
* RVO2-3D Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -28,82 +27,65 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
* <http://gamma.cs.unc.edu/RVO2/>
*/
#ifndef RVO3D_AGENT_H_
#define RVO3D_AGENT_H_
/**
* @file Agent3d.h
* @brief Contains the Agent3D class.
* \file Agent.h
* \brief Contains the Agent class.
*/
#ifndef RVO3D_AGENT_H_
#define RVO3D_AGENT_H_
#include <cstddef>
#include <cstdint>
#include <utility>
#include <vector>
#include "Plane.h"
#include "RVOSimulator3d.h"
#include "Vector3.h"
namespace RVO3D {
class RVOSimulator3D;
/**
* @brief Defines an agent in the simulation.
* \brief Defines an agent in the simulation.
*/
class Agent3D {
public:
/**
* @brief Constructs an agent instance.
* @param[in] sim The simulator instance.
* \brief Constructs an agent instance.
* \param sim The simulator instance.
*/
explicit Agent3D();
/**
* @brief Destroys this agent instance.
*/
~Agent3D();
/**
* @brief Computes the neighbors of this agent.
* \brief Computes the neighbors of this agent.
*/
void computeNeighbors(RVOSimulator3D *sim_);
/**
* @brief Computes the new velocity of this agent.
* \brief Computes the new velocity of this agent.
*/
void computeNewVelocity(RVOSimulator3D *sim_);
/**
* @brief Inserts an agent neighbor into the set of neighbors of this
* agent.
* @param[in] agent A pointer to the agent to be inserted.
* @param[in] rangeSq The squared range around this agent.
* \brief Inserts an agent neighbor into the set of neighbors of this agent.
* \param agent A pointer to the agent to be inserted.
* \param rangeSq The squared range around this agent.
*/
void insertAgentNeighbor(const Agent3D *agent,
float &rangeSq); /* NOLINT(runtime/references) */
void insertAgentNeighbor(const Agent3D *agent, float &rangeSq);
/**
* @brief Updates the three-dimensional position and three-dimensional
* velocity of this agent.
* \brief Updates the three-dimensional position and three-dimensional velocity of this agent.
*/
void update(RVOSimulator3D *sim_);;
/* Not implemented. */
Agent3D(const Agent3D &other);
/* Not implemented. */
Agent3D &operator=(const Agent3D &other);
void update(RVOSimulator3D *sim_);
Vector3 newVelocity_;
Vector3 position_;
Vector3 prefVelocity_;
Vector3 velocity_;
RVOSimulator3D *sim_;
std::size_t id_;
std::size_t maxNeighbors_;
size_t id_;
size_t maxNeighbors_;
float maxSpeed_;
float neighborDist_;
float radius_;
@ -119,6 +101,6 @@ class Agent3D {
friend class KdTree3D;
friend class RVOSimulator3D;
};
} /* namespace RVO3D */
}
#endif /* RVO3D_AGENT_H_ */

View File

@ -1,9 +1,8 @@
/*
* Plane.cc
* Definitions.h
* RVO2-3D Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -31,8 +30,24 @@
* <https://gamma.cs.unc.edu/RVO2/>
*/
#include "Plane.h"
/**
* \file Definitions.h
* \brief Contains functions and constants used in multiple classes.
*/
#ifndef RVO3D_DEFINITIONS_H_
#define RVO3D_DEFINITIONS_H_
namespace RVO3D {
Plane::Plane() {}
} /* namespace RVO3D */
/**
* \brief Computes the square of a float.
* \param scalar The float to be squared.
* \return The square of the float.
*/
inline float sqr(float scalar)
{
return scalar * scalar;
}
}
#endif /* RVO3D_DEFINITIONS_H_ */

View File

@ -1,264 +0,0 @@
/*
* KdTree3d.cc
* RVO2-3D Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
#include "KdTree3d.h"
#include <algorithm>
#include <utility>
#include "Agent3d.h"
#include "RVOSimulator3d.h"
#include "Vector3.h"
namespace RVO3D {
namespace {
/**
* @brief The maximum size of a k-D leaf node.
*/
const std::size_t RVO3D_MAX_LEAF_SIZE = 10U;
} /* namespace */
/**
* @brief Defines an agent k-D tree node.
*/
class KdTree3D::AgentTreeNode {
public:
/**
* @brief Constructs an agent k-D tree node.
*/
AgentTreeNode();
/**
* @brief The beginning node number.
*/
std::size_t begin;
/**
* @brief The ending node number.
*/
std::size_t end;
/**
* @brief The left node number.
*/
std::size_t left;
/**
* @brief The right node number.
*/
std::size_t right;
/**
* @brief The maximum coordinates.
*/
Vector3 maxCoord;
/**
* @brief The minimum coordinates.
*/
Vector3 minCoord;
};
KdTree3D::AgentTreeNode::AgentTreeNode()
: begin(0U), end(0U), left(0U), right(0U) {}
KdTree3D::KdTree3D(RVOSimulator3D *sim) : sim_(sim) {}
KdTree3D::~KdTree3D() {}
void KdTree3D::buildAgentTree(std::vector<Agent3D *> agents) {
agents_.swap(agents_);
if (!agents_.empty()) {
agentTree_.resize(2U * agents_.size() - 1U);
buildAgentTreeRecursive(0U, agents_.size(), 0U);
}
}
void KdTree3D::buildAgentTreeRecursive(std::size_t begin, std::size_t end,
std::size_t node) {
agentTree_[node].begin = begin;
agentTree_[node].end = end;
agentTree_[node].minCoord = agents_[begin]->position_;
agentTree_[node].maxCoord = agents_[begin]->position_;
for (std::size_t i = begin + 1U; i < end; ++i) {
agentTree_[node].maxCoord[0] =
std::max(agentTree_[node].maxCoord[0], agents_[i]->position_.x());
agentTree_[node].minCoord[0] =
std::min(agentTree_[node].minCoord[0], agents_[i]->position_.x());
agentTree_[node].maxCoord[1] =
std::max(agentTree_[node].maxCoord[1], agents_[i]->position_.y());
agentTree_[node].minCoord[1] =
std::min(agentTree_[node].minCoord[1], agents_[i]->position_.y());
agentTree_[node].maxCoord[2] =
std::max(agentTree_[node].maxCoord[2], agents_[i]->position_.z());
agentTree_[node].minCoord[2] =
std::min(agentTree_[node].minCoord[2], agents_[i]->position_.z());
}
if (end - begin > RVO3D_MAX_LEAF_SIZE) {
/* No leaf node. */
std::size_t coord = 0U;
if (agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] >
agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] &&
agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] >
agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
coord = 0U;
} else if (agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] >
agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
coord = 1U;
} else {
coord = 2U;
}
const float splitValue = 0.5F * (agentTree_[node].maxCoord[coord] +
agentTree_[node].minCoord[coord]);
std::size_t left = begin;
std::size_t right = end;
while (left < right) {
while (left < right && agents_[left]->position_[coord] < splitValue) {
++left;
}
while (right > left &&
agents_[right - 1U]->position_[coord] >= splitValue) {
--right;
}
if (left < right) {
std::swap(agents_[left], agents_[right - 1U]);
++left;
--right;
}
}
std::size_t leftSize = left - begin;
if (leftSize == 0U) {
++leftSize;
++left;
}
agentTree_[node].left = node + 1U;
agentTree_[node].right = node + 2U * leftSize;
buildAgentTreeRecursive(begin, left, agentTree_[node].left);
buildAgentTreeRecursive(left, end, agentTree_[node].right);
}
}
void KdTree3D::computeAgentNeighbors(Agent3D *agent, float rangeSq) const {
queryAgentTreeRecursive(agent, rangeSq, 0U);
}
void KdTree3D::queryAgentTreeRecursive(Agent3D *agent, float &rangeSq,
std::size_t node) const {
if (agentTree_[node].end - agentTree_[node].begin <= RVO3D_MAX_LEAF_SIZE) {
for (std::size_t i = agentTree_[node].begin; i < agentTree_[node].end;
++i) {
agent->insertAgentNeighbor(agents_[i], rangeSq);
}
} else {
const float distSqLeftMinX =
std::max(0.0F, agentTree_[agentTree_[node].left].minCoord[0] -
agent->position_.x());
const float distSqLeftMaxX =
std::max(0.0F, agent->position_.x() -
agentTree_[agentTree_[node].left].maxCoord[0]);
const float distSqLeftMinY =
std::max(0.0F, agentTree_[agentTree_[node].left].minCoord[1] -
agent->position_.y());
const float distSqLeftMaxY =
std::max(0.0F, agent->position_.y() -
agentTree_[agentTree_[node].left].maxCoord[1]);
const float distSqLeftMinZ =
std::max(0.0F, agentTree_[agentTree_[node].left].minCoord[2] -
agent->position_.z());
const float distSqLeftMaxZ =
std::max(0.0F, agent->position_.z() -
agentTree_[agentTree_[node].left].maxCoord[2]);
const float distSqLeft =
distSqLeftMinX * distSqLeftMinX + distSqLeftMaxX * distSqLeftMaxX +
distSqLeftMinY * distSqLeftMinY + distSqLeftMaxY * distSqLeftMaxY +
distSqLeftMinZ * distSqLeftMinZ + distSqLeftMaxZ * distSqLeftMaxZ;
const float distSqRightMinX =
std::max(0.0F, agentTree_[agentTree_[node].right].minCoord[0] -
agent->position_.x());
const float distSqRightMaxX =
std::max(0.0F, agent->position_.x() -
agentTree_[agentTree_[node].right].maxCoord[0]);
const float distSqRightMinY =
std::max(0.0F, agentTree_[agentTree_[node].right].minCoord[1] -
agent->position_.y());
const float distSqRightMaxY =
std::max(0.0F, agent->position_.y() -
agentTree_[agentTree_[node].right].maxCoord[1]);
const float distSqRightMinZ =
std::max(0.0F, agentTree_[agentTree_[node].right].minCoord[2] -
agent->position_.z());
const float distSqRightMaxZ =
std::max(0.0F, agent->position_.z() -
agentTree_[agentTree_[node].right].maxCoord[2]);
const float distSqRight =
distSqRightMinX * distSqRightMinX + distSqRightMaxX * distSqRightMaxX +
distSqRightMinY * distSqRightMinY + distSqRightMaxY * distSqRightMaxY +
distSqRightMinZ * distSqRightMinZ + distSqRightMaxZ * distSqRightMaxZ;
if (distSqLeft < distSqRight) {
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
}
}
} else {
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
}
}
}
}
}
} /* namespace RVO3D */

161
thirdparty/rvo2/rvo2_3d/KdTree3d.cpp vendored Normal file
View File

@ -0,0 +1,161 @@
/*
* KdTree.cpp
* RVO2-3D Library
*
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
#include "KdTree3d.h"
#include <algorithm>
#include "Agent3d.h"
#include "Definitions.h"
#include "RVOSimulator3d.h"
namespace RVO3D {
const size_t RVO3D_MAX_LEAF_SIZE = 10;
KdTree3D::KdTree3D(RVOSimulator3D *sim) : sim_(sim) { }
void KdTree3D::buildAgentTree(std::vector<Agent3D *> agents)
{
agents_.swap(agents);
if (!agents_.empty()) {
agentTree_.resize(2 * agents_.size() - 1);
buildAgentTreeRecursive(0, agents_.size(), 0);
}
}
void KdTree3D::buildAgentTreeRecursive(size_t begin, size_t end, size_t node)
{
agentTree_[node].begin = begin;
agentTree_[node].end = end;
agentTree_[node].minCoord = agents_[begin]->position_;
agentTree_[node].maxCoord = agents_[begin]->position_;
for (size_t i = begin + 1; i < end; ++i) {
agentTree_[node].maxCoord[0] = std::max(agentTree_[node].maxCoord[0], agents_[i]->position_.x());
agentTree_[node].minCoord[0] = std::min(agentTree_[node].minCoord[0], agents_[i]->position_.x());
agentTree_[node].maxCoord[1] = std::max(agentTree_[node].maxCoord[1], agents_[i]->position_.y());
agentTree_[node].minCoord[1] = std::min(agentTree_[node].minCoord[1], agents_[i]->position_.y());
agentTree_[node].maxCoord[2] = std::max(agentTree_[node].maxCoord[2], agents_[i]->position_.z());
agentTree_[node].minCoord[2] = std::min(agentTree_[node].minCoord[2], agents_[i]->position_.z());
}
if (end - begin > RVO3D_MAX_LEAF_SIZE) {
/* No leaf node. */
size_t coord;
if (agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] && agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
coord = 0;
}
else if (agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
coord = 1;
}
else {
coord = 2;
}
const float splitValue = 0.5f * (agentTree_[node].maxCoord[coord] + agentTree_[node].minCoord[coord]);
size_t left = begin;
size_t right = end;
while (left < right) {
while (left < right && agents_[left]->position_[coord] < splitValue) {
++left;
}
while (right > left && agents_[right - 1]->position_[coord] >= splitValue) {
--right;
}
if (left < right) {
std::swap(agents_[left], agents_[right - 1]);
++left;
--right;
}
}
size_t leftSize = left - begin;
if (leftSize == 0) {
++leftSize;
++left;
++right;
}
agentTree_[node].left = node + 1;
agentTree_[node].right = node + 2 * leftSize;
buildAgentTreeRecursive(begin, left, agentTree_[node].left);
buildAgentTreeRecursive(left, end, agentTree_[node].right);
}
}
void KdTree3D::computeAgentNeighbors(Agent3D *agent, float rangeSq) const
{
queryAgentTreeRecursive(agent, rangeSq, 0);
}
void KdTree3D::queryAgentTreeRecursive(Agent3D *agent, float &rangeSq, size_t node) const
{
if (agentTree_[node].end - agentTree_[node].begin <= RVO3D_MAX_LEAF_SIZE) {
for (size_t i = agentTree_[node].begin; i < agentTree_[node].end; ++i) {
agent->insertAgentNeighbor(agents_[i], rangeSq);
}
}
else {
const float distSqLeft = sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].left].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].left].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].left].maxCoord[2]));
const float distSqRight = sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].right].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].right].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].right].maxCoord[2]));
if (distSqLeft < distSqRight) {
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
}
}
}
else {
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
}
}
}
}
}
}

View File

@ -1,9 +1,8 @@
/*
* KdTree3d.h
* KdTree.h
* RVO2-3D Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -30,88 +29,92 @@
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
/**
* \file KdTree.h
* \brief Contains the KdTree class.
*/
#ifndef RVO3D_KD_TREE_H_
#define RVO3D_KD_TREE_H_
/**
* @file KdTree3d.h
* @brief Contains the KdTree3D class.
*/
#include <cstddef>
#include <vector>
#include "Vector3.h"
namespace RVO3D {
class Agent3D;
class RVOSimulator3D;
/**
* @brief Defines a k-D tree for agents in the simulation.
* \brief Defines <i>k</i>d-trees for agents in the simulation.
*/
class KdTree3D {
public:
class AgentTreeNode;
/**
* \brief Defines an agent <i>k</i>d-tree node.
*/
class AgentTreeNode3D {
public:
/**
* \brief The beginning node number.
*/
size_t begin;
/**
* @brief Constructs a k-D tree instance.
* @param[in] sim The simulator instance.
* \brief The ending node number.
*/
size_t end;
/**
* \brief The left node number.
*/
size_t left;
/**
* \brief The right node number.
*/
size_t right;
/**
* \brief The maximum coordinates.
*/
Vector3 maxCoord;
/**
* \brief The minimum coordinates.
*/
Vector3 minCoord;
};
/**
* \brief Constructs a <i>k</i>d-tree instance.
* \param sim The simulator instance.
*/
explicit KdTree3D(RVOSimulator3D *sim);
/**
* @brief Destroys this k-D tree instance.
*/
~KdTree3D();
/**
* @brief Builds an agent k-D tree.
* \brief Builds an agent <i>k</i>d-tree.
*/
void buildAgentTree(std::vector<Agent3D *> agents);
/**
* @brief Recursive function to build a k-D tree.
* @param[in] begin The beginning k-D tree node.
* @param[in] end The ending k-D tree node.
* @param[in] node The current k-D tree node.
*/
void buildAgentTreeRecursive(std::size_t begin, std::size_t end,
std::size_t node);
void buildAgentTreeRecursive(size_t begin, size_t end, size_t node);
/**
* @brief Computes the agent neighbors of the specified agent.
* @param[in] agent A pointer to the agent for which agent neighbors are to
* be computed.
* @param[in] rangeSq The squared range around the agent.
* \brief Computes the agent neighbors of the specified agent.
* \param agent A pointer to the agent for which agent neighbors are to be computed.
* \param rangeSq The squared range around the agent.
*/
void computeAgentNeighbors(Agent3D *agent, float rangeSq) const;
/**
* @brief Recursive function to compute the neighbors of the specified
* agent.
* @param[in] agent A pointer to the agent for which neighbors are to be
* computed.
* @param[in,out] rangeSq The squared range around the agent.
* @param[in] node The current k-D tree node.
*/
void queryAgentTreeRecursive(Agent3D *agent,
float &rangeSq, /* NOLINT(runtime/references) */
std::size_t node) const;
/* Not implemented. */
KdTree3D(const KdTree3D &other);
/* Not implemented. */
KdTree3D &operator=(const KdTree3D &other);
void queryAgentTreeRecursive(Agent3D *agent, float &rangeSq, size_t node) const;
std::vector<Agent3D *> agents_;
std::vector<AgentTreeNode> agentTree_;
std::vector<AgentTreeNode3D> agentTree_;
RVOSimulator3D *sim_;
friend class Agent3D;
friend class RVOSimulator3D;
};
} /* namespace RVO3D */
}
#endif /* RVO3D_KD_TREE_H_ */

View File

@ -1,67 +0,0 @@
/*
* Plane.h
* RVO2-3D Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
#ifndef RVO3D_PLANE_H_
#define RVO3D_PLANE_H_
/**
* @file Plane.h
* @brief Contains the Plane class.
*/
#include "Vector3.h"
namespace RVO3D {
/**
* @brief Defines a plane.
*/
class Plane {
public:
/**
* @brief Constructs a plane.
*/
Plane();
/**
* @brief A point on the plane.
*/
Vector3 point;
/**
* @brief The normal to the plane.
*/
Vector3 normal;
};
} /* namespace RVO3D */
#endif /* RVO3D_PLANE_H_ */

View File

@ -1,250 +0,0 @@
/*
* RVOSimulator3d.cc
* RVO2-3D Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
#include "RVOSimulator3d.h"
#include <utility>
#ifdef _OPENMP
#include <omp.h>
#endif /* _OPENMP */
#include "Agent3d.h"
#include "KdTree3d.h"
#include "Plane.h"
namespace RVO3D {
RVOSimulator3D::RVOSimulator3D()
: defaultAgent_(NULL),
kdTree_(new KdTree3D(this)),
globalTime_(0.0F),
timeStep_(0.0F) {}
RVOSimulator3D::RVOSimulator3D(float timeStep, float neighborDist,
std::size_t maxNeighbors, float timeHorizon,
float radius, float maxSpeed,
const Vector3 &velocity)
: defaultAgent_(new Agent3D()),
kdTree_(new KdTree3D(this)),
globalTime_(0.0F),
timeStep_(timeStep) {
defaultAgent_->maxNeighbors_ = maxNeighbors;
defaultAgent_->maxSpeed_ = maxSpeed;
defaultAgent_->neighborDist_ = neighborDist;
defaultAgent_->radius_ = radius;
defaultAgent_->timeHorizon_ = timeHorizon;
defaultAgent_->velocity_ = velocity;
}
RVOSimulator3D::~RVOSimulator3D() {
delete defaultAgent_;
delete kdTree_;
for (std::size_t i = 0U; i < agents_.size(); ++i) {
delete agents_[i];
}
}
std::size_t RVOSimulator3D::getAgentNumAgentNeighbors(std::size_t agentNo) const {
return agents_[agentNo]->agentNeighbors_.size();
}
std::size_t RVOSimulator3D::getAgentAgentNeighbor(std::size_t agentNo,
std::size_t neighborNo) const {
return agents_[agentNo]->agentNeighbors_[neighborNo].second->id_;
}
std::size_t RVOSimulator3D::getAgentNumORCAPlanes(std::size_t agentNo) const {
return agents_[agentNo]->orcaPlanes_.size();
}
const Plane &RVOSimulator3D::getAgentORCAPlane(std::size_t agentNo,
std::size_t planeNo) const {
return agents_[agentNo]->orcaPlanes_[planeNo];
}
void RVOSimulator3D::removeAgent(std::size_t agentNo) {
delete agents_[agentNo];
agents_[agentNo] = agents_.back();
agents_.pop_back();
}
std::size_t RVOSimulator3D::addAgent(const Vector3 &position) {
if (defaultAgent_ == NULL) {
return RVO3D_ERROR;
}
Agent3D *agent = new Agent3D();
agent->position_ = position;
agent->maxNeighbors_ = defaultAgent_->maxNeighbors_;
agent->maxSpeed_ = defaultAgent_->maxSpeed_;
agent->neighborDist_ = defaultAgent_->neighborDist_;
agent->radius_ = defaultAgent_->radius_;
agent->timeHorizon_ = defaultAgent_->timeHorizon_;
agent->velocity_ = defaultAgent_->velocity_;
agent->id_ = agents_.size();
agents_.push_back(agent);
return agents_.size() - 1U;
}
std::size_t RVOSimulator3D::addAgent(const Vector3 &position, float neighborDist,
std::size_t maxNeighbors, float timeHorizon,
float radius, float maxSpeed,
const Vector3 &velocity) {
Agent3D *agent = new Agent3D();
agent->position_ = position;
agent->maxNeighbors_ = maxNeighbors;
agent->maxSpeed_ = maxSpeed;
agent->neighborDist_ = neighborDist;
agent->radius_ = radius;
agent->timeHorizon_ = timeHorizon;
agent->velocity_ = velocity;
agent->id_ = agents_.size();
agents_.push_back(agent);
return agents_.size() - 1U;
}
void RVOSimulator3D::doStep() {
kdTree_->buildAgentTree(agents_);
#ifdef _OPENMP
#pragma omp parallel for
#endif /* _OPENMP */
for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {
agents_[i]->computeNeighbors(this);
agents_[i]->computeNewVelocity(this);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif /* _OPENMP */
for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {
agents_[i]->update(this);
}
globalTime_ += timeStep_;
}
std::size_t RVOSimulator3D::getAgentMaxNeighbors(std::size_t agentNo) const {
return agents_[agentNo]->maxNeighbors_;
}
float RVOSimulator3D::getAgentMaxSpeed(std::size_t agentNo) const {
return agents_[agentNo]->maxSpeed_;
}
float RVOSimulator3D::getAgentNeighborDist(std::size_t agentNo) const {
return agents_[agentNo]->neighborDist_;
}
const Vector3 &RVOSimulator3D::getAgentPosition(std::size_t agentNo) const {
return agents_[agentNo]->position_;
}
const Vector3 &RVOSimulator3D::getAgentPrefVelocity(std::size_t agentNo) const {
return agents_[agentNo]->prefVelocity_;
}
float RVOSimulator3D::getAgentRadius(std::size_t agentNo) const {
return agents_[agentNo]->radius_;
}
float RVOSimulator3D::getAgentTimeHorizon(std::size_t agentNo) const {
return agents_[agentNo]->timeHorizon_;
}
const Vector3 &RVOSimulator3D::getAgentVelocity(std::size_t agentNo) const {
return agents_[agentNo]->velocity_;
}
void RVOSimulator3D::setAgentDefaults(float neighborDist,
std::size_t maxNeighbors, float timeHorizon,
float radius, float maxSpeed,
const Vector3 &velocity) {
if (defaultAgent_ == NULL) {
defaultAgent_ = new Agent3D();
}
defaultAgent_->maxNeighbors_ = maxNeighbors;
defaultAgent_->maxSpeed_ = maxSpeed;
defaultAgent_->neighborDist_ = neighborDist;
defaultAgent_->radius_ = radius;
defaultAgent_->timeHorizon_ = timeHorizon;
defaultAgent_->velocity_ = velocity;
}
void RVOSimulator3D::setAgentMaxNeighbors(std::size_t agentNo,
std::size_t maxNeighbors) {
agents_[agentNo]->maxNeighbors_ = maxNeighbors;
}
void RVOSimulator3D::setAgentMaxSpeed(std::size_t agentNo, float maxSpeed) {
agents_[agentNo]->maxSpeed_ = maxSpeed;
}
void RVOSimulator3D::setAgentNeighborDist(std::size_t agentNo,
float neighborDist) {
agents_[agentNo]->neighborDist_ = neighborDist;
}
void RVOSimulator3D::setAgentPosition(std::size_t agentNo,
const Vector3 &position) {
agents_[agentNo]->position_ = position;
}
void RVOSimulator3D::setAgentPrefVelocity(std::size_t agentNo,
const Vector3 &prefVelocity) {
agents_[agentNo]->prefVelocity_ = prefVelocity;
}
void RVOSimulator3D::setAgentRadius(std::size_t agentNo, float radius) {
agents_[agentNo]->radius_ = radius;
}
void RVOSimulator3D::setAgentTimeHorizon(std::size_t agentNo, float timeHorizon) {
agents_[agentNo]->timeHorizon_ = timeHorizon;
}
void RVOSimulator3D::setAgentVelocity(std::size_t agentNo,
const Vector3 &velocity) {
agents_[agentNo]->velocity_ = velocity;
}
} /* namespace RVO3D */

View File

@ -0,0 +1,274 @@
/*
* RVOSimulator.cpp
* RVO2-3D Library
*
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
*/
#include "RVOSimulator3d.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#include "Agent3d.h"
#include "KdTree3d.h"
namespace RVO3D {
RVOSimulator3D::RVOSimulator3D() : defaultAgent_(NULL), kdTree_(NULL), globalTime_(0.0f), timeStep_(0.0f)
{
kdTree_ = new KdTree3D(this);
}
RVOSimulator3D::RVOSimulator3D(float timeStep, float neighborDist, size_t maxNeighbors, float timeHorizon, float radius, float maxSpeed, const Vector3 &velocity) : defaultAgent_(NULL), kdTree_(NULL), globalTime_(0.0f), timeStep_(timeStep)
{
kdTree_ = new KdTree3D(this);
defaultAgent_ = new Agent3D();
defaultAgent_->maxNeighbors_ = maxNeighbors;
defaultAgent_->maxSpeed_ = maxSpeed;
defaultAgent_->neighborDist_ = neighborDist;
defaultAgent_->radius_ = radius;
defaultAgent_->timeHorizon_ = timeHorizon;
defaultAgent_->velocity_ = velocity;
}
RVOSimulator3D::~RVOSimulator3D()
{
if (defaultAgent_ != NULL) {
delete defaultAgent_;
}
for (size_t i = 0; i < agents_.size(); ++i) {
delete agents_[i];
}
if (kdTree_ != NULL) {
delete kdTree_;
}
}
size_t RVOSimulator3D::getAgentNumAgentNeighbors(size_t agentNo) const
{
return agents_[agentNo]->agentNeighbors_.size();
}
size_t RVOSimulator3D::getAgentAgentNeighbor(size_t agentNo, size_t neighborNo) const
{
return agents_[agentNo]->agentNeighbors_[neighborNo].second->id_;
}
size_t RVOSimulator3D::getAgentNumORCAPlanes(size_t agentNo) const
{
return agents_[agentNo]->orcaPlanes_.size();
}
const Plane &RVOSimulator3D::getAgentORCAPlane(size_t agentNo, size_t planeNo) const
{
return agents_[agentNo]->orcaPlanes_[planeNo];
}
void RVOSimulator3D::removeAgent(size_t agentNo)
{
delete agents_[agentNo];
agents_[agentNo] = agents_.back();
agents_.pop_back();
}
size_t RVOSimulator3D::addAgent(const Vector3 &position)
{
if (defaultAgent_ == NULL) {
return RVO3D_ERROR;
}
Agent3D *agent = new Agent3D();
agent->position_ = position;
agent->maxNeighbors_ = defaultAgent_->maxNeighbors_;
agent->maxSpeed_ = defaultAgent_->maxSpeed_;
agent->neighborDist_ = defaultAgent_->neighborDist_;
agent->radius_ = defaultAgent_->radius_;
agent->timeHorizon_ = defaultAgent_->timeHorizon_;
agent->velocity_ = defaultAgent_->velocity_;
agent->id_ = agents_.size();
agents_.push_back(agent);
return agents_.size() - 1;
}
size_t RVOSimulator3D::addAgent(const Vector3 &position, float neighborDist, size_t maxNeighbors, float timeHorizon, float radius, float maxSpeed, const Vector3 &velocity)
{
Agent3D *agent = new Agent3D();
agent->position_ = position;
agent->maxNeighbors_ = maxNeighbors;
agent->maxSpeed_ = maxSpeed;
agent->neighborDist_ = neighborDist;
agent->radius_ = radius;
agent->timeHorizon_ = timeHorizon;
agent->velocity_ = velocity;
agent->id_ = agents_.size();
agents_.push_back(agent);
return agents_.size() - 1;
}
void RVOSimulator3D::doStep()
{
kdTree_->buildAgentTree(agents_);
for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {
agents_[i]->computeNeighbors(this);
agents_[i]->computeNewVelocity(this);
}
for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {
agents_[i]->update(this);
}
globalTime_ += timeStep_;
}
size_t RVOSimulator3D::getAgentMaxNeighbors(size_t agentNo) const
{
return agents_[agentNo]->maxNeighbors_;
}
float RVOSimulator3D::getAgentMaxSpeed(size_t agentNo) const
{
return agents_[agentNo]->maxSpeed_;
}
float RVOSimulator3D::getAgentNeighborDist(size_t agentNo) const
{
return agents_[agentNo]->neighborDist_;
}
const Vector3 &RVOSimulator3D::getAgentPosition(size_t agentNo) const
{
return agents_[agentNo]->position_;
}
const Vector3 &RVOSimulator3D::getAgentPrefVelocity(size_t agentNo) const
{
return agents_[agentNo]->prefVelocity_;
}
float RVOSimulator3D::getAgentRadius(size_t agentNo) const
{
return agents_[agentNo]->radius_;
}
float RVOSimulator3D::getAgentTimeHorizon(size_t agentNo) const
{
return agents_[agentNo]->timeHorizon_;
}
const Vector3 &RVOSimulator3D::getAgentVelocity(size_t agentNo) const
{
return agents_[agentNo]->velocity_;
}
float RVOSimulator3D::getGlobalTime() const
{
return globalTime_;
}
size_t RVOSimulator3D::getNumAgents() const
{
return agents_.size();
}
float RVOSimulator3D::getTimeStep() const
{
return timeStep_;
}
void RVOSimulator3D::setAgentDefaults(float neighborDist, size_t maxNeighbors, float timeHorizon, float radius, float maxSpeed, const Vector3 &velocity)
{
if (defaultAgent_ == NULL) {
defaultAgent_ = new Agent3D();
}
defaultAgent_->maxNeighbors_ = maxNeighbors;
defaultAgent_->maxSpeed_ = maxSpeed;
defaultAgent_->neighborDist_ = neighborDist;
defaultAgent_->radius_ = radius;
defaultAgent_->timeHorizon_ = timeHorizon;
defaultAgent_->velocity_ = velocity;
}
void RVOSimulator3D::setAgentMaxNeighbors(size_t agentNo, size_t maxNeighbors)
{
agents_[agentNo]->maxNeighbors_ = maxNeighbors;
}
void RVOSimulator3D::setAgentMaxSpeed(size_t agentNo, float maxSpeed)
{
agents_[agentNo]->maxSpeed_ = maxSpeed;
}
void RVOSimulator3D::setAgentNeighborDist(size_t agentNo, float neighborDist)
{
agents_[agentNo]->neighborDist_ = neighborDist;
}
void RVOSimulator3D::setAgentPosition(size_t agentNo, const Vector3 &position)
{
agents_[agentNo]->position_ = position;
}
void RVOSimulator3D::setAgentPrefVelocity(size_t agentNo, const Vector3 &prefVelocity)
{
agents_[agentNo]->prefVelocity_ = prefVelocity;
}
void RVOSimulator3D::setAgentRadius(size_t agentNo, float radius)
{
agents_[agentNo]->radius_ = radius;
}
void RVOSimulator3D::setAgentTimeHorizon(size_t agentNo, float timeHorizon)
{
agents_[agentNo]->timeHorizon_ = timeHorizon;
}
void RVOSimulator3D::setAgentVelocity(size_t agentNo, const Vector3 &velocity)
{
agents_[agentNo]->velocity_ = velocity;
}
void RVOSimulator3D::setTimeStep(float timeStep)
{
timeStep_ = timeStep;
}
}

View File

@ -1,15 +1,14 @@
/*
* RVOSimulator3d.h
* RVOSimulator.h
* RVO2-3D Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@ -28,16 +27,15 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
* <http://gamma.cs.unc.edu/RVO2/>
*/
#ifndef RVO3D_RVO_SIMULATOR_H_
#define RVO3D_RVO_SIMULATOR_H_
/**
* @file RVOSimulator3d.h
* @brief Contains the RVOSimulator3D class.
* \file RVOSimulator.h
* \brief Contains the RVOSimulator class.
*/
#ifndef RVO3D_RVO_SIMULATOR_H_
#define RVO3D_RVO_SIMULATOR_H_
#include <cstddef>
#include <limits>
@ -48,358 +46,270 @@
namespace RVO3D {
class Agent3D;
class KdTree3D;
class Plane;
/**
* @brief Error value. A value equal to the largest unsigned integer, which is
* returned in case of an error by functions in RVO::RVOSimulator.
* \brief Error value.
*
* A value equal to the largest unsigned integer, which is returned in case of an error by functions in RVO3D::RVOSimulator.
*/
const std::size_t RVO3D_ERROR = std::numeric_limits<std::size_t>::max();
const size_t RVO3D_ERROR = std::numeric_limits<size_t>::max();
/**
* @brief Defines the simulation. The main class of the library that contains
* all simulation functionality.
* \brief Defines a plane.
*/
class Plane {
public:
/**
* \brief A point on the plane.
*/
Vector3 point;
/**
* \brief The normal to the plane.
*/
Vector3 normal;
};
/**
* \brief Defines the simulation.
*
* The main class of the library that contains all simulation functionality.
*/
class RVOSimulator3D {
public:
/**
* @brief Constructs a simulator instance.
* \brief Constructs a simulator instance.
*/
RVOSimulator3D();
/**
* @brief Constructs a simulator instance and sets the default properties
* for any new agent that is added.
* @param[in] timeStep The time step of the simulation. Must be positive.
* @param[in] neighborDist The default maximum distance (center point to
* center point) to other agents a new agent takes
* into account in the navigation. The larger this
* number, the longer the running time of the
* simulation. If the number is too low, the
* simulation will not be safe. Must be non-negative.
* @param[in] maxNeighbors The default maximum number of other agents a new
* agent takes into account in the navigation. The
* larger this number, the longer the running time of
* the simulation. If the number is too low, the
* simulation will not be safe.
* @param[in] timeHorizon The default minimum amount of time for which a new
* agent's velocities that are computed by the
* simulation are safe with respect to other agents.
* The larger this number, the sooner an agent will
* respond to the presence of other agents, but the
* less freedom the agent has in choosing its
* velocities. Must be positive.
* @param[in] radius The default radius of a new agent. Must be
* non-negative.
* @param[in] maxSpeed The default maximum speed of a new agent. Must be
* non-negative.
* @param[in] velocity The default initial three-dimensional linear
* velocity of a new agent (optional).
* \brief Constructs a simulator instance and sets the default properties for any new agent that is added.
* \param timeStep The time step of the simulation. Must be positive.
* \param neighborDist The default maximum distance (center point to center point) to other agents a new agent takes into account in the navigation. The larger this number, the longer he running time of the simulation. If the number is too low, the simulation will not be safe. Must be non-negative.
* \param maxNeighbors The default maximum number of other agents a new agent takes into account in the navigation. The larger this number, the longer the running time of the simulation. If the number is too low, the simulation will not be safe.
* \param timeHorizon The default minimum amount of time for which a new agent's velocities that are computed by the simulation are safe with respect to other agents. The larger this number, the sooner an agent will respond to the presence of other agents, but the less freedom the agent has in choosing its velocities. Must be positive.
* \param radius The default radius of a new agent. Must be non-negative.
* \param maxSpeed The default maximum speed of a new agent. Must be non-negative.
* \param velocity The default initial three-dimensional linear velocity of a new agent (optional).
*/
RVOSimulator3D(float timeStep, float neighborDist, std::size_t maxNeighbors,
float timeHorizon, float radius, float maxSpeed,
const Vector3 &velocity = Vector3());
RVOSimulator3D(float timeStep, float neighborDist, size_t maxNeighbors, float timeHorizon, float radius, float maxSpeed, const Vector3 &velocity = Vector3());
/**
* @brief Destroys this simulator instance.
* \brief Destroys this simulator instance.
*/
~RVOSimulator3D();
/**
* @brief Adds a new agent with default properties to the simulation.
* @param[in] position The three-dimensional starting position of this agent.
* @return The number of the agent or RVO::RVO3D_ERROR when the agent
* defaults have not been set.
* \brief Adds a new agent with default properties to the simulation.
* \param position The three-dimensional starting position of this agent.
* \return The number of the agent, or RVO3D::RVO3D_ERROR when the agent defaults have not been set.
*/
std::size_t addAgent(const Vector3 &position);
size_t addAgent(const Vector3 &position);
/**
* @brief Adds a new agent to the simulation.
* @param[in] position The three-dimensional starting position of this
* agent.
* @param[in] neighborDist The maximum distance (center point to center
* point) to other agents this agent takes into
* account in the navigation. The larger this number,
* the longer the running time of the simulation. If
* the number is too low, the simulation will not be
* safe. Must be non-negative.
* @param[in] maxNeighbors The maximum number of other agents this agent takes
* into account in the navigation. The larger this
* number, the longer the running time of the
* simulation. If the number is too low, the
* simulation will not be safe.
* @param[in] timeHorizon The minimum amount of time for which this agent's
* velocities that are computed by the simulation are
* safe with respect to other agents. The larger this
* number, the sooner this agent will respond to the
* presence of other agents, but the less freedom this
* agent has in choosing its velocities. Must be
* positive.
* @param[in] radius The radius of this agent. Must be non-negative.
* @param[in] maxSpeed The maximum speed of this agent. Must be
* non-negative.
* @param[in] velocity The initial three-dimensional linear velocity of
* this agent (optional).
* @return The number of the agent.
* \brief Adds a new agent to the simulation.
* \param position The three-dimensional starting position of this agent.
* \param neighborDist The maximum distance (center point to center point) to other agents this agent takes into account in the navigation. The larger this number, the longer the running time of the simulation. If the number is too low, the simulation will not be safe. Must be non-negative.
* \param maxNeighbors The maximum number of other agents this agent takes into account in the navigation. The larger this number, the longer the running time of the simulation. If the number is too low, the simulation will not be safe.
* \param timeHorizon The minimum amount of time for which this agent's velocities that are computed by the simulation are safe with respect to other agents. The larger this number, the sooner this agent will respond to the presence of other agents, but the less freedom this agent has in choosing its velocities. Must be positive.
* \param radius The radius of this agent. Must be non-negative.
* \param maxSpeed The maximum speed of this agent. Must be non-negative.
* \param velocity The initial three-dimensional linear velocity of this agent (optional).
* \return The number of the agent.
*/
std::size_t addAgent(const Vector3 &position, float neighborDist,
std::size_t maxNeighbors, float timeHorizon,
float radius, float maxSpeed,
const Vector3 &velocity = Vector3());
size_t addAgent(const Vector3 &position, float neighborDist, size_t maxNeighbors, float timeHorizon, float radius, float maxSpeed, const Vector3 &velocity = Vector3());
/**
* @brief Lets the simulator perform a simulation step and updates the
* three-dimensional position and three-dimensional velocity of each
* agent.
* \brief Lets the simulator perform a simulation step and updates the three-dimensional position and three-dimensional velocity of each agent.
*/
void doStep();
/**
* @brief Returns the specified agent neighbor of the specified agent.
* @param[in] agentNo The number of the agent whose agent neighbor is to
* be retrieved.
* @param[in] neighborNo The number of the agent neighbor to be retrieved.
* @return The number of the neighboring agent.
* \brief Returns the specified agent neighbor of the specified agent.
* \param agentNo The number of the agent whose agent neighbor is to be retrieved.
* \param neighborNo The number of the agent neighbor to be retrieved.
* \return The number of the neighboring agent.
*/
std::size_t getAgentAgentNeighbor(std::size_t agentNo,
std::size_t neighborNo) const;
size_t getAgentAgentNeighbor(size_t agentNo, size_t neighborNo) const;
/**
* @brief Returns the maximum neighbor count of a specified agent.
* @param[in] agentNo The number of the agent whose maximum neighbor count is
* to be retrieved.
* @return The present maximum neighbor count of the agent.
* \brief Returns the maximum neighbor count of a specified agent.
* \param agentNo The number of the agent whose maximum neighbor count is to be retrieved.
* \return The present maximum neighbor count of the agent.
*/
std::size_t getAgentMaxNeighbors(std::size_t agentNo) const;
size_t getAgentMaxNeighbors(size_t agentNo) const;
/**
* @brief Returns the maximum speed of a specified agent.
* @param[in] agentNo The number of the agent whose maximum speed is to be
* retrieved.
* @return The present maximum speed of the agent.
* \brief Returns the maximum speed of a specified agent.
* \param agentNo The number of the agent whose maximum speed is to be retrieved.
* \return The present maximum speed of the agent.
*/
float getAgentMaxSpeed(std::size_t agentNo) const;
float getAgentMaxSpeed(size_t agentNo) const;
/**
* @brief Returns the maximum neighbor distance of a specified agent.
* @param[in] agentNo The number of the agent whose maximum neighbor distance
* is to be retrieved.
* @return The present maximum neighbor distance of the agent.
* \brief Returns the maximum neighbor distance of a specified agent.
* \param agentNo The number of the agent whose maximum neighbor distance is to be retrieved.
* \return The present maximum neighbor distance of the agent.
*/
float getAgentNeighborDist(std::size_t agentNo) const;
float getAgentNeighborDist(size_t agentNo) const;
/**
* @brief Returns the count of agent neighbors taken into account to
* compute the current velocity for the specified agent.
* @param[in] agentNo The number of the agent whose count of agent neighbors
* is to be retrieved.
* @return The count of agent neighbors taken into account to compute the
* current velocity for the specified agent.
* \brief Returns the count of agent neighbors taken into account to compute the current velocity for the specified agent.
* \param agentNo The number of the agent whose count of agent neighbors is to be retrieved.
* \return The count of agent neighbors taken into account to compute the current velocity for the specified agent.
*/
std::size_t getAgentNumAgentNeighbors(std::size_t agentNo) const;
size_t getAgentNumAgentNeighbors(size_t agentNo) const;
/**
* @brief Returns the count of ORCA constraints used to compute the
* current velocity for the specified agent.
* @param[in] agentNo The number of the agent whose count of ORCA constraints
* i to be retrieved.
* @return The count of ORCA constraints used to compute the current
* velocity for the specified agent.
* \brief Returns the count of ORCA constraints used to compute the current velocity for the specified agent.
* \param agentNo The number of the agent whose count of ORCA constraints is to be retrieved.
* \return The count of ORCA constraints used to compute the current velocity for the specified agent.
*/
std::size_t getAgentNumORCAPlanes(std::size_t agentNo) const;
size_t getAgentNumORCAPlanes(size_t agentNo) const;
/**
* @brief Returns the specified ORCA constraint of the specified agent.
* @param[in] agentNo The number of the agent whose ORCA constraint is to be
* retrieved.
* @param[in] planeNo The number of the ORCA constraint to be retrieved.
* @return A plane representing the specified ORCA constraint.
* @note The halfspace to which the normal of the plane points is the
* region of permissible velocities with respect to the specified
* ORCA constraint.
* \brief Returns the specified ORCA constraint of the specified agent.
* \param agentNo The number of the agent whose ORCA constraint is to be retrieved.
* \param planeNo The number of the ORCA constraint to be retrieved.
* \return A plane representing the specified ORCA constraint.
* \note The halfspace to which the normal of the plane points is the region of permissible velocities with respect to the specified ORCA constraint.
*/
const Plane &getAgentORCAPlane(std::size_t agentNo,
std::size_t planeNo) const;
const Plane &getAgentORCAPlane(size_t agentNo, size_t planeNo) const;
/**
* @brief Returns the three-dimensional position of a specified agent.
* @param[in] agentNo The number of the agent whose three-dimensional position
* is to be retrieved.
* @return The present three-dimensional position of the (center of the)
* agent.
* \brief Returns the three-dimensional position of a specified agent.
* \param agentNo The number of the agent whose three-dimensional position is to be retrieved.
* \return The present three-dimensional position of the (center of the) agent.
*/
const Vector3 &getAgentPosition(std::size_t agentNo) const;
const Vector3 &getAgentPosition(size_t agentNo) const;
/**
* @brief Returns the three-dimensional preferred velocity of a specified
* agent.
* @param[in] agentNo The number of the agent whose three-dimensional
* preferred velocity is to be retrieved.
* @return The present three-dimensional preferred velocity of the agent.
* \brief Returns the three-dimensional preferred velocity of a specified agent.
* \param agentNo The number of the agent whose three-dimensional preferred velocity is to be retrieved.
* \return The present three-dimensional preferred velocity of the agent.
*/
const Vector3 &getAgentPrefVelocity(std::size_t agentNo) const;
const Vector3 &getAgentPrefVelocity(size_t agentNo) const;
/**
* @brief Returns the radius of a specified agent.
* @param[in] agentNo The number of the agent whose radius is to be retrieved.
* @return The present radius of the agent.
* \brief Returns the radius of a specified agent.
* \param agentNo The number of the agent whose radius is to be retrieved.
* \return The present radius of the agent.
*/
float getAgentRadius(std::size_t agentNo) const;
float getAgentRadius(size_t agentNo) const;
/**
* @brief Returns the time horizon of a specified agent.
* @param[in] agentNo The number of the agent whose time horizon is to be
* retrieved.
* @return The present time horizon of the agent.
* \brief Returns the time horizon of a specified agent.
* \param agentNo The number of the agent whose time horizon is to be retrieved.
* \return The present time horizon of the agent.
*/
float getAgentTimeHorizon(std::size_t agentNo) const;
float getAgentTimeHorizon(size_t agentNo) const;
/**
* @brief Returns the three-dimensional linear velocity of a specified
* agent.
* @param[in] agentNo The number of the agent whose three-dimensional linear
* velocity is to be retrieved.
* @return The present three-dimensional linear velocity of the agent.
* \brief Returns the three-dimensional linear velocity of a specified agent.
* \param agentNo The number of the agent whose three-dimensional linear velocity is to be retrieved.
* \return The present three-dimensional linear velocity of the agent.
*/
const Vector3 &getAgentVelocity(std::size_t agentNo) const;
const Vector3 &getAgentVelocity(size_t agentNo) const;
/**
* @brief Returns the global time of the simulation.
* @return The present global time of the simulation (zero initially).
* \brief Returns the global time of the simulation.
* \return The present global time of the simulation (zero initially).
*/
float getGlobalTime() const { return globalTime_; }
/**
* @brief Returns the count of agents in the simulation.
* @return The count of agents in the simulation.
*/
std::size_t getNumAgents() const { return agents_.size(); }
float getGlobalTime() const;
/**
* @brief Returns the time step of the simulation.
* @return The present time step of the simulation.
* \brief Returns the count of agents in the simulation.
* \return The count of agents in the simulation.
*/
float getTimeStep() const { return timeStep_; }
size_t getNumAgents() const;
/**
* @brief Removes an agent from the simulation.
* @param[in] agentNo The number of the agent that is to be removed.
* @note After the removal of the agent, the agent that previously had
* number getNumAgents() - 1 will now have number agentNo.
* \brief Returns the time step of the simulation.
* \return The present time step of the simulation.
*/
void removeAgent(std::size_t agentNo);
float getTimeStep() const;
/**
* @brief Sets the default properties for any new agent that is added.
* @param[in] neighborDist The default maximum distance (center point to
* center point) to other agents a new agent takes
* into account in the navigation. The larger this
* number, the longer he running time of the
* simulation. If the number is too low, the
* simulation will not be safe. Must be non-negative.
* @param[in] maxNeighbors The default maximum number of other agents a new
* agent takes into account in the navigation. The
* larger this number, the longer the running time of
* the simulation. If the number is too low, the
* simulation will not be safe.
* @param[in] timeHorizon The default minimum amount of time for which a new
* agent's velocities that are computed by the
* simulation are safe with respect to other agents.
* The larger this number, the sooner an agent will
* respond to the presence of other agents, but the
* less freedom the agent has in choosing its
* velocities. Must be positive.
* @param[in] radius The default radius of a new agent. Must be
* non-negative.
* @param[in] maxSpeed The default maximum speed of a new agent. Must be
* non-negative.
* @param[in] velocity The default initial three-dimensional linear
* velocity of a new agent (optional).
* \brief Removes an agent from the simulation.
* \param agentNo The number of the agent that is to be removed.
* \note After the removal of the agent, the agent that previously had number getNumAgents() - 1 will now have number agentNo.
*/
void setAgentDefaults(float neighborDist, std::size_t maxNeighbors,
float timeHorizon, float radius, float maxSpeed,
const Vector3 &velocity = Vector3());
void removeAgent(size_t agentNo);
/**
* @brief Sets the maximum neighbor count of a specified agent.
* @param[in] agentNo The number of the agent whose maximum neighbor
* count is to be modified.
* @param[in] maxNeighbors The replacement maximum neighbor count.
* \brief Sets the default properties for any new agent that is added.
* \param neighborDist The default maximum distance (center point to center point) to other agents a new agent takes into account in the navigation. The larger this number, the longer he running time of the simulation. If the number is too low, the simulation will not be safe. Must be non-negative.
* \param maxNeighbors The default maximum number of other agents a new agent takes into account in the navigation. The larger this number, the longer the running time of the simulation. If the number is too low, the simulation will not be safe.
* \param timeHorizon The default minimum amount of time for which a new agent's velocities that are computed by the simulation are safe with respect to other agents. The larger this number, the sooner an agent will respond to the presence of other agents, but the less freedom the agent has in choosing its velocities. Must be positive.
* \param radius The default radius of a new agent. Must be non-negative.
* \param maxSpeed The default maximum speed of a new agent. Must be non-negative.
* \param velocity The default initial three-dimensional linear velocity of a new agent (optional).
*/
void setAgentMaxNeighbors(std::size_t agentNo, std::size_t maxNeighbors);
void setAgentDefaults(float neighborDist, size_t maxNeighbors, float timeHorizon, float radius, float maxSpeed, const Vector3 &velocity = Vector3());
/**
* @brief Sets the maximum speed of a specified agent.
* @param[in] agentNo The number of the agent whose maximum speed is to be
* modified.
* @param[in] maxSpeed The replacement maximum speed. Must be non-negative.
* \brief Sets the maximum neighbor count of a specified agent.
* \param agentNo The number of the agent whose maximum neighbor count is to be modified.
* \param maxNeighbors The replacement maximum neighbor count.
*/
void setAgentMaxSpeed(std::size_t agentNo, float maxSpeed);
void setAgentMaxNeighbors(size_t agentNo, size_t maxNeighbors);
/**
* @brief Sets the maximum neighbor distance of a specified agent.
* @param[in] agentNo The number of the agent whose maximum neighbor
* distance is to be modified.
* @param[in] neighborDist The replacement maximum neighbor distance. Must be
* non-negative.
* \brief Sets the maximum speed of a specified agent.
* \param agentNo The number of the agent whose maximum speed is to be modified.
* \param maxSpeed The replacement maximum speed. Must be non-negative.
*/
void setAgentNeighborDist(std::size_t agentNo, float neighborDist);
void setAgentMaxSpeed(size_t agentNo, float maxSpeed);
/**
* @brief Sets the three-dimensional position of a specified agent.
* @param[in] agentNo The number of the agent whose three-dimensional
* position is to be modified.
* @param[in] position The replacement of the three-dimensional position.
* \brief Sets the maximum neighbor distance of a specified agent.
* \param agentNo The number of the agent whose maximum neighbor distance is to be modified.
* \param neighborDist The replacement maximum neighbor distance. Must be non-negative.
*/
void setAgentPosition(std::size_t agentNo, const Vector3 &position);
void setAgentNeighborDist(size_t agentNo, float neighborDist);
/**
* @brief Sets the three-dimensional preferred velocity of a specified
* agent.
* @param[in] agentNo The number of the agent whose three-dimensional
* preferred velocity is to be modified.
* @param[in] prefVelocity The replacement of the three-dimensional preferred
* velocity.
* \brief Sets the three-dimensional position of a specified agent.
* \param agentNo The number of the agent whose three-dimensional position is to be modified.
* \param position The replacement of the three-dimensional position.
*/
void setAgentPrefVelocity(std::size_t agentNo, const Vector3 &prefVelocity);
void setAgentPosition(size_t agentNo, const Vector3 &position);
/**
* @brief Sets the radius of a specified agent.
* @param[in] agentNo The number of the agent whose radius is to be modified.
* @param[in] radius The replacement radius. Must be non-negative.
* \brief Sets the three-dimensional preferred velocity of a specified agent.
* \param agentNo The number of the agent whose three-dimensional preferred velocity is to be modified.
* \param prefVelocity The replacement of the three-dimensional preferred velocity.
*/
void setAgentRadius(std::size_t agentNo, float radius);
void setAgentPrefVelocity(size_t agentNo, const Vector3 &prefVelocity);
/**
* @brief Sets the time horizon of a specified agent with respect to other
* agents.
* @param[in] agentNo The number of the agent whose time horizon is to be
* modified.
* @param[in] timeHorizon The replacement time horizon with respect to other
* agents. Must be positive.
* \brief Sets the radius of a specified agent.
* \param agentNo The number of the agent whose radius is to be modified.
* \param radius The replacement radius. Must be non-negative.
*/
void setAgentTimeHorizon(std::size_t agentNo, float timeHorizon);
void setAgentRadius(size_t agentNo, float radius);
/**
* @brief Sets the three-dimensional linear velocity of a specified agent.
* @param[in] agentNo The number of the agent whose three-dimensional linear
* velocity is to be modified.
* @param[in] velocity The replacement three-dimensional linear velocity.
* \brief Sets the time horizon of a specified agent with respect to other agents.
* \param agentNo The number of the agent whose time horizon is to be modified.
* \param timeHorizon The replacement time horizon with respect to other agents. Must be positive.
*/
void setAgentVelocity(std::size_t agentNo, const Vector3 &velocity);
void setAgentTimeHorizon(size_t agentNo, float timeHorizon);
/**
* @brief Sets the time step of the simulation.
* @param[in] timeStep The time step of the simulation. Must be positive.
* \brief Sets the three-dimensional linear velocity of a specified agent.
* \param agentNo The number of the agent whose three-dimensional linear velocity is to be modified.
* \param velocity The replacement three-dimensional linear velocity.
*/
void setTimeStep(float timeStep) { timeStep_ = timeStep; }
void setAgentVelocity(size_t agentNo, const Vector3 &velocity);
/**
* \brief Sets the time step of the simulation.
* \param timeStep The time step of the simulation. Must be positive.
*/
void setTimeStep(float timeStep);
public:
/* Not implemented. */
RVOSimulator3D(const RVOSimulator3D &other);
/* Not implemented. */
RVOSimulator3D &operator=(const RVOSimulator3D &other);
Agent3D *defaultAgent_;
KdTree3D *kdTree_;
float globalTime_;
@ -409,6 +319,6 @@ class RVOSimulator3D {
friend class Agent3D;
friend class KdTree3D;
};
} /* namespace RVO3D */
}
#endif /* RVO3D_RVO_SIMULATOR_H_ */
#endif

View File

@ -1,170 +0,0 @@
/*
* Vector3.cc
* RVO2-3D Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <https://gamma.cs.unc.edu/RVO2/>
*/
#include "Vector3.h"
#include <cmath>
#include <ostream>
namespace RVO3D {
Vector3::Vector3() : val_() {
val_[0] = 0.0F;
val_[1] = 0.0F;
val_[2] = 0.0F;
}
Vector3::Vector3(const Vector3 &vector) : val_() {
val_[0] = vector[0];
val_[1] = vector[1];
val_[2] = vector[2];
}
Vector3::Vector3(const float val[3]) : val_() {
val_[0] = val[0];
val_[1] = val[1];
val_[2] = val[2];
}
Vector3::Vector3(float x, float y, float z) : val_() {
val_[0] = x;
val_[1] = y;
val_[2] = z;
}
Vector3::~Vector3() {}
Vector3 &Vector3::operator=(const Vector3 &vector) {
if (this != &vector) {
val_[0] = vector[0];
val_[1] = vector[1];
val_[2] = vector[2];
}
return *this;
}
float Vector3::operator[](std::size_t i) const { return val_[i]; }
float &Vector3::operator[](std::size_t i) { return val_[i]; }
Vector3 Vector3::operator-() const {
return Vector3(-val_[0], -val_[1], -val_[2]);
}
float Vector3::operator*(const Vector3 &vector) const {
return val_[0] * vector[0] + val_[1] * vector[1] + val_[2] * vector[2];
}
Vector3 Vector3::operator*(float scalar) const {
return Vector3(val_[0] * scalar, val_[1] * scalar, val_[2] * scalar);
}
Vector3 Vector3::operator/(float scalar) const {
const float invScalar = 1.0F / scalar;
return Vector3(val_[0] * invScalar, val_[1] * invScalar, val_[2] * invScalar);
}
Vector3 Vector3::operator+(const Vector3 &vector) const {
return Vector3(val_[0] + vector[0], val_[1] + vector[1], val_[2] + vector[2]);
}
Vector3 Vector3::operator-(const Vector3 &vector) const {
return Vector3(val_[0] - vector[0], val_[1] - vector[1], val_[2] - vector[2]);
}
bool Vector3::operator==(const Vector3 &vector) const {
return val_[0] == vector[0] && val_[1] == vector[1] && val_[2] == vector[2];
}
bool Vector3::operator!=(const Vector3 &vector) const {
return val_[0] != vector[0] || val_[1] != vector[1] || val_[2] != vector[2];
}
Vector3 &Vector3::operator*=(float scalar) {
val_[0] *= scalar;
val_[1] *= scalar;
val_[2] *= scalar;
return *this;
}
Vector3 &Vector3::operator/=(float scalar) {
const float invScalar = 1.0F / scalar;
val_[0] *= invScalar;
val_[1] *= invScalar;
val_[2] *= invScalar;
return *this;
}
Vector3 &Vector3::operator+=(const Vector3 &vector) {
val_[0] += vector[0];
val_[1] += vector[1];
val_[2] += vector[2];
return *this;
}
Vector3 &Vector3::operator-=(const Vector3 &vector) {
val_[0] -= vector[0];
val_[1] -= vector[1];
val_[2] -= vector[2];
return *this;
}
Vector3 operator*(float scalar, const Vector3 &vector) {
return Vector3(scalar * vector[0], scalar * vector[1], scalar * vector[2]);
}
std::ostream &operator<<(std::ostream &stream, const Vector3 &vector) {
stream << "(" << vector[0] << "," << vector[1] << "," << vector[2] << ")";
return stream;
}
float abs(const Vector3 &vector) { return std::sqrt(vector * vector); }
float absSq(const Vector3 &vector) { return vector * vector; }
Vector3 cross(const Vector3 &vector1, const Vector3 &vector2) {
return Vector3(vector1[1] * vector2[2] - vector1[2] * vector2[1],
vector1[2] * vector2[0] - vector1[0] * vector2[2],
vector1[0] * vector2[1] - vector1[1] * vector2[0]);
}
Vector3 normalize(const Vector3 &vector) { return vector / abs(vector); }
} /* namespace RVO3D */

View File

@ -2,8 +2,7 @@
* Vector3.h
* RVO2-3D Library
*
* SPDX-FileCopyrightText: 2008 University of North Carolina at Chapel Hill
* SPDX-License-Identifier: Apache-2.0
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -31,284 +30,324 @@
* <https://gamma.cs.unc.edu/RVO2/>
*/
/**
* \file Vector3.h
* \brief Contains the Vector3 class.
*/
#ifndef RVO3D_VECTOR3_H_
#define RVO3D_VECTOR3_H_
/**
* @file Vector3.h
* @brief Contains the Vector3 class.
*/
#include <cmath>
#include <cstddef>
#include <iosfwd>
#include <ostream>
namespace RVO3D {
/**
* @brief Defines a three-dimensional vector.
* \brief Defines a three-dimensional vector.
*/
class Vector3 {
public:
/**
* @brief Constructs and initializes a three-dimensional vector instance to
* zero.
* \brief Constructs and initializes a three-dimensional vector instance to zero.
*/
Vector3();
inline Vector3()
{
val_[0] = 0.0f;
val_[1] = 0.0f;
val_[2] = 0.0f;
}
/**
* @brief Constructs and initializes a three-dimensional vector from the
* specified three-dimensional vector.
* @param[in] vector The three-dimensional vector containing the
* xyz-coordinates.
* \brief Constructs and initializes a three-dimensional vector from the specified three-dimensional vector.
* \param vector The three-dimensional vector containing the xyz-coordinates.
*/
Vector3(const Vector3 &vector);
inline Vector3(const Vector3 &vector)
{
val_[0] = vector[0];
val_[1] = vector[1];
val_[2] = vector[2];
}
/**
* @brief Constructs and initializes a three-dimensional vector from the
* specified three-element array.
* @param[in] val The three-element array containing the xyz-coordinates.
* \brief Constructs and initializes a three-dimensional vector from the specified three-element array.
* \param val The three-element array containing the xyz-coordinates.
*/
explicit Vector3(const float val[3]);
inline explicit Vector3(const float val[3])
{
val_[0] = val[0];
val_[1] = val[1];
val_[2] = val[2];
}
/**
* @brief Constructs and initializes a three-dimensional vector from the
* specified xyz-coordinates.
* @param[in] x The x-coordinate of the three-dimensional vector.
* @param[in] y The y-coordinate of the three-dimensional vector.
* @param[in] z The z-coordinate of the three-dimensional vector.
* \brief Constructs and initializes a three-dimensional vector from the specified xyz-coordinates.
* \param x The x-coordinate of the three-dimensional vector.
* \param y The y-coordinate of the three-dimensional vector.
* \param z The z-coordinate of the three-dimensional vector.
*/
Vector3(float x, float y, float z);
inline Vector3(float x, float y, float z)
{
val_[0] = x;
val_[1] = y;
val_[2] = z;
}
/**
* @brief Destroys this three-dimensional vector instance.
* \brief Returns the x-coordinate of this three-dimensional vector.
* \return The x-coordinate of the three-dimensional vector.
*/
~Vector3();
inline float x() const { return val_[0]; }
/**
* @brief Returns the x-coordinate of this three-dimensional vector.
* @return The x-coordinate of the three-dimensional vector.
* \brief Returns the y-coordinate of this three-dimensional vector.
* \return The y-coordinate of the three-dimensional vector.
*/
float x() const { return val_[0]; }
inline float y() const { return val_[1]; }
/**
* @brief Returns the y-coordinate of this three-dimensional vector.
* @return The y-coordinate of the three-dimensional vector.
* \brief Returns the z-coordinate of this three-dimensional vector.
* \return The z-coordinate of the three-dimensional vector.
*/
float y() const { return val_[1]; }
inline float z() const { return val_[2]; }
/**
* @brief Returns the z-coordinate of this three-dimensional vector.
* @return The z-coordinate of the three-dimensional vector.
* \brief Returns the specified coordinate of this three-dimensional vector.
* \param i The coordinate that should be returned (0 <= i < 3).
* \return The specified coordinate of the three-dimensional vector.
*/
float z() const { return val_[2]; }
inline float operator[](size_t i) const { return val_[i]; }
/**
* @brief Assigns a copy of the specified three-dimensional vector to
* this three-dimensional vector instance.
* @param[in] vector The three-dimensional vector containing the
* xyz-coordinates.
* @return A reference to this three-dimensional vector instance.
* \brief Returns a reference to the specified coordinate of this three-dimensional vector.
* \param i The coordinate to which a reference should be returned (0 <= i < 3).
* \return A reference to the specified coordinate of the three-dimensional vector.
*/
Vector3 &operator=(const Vector3 &vector);
inline float &operator[](size_t i) { return val_[i]; }
/**
* @brief Returns the specified coordinate of this three-dimensional
* vector.
* @param[in] i The coordinate that should be returned (0 <= i < 3).
* @return The specified coordinate of the three-dimensional vector.
* \brief Computes the negation of this three-dimensional vector.
* \return The negation of this three-dimensional vector.
*/
float operator[](std::size_t i) const;
inline Vector3 operator-() const
{
return Vector3(-val_[0], -val_[1], -val_[2]);
}
/**
* @brief Returns a reference to the specified coordinate of this
* three-dimensional vector.
* @param[in] i The coordinate to which a reference should be returned
* (0 <= i < 3).
* @return A reference to the specified coordinate of the three-dimensional
* vector.
* \brief Computes the dot product of this three-dimensional vector with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the dot product should be computed.
* \return The dot product of this three-dimensional vector with a specified three-dimensional vector.
*/
float &operator[](std::size_t i);
inline float operator*(const Vector3 &vector) const
{
return val_[0] * vector[0] + val_[1] * vector[1] + val_[2] * vector[2];
}
/**
* @brief Computes the negation of this three-dimensional vector.
* @return The negation of this three-dimensional vector.
* \brief Computes the scalar multiplication of this three-dimensional vector with the specified scalar value.
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \return The scalar multiplication of this three-dimensional vector with a specified scalar value.
*/
Vector3 operator-() const;
inline Vector3 operator*(float scalar) const
{
return Vector3(val_[0] * scalar, val_[1] * scalar, val_[2] * scalar);
}
/**
* @brief Computes the dot product of this three-dimensional vector with
* the specified three-dimensional vector.
* @param[in] vector The three-dimensional vector with which the dot product
* should be computed.
* @return The dot product of this three-dimensional vector with a
* specified three-dimensional vector.
* \brief Computes the scalar division of this three-dimensional vector with the specified scalar value.
* \param scalar The scalar value with which the scalar division should be computed.
* \return The scalar division of this three-dimensional vector with a specified scalar value.
*/
float operator*(const Vector3 &vector) const;
inline Vector3 operator/(float scalar) const
{
const float invScalar = 1.0f / scalar;
return Vector3(val_[0] * invScalar, val_[1] * invScalar, val_[2] * invScalar);
}
/**
* @brief Computes the scalar multiplication of this three-dimensional
* vector with the specified scalar value.
* @param[in] scalar The scalar value with which the scalar multiplication
* should be computed.
* @return The scalar multiplication of this three-dimensional vector with
* a specified scalar value.
* \brief Computes the vector sum of this three-dimensional vector with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the vector sum should be computed.
* \return The vector sum of this three-dimensional vector with a specified three-dimensional vector.
*/
Vector3 operator*(float scalar) const;
inline Vector3 operator+(const Vector3 &vector) const
{
return Vector3(val_[0] + vector[0], val_[1] + vector[1], val_[2] + vector[2]);
}
/**
* @brief Computes the scalar division of this three-dimensional vector
* with the specified scalar value.
* @param[in] scalar The scalar value with which the scalar division should be
* computed.
* @return The scalar division of this three-dimensional vector with a
* specified scalar value.
* \brief Computes the vector difference of this three-dimensional vector with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the vector difference should be computed.
* \return The vector difference of this three-dimensional vector with a specified three-dimensional vector.
*/
Vector3 operator/(float scalar) const;
inline Vector3 operator-(const Vector3 &vector) const
{
return Vector3(val_[0] - vector[0], val_[1] - vector[1], val_[2] - vector[2]);
}
/**
* @brief Computes the vector sum of this three-dimensional vector with
* the specified three-dimensional vector.
* @param[in] vector The three-dimensional vector with which the vector sum
* should be computed.
* @return The vector sum of this three-dimensional vector with a specified
* three-dimensional vector.
* \brief Tests this three-dimensional vector for equality with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which to test for equality.
* \return True if the three-dimensional vectors are equal.
*/
Vector3 operator+(const Vector3 &vector) const;
inline bool operator==(const Vector3 &vector) const
{
return val_[0] == vector[0] && val_[1] == vector[1] && val_[2] == vector[2];
}
/**
* @brief Computes the vector difference of this three-dimensional vector
* with the specified three-dimensional vector.
* @param[in] vector The three-dimensional vector with which the vector
* difference should be computed.
* @return The vector difference of this three-dimensional vector with a
* specified three-dimensional vector.
* \brief Tests this three-dimensional vector for inequality with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which to test for inequality.
* \return True if the three-dimensional vectors are not equal.
*/
Vector3 operator-(const Vector3 &vector) const;
inline bool operator!=(const Vector3 &vector) const
{
return val_[0] != vector[0] || val_[1] != vector[1] || val_[2] != vector[2];
}
/**
* @brief Tests this three-dimensional vector for equality with the
* specified three-dimensional vector.
* @param[in] vector The three-dimensional vector with which to test for
* equality.
* @return True if the three-dimensional vectors are equal.
* \brief Sets the value of this three-dimensional vector to the scalar multiplication of itself with the specified scalar value.
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \return A reference to this three-dimensional vector.
*/
bool operator==(const Vector3 &vector) const;
inline Vector3 &operator*=(float scalar)
{
val_[0] *= scalar;
val_[1] *= scalar;
val_[2] *= scalar;
return *this;
}
/**
* @brief Tests this three-dimensional vector for inequality with the
* specified three-dimensional vector
* @param[in] vector The three-dimensional vector with which to test for
* inequality.
* @return True if the three-dimensional vectors are not equal.
* \brief Sets the value of this three-dimensional vector to the scalar division of itself with the specified scalar value.
* \param scalar The scalar value with which the scalar division should be computed.
* \return A reference to this three-dimensional vector.
*/
bool operator!=(const Vector3 &vector) const;
inline Vector3 &operator/=(float scalar)
{
const float invScalar = 1.0f / scalar;
val_[0] *= invScalar;
val_[1] *= invScalar;
val_[2] *= invScalar;
return *this;
}
/**
* @brief Sets the value of this three-dimensional vector to the scalar
* multiplication of itself with the specified scalar value.
* @param[in] scalar The scalar value with which the scalar multiplication
* should be computed.
* @return A reference to this three-dimensional vector.
*/
Vector3 &operator*=(float scalar);
/**
* @brief Sets the value of this three-dimensional vector to the scalar
* division of itself with the specified scalar value.
* @param[in] scalar The scalar value with which the scalar division should be
* computed.
* @return A reference to this three-dimensional vector.
*/
Vector3 &operator/=(float scalar);
/**
* @brief Sets the value of this three-dimensional vector to the vector
* \brief Sets the value of this three-dimensional vector to the vector
* sum of itself with the specified three-dimensional vector.
* @param[in] vector The three-dimensional vector with which the vector sum
* should be computed.
* @return A reference to this three-dimensional vector.
* \param vector The three-dimensional vector with which the vector sum should be computed.
* \return A reference to this three-dimensional vector.
*/
Vector3 &operator+=(const Vector3 &vector);
inline Vector3 &operator+=(const Vector3 &vector)
{
val_[0] += vector[0];
val_[1] += vector[1];
val_[2] += vector[2];
return *this;
}
/**
* @brief Sets the value of this three-dimensional vector to the vector
* difference of itself with the specified three-dimensional
* vector.
* @param[in] vector The three-dimensional vector with which the vector
* difference should be computed.
* @return A reference to this three-dimensional vector.
* \brief Sets the value of this three-dimensional vector to the vector difference of itself with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the vector difference should be computed.
* \return A reference to this three-dimensional vector.
*/
Vector3 &operator-=(const Vector3 &vector);
inline Vector3 &operator-=(const Vector3 &vector)
{
val_[0] -= vector[0];
val_[1] -= vector[1];
val_[2] -= vector[2];
return *this;
}
inline Vector3 &operator=(const Vector3 &vector)
{
val_[0] = vector[0];
val_[1] = vector[1];
val_[2] = vector[2];
return *this;
}
private:
float val_[3];
};
/**
* @relates Vector3
* @brief Computes the scalar multiplication of the specified
* three-dimensional vector with the specified scalar value.
* @param[in] scalar The scalar value with which the scalar multiplication
* should be computed.
* @param[in] vector The three-dimensional vector with which the scalar
* multiplication should be computed.
* @return The scalar multiplication of the three-dimensional vector with the
* scalar value.
*/
Vector3 operator*(float scalar, const Vector3 &vector);
/**
* @relates Vector3
* @brief Inserts the specified three-dimensional vector into the
* specified output stream.
* @param[in,out] os The output stream into which the three-dimensional
* vector should be inserted.
* @param[in] vector The three-dimensional vector which to insert into the
* output stream.
* @return A reference to the output stream.
* \relates Vector3
* \brief Computes the scalar multiplication of the specified three-dimensional vector with the specified scalar value.
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \param vector The three-dimensional vector with which the scalar multiplication should be computed.
* \return The scalar multiplication of the three-dimensional vector with the scalar value.
*/
std::ostream &operator<<(std::ostream &stream,
const Vector3 &vector);
inline Vector3 operator*(float scalar, const Vector3 &vector)
{
return Vector3(scalar * vector[0], scalar * vector[1], scalar * vector[2]);
}
/**
* @relates Vector3
* @brief Computes the length of a specified three-dimensional vector.
* @param[in] vector The three-dimensional vector whose length is to be
* computed.
* @return The length of the three-dimensional vector.
* \relates Vector3
* \brief Computes the cross product of the specified three-dimensional vectors.
* \param vector1 The first vector with which the cross product should be computed.
* \param vector2 The second vector with which the cross product should be computed.
* \return The cross product of the two specified vectors.
*/
float abs(const Vector3 &vector);
inline Vector3 cross(const Vector3 &vector1, const Vector3 &vector2)
{
return Vector3(vector1[1] * vector2[2] - vector1[2] * vector2[1], vector1[2] * vector2[0] - vector1[0] * vector2[2], vector1[0] * vector2[1] - vector1[1] * vector2[0]);
}
/**
* @relates Vector3
* @brief Computes the squared length of a specified three-dimensional
* vector.
* @param[in] vector The three-dimensional vector whose squared length is to be
* computed.
* @return The squared length of the three-dimensional vector.
* \relates Vector3
* \brief Inserts the specified three-dimensional vector into the specified output stream.
* \param os The output stream into which the three-dimensional vector should be inserted.
* \param vector The three-dimensional vector which to insert into the output stream.
* \return A reference to the output stream.
*/
float absSq(const Vector3 &vector);
inline std::ostream &operator<<(std::ostream &os, const Vector3 &vector)
{
os << "(" << vector[0] << "," << vector[1] << "," << vector[2] << ")";
return os;
}
/**
* @relates Vector3
* @brief Computes the cross product of the specified three-dimensional
* vectors.
* @param[in] vector1 The first vector with which the cross product should be
* computed.
* @param[in] vector2 The second vector with which the cross product should be
* computed.
* @return The cross product of the two specified vectors.
* \relates Vector3
* \brief Computes the length of a specified three-dimensional vector.
* \param vector The three-dimensional vector whose length is to be computed.
* \return The length of the three-dimensional vector.
*/
Vector3 cross(const Vector3 &vector1, const Vector3 &vector2);
inline float abs(const Vector3 &vector)
{
return std::sqrt(vector * vector);
}
/**
* @relates Vector3
* @brief Computes the normalization of the specified three-dimensiona
* vector.
* @param[in] vector The three-dimensional vector whose normalization is to be
* computed.
* @return The normalization of the three-dimensional vector.
* \relates Vector3
* \brief Computes the squared length of a specified three-dimensional vector.
* \param vector The three-dimensional vector whose squared length is to be computed.
* \return The squared length of the three-dimensional vector.
*/
Vector3 normalize(const Vector3 &vector);
} /* namespace RVO3D */
inline float absSq(const Vector3 &vector)
{
return vector * vector;
}
#endif /* RVO3D_VECTOR3_H_ */
/**
* \relates Vector3
* \brief Computes the normalization of the specified three-dimensional vector.
* \param vector The three-dimensional vector whose normalization is to be computed.
* \return The normalization of the three-dimensional vector.
*/
inline Vector3 normalize(const Vector3 &vector)
{
return vector / abs(vector);
}
}
#endif