Merge pull request #33311 from SneakyFish5/update-opus

Update opus to 1.3.1 and opusfile to 0.11
This commit is contained in:
Rémi Verschelde 2019-11-12 07:55:25 +01:00 committed by GitHub
commit ba4c808721
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
225 changed files with 10458 additions and 6917 deletions

View File

@ -20,6 +20,9 @@ if env['builtin_opus']:
"opus_multistream.c",
"opus_multistream_encoder.c",
"opus_multistream_decoder.c",
"opus_projection_encoder.c",
"opus_projection_decoder.c",
"mapping_matrix.c",
"repacketizer.c",
"analysis.c",
@ -53,9 +56,10 @@ if env['builtin_opus']:
"celt/vq.c",
#"celt/arm/arm_celt_map.c",
#"celt/arm/armcpu.c",
#"celt/arm/celt_ne10_fft.c",
#"celt/arm/celt_ne10_mdct.c",
#"celt/arm/celt_fft_ne10.c",
#"celt/arm/celt_mdct_ne10.c",
#"celt/arm/celt_neon_intr.c",
#"celt/arm/pitch_neon_intr.c",
# Sync with silk_sources.mk
"silk/CNG.c",
@ -113,6 +117,7 @@ if env['builtin_opus']:
"silk/lin2log.c",
"silk/log2lin.c",
"silk/LPC_analysis_filter.c",
"silk/LPC_fit.c",
"silk/LPC_inv_pred_gain.c",
"silk/table_LSF_cos.c",
"silk/NLSF2A.c",
@ -150,12 +155,10 @@ if env['builtin_opus']:
"silk/fixed/find_pitch_lags_FIX.c",
"silk/fixed/find_pred_coefs_FIX.c",
"silk/fixed/noise_shape_analysis_FIX.c",
"silk/fixed/prefilter_FIX.c",
"silk/fixed/process_gains_FIX.c",
"silk/fixed/regularize_correlations_FIX.c",
"silk/fixed/residual_energy16_FIX.c",
"silk/fixed/residual_energy_FIX.c",
"silk/fixed/solve_LS_FIX.c",
"silk/fixed/warped_autocorrelation_FIX.c",
"silk/fixed/apply_sine_window_FIX.c",
"silk/fixed/autocorr_FIX.c",
@ -180,11 +183,9 @@ if env['builtin_opus']:
"silk/float/LTP_analysis_filter_FLP.c",
"silk/float/LTP_scale_ctrl_FLP.c",
"silk/float/noise_shape_analysis_FLP.c",
"silk/float/prefilter_FLP.c",
"silk/float/process_gains_FLP.c",
"silk/float/regularize_correlations_FLP.c",
"silk/float/residual_energy_FLP.c",
"silk/float/solve_LS_FLP.c",
"silk/float/warped_autocorrelation_FLP.c",
"silk/float/wrappers_FLP.c",
"silk/float/autocorrelation_FLP.c",
@ -193,7 +194,6 @@ if env['builtin_opus']:
"silk/float/energy_FLP.c",
"silk/float/inner_product_FLP.c",
"silk/float/k2a_FLP.c",
"silk/float/levinsondurbin_FLP.c",
"silk/float/LPC_inv_pred_gain_FLP.c",
"silk/float/pitch_analysis_core_FLP.c",
"silk/float/scale_copy_vector_FLP.c",

View File

@ -395,17 +395,19 @@ Files extracted from the upstream source:
## opus
- Upstream: https://opus-codec.org
- Version: 1.1.5 (opus) and 0.8 (opusfile)
- Version: 1.3.1 (opus) and 0.11 (opusfile)
- License: BSD-3-Clause
Files extracted from upstream source:
- Run `opus/configure` and copy/sync changes to `config.h`
(note that this file may have Godot-specific options enabled)
- all .c and .h files in src/ (both opus and opusfile)
- all .h files in include/ (both opus and opusfile) as opus/
- remove unused `opus_demo.c`,
- remove `http.c`, `wincerts.c` and `winerrno.h` (part of
unused libopusurl)
- celt/ and silk/ subfolders
- celt/ and silk/ subfolders (minus tests folders)
- COPYING

View File

@ -29,20 +29,29 @@
#include "config.h"
#endif
#define ANALYSIS_C
#include <stdio.h>
#include "mathops.h"
#include "kiss_fft.h"
#include "celt.h"
#include "modes.h"
#include "arch.h"
#include "quant_bands.h"
#include <stdio.h>
#include "analysis.h"
#include "mlp.h"
#include "stack_alloc.h"
#include "float_cast.h"
#ifndef M_PI
#define M_PI 3.141592653
#endif
#ifndef DISABLE_FLOAT_API
#define TRANSITION_PENALTY 10
static const float dct_table[128] = {
0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
@ -96,52 +105,118 @@ static const float analysis_window[240] = {
};
static const int tbands[NB_TBANDS+1] = {
2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 68, 80, 96, 120
4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240
};
static const int extra_bands[NB_TOT_BANDS+1] = {
1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 68, 80, 96, 120, 160, 200
};
/*static const float tweight[NB_TBANDS+1] = {
.3, .4, .5, .6, .7, .8, .9, 1., 1., 1., 1., 1., 1., 1., .8, .7, .6, .5
};*/
#define NB_TONAL_SKIP_BANDS 9
#define cA 0.43157974f
#define cB 0.67848403f
#define cC 0.08595542f
#define cE ((float)M_PI/2)
static OPUS_INLINE float fast_atan2f(float y, float x) {
float x2, y2;
/* Should avoid underflow on the values we'll get */
if (ABS16(x)+ABS16(y)<1e-9f)
{
x*=1e12f;
y*=1e12f;
}
x2 = x*x;
y2 = y*y;
if(x2<y2){
float den = (y2 + cB*x2) * (y2 + cC*x2);
if (den!=0)
return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE);
else
return (y<0 ? -cE : cE);
}else{
float den = (x2 + cB*y2) * (x2 + cC*y2);
if (den!=0)
return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE);
else
return (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE);
}
static opus_val32 silk_resampler_down2_hp(
opus_val32 *S, /* I/O State vector [ 2 ] */
opus_val32 *out, /* O Output signal [ floor(len/2) ] */
const opus_val32 *in, /* I Input signal [ len ] */
int inLen /* I Number of input samples */
)
{
int k, len2 = inLen/2;
opus_val32 in32, out32, out32_hp, Y, X;
opus_val64 hp_ener = 0;
/* Internal variables and state are in Q10 format */
for( k = 0; k < len2; k++ ) {
/* Convert to Q10 */
in32 = in[ 2 * k ];
/* All-pass section for even input sample */
Y = SUB32( in32, S[ 0 ] );
X = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y);
out32 = ADD32( S[ 0 ], X );
S[ 0 ] = ADD32( in32, X );
out32_hp = out32;
/* Convert to Q10 */
in32 = in[ 2 * k + 1 ];
/* All-pass section for odd input sample, and add to output of previous section */
Y = SUB32( in32, S[ 1 ] );
X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
out32 = ADD32( out32, S[ 1 ] );
out32 = ADD32( out32, X );
S[ 1 ] = ADD32( in32, X );
Y = SUB32( -in32, S[ 2 ] );
X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
out32_hp = ADD32( out32_hp, S[ 2 ] );
out32_hp = ADD32( out32_hp, X );
S[ 2 ] = ADD32( -in32, X );
hp_ener += out32_hp*(opus_val64)out32_hp;
/* Add, convert back to int16 and store to output */
out[ k ] = HALF32(out32);
}
#ifdef FIXED_POINT
/* len2 can be up to 480, so we shift by 8 more to make it fit. */
hp_ener = hp_ener >> (2*SIG_SHIFT + 8);
#endif
return (opus_val32)hp_ener;
}
void tonality_analysis_init(TonalityAnalysisState *tonal)
static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs)
{
VARDECL(opus_val32, tmp);
opus_val32 scale;
int j;
opus_val32 ret = 0;
SAVE_STACK;
if (subframe==0) return 0;
if (Fs == 48000)
{
subframe *= 2;
offset *= 2;
} else if (Fs == 16000) {
subframe = subframe*2/3;
offset = offset*2/3;
}
ALLOC(tmp, subframe, opus_val32);
downmix(_x, tmp, subframe, offset, c1, c2, C);
#ifdef FIXED_POINT
scale = (1<<SIG_SHIFT);
#else
scale = 1.f/32768;
#endif
if (c2==-2)
scale /= C;
else if (c2>-1)
scale /= 2;
for (j=0;j<subframe;j++)
tmp[j] *= scale;
if (Fs == 48000)
{
ret = silk_resampler_down2_hp(S, y, tmp, subframe);
} else if (Fs == 24000) {
OPUS_COPY(y, tmp, subframe);
} else if (Fs == 16000) {
VARDECL(opus_val32, tmp3x);
ALLOC(tmp3x, 3*subframe, opus_val32);
/* Don't do this at home! This resampler is horrible and it's only (barely)
usable for the purpose of the analysis because we don't care about all
the aliasing between 8 kHz and 12 kHz. */
for (j=0;j<subframe;j++)
{
tmp3x[3*j] = tmp[j];
tmp3x[3*j+1] = tmp[j];
tmp3x[3*j+2] = tmp[j];
}
silk_resampler_down2_hp(S, y, tmp3x, 3*subframe);
}
RESTORE_STACK;
return ret;
}
void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs)
{
/* Initialize reusable fields. */
tonal->arch = opus_select_arch();
tonal->Fs = Fs;
/* Clear remaining fields. */
tonality_analysis_reset(tonal);
}
@ -157,15 +232,34 @@ void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int
{
int pos;
int curr_lookahead;
float psum;
float tonality_max;
float tonality_avg;
int tonality_count;
int i;
int pos0;
float prob_avg;
float prob_count;
float prob_min, prob_max;
float vad_prob;
int mpos, vpos;
int bandwidth_span;
pos = tonal->read_pos;
curr_lookahead = tonal->write_pos-tonal->read_pos;
if (curr_lookahead<0)
curr_lookahead += DETECT_SIZE;
if (len > 480 && pos != tonal->write_pos)
tonal->read_subframe += len/(tonal->Fs/400);
while (tonal->read_subframe>=8)
{
tonal->read_subframe -= 8;
tonal->read_pos++;
}
if (tonal->read_pos>=DETECT_SIZE)
tonal->read_pos-=DETECT_SIZE;
/* On long frames, look at the second analysis window rather than the first. */
if (len > tonal->Fs/50 && pos != tonal->write_pos)
{
pos++;
if (pos==DETECT_SIZE)
@ -175,33 +269,178 @@ void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int
pos--;
if (pos<0)
pos = DETECT_SIZE-1;
pos0 = pos;
OPUS_COPY(info_out, &tonal->info[pos], 1);
tonal->read_subframe += len/120;
while (tonal->read_subframe>=4)
if (!info_out->valid)
return;
tonality_max = tonality_avg = info_out->tonality;
tonality_count = 1;
/* Look at the neighbouring frames and pick largest bandwidth found (to be safe). */
bandwidth_span = 6;
/* If possible, look ahead for a tone to compensate for the delay in the tone detector. */
for (i=0;i<3;i++)
{
tonal->read_subframe -= 4;
tonal->read_pos++;
pos++;
if (pos==DETECT_SIZE)
pos = 0;
if (pos == tonal->write_pos)
break;
tonality_max = MAX32(tonality_max, tonal->info[pos].tonality);
tonality_avg += tonal->info[pos].tonality;
tonality_count++;
info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
bandwidth_span--;
}
if (tonal->read_pos>=DETECT_SIZE)
tonal->read_pos-=DETECT_SIZE;
pos = pos0;
/* Look back in time to see if any has a wider bandwidth than the current frame. */
for (i=0;i<bandwidth_span;i++)
{
pos--;
if (pos < 0)
pos = DETECT_SIZE-1;
if (pos == tonal->write_pos)
break;
info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
}
info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f);
/* Compensate for the delay in the features themselves.
FIXME: Need a better estimate the 10 I just made up */
curr_lookahead = IMAX(curr_lookahead-10, 0);
mpos = vpos = pos0;
/* If we have enough look-ahead, compensate for the ~5-frame delay in the music prob and
~1 frame delay in the VAD prob. */
if (curr_lookahead > 15)
{
mpos += 5;
if (mpos>=DETECT_SIZE)
mpos -= DETECT_SIZE;
vpos += 1;
if (vpos>=DETECT_SIZE)
vpos -= DETECT_SIZE;
}
psum=0;
/* Summing the probability of transition patterns that involve music at
time (DETECT_SIZE-curr_lookahead-1) */
for (i=0;i<DETECT_SIZE-curr_lookahead;i++)
psum += tonal->pmusic[i];
for (;i<DETECT_SIZE;i++)
psum += tonal->pspeech[i];
psum = psum*tonal->music_confidence + (1-psum)*tonal->speech_confidence;
/*printf("%f %f %f\n", psum, info_out->music_prob, info_out->tonality);*/
/* The following calculations attempt to minimize a "badness function"
for the transition. When switching from speech to music, the badness
of switching at frame k is
b_k = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
where
v_i is the activity probability (VAD) at frame i,
p_i is the music probability at frame i
T is the probability threshold for switching
S is the penalty for switching during active audio rather than silence
the current frame has index i=0
info_out->music_prob = psum;
Rather than apply badness to directly decide when to switch, what we compute
instead is the threshold for which the optimal switching point is now. When
considering whether to switch now (frame 0) or at frame k, we have:
S*v_0 = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
which gives us:
T = ( \sum_{i=0}^{k-1} v_i*p_i + S*(v_k-v_0) ) / ( \sum_{i=0}^{k-1} v_i )
We take the min threshold across all positive values of k (up to the maximum
amount of lookahead we have) to give us the threshold for which the current
frame is the optimal switch point.
The last step is that we need to consider whether we want to switch at all.
For that we use the average of the music probability over the entire window.
If the threshold is higher than that average we're not going to
switch, so we compute a min with the average as well. The result of all these
min operations is music_prob_min, which gives the threshold for switching to music
if we're currently encoding for speech.
We do the exact opposite to compute music_prob_max which is used for switching
from music to speech.
*/
prob_min = 1.f;
prob_max = 0.f;
vad_prob = tonal->info[vpos].activity_probability;
prob_count = MAX16(.1f, vad_prob);
prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob;
while (1)
{
float pos_vad;
mpos++;
if (mpos==DETECT_SIZE)
mpos = 0;
if (mpos == tonal->write_pos)
break;
vpos++;
if (vpos==DETECT_SIZE)
vpos = 0;
if (vpos == tonal->write_pos)
break;
pos_vad = tonal->info[vpos].activity_probability;
prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min);
prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max);
prob_count += MAX16(.1f, pos_vad);
prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob;
}
info_out->music_prob = prob_avg/prob_count;
prob_min = MIN16(prob_avg/prob_count, prob_min);
prob_max = MAX16(prob_avg/prob_count, prob_max);
prob_min = MAX16(prob_min, 0.f);
prob_max = MIN16(prob_max, 1.f);
/* If we don't have enough look-ahead, do our best to make a decent decision. */
if (curr_lookahead < 10)
{
float pmin, pmax;
pmin = prob_min;
pmax = prob_max;
pos = pos0;
/* Look for min/max in the past. */
for (i=0;i<IMIN(tonal->count-1, 15);i++)
{
pos--;
if (pos < 0)
pos = DETECT_SIZE-1;
pmin = MIN16(pmin, tonal->info[pos].music_prob);
pmax = MAX16(pmax, tonal->info[pos].music_prob);
}
/* Bias against switching on active audio. */
pmin = MAX16(0.f, pmin - .1f*vad_prob);
pmax = MIN16(1.f, pmax + .1f*vad_prob);
prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min);
prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max);
}
info_out->music_prob_min = prob_min;
info_out->music_prob_max = prob_max;
/* printf("%f %f %f %f %f\n", prob_min, prob_max, prob_avg/prob_count, vad_prob, info_out->music_prob); */
}
static const float std_feature_bias[9] = {
5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f,
2.163313f, 1.260756f, 1.116868f, 1.918795f
};
#define LEAKAGE_OFFSET 2.5f
#define LEAKAGE_SLOPE 2.f
#ifdef FIXED_POINT
/* For fixed-point, the input is +/-2^15 shifted up by SIG_SHIFT, so we need to
compensate for that in the energy. */
#define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT)))
#define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e))
#else
#define SCALE_ENER(e) (e)
#endif
#ifdef FIXED_POINT
static int is_digital_silence32(const opus_val32* pcm, int frame_size, int channels, int lsb_depth)
{
int silence = 0;
opus_val32 sample_max = 0;
#ifdef MLP_TRAINING
return 0;
#endif
sample_max = celt_maxabs32(pcm, frame_size*channels);
silence = (sample_max == 0);
(void)lsb_depth;
return silence;
}
#else
#define is_digital_silence32(pcm, frame_size, channels, lsb_depth) is_digital_silence(pcm, frame_size, channels, lsb_depth)
#endif
static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix)
{
int i, b;
@ -230,24 +469,50 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
float alpha, alphaE, alphaE2;
float frame_loudness;
float bandwidth_mask;
int is_masked[NB_TBANDS+1];
int bandwidth=0;
float maxE = 0;
float noise_floor;
int remaining;
AnalysisInfo *info;
float hp_ener;
float tonality2[240];
float midE[8];
float spec_variability=0;
float band_log2[NB_TBANDS+1];
float leakage_from[NB_TBANDS+1];
float leakage_to[NB_TBANDS+1];
float layer_out[MAX_NEURONS];
float below_max_pitch;
float above_max_pitch;
int is_silence;
SAVE_STACK;
tonal->last_transition++;
alpha = 1.f/IMIN(20, 1+tonal->count);
alphaE = 1.f/IMIN(50, 1+tonal->count);
alphaE2 = 1.f/IMIN(1000, 1+tonal->count);
if (tonal->count<4)
tonal->music_prob = .5;
kfft = celt_mode->mdct.kfft[0];
if (tonal->count==0)
if (!tonal->initialized)
{
tonal->mem_fill = 240;
downmix(x, &tonal->inmem[tonal->mem_fill], IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C);
tonal->initialized = 1;
}
alpha = 1.f/IMIN(10, 1+tonal->count);
alphaE = 1.f/IMIN(25, 1+tonal->count);
/* Noise floor related decay for bandwidth detection: -2.2 dB/second */
alphaE2 = 1.f/IMIN(100, 1+tonal->count);
if (tonal->count <= 1) alphaE2 = 1;
if (tonal->Fs == 48000)
{
/* len and offset are now at 24 kHz. */
len/= 2;
offset /= 2;
} else if (tonal->Fs == 16000) {
len = 3*len/2;
offset = 3*offset/2;
}
kfft = celt_mode->mdct.kfft[0];
tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x,
&tonal->inmem[tonal->mem_fill], tonal->downmix_state,
IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs);
if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE)
{
tonal->mem_fill += len;
@ -255,10 +520,13 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
RESTORE_STACK;
return;
}
hp_ener = tonal->hp_ener_accum;
info = &tonal->info[tonal->write_pos++];
if (tonal->write_pos>=DETECT_SIZE)
tonal->write_pos-=DETECT_SIZE;
is_silence = is_digital_silence32(tonal->inmem, ANALYSIS_BUF_SIZE, 1, lsb_depth);
ALLOC(in, 480, kiss_fft_cpx);
ALLOC(out, 480, kiss_fft_cpx);
ALLOC(tonality, 240, float);
@ -273,8 +541,20 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
}
OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240);
remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill);
downmix(x, &tonal->inmem[240], remaining, offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C);
tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x,
&tonal->inmem[240], tonal->downmix_state, remaining,
offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs);
tonal->mem_fill = 240 + remaining;
if (is_silence)
{
/* On silence, copy the previous analysis. */
int prev_pos = tonal->write_pos-2;
if (prev_pos < 0)
prev_pos += DETECT_SIZE;
OPUS_COPY(info, &tonal->info[prev_pos], 1);
RESTORE_STACK;
return;
}
opus_fft(kfft, in, out, tonal->arch);
#ifndef FIXED_POINT
/* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */
@ -305,24 +585,31 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
d_angle2 = angle2 - angle;
d2_angle2 = d_angle2 - d_angle;
mod1 = d2_angle - (float)floor(.5+d2_angle);
mod1 = d2_angle - (float)float2int(d2_angle);
noisiness[i] = ABS16(mod1);
mod1 *= mod1;
mod1 *= mod1;
mod2 = d2_angle2 - (float)floor(.5+d2_angle2);
mod2 = d2_angle2 - (float)float2int(d2_angle2);
noisiness[i] += ABS16(mod2);
mod2 *= mod2;
mod2 *= mod2;
avg_mod = .25f*(d2A[i]+2.f*mod1+mod2);
avg_mod = .25f*(d2A[i]+mod1+2*mod2);
/* This introduces an extra delay of 2 frames in the detection. */
tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f;
/* No delay on this detection, but it's less reliable. */
tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f;
A[i] = angle2;
dA[i] = d_angle2;
d2A[i] = mod2;
}
for (i=2;i<N2-1;i++)
{
float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1]));
tonality[i] = .9f*MAX32(tonality[i], tt-.1f);
}
frame_tonality = 0;
max_frame_tonality = 0;
/*tw_sum = 0;*/
@ -339,6 +626,22 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
}
relativeE = 0;
frame_loudness = 0;
/* The energy of the very first band is special because of DC. */
{
float E = 0;
float X1r, X2r;
X1r = 2*(float)out[0].r;
X2r = 2*(float)out[0].i;
E = X1r*X1r + X2r*X2r;
for (i=1;i<4;i++)
{
float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
+ out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
E += binE;
}
E = SCALE_ENER(E);
band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f);
}
for (b=0;b<NB_TBANDS;b++)
{
float E=0, tE=0, nE=0;
@ -348,12 +651,9 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
{
float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
+ out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
#ifdef FIXED_POINT
/* FIXME: It's probably best to change the BFCC filter initial state instead */
binE *= 5.55e-17f;
#endif
binE = SCALE_ENER(binE);
E += binE;
tE += binE*tonality[i];
tE += binE*MAX32(0, tonality[i]);
nE += binE*2.f*(.5f-noisiness[i]);
}
#ifndef FIXED_POINT
@ -371,14 +671,27 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
frame_loudness += (float)sqrt(E+1e-10f);
logE[b] = (float)log(E+1e-10f);
tonal->lowE[b] = MIN32(logE[b], tonal->lowE[b]+.01f);
tonal->highE[b] = MAX32(logE[b], tonal->highE[b]-.1f);
if (tonal->highE[b] < tonal->lowE[b]+1.f)
band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f);
tonal->logE[tonal->E_count][b] = logE[b];
if (tonal->count==0)
tonal->highE[b] = tonal->lowE[b] = logE[b];
if (tonal->highE[b] > tonal->lowE[b] + 7.5)
{
tonal->highE[b]+=.5f;
tonal->lowE[b]-=.5f;
if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b])
tonal->highE[b] -= .01f;
else
tonal->lowE[b] += .01f;
}
relativeE += (logE[b]-tonal->lowE[b])/(1e-15f+tonal->highE[b]-tonal->lowE[b]);
if (logE[b] > tonal->highE[b])
{
tonal->highE[b] = logE[b];
tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]);
} else if (logE[b] < tonal->lowE[b])
{
tonal->lowE[b] = logE[b];
tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]);
}
relativeE += (logE[b]-tonal->lowE[b])/(1e-5f + (tonal->highE[b]-tonal->lowE[b]));
L1=L2=0;
for (i=0;i<NB_FRAMES;i++)
@ -410,45 +723,135 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
tonal->prev_band_tonality[b] = band_tonality[b];
}
leakage_from[0] = band_log2[0];
leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET;
for (b=1;b<NB_TBANDS+1;b++)
{
float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4;
leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]);
leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET);
}
for (b=NB_TBANDS-2;b>=0;b--)
{
float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4;
leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]);
leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]);
}
celt_assert(NB_TBANDS+1 <= LEAK_BANDS);
for (b=0;b<NB_TBANDS+1;b++)
{
/* leak_boost[] is made up of two terms. The first, based on leakage_to[],
represents the boost needed to overcome the amount of analysis leakage
cause in a weaker band b by louder neighbouring bands.
The second, based on leakage_from[], applies to a loud band b for
which the quantization noise causes synthesis leakage to the weaker
neighbouring bands. */
float boost = MAX16(0, leakage_to[b] - band_log2[b]) +
MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET));
info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost));
}
for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0;
for (i=0;i<NB_FRAMES;i++)
{
int j;
float mindist = 1e15f;
for (j=0;j<NB_FRAMES;j++)
{
int k;
float dist=0;
for (k=0;k<NB_TBANDS;k++)
{
float tmp;
tmp = tonal->logE[i][k] - tonal->logE[j][k];
dist += tmp*tmp;
}
if (j!=i)
mindist = MIN32(mindist, dist);
}
spec_variability += mindist;
}
spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS);
bandwidth_mask = 0;
bandwidth = 0;
maxE = 0;
noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8)));
#ifdef FIXED_POINT
noise_floor *= 1<<(15+SIG_SHIFT);
#endif
noise_floor *= noise_floor;
for (b=0;b<NB_TOT_BANDS;b++)
below_max_pitch=0;
above_max_pitch=0;
for (b=0;b<NB_TBANDS;b++)
{
float E=0;
float Em;
int band_start, band_end;
/* Keep a margin of 300 Hz for aliasing */
band_start = extra_bands[b];
band_end = extra_bands[b+1];
band_start = tbands[b];
band_end = tbands[b+1];
for (i=band_start;i<band_end;i++)
{
float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
+ out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
E += binE;
}
E = SCALE_ENER(E);
maxE = MAX32(maxE, E);
if (band_start < 64)
{
below_max_pitch += E;
} else {
above_max_pitch += E;
}
tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
E = MAX32(E, tonal->meanE[b]);
/* Use a simple follower with 13 dB/Bark slope for spreading function */
bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
Em = MAX32(E, tonal->meanE[b]);
/* Consider the band "active" only if all these conditions are met:
1) less than 10 dB below the simple follower
2) less than 90 dB below the peak band (maximal masking possible considering
1) less than 90 dB below the peak band (maximal masking possible considering
both the ATH and the loudness-dependent slope of the spreading function)
3) above the PCM quantization noise floor
2) above the PCM quantization noise floor
We use b+1 because the first CELT band isn't included in tbands[]
*/
if (E>.1*bandwidth_mask && E*1e9f > maxE && E > noise_floor*(band_end-band_start))
bandwidth = b;
if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start)))
bandwidth = b+1;
/* Check if the band is masked (see below). */
is_masked[b] = E < (tonal->prev_bandwidth >= b+1 ? .01f : .05f)*bandwidth_mask;
/* Use a simple follower with 13 dB/Bark slope for spreading function. */
bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
}
/* Special case for the last two bands, for which we don't have spectrum but only
the energy above 12 kHz. The difficulty here is that the high-pass we use
leaks some LF energy, so we need to increase the threshold without accidentally cutting
off the band. */
if (tonal->Fs == 48000) {
float noise_ratio;
float Em;
float E = hp_ener*(1.f/(60*60));
noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f;
#ifdef FIXED_POINT
/* silk_resampler_down2_hp() shifted right by an extra 8 bits. */
E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE);
#endif
above_max_pitch += E;
tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
Em = MAX32(E, tonal->meanE[b]);
if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160)
bandwidth = 20;
/* Check if the band is masked (see below). */
is_masked[b] = E < (tonal->prev_bandwidth == 20 ? .01f : .05f)*bandwidth_mask;
}
if (above_max_pitch > below_max_pitch)
info->max_pitch_ratio = below_max_pitch/above_max_pitch;
else
info->max_pitch_ratio = 1;
/* In some cases, resampling aliasing can create a small amount of energy in the first band
being cut. So if the last band is masked, we don't include it. */
if (bandwidth == 20 && is_masked[NB_TBANDS])
bandwidth-=2;
else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1])
bandwidth--;
if (tonal->count<=2)
bandwidth = 20;
frame_loudness = 20*(float)log10(frame_loudness);
tonal->Etracker = MAX32(tonal->Etracker-.03f, frame_loudness);
tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness);
tonal->lowECount *= (1-alphaE);
if (frame_loudness < tonal->Etracker-30)
tonal->lowECount += alphaE;
@ -460,11 +863,18 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
sum += dct_table[i*16+b]*logE[b];
BFCC[i] = sum;
}
for (i=0;i<8;i++)
{
float sum=0;
for (b=0;b<16;b++)
sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]);
midE[i] = sum;
}
frame_stationarity /= NB_TBANDS;
relativeE /= NB_TBANDS;
if (tonal->count<10)
relativeE = .5;
relativeE = .5f;
frame_noisiness /= NB_TBANDS;
#if 1
info->activity = frame_noisiness + (1-frame_noisiness)*relativeE;
@ -479,7 +889,7 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
info->tonality_slope = slope;
tonal->E_count = (tonal->E_count+1)%NB_FRAMES;
tonal->count++;
tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX);
info->tonality = frame_tonality;
for (i=0;i<4;i++)
@ -498,6 +908,8 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
for (i=0;i<9;i++)
tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i];
}
for (i=0;i<4;i++)
features[i] = BFCC[i]-midE[i];
for (i=0;i<8;i++)
{
@ -507,136 +919,31 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt
tonal->mem[i] = BFCC[i];
}
for (i=0;i<9;i++)
features[11+i] = (float)sqrt(tonal->std[i]);
features[20] = info->tonality;
features[21] = info->activity;
features[22] = frame_stationarity;
features[23] = info->tonality_slope;
features[24] = tonal->lowECount;
features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i];
features[18] = spec_variability - 0.78f;
features[20] = info->tonality - 0.154723f;
features[21] = info->activity - 0.724643f;
features[22] = frame_stationarity - 0.743717f;
features[23] = info->tonality_slope + 0.069216f;
features[24] = tonal->lowECount - 0.067930f;
#ifndef DISABLE_FLOAT_API
mlp_process(&net, features, frame_probs);
frame_probs[0] = .5f*(frame_probs[0]+1);
/* Curve fitting between the MLP probability and the actual probability */
frame_probs[0] = .01f + 1.21f*frame_probs[0]*frame_probs[0] - .23f*(float)pow(frame_probs[0], 10);
/* Probability of active audio (as opposed to silence) */
frame_probs[1] = .5f*frame_probs[1]+.5f;
/* Consider that silence has a 50-50 probability. */
frame_probs[0] = frame_probs[1]*frame_probs[0] + (1-frame_probs[1])*.5f;
compute_dense(&layer0, layer_out, features);
compute_gru(&layer1, tonal->rnn_state, layer_out);
compute_dense(&layer2, frame_probs, tonal->rnn_state);
/*printf("%f %f ", frame_probs[0], frame_probs[1]);*/
{
/* Probability of state transition */
float tau;
/* Represents independence of the MLP probabilities, where
beta=1 means fully independent. */
float beta;
/* Denormalized probability of speech (p0) and music (p1) after update */
float p0, p1;
/* Probabilities for "all speech" and "all music" */
float s0, m0;
/* Probability sum for renormalisation */
float psum;
/* Instantaneous probability of speech and music, with beta pre-applied. */
float speech0;
float music0;
float p, q;
/* Probability of speech or music vs noise */
info->activity_probability = frame_probs[1];
info->music_prob = frame_probs[0];
/* One transition every 3 minutes of active audio */
tau = .00005f*frame_probs[1];
/* Adapt beta based on how "unexpected" the new prob is */
p = MAX16(.05f,MIN16(.95f,frame_probs[0]));
q = MAX16(.05f,MIN16(.95f,tonal->music_prob));
beta = .01f+.05f*ABS16(p-q)/(p*(1-q)+q*(1-p));
/* p0 and p1 are the probabilities of speech and music at this frame
using only information from previous frame and applying the
state transition model */
p0 = (1-tonal->music_prob)*(1-tau) + tonal->music_prob *tau;
p1 = tonal->music_prob *(1-tau) + (1-tonal->music_prob)*tau;
/* We apply the current probability with exponent beta to work around
the fact that the probability estimates aren't independent. */
p0 *= (float)pow(1-frame_probs[0], beta);
p1 *= (float)pow(frame_probs[0], beta);
/* Normalise the probabilities to get the Marokv probability of music. */
tonal->music_prob = p1/(p0+p1);
info->music_prob = tonal->music_prob;
/* This chunk of code deals with delayed decision. */
psum=1e-20f;
/* Instantaneous probability of speech and music, with beta pre-applied. */
speech0 = (float)pow(1-frame_probs[0], beta);
music0 = (float)pow(frame_probs[0], beta);
if (tonal->count==1)
{
tonal->pspeech[0]=.5;
tonal->pmusic [0]=.5;
}
/* Updated probability of having only speech (s0) or only music (m0),
before considering the new observation. */
s0 = tonal->pspeech[0] + tonal->pspeech[1];
m0 = tonal->pmusic [0] + tonal->pmusic [1];
/* Updates s0 and m0 with instantaneous probability. */
tonal->pspeech[0] = s0*(1-tau)*speech0;
tonal->pmusic [0] = m0*(1-tau)*music0;
/* Propagate the transition probabilities */
for (i=1;i<DETECT_SIZE-1;i++)
{
tonal->pspeech[i] = tonal->pspeech[i+1]*speech0;
tonal->pmusic [i] = tonal->pmusic [i+1]*music0;
}
/* Probability that the latest frame is speech, when all the previous ones were music. */
tonal->pspeech[DETECT_SIZE-1] = m0*tau*speech0;
/* Probability that the latest frame is music, when all the previous ones were speech. */
tonal->pmusic [DETECT_SIZE-1] = s0*tau*music0;
/* Renormalise probabilities to 1 */
for (i=0;i<DETECT_SIZE;i++)
psum += tonal->pspeech[i] + tonal->pmusic[i];
psum = 1.f/psum;
for (i=0;i<DETECT_SIZE;i++)
{
tonal->pspeech[i] *= psum;
tonal->pmusic [i] *= psum;
}
psum = tonal->pmusic[0];
for (i=1;i<DETECT_SIZE;i++)
psum += tonal->pspeech[i];
/* Estimate our confidence in the speech/music decisions */
if (frame_probs[1]>.75)
{
if (tonal->music_prob>.9)
{
float adapt;
adapt = 1.f/(++tonal->music_confidence_count);
tonal->music_confidence_count = IMIN(tonal->music_confidence_count, 500);
tonal->music_confidence += adapt*MAX16(-.2f,frame_probs[0]-tonal->music_confidence);
}
if (tonal->music_prob<.1)
{
float adapt;
adapt = 1.f/(++tonal->speech_confidence_count);
tonal->speech_confidence_count = IMIN(tonal->speech_confidence_count, 500);
tonal->speech_confidence += adapt*MIN16(.2f,frame_probs[0]-tonal->speech_confidence);
}
} else {
if (tonal->music_confidence_count==0)
tonal->music_confidence = .9f;
if (tonal->speech_confidence_count==0)
tonal->speech_confidence = .1f;
}
}
if (tonal->last_music != (tonal->music_prob>.5f))
tonal->last_transition=0;
tonal->last_music = tonal->music_prob>.5f;
#else
info->music_prob = 0;
#endif
/*for (i=0;i<25;i++)
/*printf("%f %f %f\n", frame_probs[0], frame_probs[1], info->music_prob);*/
#ifdef MLP_TRAINING
for (i=0;i<25;i++)
printf("%f ", features[i]);
printf("\n");*/
printf("\n");
#endif
info->bandwidth = bandwidth;
tonal->prev_bandwidth = bandwidth;
/*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/
info->noisiness = frame_noisiness;
info->valid = 1;
@ -650,23 +957,25 @@ void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, co
int offset;
int pcm_len;
analysis_frame_size -= analysis_frame_size&1;
if (analysis_pcm != NULL)
{
/* Avoid overflow/wrap-around of the analysis buffer */
analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/100, analysis_frame_size);
analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size);
pcm_len = analysis_frame_size - analysis->analysis_offset;
offset = analysis->analysis_offset;
do {
tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(480, pcm_len), offset, c1, c2, C, lsb_depth, downmix);
offset += 480;
pcm_len -= 480;
} while (pcm_len>0);
while (pcm_len>0) {
tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix);
offset += Fs/50;
pcm_len -= Fs/50;
}
analysis->analysis_offset = analysis_frame_size;
analysis->analysis_offset -= frame_size;
}
analysis_info->valid = 0;
tonality_get_info(analysis, analysis_info, frame_size);
}
#endif /* DISABLE_FLOAT_API */

View File

@ -30,16 +30,24 @@
#include "celt.h"
#include "opus_private.h"
#include "mlp.h"
#define NB_FRAMES 8
#define NB_TBANDS 18
#define NB_TOT_BANDS 21
#define ANALYSIS_BUF_SIZE 720 /* 15 ms at 48 kHz */
#define ANALYSIS_BUF_SIZE 720 /* 30 ms at 24 kHz */
#define DETECT_SIZE 200
/* At that point we can stop counting frames because it no longer matters. */
#define ANALYSIS_COUNT_MAX 10000
#define DETECT_SIZE 100
/* Uncomment this to print the MLP features on stdout. */
/*#define MLP_TRAINING*/
typedef struct {
int arch;
int application;
opus_int32 Fs;
#define TONALITY_ANALYSIS_RESET_START angle
float angle[240];
float d_angle[240];
@ -48,35 +56,27 @@ typedef struct {
int mem_fill; /* number of usable samples in the buffer */
float prev_band_tonality[NB_TBANDS];
float prev_tonality;
int prev_bandwidth;
float E[NB_FRAMES][NB_TBANDS];
float logE[NB_FRAMES][NB_TBANDS];
float lowE[NB_TBANDS];
float highE[NB_TBANDS];
float meanE[NB_TOT_BANDS];
float meanE[NB_TBANDS+1];
float mem[32];
float cmean[8];
float std[9];
float music_prob;
float Etracker;
float lowECount;
int E_count;
int last_music;
int last_transition;
int count;
float subframe_mem[3];
int analysis_offset;
/** Probability of having speech for time i to DETECT_SIZE-1 (and music before).
pspeech[0] is the probability that all frames in the window are speech. */
float pspeech[DETECT_SIZE];
/** Probability of having music for time i to DETECT_SIZE-1 (and speech before).
pmusic[0] is the probability that all frames in the window are music. */
float pmusic[DETECT_SIZE];
float speech_confidence;
float music_confidence;
int speech_confidence_count;
int music_confidence_count;
int write_pos;
int read_pos;
int read_subframe;
float hp_ener_accum;
int initialized;
float rnn_state[MAX_NEURONS];
opus_val32 downmix_state[3];
AnalysisInfo info[DETECT_SIZE];
} TonalityAnalysisState;
@ -86,7 +86,7 @@ typedef struct {
* not be repeated every analysis step. No allocated memory is retained
* by the state struct, so no cleanup call is required.
*/
void tonality_analysis_init(TonalityAnalysisState *analysis);
void tonality_analysis_init(TonalityAnalysisState *analysis, opus_int32 Fs);
/** Reset a TonalityAnalysisState stuct.
*

View File

@ -58,12 +58,12 @@
# define S_MUL(a,b) MULT16_32_Q15(b, a)
# define C_MUL(m,a,b) \
do{ (m).r = SUB32(S_MUL((a).r,(b).r) , S_MUL((a).i,(b).i)); \
(m).i = ADD32(S_MUL((a).r,(b).i) , S_MUL((a).i,(b).r)); }while(0)
do{ (m).r = SUB32_ovflw(S_MUL((a).r,(b).r) , S_MUL((a).i,(b).i)); \
(m).i = ADD32_ovflw(S_MUL((a).r,(b).i) , S_MUL((a).i,(b).r)); }while(0)
# define C_MULC(m,a,b) \
do{ (m).r = ADD32(S_MUL((a).r,(b).r) , S_MUL((a).i,(b).i)); \
(m).i = SUB32(S_MUL((a).i,(b).r) , S_MUL((a).r,(b).i)); }while(0)
do{ (m).r = ADD32_ovflw(S_MUL((a).r,(b).r) , S_MUL((a).i,(b).i)); \
(m).i = SUB32_ovflw(S_MUL((a).i,(b).r) , S_MUL((a).r,(b).i)); }while(0)
# define C_MULBYSCALAR( c, s ) \
do{ (c).r = S_MUL( (c).r , s ) ;\
@ -77,17 +77,17 @@
DIVSCALAR( (c).i , div); }while (0)
#define C_ADD( res, a,b)\
do {(res).r=ADD32((a).r,(b).r); (res).i=ADD32((a).i,(b).i); \
do {(res).r=ADD32_ovflw((a).r,(b).r); (res).i=ADD32_ovflw((a).i,(b).i); \
}while(0)
#define C_SUB( res, a,b)\
do {(res).r=SUB32((a).r,(b).r); (res).i=SUB32((a).i,(b).i); \
do {(res).r=SUB32_ovflw((a).r,(b).r); (res).i=SUB32_ovflw((a).i,(b).i); \
}while(0)
#define C_ADDTO( res , a)\
do {(res).r = ADD32((res).r, (a).r); (res).i = ADD32((res).i,(a).i);\
do {(res).r = ADD32_ovflw((res).r, (a).r); (res).i = ADD32_ovflw((res).i,(a).i);\
}while(0)
#define C_SUBFROM( res , a)\
do {(res).r = ADD32((res).r,(a).r); (res).i = SUB32((res).i,(a).i); \
do {(res).r = ADD32_ovflw((res).r,(a).r); (res).i = SUB32_ovflw((res).i,(a).i); \
}while(0)
#if defined(OPUS_ARM_INLINE_ASM)

View File

@ -46,25 +46,50 @@
# endif
# endif
#if OPUS_GNUC_PREREQ(3, 0)
#define opus_likely(x) (__builtin_expect(!!(x), 1))
#define opus_unlikely(x) (__builtin_expect(!!(x), 0))
#else
#define opus_likely(x) (!!(x))
#define opus_unlikely(x) (!!(x))
#endif
#define CELT_SIG_SCALE 32768.f
#define celt_fatal(str) _celt_fatal(str, __FILE__, __LINE__);
#ifdef ENABLE_ASSERTIONS
#define CELT_FATAL(str) celt_fatal(str, __FILE__, __LINE__);
#if defined(ENABLE_ASSERTIONS) || defined(ENABLE_HARDENING)
#ifdef __GNUC__
__attribute__((noreturn))
#endif
void celt_fatal(const char *str, const char *file, int line);
#if defined(CELT_C) && !defined(OVERRIDE_celt_fatal)
#include <stdio.h>
#include <stdlib.h>
#ifdef __GNUC__
__attribute__((noreturn))
#endif
static OPUS_INLINE void _celt_fatal(const char *str, const char *file, int line)
void celt_fatal(const char *str, const char *file, int line)
{
fprintf (stderr, "Fatal (internal) error in %s, line %d: %s\n", file, line, str);
abort();
}
#define celt_assert(cond) {if (!(cond)) {celt_fatal("assertion failed: " #cond);}}
#define celt_assert2(cond, message) {if (!(cond)) {celt_fatal("assertion failed: " #cond "\n" message);}}
#endif
#define celt_assert(cond) {if (!(cond)) {CELT_FATAL("assertion failed: " #cond);}}
#define celt_assert2(cond, message) {if (!(cond)) {CELT_FATAL("assertion failed: " #cond "\n" message);}}
#define MUST_SUCCEED(call) celt_assert((call) == OPUS_OK)
#else
#define celt_assert(cond)
#define celt_assert2(cond, message)
#define MUST_SUCCEED(call) do {if((call) != OPUS_OK) {RESTORE_STACK; return OPUS_INTERNAL_ERROR;} } while (0)
#endif
#if defined(ENABLE_ASSERTIONS)
#define celt_sig_assert(cond) {if (!(cond)) {CELT_FATAL("signal assertion failed: " #cond);}}
#else
#define celt_sig_assert(cond)
#endif
#define IMUL32(a,b) ((a)*(b))
@ -93,14 +118,20 @@ static OPUS_INLINE void _celt_fatal(const char *str, const char *file, int line)
typedef opus_int16 opus_val16;
typedef opus_int32 opus_val32;
typedef opus_int64 opus_val64;
typedef opus_val32 celt_sig;
typedef opus_val16 celt_norm;
typedef opus_val32 celt_ener;
#define celt_isnan(x) 0
#define Q15ONE 32767
#define SIG_SHIFT 12
/* Safe saturation value for 32-bit signals. Should be less than
2^31*(1-0.85) to avoid blowing up on DC at deemphasis.*/
#define SIG_SAT (300000000)
#define NORM_SCALING 16384
@ -129,7 +160,7 @@ static OPUS_INLINE opus_int16 SAT16(opus_int32 x) {
#ifdef OPUS_ARM_PRESUME_AARCH64_NEON_INTR
#include "arm/fixed_arm64.h"
#elif OPUS_ARM_INLINE_EDSP
#elif defined (OPUS_ARM_INLINE_EDSP)
#include "arm/fixed_armv5e.h"
#elif defined (OPUS_ARM_INLINE_ASM)
#include "arm/fixed_armv4.h"
@ -147,6 +178,7 @@ static OPUS_INLINE opus_int16 SAT16(opus_int32 x) {
typedef float opus_val16;
typedef float opus_val32;
typedef float opus_val64;
typedef float celt_sig;
typedef float celt_norm;
@ -186,6 +218,7 @@ static OPUS_INLINE int celt_isnan(float x)
#define NEG16(x) (-(x))
#define NEG32(x) (-(x))
#define NEG32_ovflw(x) (-(x))
#define EXTRACT16(x) (x)
#define EXTEND32(x) (x)
#define SHR16(a,shift) (a)
@ -202,6 +235,7 @@ static OPUS_INLINE int celt_isnan(float x)
#define SATURATE16(x) (x)
#define ROUND16(a,shift) (a)
#define SROUND16(a,shift) (a)
#define HALF16(x) (.5f*(x))
#define HALF32(x) (.5f*(x))
@ -209,6 +243,8 @@ static OPUS_INLINE int celt_isnan(float x)
#define SUB16(a,b) ((a)-(b))
#define ADD32(a,b) ((a)+(b))
#define SUB32(a,b) ((a)-(b))
#define ADD32_ovflw(a,b) ((a)+(b))
#define SUB32_ovflw(a,b) ((a)-(b))
#define MULT16_16_16(a,b) ((a)*(b))
#define MULT16_16(a,b) ((opus_val32)(a)*(opus_val32)(b))
#define MAC16_16(c,a,b) ((c)+(opus_val32)(a)*(opus_val32)(b))
@ -243,9 +279,9 @@ static OPUS_INLINE int celt_isnan(float x)
#ifndef GLOBAL_STACK_SIZE
#ifdef FIXED_POINT
#define GLOBAL_STACK_SIZE 100000
#define GLOBAL_STACK_SIZE 120000
#else
#define GLOBAL_STACK_SIZE 100000
#define GLOBAL_STACK_SIZE 120000
#endif
#endif

View File

@ -164,11 +164,11 @@ while (<>) {
$prefix = "";
if ($proc)
{
$prefix = $prefix.sprintf("\t.type\t%s, %%function; ",$proc) unless ($apple);
$prefix = $prefix.sprintf("\t.type\t%s, %%function", $proc) unless ($apple);
# Make sure we $prefix isn't empty here (for the $apple case).
# We handle mangling the label here, make sure it doesn't match
# the label handling below (if $prefix would be empty).
$prefix = "; ";
$prefix = $prefix."; ";
push(@proc_stack, $proc);
s/^[A-Za-z_\.]\w+/$symprefix$&:/;
}

View File

@ -35,12 +35,29 @@
#if defined(OPUS_HAVE_RTCD)
# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR)
opus_val32 (*const CELT_INNER_PROD_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *x, const opus_val16 *y, int N) = {
celt_inner_prod_c, /* ARMv4 */
celt_inner_prod_c, /* EDSP */
celt_inner_prod_c, /* Media */
celt_inner_prod_neon /* NEON */
};
void (*const DUAL_INNER_PROD_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *x, const opus_val16 *y01, const opus_val16 *y02,
int N, opus_val32 *xy1, opus_val32 *xy2) = {
dual_inner_prod_c, /* ARMv4 */
dual_inner_prod_c, /* EDSP */
dual_inner_prod_c, /* Media */
dual_inner_prod_neon /* NEON */
};
# endif
# if defined(FIXED_POINT)
# if ((defined(OPUS_ARM_MAY_HAVE_NEON) && !defined(OPUS_ARM_PRESUME_NEON)) || \
(defined(OPUS_ARM_MAY_HAVE_MEDIA) && !defined(OPUS_ARM_PRESUME_MEDIA)) || \
(defined(OPUS_ARM_MAY_HAVE_EDSP) && !defined(OPUS_ARM_PRESUME_EDSP)))
opus_val32 (*const CELT_PITCH_XCORR_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *,
const opus_val16 *, opus_val32 *, int , int) = {
const opus_val16 *, opus_val32 *, int, int, int) = {
celt_pitch_xcorr_c, /* ARMv4 */
MAY_HAVE_EDSP(celt_pitch_xcorr), /* EDSP */
MAY_HAVE_MEDIA(celt_pitch_xcorr), /* Media */
@ -51,7 +68,7 @@ opus_val32 (*const CELT_PITCH_XCORR_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *,
# else /* !FIXED_POINT */
# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR)
void (*const CELT_PITCH_XCORR_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *,
const opus_val16 *, opus_val32 *, int, int) = {
const opus_val16 *, opus_val32 *, int, int, int) = {
celt_pitch_xcorr_c, /* ARMv4 */
celt_pitch_xcorr_c, /* EDSP */
celt_pitch_xcorr_c, /* Media */

View File

@ -1,7 +1,7 @@
/* Copyright (c) 2015 Xiph.Org Foundation
Written by Viswanath Puttagunta */
/**
@file celt_ne10_fft.c
@file celt_fft_ne10.c
@brief ARM Neon optimizations for fft using NE10 library
*/
@ -36,7 +36,6 @@
#endif
#endif
#include <NE10_init.h>
#include <NE10_dsp.h>
#include "os_support.h"
#include "kiss_fft.h"

View File

@ -1,7 +1,7 @@
/* Copyright (c) 2015 Xiph.Org Foundation
Written by Viswanath Puttagunta */
/**
@file celt_ne10_mdct.c
@file celt_mdct_ne10.c
@brief ARM Neon optimizations for mdct using NE10 library
*/

View File

@ -191,121 +191,21 @@ static void xcorr_kernel_neon_float(const float32_t *x, const float32_t *y,
vst1q_f32(sum, SUMM);
}
/*
* Function: xcorr_kernel_neon_float_process1
* ---------------------------------
* Computes single correlation values and stores in *sum
*/
static void xcorr_kernel_neon_float_process1(const float32_t *x,
const float32_t *y, float32_t *sum, int len) {
float32x4_t XX[4];
float32x4_t YY[4];
float32x2_t XX_2;
float32x2_t YY_2;
float32x4_t SUMM;
float32x2_t SUMM_2[2];
const float32_t *xi = x;
const float32_t *yi = y;
SUMM = vdupq_n_f32(0);
/* Work on 16 values per iteration */
while (len >= 16) {
XX[0] = vld1q_f32(xi);
xi += 4;
XX[1] = vld1q_f32(xi);
xi += 4;
XX[2] = vld1q_f32(xi);
xi += 4;
XX[3] = vld1q_f32(xi);
xi += 4;
YY[0] = vld1q_f32(yi);
yi += 4;
YY[1] = vld1q_f32(yi);
yi += 4;
YY[2] = vld1q_f32(yi);
yi += 4;
YY[3] = vld1q_f32(yi);
yi += 4;
SUMM = vmlaq_f32(SUMM, YY[0], XX[0]);
SUMM = vmlaq_f32(SUMM, YY[1], XX[1]);
SUMM = vmlaq_f32(SUMM, YY[2], XX[2]);
SUMM = vmlaq_f32(SUMM, YY[3], XX[3]);
len -= 16;
}
/* Work on 8 values */
if (len >= 8) {
XX[0] = vld1q_f32(xi);
xi += 4;
XX[1] = vld1q_f32(xi);
xi += 4;
YY[0] = vld1q_f32(yi);
yi += 4;
YY[1] = vld1q_f32(yi);
yi += 4;
SUMM = vmlaq_f32(SUMM, YY[0], XX[0]);
SUMM = vmlaq_f32(SUMM, YY[1], XX[1]);
len -= 8;
}
/* Work on 4 values */
if (len >= 4) {
XX[0] = vld1q_f32(xi);
xi += 4;
YY[0] = vld1q_f32(yi);
yi += 4;
SUMM = vmlaq_f32(SUMM, YY[0], XX[0]);
len -= 4;
}
/* Start accumulating results */
SUMM_2[0] = vget_low_f32(SUMM);
if (len >= 2) {
/* While at it, consume 2 more values if available */
XX_2 = vld1_f32(xi);
xi += 2;
YY_2 = vld1_f32(yi);
yi += 2;
SUMM_2[0] = vmla_f32(SUMM_2[0], YY_2, XX_2);
len -= 2;
}
SUMM_2[1] = vget_high_f32(SUMM);
SUMM_2[0] = vadd_f32(SUMM_2[0], SUMM_2[1]);
SUMM_2[0] = vpadd_f32(SUMM_2[0], SUMM_2[0]);
/* Ok, now we have result accumulated in SUMM_2[0].0 */
if (len > 0) {
/* Case when you have one value left */
XX_2 = vld1_dup_f32(xi);
YY_2 = vld1_dup_f32(yi);
SUMM_2[0] = vmla_f32(SUMM_2[0], XX_2, YY_2);
}
vst1_lane_f32(sum, SUMM_2[0], 0);
}
void celt_pitch_xcorr_float_neon(const opus_val16 *_x, const opus_val16 *_y,
opus_val32 *xcorr, int len, int max_pitch) {
opus_val32 *xcorr, int len, int max_pitch, int arch) {
int i;
(void)arch;
celt_assert(max_pitch > 0);
celt_assert((((unsigned char *)_x-(unsigned char *)NULL)&3)==0);
celt_sig_assert((((unsigned char *)_x-(unsigned char *)NULL)&3)==0);
for (i = 0; i < (max_pitch-3); i += 4) {
xcorr_kernel_neon_float((const float32_t *)_x, (const float32_t *)_y+i,
(float32_t *)xcorr+i, len);
}
/* In case max_pitch isn't multiple of 4
* compute single correlation value per iteration
*/
/* In case max_pitch isn't a multiple of 4, do non-unrolled version. */
for (; i < max_pitch; i++) {
xcorr_kernel_neon_float_process1((const float32_t *)_x,
(const float32_t *)_y+i, (float32_t *)xcorr+i, len);
xcorr[i] = celt_inner_prod_neon(_x, _y+i, len);
}
}
#endif

View File

@ -1,551 +0,0 @@
.syntax unified
@ Copyright (c) 2007-2008 CSIRO
@ Copyright (c) 2007-2009 Xiph.Org Foundation
@ Copyright (c) 2013 Parrot
@ Written by Aurélien Zanelli
@
@ Redistribution and use in source and binary forms, with or without
@ modification, are permitted provided that the following conditions
@ are met:
@
@ - Redistributions of source code must retain the above copyright
@ notice, this list of conditions and the following disclaimer.
@
@ - Redistributions in binary form must reproduce the above copyright
@ notice, this list of conditions and the following disclaimer in the
@ documentation and/or other materials provided with the distribution.
@
@ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
@ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
@ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
@ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
@ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
@ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
@ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
@ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
@ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
.text; .p2align 2; .arch armv7-a
.fpu neon
.object_arch armv4t
.include "celt/arm/armopts-gnu.S"
.if OPUS_ARM_MAY_HAVE_EDSP
.global celt_pitch_xcorr_edsp
.endif
.if OPUS_ARM_MAY_HAVE_NEON
.global celt_pitch_xcorr_neon
.endif
.if OPUS_ARM_MAY_HAVE_NEON
@ Compute sum[k]=sum(x[j]*y[j+k],j=0...len-1), k=0...3
; xcorr_kernel_neon: @ PROC
xcorr_kernel_neon_start:
@ input:
@ r3 = int len
@ r4 = opus_val16 *x
@ r5 = opus_val16 *y
@ q0 = opus_val32 sum[4]
@ output:
@ q0 = opus_val32 sum[4]
@ preserved: r0-r3, r6-r11, d2, q4-q7, q9-q15
@ internal usage:
@ r12 = int j
@ d3 = y_3|y_2|y_1|y_0
@ q2 = y_B|y_A|y_9|y_8|y_7|y_6|y_5|y_4
@ q3 = x_7|x_6|x_5|x_4|x_3|x_2|x_1|x_0
@ q8 = scratch
@
@ Load y[0...3]
@ This requires len>0 to always be valid (which we assert in the C code).
VLD1.16 {d5}, [r5]!
SUBS r12, r3, #8
BLE xcorr_kernel_neon_process4
@ Process 8 samples at a time.
@ This loop loads one y value more than we actually need. Therefore we have to
@ stop as soon as there are 8 or fewer samples left (instead of 7), to avoid
@ reading past the end of the array.
xcorr_kernel_neon_process8:
@ This loop has 19 total instructions (10 cycles to issue, minimum), with
@ - 2 cycles of ARM insrtuctions,
@ - 10 cycles of load/store/byte permute instructions, and
@ - 9 cycles of data processing instructions.
@ On a Cortex A8, we dual-issue the maximum amount (9 cycles) between the
@ latter two categories, meaning the whole loop should run in 10 cycles per
@ iteration, barring cache misses.
@
@ Load x[0...7]
VLD1.16 {d6, d7}, [r4]!
@ Unlike VMOV, VAND is a data processsing instruction (and doesn't get
@ assembled to VMOV, like VORR would), so it dual-issues with the prior VLD1.
VAND d3, d5, d5
SUBS r12, r12, #8
@ Load y[4...11]
VLD1.16 {d4, d5}, [r5]!
VMLAL.S16 q0, d3, d6[0]
VEXT.16 d16, d3, d4, #1
VMLAL.S16 q0, d4, d7[0]
VEXT.16 d17, d4, d5, #1
VMLAL.S16 q0, d16, d6[1]
VEXT.16 d16, d3, d4, #2
VMLAL.S16 q0, d17, d7[1]
VEXT.16 d17, d4, d5, #2
VMLAL.S16 q0, d16, d6[2]
VEXT.16 d16, d3, d4, #3
VMLAL.S16 q0, d17, d7[2]
VEXT.16 d17, d4, d5, #3
VMLAL.S16 q0, d16, d6[3]
VMLAL.S16 q0, d17, d7[3]
BGT xcorr_kernel_neon_process8
@ Process 4 samples here if we have > 4 left (still reading one extra y value).
xcorr_kernel_neon_process4:
ADDS r12, r12, #4
BLE xcorr_kernel_neon_process2
@ Load x[0...3]
VLD1.16 d6, [r4]!
@ Use VAND since it's a data processing instruction again.
VAND d4, d5, d5
SUB r12, r12, #4
@ Load y[4...7]
VLD1.16 d5, [r5]!
VMLAL.S16 q0, d4, d6[0]
VEXT.16 d16, d4, d5, #1
VMLAL.S16 q0, d16, d6[1]
VEXT.16 d16, d4, d5, #2
VMLAL.S16 q0, d16, d6[2]
VEXT.16 d16, d4, d5, #3
VMLAL.S16 q0, d16, d6[3]
@ Process 2 samples here if we have > 2 left (still reading one extra y value).
xcorr_kernel_neon_process2:
ADDS r12, r12, #2
BLE xcorr_kernel_neon_process1
@ Load x[0...1]
VLD2.16 {d6[],d7[]}, [r4]!
@ Use VAND since it's a data processing instruction again.
VAND d4, d5, d5
SUB r12, r12, #2
@ Load y[4...5]
VLD1.32 {d5[]}, [r5]!
VMLAL.S16 q0, d4, d6
VEXT.16 d16, d4, d5, #1
@ Replace bottom copy of {y5,y4} in d5 with {y3,y2} from d4, using VSRI
@ instead of VEXT, since it's a data-processing instruction.
VSRI.64 d5, d4, #32
VMLAL.S16 q0, d16, d7
@ Process 1 sample using the extra y value we loaded above.
xcorr_kernel_neon_process1:
@ Load next *x
VLD1.16 {d6[]}, [r4]!
ADDS r12, r12, #1
@ y[0...3] are left in d5 from prior iteration(s) (if any)
VMLAL.S16 q0, d5, d6
MOVLE pc, lr
@ Now process 1 last sample, not reading ahead.
@ Load last *y
VLD1.16 {d4[]}, [r5]!
VSRI.64 d4, d5, #16
@ Load last *x
VLD1.16 {d6[]}, [r4]!
VMLAL.S16 q0, d4, d6
MOV pc, lr
.size xcorr_kernel_neon, .-xcorr_kernel_neon @ ENDP
@ opus_val32 celt_pitch_xcorr_neon(opus_val16 *_x, opus_val16 *_y,
@ opus_val32 *xcorr, int len, int max_pitch)
; celt_pitch_xcorr_neon: @ PROC
@ input:
@ r0 = opus_val16 *_x
@ r1 = opus_val16 *_y
@ r2 = opus_val32 *xcorr
@ r3 = int len
@ output:
@ r0 = int maxcorr
@ internal usage:
@ r4 = opus_val16 *x (for xcorr_kernel_neon())
@ r5 = opus_val16 *y (for xcorr_kernel_neon())
@ r6 = int max_pitch
@ r12 = int j
@ q15 = int maxcorr[4] (q15 is not used by xcorr_kernel_neon())
STMFD sp!, {r4-r6, lr}
LDR r6, [sp, #16]
VMOV.S32 q15, #1
@ if (max_pitch < 4) goto celt_pitch_xcorr_neon_process4_done
SUBS r6, r6, #4
BLT celt_pitch_xcorr_neon_process4_done
celt_pitch_xcorr_neon_process4:
@ xcorr_kernel_neon parameters:
@ r3 = len, r4 = _x, r5 = _y, q0 = {0, 0, 0, 0}
MOV r4, r0
MOV r5, r1
VEOR q0, q0, q0
@ xcorr_kernel_neon only modifies r4, r5, r12, and q0...q3.
@ So we don't save/restore any other registers.
BL xcorr_kernel_neon_start
SUBS r6, r6, #4
VST1.32 {q0}, [r2]!
@ _y += 4
ADD r1, r1, #8
VMAX.S32 q15, q15, q0
@ if (max_pitch < 4) goto celt_pitch_xcorr_neon_process4_done
BGE celt_pitch_xcorr_neon_process4
@ We have less than 4 sums left to compute.
celt_pitch_xcorr_neon_process4_done:
ADDS r6, r6, #4
@ Reduce maxcorr to a single value
VMAX.S32 d30, d30, d31
VPMAX.S32 d30, d30, d30
@ if (max_pitch <= 0) goto celt_pitch_xcorr_neon_done
BLE celt_pitch_xcorr_neon_done
@ Now compute each remaining sum one at a time.
celt_pitch_xcorr_neon_process_remaining:
MOV r4, r0
MOV r5, r1
VMOV.I32 q0, #0
SUBS r12, r3, #8
BLT celt_pitch_xcorr_neon_process_remaining4
@ Sum terms 8 at a time.
celt_pitch_xcorr_neon_process_remaining_loop8:
@ Load x[0...7]
VLD1.16 {q1}, [r4]!
@ Load y[0...7]
VLD1.16 {q2}, [r5]!
SUBS r12, r12, #8
VMLAL.S16 q0, d4, d2
VMLAL.S16 q0, d5, d3
BGE celt_pitch_xcorr_neon_process_remaining_loop8
@ Sum terms 4 at a time.
celt_pitch_xcorr_neon_process_remaining4:
ADDS r12, r12, #4
BLT celt_pitch_xcorr_neon_process_remaining4_done
@ Load x[0...3]
VLD1.16 {d2}, [r4]!
@ Load y[0...3]
VLD1.16 {d3}, [r5]!
SUB r12, r12, #4
VMLAL.S16 q0, d3, d2
celt_pitch_xcorr_neon_process_remaining4_done:
@ Reduce the sum to a single value.
VADD.S32 d0, d0, d1
VPADDL.S32 d0, d0
ADDS r12, r12, #4
BLE celt_pitch_xcorr_neon_process_remaining_loop_done
@ Sum terms 1 at a time.
celt_pitch_xcorr_neon_process_remaining_loop1:
VLD1.16 {d2[]}, [r4]!
VLD1.16 {d3[]}, [r5]!
SUBS r12, r12, #1
VMLAL.S16 q0, d2, d3
BGT celt_pitch_xcorr_neon_process_remaining_loop1
celt_pitch_xcorr_neon_process_remaining_loop_done:
VST1.32 {d0[0]}, [r2]!
VMAX.S32 d30, d30, d0
SUBS r6, r6, #1
@ _y++
ADD r1, r1, #2
@ if (--max_pitch > 0) goto celt_pitch_xcorr_neon_process_remaining
BGT celt_pitch_xcorr_neon_process_remaining
celt_pitch_xcorr_neon_done:
VMOV.32 r0, d30[0]
LDMFD sp!, {r4-r6, pc}
.size celt_pitch_xcorr_neon, .-celt_pitch_xcorr_neon @ ENDP
.endif
.if OPUS_ARM_MAY_HAVE_EDSP
@ This will get used on ARMv7 devices without NEON, so it has been optimized
@ to take advantage of dual-issuing where possible.
; xcorr_kernel_edsp: @ PROC
xcorr_kernel_edsp_start:
@ input:
@ r3 = int len
@ r4 = opus_val16 *_x (must be 32-bit aligned)
@ r5 = opus_val16 *_y (must be 32-bit aligned)
@ r6...r9 = opus_val32 sum[4]
@ output:
@ r6...r9 = opus_val32 sum[4]
@ preserved: r0-r5
@ internal usage
@ r2 = int j
@ r12,r14 = opus_val16 x[4]
@ r10,r11 = opus_val16 y[4]
STMFD sp!, {r2,r4,r5,lr}
LDR r10, [r5], #4 @ Load y[0...1]
SUBS r2, r3, #4 @ j = len-4
LDR r11, [r5], #4 @ Load y[2...3]
BLE xcorr_kernel_edsp_process4_done
LDR r12, [r4], #4 @ Load x[0...1]
@ Stall
xcorr_kernel_edsp_process4:
@ The multiplies must issue from pipeline 0, and can't dual-issue with each
@ other. Every other instruction here dual-issues with a multiply, and is
@ thus "free". There should be no stalls in the body of the loop.
SMLABB r6, r12, r10, r6 @ sum[0] = MAC16_16(sum[0],x_0,y_0)
LDR r14, [r4], #4 @ Load x[2...3]
SMLABT r7, r12, r10, r7 @ sum[1] = MAC16_16(sum[1],x_0,y_1)
SUBS r2, r2, #4 @ j-=4
SMLABB r8, r12, r11, r8 @ sum[2] = MAC16_16(sum[2],x_0,y_2)
SMLABT r9, r12, r11, r9 @ sum[3] = MAC16_16(sum[3],x_0,y_3)
SMLATT r6, r12, r10, r6 @ sum[0] = MAC16_16(sum[0],x_1,y_1)
LDR r10, [r5], #4 @ Load y[4...5]
SMLATB r7, r12, r11, r7 @ sum[1] = MAC16_16(sum[1],x_1,y_2)
SMLATT r8, r12, r11, r8 @ sum[2] = MAC16_16(sum[2],x_1,y_3)
SMLATB r9, r12, r10, r9 @ sum[3] = MAC16_16(sum[3],x_1,y_4)
LDRGT r12, [r4], #4 @ Load x[0...1]
SMLABB r6, r14, r11, r6 @ sum[0] = MAC16_16(sum[0],x_2,y_2)
SMLABT r7, r14, r11, r7 @ sum[1] = MAC16_16(sum[1],x_2,y_3)
SMLABB r8, r14, r10, r8 @ sum[2] = MAC16_16(sum[2],x_2,y_4)
SMLABT r9, r14, r10, r9 @ sum[3] = MAC16_16(sum[3],x_2,y_5)
SMLATT r6, r14, r11, r6 @ sum[0] = MAC16_16(sum[0],x_3,y_3)
LDR r11, [r5], #4 @ Load y[6...7]
SMLATB r7, r14, r10, r7 @ sum[1] = MAC16_16(sum[1],x_3,y_4)
SMLATT r8, r14, r10, r8 @ sum[2] = MAC16_16(sum[2],x_3,y_5)
SMLATB r9, r14, r11, r9 @ sum[3] = MAC16_16(sum[3],x_3,y_6)
BGT xcorr_kernel_edsp_process4
xcorr_kernel_edsp_process4_done:
ADDS r2, r2, #4
BLE xcorr_kernel_edsp_done
LDRH r12, [r4], #2 @ r12 = *x++
SUBS r2, r2, #1 @ j--
@ Stall
SMLABB r6, r12, r10, r6 @ sum[0] = MAC16_16(sum[0],x,y_0)
LDRHGT r14, [r4], #2 @ r14 = *x++
SMLABT r7, r12, r10, r7 @ sum[1] = MAC16_16(sum[1],x,y_1)
SMLABB r8, r12, r11, r8 @ sum[2] = MAC16_16(sum[2],x,y_2)
SMLABT r9, r12, r11, r9 @ sum[3] = MAC16_16(sum[3],x,y_3)
BLE xcorr_kernel_edsp_done
SMLABT r6, r14, r10, r6 @ sum[0] = MAC16_16(sum[0],x,y_1)
SUBS r2, r2, #1 @ j--
SMLABB r7, r14, r11, r7 @ sum[1] = MAC16_16(sum[1],x,y_2)
LDRH r10, [r5], #2 @ r10 = y_4 = *y++
SMLABT r8, r14, r11, r8 @ sum[2] = MAC16_16(sum[2],x,y_3)
LDRHGT r12, [r4], #2 @ r12 = *x++
SMLABB r9, r14, r10, r9 @ sum[3] = MAC16_16(sum[3],x,y_4)
BLE xcorr_kernel_edsp_done
SMLABB r6, r12, r11, r6 @ sum[0] = MAC16_16(sum[0],tmp,y_2)
CMP r2, #1 @ j--
SMLABT r7, r12, r11, r7 @ sum[1] = MAC16_16(sum[1],tmp,y_3)
LDRH r2, [r5], #2 @ r2 = y_5 = *y++
SMLABB r8, r12, r10, r8 @ sum[2] = MAC16_16(sum[2],tmp,y_4)
LDRHGT r14, [r4] @ r14 = *x
SMLABB r9, r12, r2, r9 @ sum[3] = MAC16_16(sum[3],tmp,y_5)
BLE xcorr_kernel_edsp_done
SMLABT r6, r14, r11, r6 @ sum[0] = MAC16_16(sum[0],tmp,y_3)
LDRH r11, [r5] @ r11 = y_6 = *y
SMLABB r7, r14, r10, r7 @ sum[1] = MAC16_16(sum[1],tmp,y_4)
SMLABB r8, r14, r2, r8 @ sum[2] = MAC16_16(sum[2],tmp,y_5)
SMLABB r9, r14, r11, r9 @ sum[3] = MAC16_16(sum[3],tmp,y_6)
xcorr_kernel_edsp_done:
LDMFD sp!, {r2,r4,r5,pc}
.size xcorr_kernel_edsp, .-xcorr_kernel_edsp @ ENDP
; celt_pitch_xcorr_edsp: @ PROC
@ input:
@ r0 = opus_val16 *_x (must be 32-bit aligned)
@ r1 = opus_val16 *_y (only needs to be 16-bit aligned)
@ r2 = opus_val32 *xcorr
@ r3 = int len
@ output:
@ r0 = maxcorr
@ internal usage
@ r4 = opus_val16 *x
@ r5 = opus_val16 *y
@ r6 = opus_val32 sum0
@ r7 = opus_val32 sum1
@ r8 = opus_val32 sum2
@ r9 = opus_val32 sum3
@ r1 = int max_pitch
@ r12 = int j
STMFD sp!, {r4-r11, lr}
MOV r5, r1
LDR r1, [sp, #36]
MOV r4, r0
TST r5, #3
@ maxcorr = 1
MOV r0, #1
BEQ celt_pitch_xcorr_edsp_process1u_done
@ Compute one sum at the start to make y 32-bit aligned.
SUBS r12, r3, #4
@ r14 = sum = 0
MOV r14, #0
LDRH r8, [r5], #2
BLE celt_pitch_xcorr_edsp_process1u_loop4_done
LDR r6, [r4], #4
MOV r8, r8, LSL #16
celt_pitch_xcorr_edsp_process1u_loop4:
LDR r9, [r5], #4
SMLABT r14, r6, r8, r14 @ sum = MAC16_16(sum, x_0, y_0)
LDR r7, [r4], #4
SMLATB r14, r6, r9, r14 @ sum = MAC16_16(sum, x_1, y_1)
LDR r8, [r5], #4
SMLABT r14, r7, r9, r14 @ sum = MAC16_16(sum, x_2, y_2)
SUBS r12, r12, #4 @ j-=4
SMLATB r14, r7, r8, r14 @ sum = MAC16_16(sum, x_3, y_3)
LDRGT r6, [r4], #4
BGT celt_pitch_xcorr_edsp_process1u_loop4
MOV r8, r8, LSR #16
celt_pitch_xcorr_edsp_process1u_loop4_done:
ADDS r12, r12, #4
celt_pitch_xcorr_edsp_process1u_loop1:
LDRHGE r6, [r4], #2
@ Stall
SMLABBGE r14, r6, r8, r14 @ sum = MAC16_16(sum, *x, *y)
SUBSGE r12, r12, #1
LDRHGT r8, [r5], #2
BGT celt_pitch_xcorr_edsp_process1u_loop1
@ Restore _x
SUB r4, r4, r3, LSL #1
@ Restore and advance _y
SUB r5, r5, r3, LSL #1
@ maxcorr = max(maxcorr, sum)
CMP r0, r14
ADD r5, r5, #2
MOVLT r0, r14
SUBS r1, r1, #1
@ xcorr[i] = sum
STR r14, [r2], #4
BLE celt_pitch_xcorr_edsp_done
celt_pitch_xcorr_edsp_process1u_done:
@ if (max_pitch < 4) goto celt_pitch_xcorr_edsp_process2
SUBS r1, r1, #4
BLT celt_pitch_xcorr_edsp_process2
celt_pitch_xcorr_edsp_process4:
@ xcorr_kernel_edsp parameters:
@ r3 = len, r4 = _x, r5 = _y, r6...r9 = sum[4] = {0, 0, 0, 0}
MOV r6, #0
MOV r7, #0
MOV r8, #0
MOV r9, #0
BL xcorr_kernel_edsp_start @ xcorr_kernel_edsp(_x, _y+i, xcorr+i, len)
@ maxcorr = max(maxcorr, sum0, sum1, sum2, sum3)
CMP r0, r6
@ _y+=4
ADD r5, r5, #8
MOVLT r0, r6
CMP r0, r7
MOVLT r0, r7
CMP r0, r8
MOVLT r0, r8
CMP r0, r9
MOVLT r0, r9
STMIA r2!, {r6-r9}
SUBS r1, r1, #4
BGE celt_pitch_xcorr_edsp_process4
celt_pitch_xcorr_edsp_process2:
ADDS r1, r1, #2
BLT celt_pitch_xcorr_edsp_process1a
SUBS r12, r3, #4
@ {r10, r11} = {sum0, sum1} = {0, 0}
MOV r10, #0
MOV r11, #0
LDR r8, [r5], #4
BLE celt_pitch_xcorr_edsp_process2_loop_done
LDR r6, [r4], #4
LDR r9, [r5], #4
celt_pitch_xcorr_edsp_process2_loop4:
SMLABB r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_0)
LDR r7, [r4], #4
SMLABT r11, r6, r8, r11 @ sum1 = MAC16_16(sum1, x_0, y_1)
SUBS r12, r12, #4 @ j-=4
SMLATT r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_1, y_1)
LDR r8, [r5], #4
SMLATB r11, r6, r9, r11 @ sum1 = MAC16_16(sum1, x_1, y_2)
LDRGT r6, [r4], #4
SMLABB r10, r7, r9, r10 @ sum0 = MAC16_16(sum0, x_2, y_2)
SMLABT r11, r7, r9, r11 @ sum1 = MAC16_16(sum1, x_2, y_3)
SMLATT r10, r7, r9, r10 @ sum0 = MAC16_16(sum0, x_3, y_3)
LDRGT r9, [r5], #4
SMLATB r11, r7, r8, r11 @ sum1 = MAC16_16(sum1, x_3, y_4)
BGT celt_pitch_xcorr_edsp_process2_loop4
celt_pitch_xcorr_edsp_process2_loop_done:
ADDS r12, r12, #2
BLE celt_pitch_xcorr_edsp_process2_1
LDR r6, [r4], #4
@ Stall
SMLABB r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_0)
LDR r9, [r5], #4
SMLABT r11, r6, r8, r11 @ sum1 = MAC16_16(sum1, x_0, y_1)
SUB r12, r12, #2
SMLATT r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_1, y_1)
MOV r8, r9
SMLATB r11, r6, r9, r11 @ sum1 = MAC16_16(sum1, x_1, y_2)
celt_pitch_xcorr_edsp_process2_1:
LDRH r6, [r4], #2
ADDS r12, r12, #1
@ Stall
SMLABB r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_0)
LDRHGT r7, [r4], #2
SMLABT r11, r6, r8, r11 @ sum1 = MAC16_16(sum1, x_0, y_1)
BLE celt_pitch_xcorr_edsp_process2_done
LDRH r9, [r5], #2
SMLABT r10, r7, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_1)
SMLABB r11, r7, r9, r11 @ sum1 = MAC16_16(sum1, x_0, y_2)
celt_pitch_xcorr_edsp_process2_done:
@ Restore _x
SUB r4, r4, r3, LSL #1
@ Restore and advance _y
SUB r5, r5, r3, LSL #1
@ maxcorr = max(maxcorr, sum0)
CMP r0, r10
ADD r5, r5, #2
MOVLT r0, r10
SUB r1, r1, #2
@ maxcorr = max(maxcorr, sum1)
CMP r0, r11
@ xcorr[i] = sum
STR r10, [r2], #4
MOVLT r0, r11
STR r11, [r2], #4
celt_pitch_xcorr_edsp_process1a:
ADDS r1, r1, #1
BLT celt_pitch_xcorr_edsp_done
SUBS r12, r3, #4
@ r14 = sum = 0
MOV r14, #0
BLT celt_pitch_xcorr_edsp_process1a_loop_done
LDR r6, [r4], #4
LDR r8, [r5], #4
LDR r7, [r4], #4
LDR r9, [r5], #4
celt_pitch_xcorr_edsp_process1a_loop4:
SMLABB r14, r6, r8, r14 @ sum = MAC16_16(sum, x_0, y_0)
SUBS r12, r12, #4 @ j-=4
SMLATT r14, r6, r8, r14 @ sum = MAC16_16(sum, x_1, y_1)
LDRGE r6, [r4], #4
SMLABB r14, r7, r9, r14 @ sum = MAC16_16(sum, x_2, y_2)
LDRGE r8, [r5], #4
SMLATT r14, r7, r9, r14 @ sum = MAC16_16(sum, x_3, y_3)
LDRGE r7, [r4], #4
LDRGE r9, [r5], #4
BGE celt_pitch_xcorr_edsp_process1a_loop4
celt_pitch_xcorr_edsp_process1a_loop_done:
ADDS r12, r12, #2
LDRGE r6, [r4], #4
LDRGE r8, [r5], #4
@ Stall
SMLABBGE r14, r6, r8, r14 @ sum = MAC16_16(sum, x_0, y_0)
SUBGE r12, r12, #2
SMLATTGE r14, r6, r8, r14 @ sum = MAC16_16(sum, x_1, y_1)
ADDS r12, r12, #1
LDRHGE r6, [r4], #2
LDRHGE r8, [r5], #2
@ Stall
SMLABBGE r14, r6, r8, r14 @ sum = MAC16_16(sum, *x, *y)
@ maxcorr = max(maxcorr, sum)
CMP r0, r14
@ xcorr[i] = sum
STR r14, [r2], #4
MOVLT r0, r14
celt_pitch_xcorr_edsp_done:
LDMFD sp!, {r4-r11, pc}
.size celt_pitch_xcorr_edsp, .-celt_pitch_xcorr_edsp @ ENDP
.endif
@ END:
.section .note.GNU-stack,"",%progbits

View File

@ -153,7 +153,7 @@ xcorr_kernel_neon_process1
ENDP
; opus_val32 celt_pitch_xcorr_neon(opus_val16 *_x, opus_val16 *_y,
; opus_val32 *xcorr, int len, int max_pitch)
; opus_val32 *xcorr, int len, int max_pitch, int arch)
celt_pitch_xcorr_neon PROC
; input:
; r0 = opus_val16 *_x
@ -168,6 +168,8 @@ celt_pitch_xcorr_neon PROC
; r6 = int max_pitch
; r12 = int j
; q15 = int maxcorr[4] (q15 is not used by xcorr_kernel_neon())
; ignored:
; int arch
STMFD sp!, {r4-r6, lr}
LDR r6, [sp, #16]
VMOV.S32 q15, #1
@ -358,6 +360,8 @@ celt_pitch_xcorr_edsp PROC
; r9 = opus_val32 sum3
; r1 = int max_pitch
; r12 = int j
; ignored:
; int arch
STMFD sp!, {r4-r11, lr}
MOV r5, r1
LDR r1, [sp, #36]

View File

@ -34,7 +34,6 @@
#if !defined(FFT_ARM_H)
#define FFT_ARM_H
#include "config.h"
#include "kiss_fft.h"
#if defined(HAVE_ARM_NE10)

View File

@ -37,7 +37,7 @@ static OPUS_INLINE opus_val32 MULT16_32_Q16_armv4(opus_val16 a, opus_val32 b)
"#MULT16_32_Q16\n\t"
"smull %0, %1, %2, %3\n\t"
: "=&r"(rd_lo), "=&r"(rd_hi)
: "%r"(b),"r"(a<<16)
: "%r"(b),"r"(SHL32(a,16))
);
return rd_hi;
}
@ -54,10 +54,10 @@ static OPUS_INLINE opus_val32 MULT16_32_Q15_armv4(opus_val16 a, opus_val32 b)
"#MULT16_32_Q15\n\t"
"smull %0, %1, %2, %3\n\t"
: "=&r"(rd_lo), "=&r"(rd_hi)
: "%r"(b), "r"(a<<16)
: "%r"(b), "r"(SHL32(a,16))
);
/*We intentionally don't OR in the high bit of rd_lo for speed.*/
return rd_hi<<1;
return SHL32(rd_hi,1);
}
#define MULT16_32_Q15(a, b) (MULT16_32_Q15_armv4(a, b))

View File

@ -59,7 +59,7 @@ static OPUS_INLINE opus_val32 MULT16_32_Q15_armv5e(opus_val16 a, opus_val32 b)
: "=r"(res)
: "r"(b), "r"(a)
);
return res<<1;
return SHL32(res,1);
}
#define MULT16_32_Q15(a, b) (MULT16_32_Q15_armv5e(a, b))
@ -76,7 +76,7 @@ static OPUS_INLINE opus_val32 MAC16_32_Q15_armv5e(opus_val32 c, opus_val16 a,
"#MAC16_32_Q15\n\t"
"smlawb %0, %1, %2, %3;\n"
: "=r"(res)
: "r"(b<<1), "r"(a), "r"(c)
: "r"(SHL32(b,1)), "r"(a), "r"(c)
);
return res;
}

View File

@ -33,7 +33,6 @@
#if !defined(MDCT_ARM_H)
#define MDCT_ARM_H
#include "config.h"
#include "mdct.h"
#if defined(HAVE_ARM_NE10)

View File

@ -30,11 +30,47 @@
# include "armcpu.h"
# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
opus_val32 celt_inner_prod_neon(const opus_val16 *x, const opus_val16 *y, int N);
void dual_inner_prod_neon(const opus_val16 *x, const opus_val16 *y01,
const opus_val16 *y02, int N, opus_val32 *xy1, opus_val32 *xy2);
# if !defined(OPUS_HAVE_RTCD) && defined(OPUS_ARM_PRESUME_NEON)
# define OVERRIDE_CELT_INNER_PROD (1)
# define OVERRIDE_DUAL_INNER_PROD (1)
# define celt_inner_prod(x, y, N, arch) ((void)(arch), PRESUME_NEON(celt_inner_prod)(x, y, N))
# define dual_inner_prod(x, y01, y02, N, xy1, xy2, arch) ((void)(arch), PRESUME_NEON(dual_inner_prod)(x, y01, y02, N, xy1, xy2))
# endif
# endif
# if !defined(OVERRIDE_CELT_INNER_PROD)
# if defined(OPUS_HAVE_RTCD) && (defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR))
extern opus_val32 (*const CELT_INNER_PROD_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *x, const opus_val16 *y, int N);
# define OVERRIDE_CELT_INNER_PROD (1)
# define celt_inner_prod(x, y, N, arch) ((*CELT_INNER_PROD_IMPL[(arch)&OPUS_ARCHMASK])(x, y, N))
# elif defined(OPUS_ARM_PRESUME_NEON_INTR)
# define OVERRIDE_CELT_INNER_PROD (1)
# define celt_inner_prod(x, y, N, arch) ((void)(arch), celt_inner_prod_neon(x, y, N))
# endif
# endif
# if !defined(OVERRIDE_DUAL_INNER_PROD)
# if defined(OPUS_HAVE_RTCD) && (defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR))
extern void (*const DUAL_INNER_PROD_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *x,
const opus_val16 *y01, const opus_val16 *y02, int N, opus_val32 *xy1, opus_val32 *xy2);
# define OVERRIDE_DUAL_INNER_PROD (1)
# define dual_inner_prod(x, y01, y02, N, xy1, xy2, arch) ((*DUAL_INNER_PROD_IMPL[(arch)&OPUS_ARCHMASK])(x, y01, y02, N, xy1, xy2))
# elif defined(OPUS_ARM_PRESUME_NEON_INTR)
# define OVERRIDE_DUAL_INNER_PROD (1)
# define dual_inner_prod(x, y01, y02, N, xy1, xy2, arch) ((void)(arch), dual_inner_prod_neon(x, y01, y02, N, xy1, xy2))
# endif
# endif
# if defined(FIXED_POINT)
# if defined(OPUS_ARM_MAY_HAVE_NEON)
opus_val32 celt_pitch_xcorr_neon(const opus_val16 *_x, const opus_val16 *_y,
opus_val32 *xcorr, int len, int max_pitch);
opus_val32 *xcorr, int len, int max_pitch, int arch);
# endif
# if defined(OPUS_ARM_MAY_HAVE_MEDIA)
@ -43,7 +79,7 @@ opus_val32 celt_pitch_xcorr_neon(const opus_val16 *_x, const opus_val16 *_y,
# if defined(OPUS_ARM_MAY_HAVE_EDSP)
opus_val32 celt_pitch_xcorr_edsp(const opus_val16 *_x, const opus_val16 *_y,
opus_val32 *xcorr, int len, int max_pitch);
opus_val32 *xcorr, int len, int max_pitch, int arch);
# endif
# if defined(OPUS_HAVE_RTCD) && \
@ -52,18 +88,17 @@ opus_val32 celt_pitch_xcorr_edsp(const opus_val16 *_x, const opus_val16 *_y,
(defined(OPUS_ARM_MAY_HAVE_EDSP) && !defined(OPUS_ARM_PRESUME_EDSP)))
extern opus_val32
(*const CELT_PITCH_XCORR_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *,
const opus_val16 *, opus_val32 *, int, int);
const opus_val16 *, opus_val32 *, int, int, int);
# define OVERRIDE_PITCH_XCORR (1)
# define celt_pitch_xcorr(_x, _y, xcorr, len, max_pitch, arch) \
((*CELT_PITCH_XCORR_IMPL[(arch)&OPUS_ARCHMASK])(_x, _y, \
xcorr, len, max_pitch))
xcorr, len, max_pitch, arch))
# elif defined(OPUS_ARM_PRESUME_EDSP) || \
defined(OPUS_ARM_PRESUME_MEDIA) || \
defined(OPUS_ARM_PRESUME_NEON)
# define OVERRIDE_PITCH_XCORR (1)
# define celt_pitch_xcorr(_x, _y, xcorr, len, max_pitch, arch) \
((void)(arch),PRESUME_NEON(celt_pitch_xcorr)(_x, _y, xcorr, len, max_pitch))
# define celt_pitch_xcorr (PRESUME_NEON(celt_pitch_xcorr))
# endif
@ -99,25 +134,24 @@ extern void (*const XCORR_KERNEL_IMPL[OPUS_ARCHMASK + 1])(
/* Float case */
#if defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
void celt_pitch_xcorr_float_neon(const opus_val16 *_x, const opus_val16 *_y,
opus_val32 *xcorr, int len, int max_pitch);
opus_val32 *xcorr, int len, int max_pitch, int arch);
#endif
# if defined(OPUS_HAVE_RTCD) && \
(defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR))
extern void
(*const CELT_PITCH_XCORR_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *,
const opus_val16 *, opus_val32 *, int, int);
const opus_val16 *, opus_val32 *, int, int, int);
# define OVERRIDE_PITCH_XCORR (1)
# define celt_pitch_xcorr(_x, _y, xcorr, len, max_pitch, arch) \
((*CELT_PITCH_XCORR_IMPL[(arch)&OPUS_ARCHMASK])(_x, _y, \
xcorr, len, max_pitch))
xcorr, len, max_pitch, arch))
# elif defined(OPUS_ARM_PRESUME_NEON_INTR)
# define OVERRIDE_PITCH_XCORR (1)
# define celt_pitch_xcorr(_x, _y, xcorr, len, max_pitch, arch) \
((void)(arch),celt_pitch_xcorr_float_neon(_x, _y, xcorr, len, max_pitch))
# define celt_pitch_xcorr celt_pitch_xcorr_float_neon
# endif

View File

@ -0,0 +1,290 @@
/***********************************************************************
Copyright (c) 2017 Google Inc.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Internet Society, IETF or IETF Trust, nor the
names of specific contributors, may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <arm_neon.h>
#include "pitch.h"
#ifdef FIXED_POINT
opus_val32 celt_inner_prod_neon(const opus_val16 *x, const opus_val16 *y, int N)
{
int i;
opus_val32 xy;
int16x8_t x_s16x8, y_s16x8;
int32x4_t xy_s32x4 = vdupq_n_s32(0);
int64x2_t xy_s64x2;
int64x1_t xy_s64x1;
for (i = 0; i < N - 7; i += 8) {
x_s16x8 = vld1q_s16(&x[i]);
y_s16x8 = vld1q_s16(&y[i]);
xy_s32x4 = vmlal_s16(xy_s32x4, vget_low_s16 (x_s16x8), vget_low_s16 (y_s16x8));
xy_s32x4 = vmlal_s16(xy_s32x4, vget_high_s16(x_s16x8), vget_high_s16(y_s16x8));
}
if (N - i >= 4) {
const int16x4_t x_s16x4 = vld1_s16(&x[i]);
const int16x4_t y_s16x4 = vld1_s16(&y[i]);
xy_s32x4 = vmlal_s16(xy_s32x4, x_s16x4, y_s16x4);
i += 4;
}
xy_s64x2 = vpaddlq_s32(xy_s32x4);
xy_s64x1 = vadd_s64(vget_low_s64(xy_s64x2), vget_high_s64(xy_s64x2));
xy = vget_lane_s32(vreinterpret_s32_s64(xy_s64x1), 0);
for (; i < N; i++) {
xy = MAC16_16(xy, x[i], y[i]);
}
#ifdef OPUS_CHECK_ASM
celt_assert(celt_inner_prod_c(x, y, N) == xy);
#endif
return xy;
}
void dual_inner_prod_neon(const opus_val16 *x, const opus_val16 *y01, const opus_val16 *y02,
int N, opus_val32 *xy1, opus_val32 *xy2)
{
int i;
opus_val32 xy01, xy02;
int16x8_t x_s16x8, y01_s16x8, y02_s16x8;
int32x4_t xy01_s32x4 = vdupq_n_s32(0);
int32x4_t xy02_s32x4 = vdupq_n_s32(0);
int64x2_t xy01_s64x2, xy02_s64x2;
int64x1_t xy01_s64x1, xy02_s64x1;
for (i = 0; i < N - 7; i += 8) {
x_s16x8 = vld1q_s16(&x[i]);
y01_s16x8 = vld1q_s16(&y01[i]);
y02_s16x8 = vld1q_s16(&y02[i]);
xy01_s32x4 = vmlal_s16(xy01_s32x4, vget_low_s16 (x_s16x8), vget_low_s16 (y01_s16x8));
xy02_s32x4 = vmlal_s16(xy02_s32x4, vget_low_s16 (x_s16x8), vget_low_s16 (y02_s16x8));
xy01_s32x4 = vmlal_s16(xy01_s32x4, vget_high_s16(x_s16x8), vget_high_s16(y01_s16x8));
xy02_s32x4 = vmlal_s16(xy02_s32x4, vget_high_s16(x_s16x8), vget_high_s16(y02_s16x8));
}
if (N - i >= 4) {
const int16x4_t x_s16x4 = vld1_s16(&x[i]);
const int16x4_t y01_s16x4 = vld1_s16(&y01[i]);
const int16x4_t y02_s16x4 = vld1_s16(&y02[i]);
xy01_s32x4 = vmlal_s16(xy01_s32x4, x_s16x4, y01_s16x4);
xy02_s32x4 = vmlal_s16(xy02_s32x4, x_s16x4, y02_s16x4);
i += 4;
}
xy01_s64x2 = vpaddlq_s32(xy01_s32x4);
xy02_s64x2 = vpaddlq_s32(xy02_s32x4);
xy01_s64x1 = vadd_s64(vget_low_s64(xy01_s64x2), vget_high_s64(xy01_s64x2));
xy02_s64x1 = vadd_s64(vget_low_s64(xy02_s64x2), vget_high_s64(xy02_s64x2));
xy01 = vget_lane_s32(vreinterpret_s32_s64(xy01_s64x1), 0);
xy02 = vget_lane_s32(vreinterpret_s32_s64(xy02_s64x1), 0);
for (; i < N; i++) {
xy01 = MAC16_16(xy01, x[i], y01[i]);
xy02 = MAC16_16(xy02, x[i], y02[i]);
}
*xy1 = xy01;
*xy2 = xy02;
#ifdef OPUS_CHECK_ASM
{
opus_val32 xy1_c, xy2_c;
dual_inner_prod_c(x, y01, y02, N, &xy1_c, &xy2_c);
celt_assert(xy1_c == *xy1);
celt_assert(xy2_c == *xy2);
}
#endif
}
#else /* !FIXED_POINT */
/* ========================================================================== */
#ifdef OPUS_CHECK_ASM
/* This part of code simulates floating-point NEON operations. */
/* celt_inner_prod_neon_float_c_simulation() simulates the floating-point */
/* operations of celt_inner_prod_neon(), and both functions should have bit */
/* exact output. */
static opus_val32 celt_inner_prod_neon_float_c_simulation(const opus_val16 *x, const opus_val16 *y, int N)
{
int i;
opus_val32 xy, xy0 = 0, xy1 = 0, xy2 = 0, xy3 = 0;
for (i = 0; i < N - 3; i += 4) {
xy0 = MAC16_16(xy0, x[i + 0], y[i + 0]);
xy1 = MAC16_16(xy1, x[i + 1], y[i + 1]);
xy2 = MAC16_16(xy2, x[i + 2], y[i + 2]);
xy3 = MAC16_16(xy3, x[i + 3], y[i + 3]);
}
xy0 += xy2;
xy1 += xy3;
xy = xy0 + xy1;
for (; i < N; i++) {
xy = MAC16_16(xy, x[i], y[i]);
}
return xy;
}
/* dual_inner_prod_neon_float_c_simulation() simulates the floating-point */
/* operations of dual_inner_prod_neon(), and both functions should have bit */
/* exact output. */
static void dual_inner_prod_neon_float_c_simulation(const opus_val16 *x, const opus_val16 *y01, const opus_val16 *y02,
int N, opus_val32 *xy1, opus_val32 *xy2)
{
int i;
opus_val32 xy01, xy02, xy01_0 = 0, xy01_1 = 0, xy01_2 = 0, xy01_3 = 0, xy02_0 = 0, xy02_1 = 0, xy02_2 = 0, xy02_3 = 0;
for (i = 0; i < N - 3; i += 4) {
xy01_0 = MAC16_16(xy01_0, x[i + 0], y01[i + 0]);
xy01_1 = MAC16_16(xy01_1, x[i + 1], y01[i + 1]);
xy01_2 = MAC16_16(xy01_2, x[i + 2], y01[i + 2]);
xy01_3 = MAC16_16(xy01_3, x[i + 3], y01[i + 3]);
xy02_0 = MAC16_16(xy02_0, x[i + 0], y02[i + 0]);
xy02_1 = MAC16_16(xy02_1, x[i + 1], y02[i + 1]);
xy02_2 = MAC16_16(xy02_2, x[i + 2], y02[i + 2]);
xy02_3 = MAC16_16(xy02_3, x[i + 3], y02[i + 3]);
}
xy01_0 += xy01_2;
xy02_0 += xy02_2;
xy01_1 += xy01_3;
xy02_1 += xy02_3;
xy01 = xy01_0 + xy01_1;
xy02 = xy02_0 + xy02_1;
for (; i < N; i++) {
xy01 = MAC16_16(xy01, x[i], y01[i]);
xy02 = MAC16_16(xy02, x[i], y02[i]);
}
*xy1 = xy01;
*xy2 = xy02;
}
#endif /* OPUS_CHECK_ASM */
/* ========================================================================== */
opus_val32 celt_inner_prod_neon(const opus_val16 *x, const opus_val16 *y, int N)
{
int i;
opus_val32 xy;
float32x4_t xy_f32x4 = vdupq_n_f32(0);
float32x2_t xy_f32x2;
for (i = 0; i < N - 7; i += 8) {
float32x4_t x_f32x4, y_f32x4;
x_f32x4 = vld1q_f32(&x[i]);
y_f32x4 = vld1q_f32(&y[i]);
xy_f32x4 = vmlaq_f32(xy_f32x4, x_f32x4, y_f32x4);
x_f32x4 = vld1q_f32(&x[i + 4]);
y_f32x4 = vld1q_f32(&y[i + 4]);
xy_f32x4 = vmlaq_f32(xy_f32x4, x_f32x4, y_f32x4);
}
if (N - i >= 4) {
const float32x4_t x_f32x4 = vld1q_f32(&x[i]);
const float32x4_t y_f32x4 = vld1q_f32(&y[i]);
xy_f32x4 = vmlaq_f32(xy_f32x4, x_f32x4, y_f32x4);
i += 4;
}
xy_f32x2 = vadd_f32(vget_low_f32(xy_f32x4), vget_high_f32(xy_f32x4));
xy_f32x2 = vpadd_f32(xy_f32x2, xy_f32x2);
xy = vget_lane_f32(xy_f32x2, 0);
for (; i < N; i++) {
xy = MAC16_16(xy, x[i], y[i]);
}
#ifdef OPUS_CHECK_ASM
celt_assert(ABS32(celt_inner_prod_neon_float_c_simulation(x, y, N) - xy) <= VERY_SMALL);
#endif
return xy;
}
void dual_inner_prod_neon(const opus_val16 *x, const opus_val16 *y01, const opus_val16 *y02,
int N, opus_val32 *xy1, opus_val32 *xy2)
{
int i;
opus_val32 xy01, xy02;
float32x4_t xy01_f32x4 = vdupq_n_f32(0);
float32x4_t xy02_f32x4 = vdupq_n_f32(0);
float32x2_t xy01_f32x2, xy02_f32x2;
for (i = 0; i < N - 7; i += 8) {
float32x4_t x_f32x4, y01_f32x4, y02_f32x4;
x_f32x4 = vld1q_f32(&x[i]);
y01_f32x4 = vld1q_f32(&y01[i]);
y02_f32x4 = vld1q_f32(&y02[i]);
xy01_f32x4 = vmlaq_f32(xy01_f32x4, x_f32x4, y01_f32x4);
xy02_f32x4 = vmlaq_f32(xy02_f32x4, x_f32x4, y02_f32x4);
x_f32x4 = vld1q_f32(&x[i + 4]);
y01_f32x4 = vld1q_f32(&y01[i + 4]);
y02_f32x4 = vld1q_f32(&y02[i + 4]);
xy01_f32x4 = vmlaq_f32(xy01_f32x4, x_f32x4, y01_f32x4);
xy02_f32x4 = vmlaq_f32(xy02_f32x4, x_f32x4, y02_f32x4);
}
if (N - i >= 4) {
const float32x4_t x_f32x4 = vld1q_f32(&x[i]);
const float32x4_t y01_f32x4 = vld1q_f32(&y01[i]);
const float32x4_t y02_f32x4 = vld1q_f32(&y02[i]);
xy01_f32x4 = vmlaq_f32(xy01_f32x4, x_f32x4, y01_f32x4);
xy02_f32x4 = vmlaq_f32(xy02_f32x4, x_f32x4, y02_f32x4);
i += 4;
}
xy01_f32x2 = vadd_f32(vget_low_f32(xy01_f32x4), vget_high_f32(xy01_f32x4));
xy02_f32x2 = vadd_f32(vget_low_f32(xy02_f32x4), vget_high_f32(xy02_f32x4));
xy01_f32x2 = vpadd_f32(xy01_f32x2, xy01_f32x2);
xy02_f32x2 = vpadd_f32(xy02_f32x2, xy02_f32x2);
xy01 = vget_lane_f32(xy01_f32x2, 0);
xy02 = vget_lane_f32(xy02_f32x2, 0);
for (; i < N; i++) {
xy01 = MAC16_16(xy01, x[i], y01[i]);
xy02 = MAC16_16(xy02, x[i], y02[i]);
}
*xy1 = xy01;
*xy2 = xy02;
#ifdef OPUS_CHECK_ASM
{
opus_val32 xy1_c, xy2_c;
dual_inner_prod_neon_float_c_simulation(x, y01, y02, N, &xy1_c, &xy2_c);
celt_assert(ABS32(xy1_c - *xy1) <= VERY_SMALL);
celt_assert(ABS32(xy2_c - *xy2) <= VERY_SMALL);
}
#endif
}
#endif /* FIXED_POINT */

View File

@ -65,19 +65,19 @@ opus_uint32 celt_lcg_rand(opus_uint32 seed)
/* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness
with this approximation is important because it has an impact on the bit allocation */
static opus_int16 bitexact_cos(opus_int16 x)
opus_int16 bitexact_cos(opus_int16 x)
{
opus_int32 tmp;
opus_int16 x2;
tmp = (4096+((opus_int32)(x)*(x)))>>13;
celt_assert(tmp<=32767);
celt_sig_assert(tmp<=32767);
x2 = tmp;
x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))));
celt_assert(x2<=32766);
celt_sig_assert(x2<=32766);
return 1+x2;
}
static int bitexact_log2tan(int isin,int icos)
int bitexact_log2tan(int isin,int icos)
{
int lc;
int ls;
@ -92,10 +92,11 @@ static int bitexact_log2tan(int isin,int icos)
#ifdef FIXED_POINT
/* Compute the amplitude (sqrt energy) in each of the bands */
void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM)
void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch)
{
int i, c, N;
const opus_int16 *eBands = m->eBands;
(void)arch;
N = m->shortMdctSize<<LM;
c=0; do {
for (i=0;i<end;i++)
@ -155,7 +156,7 @@ void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, cel
#else /* FIXED_POINT */
/* Compute the amplitude (sqrt energy) in each of the bands */
void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM)
void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch)
{
int i, c, N;
const opus_int16 *eBands = m->eBands;
@ -164,7 +165,7 @@ void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *band
for (i=0;i<end;i++)
{
opus_val32 sum;
sum = 1e-27f + celt_inner_prod_c(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM);
sum = 1e-27f + celt_inner_prod(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM, arch);
bandE[i+c*m->nbEBands] = celt_sqrt(sum);
/*printf ("%f ", bandE[i+c*m->nbEBands]);*/
}
@ -224,9 +225,9 @@ void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X,
#endif
j=M*eBands[i];
band_end = M*eBands[i+1];
lg = ADD16(bandLogE[i], SHL16((opus_val16)eMeans[i],6));
lg = SATURATE16(ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],6)));
#ifndef FIXED_POINT
g = celt_exp2(lg);
g = celt_exp2(MIN32(32.f, lg));
#else
/* Handle the integer part of the log energy */
shift = 16-(lg>>DB_SHIFT);
@ -241,12 +242,12 @@ void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X,
/* Handle extreme gains with negative shift. */
if (shift<0)
{
/* For shift < -2 we'd be likely to overflow, so we're capping
the gain here. This shouldn't happen unless the bitstream is
already corrupted. */
if (shift < -2)
/* For shift <= -2 and g > 16384 we'd be likely to overflow, so we're
capping the gain here, which is equivalent to a cap of 18 on lg.
This shouldn't trigger unless the bitstream is already corrupted. */
if (shift <= -2)
{
g = 32767;
g = 16384;
shift = -2;
}
do {
@ -281,7 +282,7 @@ void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_mas
N0 = m->eBands[i+1]-m->eBands[i];
/* depth in 1/8 bits */
celt_assert(pulses[i]>=0);
celt_sig_assert(pulses[i]>=0);
depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM;
#ifdef FIXED_POINT
@ -360,6 +361,30 @@ void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_mas
}
}
/* Compute the weights to use for optimizing normalized distortion across
channels. We use the amplitude to weight square distortion, which means
that we use the square root of the value we would have been using if we
wanted to minimize the MSE in the non-normalized domain. This roughly
corresponds to some quick-and-dirty perceptual experiments I ran to
measure inter-aural masking (there doesn't seem to be any published data
on the topic). */
static void compute_channel_weights(celt_ener Ex, celt_ener Ey, opus_val16 w[2])
{
celt_ener minE;
#ifdef FIXED_POINT
int shift;
#endif
minE = MIN32(Ex, Ey);
/* Adjustment to make the weights a bit more conservative. */
Ex = ADD32(Ex, minE/3);
Ey = ADD32(Ey, minE/3);
#ifdef FIXED_POINT
shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14;
#endif
w[0] = VSHR32(Ex, shift);
w[1] = VSHR32(Ey, shift);
}
static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N)
{
int i = bandID;
@ -453,7 +478,7 @@ static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT
/* Decide whether we should spread the pulses in the current frame */
int spreading_decision(const CELTMode *m, const celt_norm *X, int *average,
int last_decision, int *hf_average, int *tapset_decision, int update_hf,
int end, int C, int M)
int end, int C, int M, const int *spread_weight)
{
int i, c, N0;
int sum = 0, nbBands=0;
@ -494,8 +519,8 @@ int spreading_decision(const CELTMode *m, const celt_norm *X, int *average,
if (i>m->nbEBands-4)
hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N);
tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N);
sum += tmp*256;
nbBands++;
sum += tmp*spread_weight[i];
nbBands+=spread_weight[i];
}
} while (++c<C);
@ -519,7 +544,7 @@ int spreading_decision(const CELTMode *m, const celt_norm *X, int *average,
/*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/
celt_assert(nbBands>0); /* end has to be non-zero */
celt_assert(sum>=0);
sum = celt_udiv(sum, nbBands);
sum = celt_udiv((opus_int32)sum<<8, nbBands);
/* Recursive averaging */
sum = (sum+*average)>>1;
*average = sum;
@ -647,6 +672,7 @@ static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo)
struct band_ctx {
int encode;
int resynth;
const CELTMode *m;
int i;
int intensity;
@ -657,6 +683,9 @@ struct band_ctx {
const celt_ener *bandE;
opus_uint32 seed;
int arch;
int theta_round;
int disable_inv;
int avoid_split_noise;
};
struct split_ctx {
@ -714,8 +743,35 @@ static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx,
if (qn!=1)
{
if (encode)
itheta = (itheta*(opus_int32)qn+8192)>>14;
{
if (!stereo || ctx->theta_round == 0)
{
itheta = (itheta*(opus_int32)qn+8192)>>14;
if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn)
{
/* Check if the selected value of theta will cause the bit allocation
to inject noise on one side. If so, make sure the energy of that side
is zero. */
int unquantized = celt_udiv((opus_int32)itheta*16384, qn);
imid = bitexact_cos((opus_int16)unquantized);
iside = bitexact_cos((opus_int16)(16384-unquantized));
delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
if (delta > *b)
itheta = qn;
else if (delta < -*b)
itheta = 0;
}
} else {
int down;
/* Bias quantization towards itheta=0 and itheta=16384. */
int bias = itheta > 8192 ? 32767/qn : -32767/qn;
down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14));
if (ctx->theta_round < 0)
itheta = down;
else
itheta = down+1;
}
}
/* Entropy coding of the angle. We use a uniform pdf for the
time split, a step for stereo, and a triangular one for the rest. */
if (stereo && N>2)
@ -793,7 +849,7 @@ static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx,
} else if (stereo) {
if (encode)
{
inv = itheta > 8192;
inv = itheta > 8192 && !ctx->disable_inv;
if (inv)
{
int j;
@ -810,6 +866,9 @@ static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx,
inv = ec_dec_bit_logp(ec, 2);
} else
inv = 0;
/* inv flag override to avoid problems with downmixing. */
if (ctx->disable_inv)
inv = 0;
itheta = 0;
}
qalloc = ec_tell_frac(ec) - tell;
@ -845,11 +904,6 @@ static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx,
static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b,
celt_norm *lowband_out)
{
#ifdef RESYNTH
int resynth = 1;
#else
int resynth = !ctx->encode;
#endif
int c;
int stereo;
celt_norm *x = X;
@ -874,7 +928,7 @@ static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y,
ctx->remaining_bits -= 1<<BITRES;
b-=1<<BITRES;
}
if (resynth)
if (ctx->resynth)
x[0] = sign ? -NORM_SCALING : NORM_SCALING;
x = Y;
} while (++c<1+stereo);
@ -899,11 +953,6 @@ static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X,
int B0=B;
opus_val16 mid=0, side=0;
unsigned cm=0;
#ifdef RESYNTH
int resynth = 1;
#else
int resynth = !ctx->encode;
#endif
celt_norm *Y=NULL;
int encode;
const CELTMode *m;
@ -935,8 +984,7 @@ static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X,
fill = (fill&1)|(fill<<1);
B = (B+1)>>1;
compute_theta(ctx, &sctx, X, Y, N, &b, B, B0,
LM, 0, &fill);
compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill);
imid = sctx.imid;
iside = sctx.iside;
delta = sctx.delta;
@ -970,24 +1018,20 @@ static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X,
rebalance = ctx->remaining_bits;
if (mbits >= sbits)
{
cm = quant_partition(ctx, X, N, mbits, B,
lowband, LM,
cm = quant_partition(ctx, X, N, mbits, B, lowband, LM,
MULT16_16_P15(gain,mid), fill);
rebalance = mbits - (rebalance-ctx->remaining_bits);
if (rebalance > 3<<BITRES && itheta!=0)
sbits += rebalance - (3<<BITRES);
cm |= quant_partition(ctx, Y, N, sbits, B,
next_lowband2, LM,
cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM,
MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
} else {
cm = quant_partition(ctx, Y, N, sbits, B,
next_lowband2, LM,
cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM,
MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
rebalance = sbits - (rebalance-ctx->remaining_bits);
if (rebalance > 3<<BITRES && itheta!=16384)
mbits += rebalance - (3<<BITRES);
cm |= quant_partition(ctx, X, N, mbits, B,
lowband, LM,
cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM,
MULT16_16_P15(gain,mid), fill);
}
} else {
@ -1012,18 +1056,14 @@ static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X,
/* Finally do the actual quantization */
if (encode)
{
cm = alg_quant(X, N, K, spread, B, ec
#ifdef RESYNTH
, gain
#endif
);
cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth, ctx->arch);
} else {
cm = alg_unquant(X, N, K, spread, B, ec, gain);
}
} else {
/* If there's no pulse, fill the band anyway */
int j;
if (resynth)
if (ctx->resynth)
{
unsigned cm_mask;
/* B can be as large as 16, so this shift might overflow an int on a
@ -1080,11 +1120,6 @@ static unsigned quant_band(struct band_ctx *ctx, celt_norm *X,
int recombine=0;
int longBlocks;
unsigned cm=0;
#ifdef RESYNTH
int resynth = 1;
#else
int resynth = !ctx->encode;
#endif
int k;
int encode;
int tf_change;
@ -1151,11 +1186,10 @@ static unsigned quant_band(struct band_ctx *ctx, celt_norm *X,
deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
}
cm = quant_partition(ctx, X, N, b, B, lowband,
LM, gain, fill);
cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill);
/* This code is used by the decoder and by the resynthesis-enabled encoder */
if (resynth)
if (ctx->resynth)
{
/* Undo the sample reorganization going from time order to frequency order */
if (B0>1)
@ -1208,11 +1242,6 @@ static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm
int inv = 0;
opus_val16 mid=0, side=0;
unsigned cm=0;
#ifdef RESYNTH
int resynth = 1;
#else
int resynth = !ctx->encode;
#endif
int mbits, sbits, delta;
int itheta;
int qalloc;
@ -1232,8 +1261,7 @@ static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm
orig_fill = fill;
compute_theta(ctx, &sctx, X, Y, N, &b, B, B,
LM, 1, &fill);
compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill);
inv = sctx.inv;
imid = sctx.imid;
iside = sctx.iside;
@ -1281,13 +1309,13 @@ static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm
sign = 1-2*sign;
/* We use orig_fill here because we want to fold the side, but if
itheta==16384, we'll have cleared the low bits of fill. */
cm = quant_band(ctx, x2, N, mbits, B, lowband,
LM, lowband_out, Q15ONE, lowband_scratch, orig_fill);
cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q15ONE,
lowband_scratch, orig_fill);
/* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
and there's no need to worry about mixing with the other channel. */
y2[0] = -sign*x2[1];
y2[1] = sign*x2[0];
if (resynth)
if (ctx->resynth)
{
celt_norm tmp;
X[0] = MULT16_16_Q15(mid, X[0]);
@ -1314,38 +1342,32 @@ static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm
{
/* In stereo mode, we do not apply a scaling to the mid because we need the normalized
mid for folding later. */
cm = quant_band(ctx, X, N, mbits, B,
lowband, LM, lowband_out,
Q15ONE, lowband_scratch, fill);
cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q15ONE,
lowband_scratch, fill);
rebalance = mbits - (rebalance-ctx->remaining_bits);
if (rebalance > 3<<BITRES && itheta!=0)
sbits += rebalance - (3<<BITRES);
/* For a stereo split, the high bits of fill are always zero, so no
folding will be done to the side. */
cm |= quant_band(ctx, Y, N, sbits, B,
NULL, LM, NULL,
side, NULL, fill>>B);
cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B);
} else {
/* For a stereo split, the high bits of fill are always zero, so no
folding will be done to the side. */
cm = quant_band(ctx, Y, N, sbits, B,
NULL, LM, NULL,
side, NULL, fill>>B);
cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B);
rebalance = sbits - (rebalance-ctx->remaining_bits);
if (rebalance > 3<<BITRES && itheta!=16384)
mbits += rebalance - (3<<BITRES);
/* In stereo mode, we do not apply a scaling to the mid because we need the normalized
mid for folding later. */
cm |= quant_band(ctx, X, N, mbits, B,
lowband, LM, lowband_out,
Q15ONE, lowband_scratch, fill);
cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q15ONE,
lowband_scratch, fill);
}
}
/* This code is used by the decoder and by the resynthesis-enabled encoder */
if (resynth)
if (ctx->resynth)
{
if (N!=2)
stereo_merge(X, Y, mid, N, ctx->arch);
@ -1359,19 +1381,38 @@ static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm
return cm;
}
static void special_hybrid_folding(const CELTMode *m, celt_norm *norm, celt_norm *norm2, int start, int M, int dual_stereo)
{
int n1, n2;
const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
n1 = M*(eBands[start+1]-eBands[start]);
n2 = M*(eBands[start+2]-eBands[start+1]);
/* Duplicate enough of the first band folding data to be able to fold the second band.
Copies no data for CELT-only mode. */
OPUS_COPY(&norm[n1], &norm[2*n1 - n2], n2-n1);
if (dual_stereo)
OPUS_COPY(&norm2[n1], &norm2[2*n1 - n2], n2-n1);
}
void quant_all_bands(int encode, const CELTMode *m, int start, int end,
celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks,
const celt_ener *bandE, int *pulses, int shortBlocks, int spread,
int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits,
opus_int32 balance, ec_ctx *ec, int LM, int codedBands,
opus_uint32 *seed, int arch)
opus_uint32 *seed, int complexity, int arch, int disable_inv)
{
int i;
opus_int32 remaining_bits;
const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2;
VARDECL(celt_norm, _norm);
VARDECL(celt_norm, _lowband_scratch);
VARDECL(celt_norm, X_save);
VARDECL(celt_norm, Y_save);
VARDECL(celt_norm, X_save2);
VARDECL(celt_norm, Y_save2);
VARDECL(celt_norm, norm_save2);
int resynth_alloc;
celt_norm *lowband_scratch;
int B;
int M;
@ -1379,10 +1420,11 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
int update_lowband = 1;
int C = Y_ != NULL ? 2 : 1;
int norm_offset;
int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8;
#ifdef RESYNTH
int resynth = 1;
#else
int resynth = !encode;
int resynth = !encode || theta_rdo;
#endif
struct band_ctx ctx;
SAVE_STACK;
@ -1395,9 +1437,24 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm);
norm = _norm;
norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset;
/* We can use the last band as scratch space because we don't need that
scratch space for the last band. */
lowband_scratch = X_+M*eBands[m->nbEBands-1];
/* For decoding, we can use the last band as scratch space because we don't need that
scratch space for the last band and we don't care about the data there until we're
decoding the last band. */
if (encode && resynth)
resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]);
else
resynth_alloc = ALLOC_NONE;
ALLOC(_lowband_scratch, resynth_alloc, celt_norm);
if (encode && resynth)
lowband_scratch = _lowband_scratch;
else
lowband_scratch = X_+M*eBands[m->nbEBands-1];
ALLOC(X_save, resynth_alloc, celt_norm);
ALLOC(Y_save, resynth_alloc, celt_norm);
ALLOC(X_save2, resynth_alloc, celt_norm);
ALLOC(Y_save2, resynth_alloc, celt_norm);
ALLOC(norm_save2, resynth_alloc, celt_norm);
lowband_offset = 0;
ctx.bandE = bandE;
@ -1408,6 +1465,11 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
ctx.seed = *seed;
ctx.spread = spread;
ctx.arch = arch;
ctx.disable_inv = disable_inv;
ctx.resynth = resynth;
ctx.theta_round = 0;
/* Avoid injecting noise in the first band on transients. */
ctx.avoid_split_noise = B > 1;
for (i=start;i<end;i++)
{
opus_int32 tell;
@ -1430,6 +1492,7 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
else
Y = NULL;
N = M*eBands[i+1]-M*eBands[i];
celt_assert(N > 0);
tell = ec_tell_frac(ec);
/* Compute how many bits we want to allocate to this band */
@ -1445,8 +1508,15 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
b = 0;
}
#ifndef DISABLE_UPDATE_DRAFT
if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0))
lowband_offset = i;
if (i == start+1)
special_hybrid_folding(m, norm, norm2, start, M, dual_stereo);
#else
if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0))
lowband_offset = i;
#endif
tf_change = tf_res[i];
ctx.tf_change = tf_change;
@ -1457,7 +1527,7 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
Y = norm;
lowband_scratch = NULL;
}
if (i==end-1)
if (last && !theta_rdo)
lowband_scratch = NULL;
/* Get a conservative estimate of the collapse_mask's for the bands we're
@ -1472,7 +1542,11 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
fold_start = lowband_offset;
while(M*eBands[--fold_start] > effective_lowband+norm_offset);
fold_end = lowband_offset-1;
#ifndef DISABLE_UPDATE_DRAFT
while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N);
#else
while(M*eBands[++fold_end] < effective_lowband+norm_offset+N);
#endif
x_cm = y_cm = 0;
fold_i = fold_start; do {
x_cm |= collapse_masks[fold_i*C+0];
@ -1505,13 +1579,79 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
} else {
if (Y!=NULL)
{
x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm);
if (theta_rdo && i < intensity)
{
ec_ctx ec_save, ec_save2;
struct band_ctx ctx_save, ctx_save2;
opus_val32 dist0, dist1;
unsigned cm, cm2;
int nstart_bytes, nend_bytes, save_bytes;
unsigned char *bytes_buf;
unsigned char bytes_save[1275];
opus_val16 w[2];
compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w);
/* Make a copy. */
cm = x_cm|y_cm;
ec_save = *ec;
ctx_save = ctx;
OPUS_COPY(X_save, X, N);
OPUS_COPY(Y_save, Y, N);
/* Encode and round down. */
ctx.theta_round = -1;
x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm);
dist0 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch));
/* Save first result. */
cm2 = x_cm;
ec_save2 = *ec;
ctx_save2 = ctx;
OPUS_COPY(X_save2, X, N);
OPUS_COPY(Y_save2, Y, N);
if (!last)
OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N);
nstart_bytes = ec_save.offs;
nend_bytes = ec_save.storage;
bytes_buf = ec_save.buf+nstart_bytes;
save_bytes = nend_bytes-nstart_bytes;
OPUS_COPY(bytes_save, bytes_buf, save_bytes);
/* Restore */
*ec = ec_save;
ctx = ctx_save;
OPUS_COPY(X, X_save, N);
OPUS_COPY(Y, Y_save, N);
#ifndef DISABLE_UPDATE_DRAFT
if (i == start+1)
special_hybrid_folding(m, norm, norm2, start, M, dual_stereo);
#endif
/* Encode and round up. */
ctx.theta_round = 1;
x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm);
dist1 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch));
if (dist0 >= dist1) {
x_cm = cm2;
*ec = ec_save2;
ctx = ctx_save2;
OPUS_COPY(X, X_save2, N);
OPUS_COPY(Y, Y_save2, N);
if (!last)
OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N);
OPUS_COPY(bytes_buf, bytes_save, save_bytes);
}
} else {
ctx.theta_round = 0;
x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm);
}
} else {
x_cm = quant_band(&ctx, X, N, b, B,
effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm);
last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm);
}
y_cm = x_cm;
}
@ -1521,6 +1661,9 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
/* Update the folding position only as long as we have 1 bit/sample depth. */
update_lowband = b>(N<<BITRES);
/* We only need to avoid noise on a split for the first band. After that, we
have folding. */
ctx.avoid_split_noise = 0;
}
*seed = ctx.seed;

View File

@ -36,12 +36,15 @@
#include "entdec.h"
#include "rate.h"
opus_int16 bitexact_cos(opus_int16 x);
int bitexact_log2tan(int isin,int icos);
/** Compute the amplitude (sqrt energy) in each of the bands
* @param m Mode data
* @param X Spectrum
* @param bandE Square root of the energy for each band (returned)
*/
void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM);
void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch);
/*void compute_noise_energies(const CELTMode *m, const celt_sig *X, const opus_val16 *tonality, celt_ener *bandE);*/
@ -69,7 +72,7 @@ void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X,
int spreading_decision(const CELTMode *m, const celt_norm *X, int *average,
int last_decision, int *hf_average, int *tapset_decision, int update_hf,
int end, int C, int M);
int end, int C, int M, const int *spread_weight);
#ifdef MEASURE_NORM_MSE
void measure_norm_mse(const CELTMode *m, float *X, float *X0, float *bandE, float *bandE0, int M, int N, int C);
@ -105,7 +108,7 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
const celt_ener *bandE, int *pulses, int shortBlocks, int spread,
int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits,
opus_int32 balance, ec_ctx *ec, int M, int codedBands, opus_uint32 *seed,
int arch);
int complexity, int arch, int disable_inv);
void anti_collapse(const CELTMode *m, celt_norm *X_,
unsigned char *collapse_masks, int LM, int C, int size, int start,

View File

@ -111,26 +111,31 @@ void comb_filter_const_c(opus_val32 *y, opus_val32 *x, int T, int N,
t = MAC16_32_Q16(x[i], g10, x2);
t = MAC16_32_Q16(t, g11, ADD32(x1,x3));
t = MAC16_32_Q16(t, g12, ADD32(x0,x4));
t = SATURATE(t, SIG_SAT);
y[i] = t;
x4=SHL32(x[i-T+3],1);
t = MAC16_32_Q16(x[i+1], g10, x1);
t = MAC16_32_Q16(t, g11, ADD32(x0,x2));
t = MAC16_32_Q16(t, g12, ADD32(x4,x3));
t = SATURATE(t, SIG_SAT);
y[i+1] = t;
x3=SHL32(x[i-T+4],1);
t = MAC16_32_Q16(x[i+2], g10, x0);
t = MAC16_32_Q16(t, g11, ADD32(x4,x1));
t = MAC16_32_Q16(t, g12, ADD32(x3,x2));
t = SATURATE(t, SIG_SAT);
y[i+2] = t;
x2=SHL32(x[i-T+5],1);
t = MAC16_32_Q16(x[i+3], g10, x4);
t = MAC16_32_Q16(t, g11, ADD32(x3,x0));
t = MAC16_32_Q16(t, g12, ADD32(x2,x1));
t = SATURATE(t, SIG_SAT);
y[i+3] = t;
x1=SHL32(x[i-T+6],1);
t = MAC16_32_Q16(x[i+4], g10, x3);
t = MAC16_32_Q16(t, g11, ADD32(x2,x4));
t = MAC16_32_Q16(t, g12, ADD32(x1,x0));
t = SATURATE(t, SIG_SAT);
y[i+4] = t;
}
#ifdef CUSTOM_MODES
@ -141,6 +146,7 @@ void comb_filter_const_c(opus_val32 *y, opus_val32 *x, int T, int N,
t = MAC16_32_Q16(x[i], g10, x2);
t = MAC16_32_Q16(t, g11, ADD32(x1,x3));
t = MAC16_32_Q16(t, g12, ADD32(x0,x4));
t = SATURATE(t, SIG_SAT);
y[i] = t;
x4=x3;
x3=x2;
@ -169,6 +175,7 @@ void comb_filter_const_c(opus_val32 *y, opus_val32 *x, int T, int N,
+ MULT16_32_Q15(g10,x2)
+ MULT16_32_Q15(g11,ADD32(x1,x3))
+ MULT16_32_Q15(g12,ADD32(x0,x4));
y[i] = SATURATE(y[i], SIG_SAT);
x4=x3;
x3=x2;
x2=x1;
@ -200,6 +207,10 @@ void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
OPUS_MOVE(y, x, N);
return;
}
/* When the gain is zero, T0 and/or T1 is set to zero. We need
to have then be at least 2 to avoid processing garbage data. */
T0 = IMAX(T0, COMBFILTER_MINPERIOD);
T1 = IMAX(T1, COMBFILTER_MINPERIOD);
g00 = MULT16_16_P15(g0, gains[tapset0][0]);
g01 = MULT16_16_P15(g0, gains[tapset0][1]);
g02 = MULT16_16_P15(g0, gains[tapset0][2]);
@ -225,6 +236,7 @@ void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
+ MULT16_32_Q15(MULT16_16_Q15(f,g10),x2)
+ MULT16_32_Q15(MULT16_16_Q15(f,g11),ADD32(x1,x3))
+ MULT16_32_Q15(MULT16_16_Q15(f,g12),ADD32(x0,x4));
y[i] = SATURATE(y[i], SIG_SAT);
x4=x3;
x3=x2;
x2=x1;
@ -244,11 +256,16 @@ void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
}
#endif /* OVERRIDE_comb_filter */
/* TF change table. Positive values mean better frequency resolution (longer
effective window), whereas negative values mean better time resolution
(shorter effective window). The second index is computed as:
4*isTransient + 2*tf_select + per_band_flag */
const signed char tf_select_table[4][8] = {
{0, -1, 0, -1, 0,-1, 0,-1},
{0, -1, 0, -2, 1, 0, 1,-1},
{0, -2, 0, -3, 2, 0, 1,-1},
{0, -2, 0, -3, 3, 0, 1,-1},
/*isTransient=0 isTransient=1 */
{0, -1, 0, -1, 0,-1, 0,-1}, /* 2.5 ms */
{0, -1, 0, -2, 1, 0, 1,-1}, /* 5 ms */
{0, -2, 0, -3, 2, 0, 1,-1}, /* 10 ms */
{0, -2, 0, -3, 3, 0, 1,-1}, /* 20 ms */
};

View File

@ -50,6 +50,8 @@ extern "C" {
#define CELTDecoder OpusCustomDecoder
#define CELTMode OpusCustomMode
#define LEAK_BANDS 19
typedef struct {
int valid;
float tonality;
@ -57,17 +59,27 @@ typedef struct {
float noisiness;
float activity;
float music_prob;
int bandwidth;
}AnalysisInfo;
float music_prob_min;
float music_prob_max;
int bandwidth;
float activity_probability;
float max_pitch_ratio;
/* Store as Q6 char to save space. */
unsigned char leak_boost[LEAK_BANDS];
} AnalysisInfo;
typedef struct {
int signalType;
int offset;
} SILKInfo;
#define __celt_check_mode_ptr_ptr(ptr) ((ptr) + ((ptr) - (const CELTMode**)(ptr)))
#define __celt_check_analysis_ptr(ptr) ((ptr) + ((ptr) - (const AnalysisInfo*)(ptr)))
/* Encoder/decoder Requests */
#define __celt_check_silkinfo_ptr(ptr) ((ptr) + ((ptr) - (const SILKInfo*)(ptr)))
/* Expose this option again when variable framesize actually works */
#define OPUS_FRAMESIZE_VARIABLE 5010 /**< Optimize the frame size dynamically */
/* Encoder/decoder Requests */
#define CELT_SET_PREDICTION_REQUEST 10002
@ -116,6 +128,9 @@ typedef struct {
#define OPUS_SET_ENERGY_MASK_REQUEST 10026
#define OPUS_SET_ENERGY_MASK(x) OPUS_SET_ENERGY_MASK_REQUEST, __opus_check_val16_ptr(x)
#define CELT_SET_SILK_INFO_REQUEST 10028
#define CELT_SET_SILK_INFO(x) CELT_SET_SILK_INFO_REQUEST, __celt_check_silkinfo_ptr(x)
/* Encoder stuff */
int celt_encoder_get_size(int channels);
@ -194,6 +209,13 @@ static OPUS_INLINE int fromOpus(unsigned char c)
extern const signed char tf_select_table[4][8];
#if defined(ENABLE_HARDENING) || defined(ENABLE_ASSERTIONS)
void validate_celt_decoder(CELTDecoder *st);
#define VALIDATE_CELT_DECODER(st) validate_celt_decoder(st)
#else
#define VALIDATE_CELT_DECODER(st)
#endif
int resampling_factor(opus_int32 rate);
void celt_preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp,

View File

@ -51,6 +51,14 @@
#include "celt_lpc.h"
#include "vq.h"
/* The maximum pitch lag to allow in the pitch-based PLC. It's possible to save
CPU time in the PLC pitch search by making this smaller than MAX_PERIOD. The
current value corresponds to a pitch of 66.67 Hz. */
#define PLC_PITCH_LAG_MAX (720)
/* The minimum pitch lag to allow in the pitch-based PLC. This corresponds to a
pitch of 480 Hz. */
#define PLC_PITCH_LAG_MIN (100)
#if defined(SMALL_FOOTPRINT) && defined(FIXED_POINT)
#define NORM_ALIASING_HACK
#endif
@ -73,6 +81,7 @@ struct OpusCustomDecoder {
int downsample;
int start, end;
int signalling;
int disable_inv;
int arch;
/* Everything beyond this point gets cleared on a reset */
@ -100,6 +109,38 @@ struct OpusCustomDecoder {
/* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */
};
#if defined(ENABLE_HARDENING) || defined(ENABLE_ASSERTIONS)
/* Make basic checks on the CELT state to ensure we don't end
up writing all over memory. */
void validate_celt_decoder(CELTDecoder *st)
{
#ifndef CUSTOM_MODES
celt_assert(st->mode == opus_custom_mode_create(48000, 960, NULL));
celt_assert(st->overlap == 120);
#endif
celt_assert(st->channels == 1 || st->channels == 2);
celt_assert(st->stream_channels == 1 || st->stream_channels == 2);
celt_assert(st->downsample > 0);
celt_assert(st->start == 0 || st->start == 17);
celt_assert(st->start < st->end);
celt_assert(st->end <= 21);
#ifdef OPUS_ARCHMASK
celt_assert(st->arch >= 0);
celt_assert(st->arch <= OPUS_ARCHMASK);
#endif
celt_assert(st->last_pitch_index <= PLC_PITCH_LAG_MAX);
celt_assert(st->last_pitch_index >= PLC_PITCH_LAG_MIN || st->last_pitch_index == 0);
celt_assert(st->postfilter_period < MAX_PERIOD);
celt_assert(st->postfilter_period >= COMBFILTER_MINPERIOD || st->postfilter_period == 0);
celt_assert(st->postfilter_period_old < MAX_PERIOD);
celt_assert(st->postfilter_period_old >= COMBFILTER_MINPERIOD || st->postfilter_period_old == 0);
celt_assert(st->postfilter_tapset <= 2);
celt_assert(st->postfilter_tapset >= 0);
celt_assert(st->postfilter_tapset_old <= 2);
celt_assert(st->postfilter_tapset_old >= 0);
}
#endif
int celt_decoder_get_size(int channels)
{
const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
@ -163,6 +204,11 @@ OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMod
st->start = 0;
st->end = st->mode->effEBands;
st->signalling = 1;
#ifndef DISABLE_UPDATE_DRAFT
st->disable_inv = channels == 1;
#else
st->disable_inv = 0;
#endif
st->arch = opus_select_arch();
opus_custom_decoder_ctl(st, OPUS_RESET_STATE);
@ -177,6 +223,36 @@ void opus_custom_decoder_destroy(CELTDecoder *st)
}
#endif /* CUSTOM_MODES */
#ifndef CUSTOM_MODES
/* Special case for stereo with no downsampling and no accumulation. This is
quite common and we can make it faster by processing both channels in the
same loop, reducing overhead due to the dependency loop in the IIR filter. */
static void deemphasis_stereo_simple(celt_sig *in[], opus_val16 *pcm, int N, const opus_val16 coef0,
celt_sig *mem)
{
celt_sig * OPUS_RESTRICT x0;
celt_sig * OPUS_RESTRICT x1;
celt_sig m0, m1;
int j;
x0=in[0];
x1=in[1];
m0 = mem[0];
m1 = mem[1];
for (j=0;j<N;j++)
{
celt_sig tmp0, tmp1;
/* Add VERY_SMALL to x[] first to reduce dependency chain. */
tmp0 = x0[j] + VERY_SMALL + m0;
tmp1 = x1[j] + VERY_SMALL + m1;
m0 = MULT16_32_Q15(coef0, tmp0);
m1 = MULT16_32_Q15(coef0, tmp1);
pcm[2*j ] = SCALEOUT(SIG2WORD16(tmp0));
pcm[2*j+1] = SCALEOUT(SIG2WORD16(tmp1));
}
mem[0] = m0;
mem[1] = m1;
}
#endif
#ifndef RESYNTH
static
@ -190,6 +266,14 @@ void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, c
opus_val16 coef0;
VARDECL(celt_sig, scratch);
SAVE_STACK;
#ifndef CUSTOM_MODES
/* Short version for common case. */
if (downsample == 1 && C == 2 && !accum)
{
deemphasis_stereo_simple(in, pcm, N, coef[0], mem);
return;
}
#endif
#ifndef FIXED_POINT
(void)accum;
celt_assert(accum==0);
@ -225,7 +309,7 @@ void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, c
/* Shortcut for the standard (non-custom modes) case */
for (j=0;j<N;j++)
{
celt_sig tmp = x[j] + m + VERY_SMALL;
celt_sig tmp = x[j] + VERY_SMALL + m;
m = MULT16_32_Q15(coef0, tmp);
scratch[j] = tmp;
}
@ -246,7 +330,7 @@ void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, c
{
for (j=0;j<N;j++)
{
celt_sig tmp = x[j] + m + VERY_SMALL;
celt_sig tmp = x[j] + VERY_SMALL + m;
m = MULT16_32_Q15(coef0, tmp);
y[j*C] = SCALEOUT(SIG2WORD16(tmp));
}
@ -333,7 +417,7 @@ void celt_synthesis(const CELTMode *mode, celt_norm *X, celt_sig * out_syn[],
denormalise_bands(mode, X+N, freq2, oldBandE+nbEBands, start, effEnd, M,
downsample, silence);
for (i=0;i<N;i++)
freq[i] = HALF32(ADD32(freq[i],freq2[i]));
freq[i] = ADD32(HALF32(freq[i]), HALF32(freq2[i]));
for (b=0;b<B;b++)
clt_mdct_backward(&mode->mdct, &freq[b], out_syn[0]+NB*b, mode->window, overlap, shift, B, arch);
} else {
@ -345,6 +429,12 @@ void celt_synthesis(const CELTMode *mode, celt_norm *X, celt_sig * out_syn[],
clt_mdct_backward(&mode->mdct, &freq[b], out_syn[c]+NB*b, mode->window, overlap, shift, B, arch);
} while (++c<CC);
}
/* Saturate IMDCT output so that we can't overflow in the pitch postfilter
or in the */
c=0; do {
for (i=0;i<N;i++)
out_syn[c][i] = SATURATE(out_syn[c][i], SIG_SAT);
} while (++c<CC);
RESTORE_STACK;
}
@ -387,14 +477,6 @@ static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM,
}
}
/* The maximum pitch lag to allow in the pitch-based PLC. It's possible to save
CPU time in the PLC pitch search by making this smaller than MAX_PERIOD. The
current value corresponds to a pitch of 66.67 Hz. */
#define PLC_PITCH_LAG_MAX (720)
/* The minimum pitch lag to allow in the pitch-based PLC. This corresponds to a
pitch of 480 Hz. */
#define PLC_PITCH_LAG_MIN (100)
static int celt_plc_pitch_search(celt_sig *decode_mem[2], int C, int arch)
{
int pitch_index;
@ -504,12 +586,15 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM)
celt_synthesis(mode, X, out_syn, oldBandE, start, effEnd, C, C, 0, LM, st->downsample, 0, st->arch);
} else {
int exc_length;
/* Pitch-based PLC */
const opus_val16 *window;
opus_val16 *exc;
opus_val16 fade = Q15ONE;
int pitch_index;
VARDECL(opus_val32, etmp);
VARDECL(opus_val16, exc);
VARDECL(opus_val16, _exc);
VARDECL(opus_val16, fir_tmp);
if (loss_count == 0)
{
@ -519,8 +604,14 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM)
fade = QCONST16(.8f,15);
}
/* We want the excitation for 2 pitch periods in order to look for a
decaying signal, but we can't get more than MAX_PERIOD. */
exc_length = IMIN(2*pitch_index, MAX_PERIOD);
ALLOC(etmp, overlap, opus_val32);
ALLOC(exc, MAX_PERIOD, opus_val16);
ALLOC(_exc, MAX_PERIOD+LPC_ORDER, opus_val16);
ALLOC(fir_tmp, exc_length, opus_val16);
exc = _exc+LPC_ORDER;
window = mode->window;
c=0; do {
opus_val16 decay;
@ -529,13 +620,11 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM)
celt_sig *buf;
int extrapolation_offset;
int extrapolation_len;
int exc_length;
int j;
buf = decode_mem[c];
for (i=0;i<MAX_PERIOD;i++) {
exc[i] = ROUND16(buf[DECODE_BUFFER_SIZE-MAX_PERIOD+i], SIG_SHIFT);
}
for (i=0;i<MAX_PERIOD+LPC_ORDER;i++)
exc[i-LPC_ORDER] = ROUND16(buf[DECODE_BUFFER_SIZE-MAX_PERIOD-LPC_ORDER+i], SIG_SHIFT);
if (loss_count == 0)
{
@ -561,22 +650,32 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM)
#endif
}
_celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER);
#ifdef FIXED_POINT
/* For fixed-point, apply bandwidth expansion until we can guarantee that
no overflow can happen in the IIR filter. This means:
32768*sum(abs(filter)) < 2^31 */
while (1) {
opus_val16 tmp=Q15ONE;
opus_val32 sum=QCONST16(1., SIG_SHIFT);
for (i=0;i<LPC_ORDER;i++)
sum += ABS16(lpc[c*LPC_ORDER+i]);
if (sum < 65535) break;
for (i=0;i<LPC_ORDER;i++)
{
tmp = MULT16_16_Q15(QCONST16(.99f,15), tmp);
lpc[c*LPC_ORDER+i] = MULT16_16_Q15(lpc[c*LPC_ORDER+i], tmp);
}
}
#endif
}
/* We want the excitation for 2 pitch periods in order to look for a
decaying signal, but we can't get more than MAX_PERIOD. */
exc_length = IMIN(2*pitch_index, MAX_PERIOD);
/* Initialize the LPC history with the samples just before the start
of the region for which we're computing the excitation. */
{
opus_val16 lpc_mem[LPC_ORDER];
for (i=0;i<LPC_ORDER;i++)
{
lpc_mem[i] =
ROUND16(buf[DECODE_BUFFER_SIZE-exc_length-1-i], SIG_SHIFT);
}
/* Compute the excitation for exc_length samples before the loss. */
/* Compute the excitation for exc_length samples before the loss. We need the copy
because celt_fir() cannot filter in-place. */
celt_fir(exc+MAX_PERIOD-exc_length, lpc+c*LPC_ORDER,
exc+MAX_PERIOD-exc_length, exc_length, LPC_ORDER, lpc_mem, st->arch);
fir_tmp, exc_length, LPC_ORDER, st->arch);
OPUS_COPY(exc+MAX_PERIOD-exc_length, fir_tmp, exc_length);
}
/* Check if the waveform is decaying, and if so how fast.
@ -630,9 +729,8 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM)
tmp = ROUND16(
buf[DECODE_BUFFER_SIZE-MAX_PERIOD-N+extrapolation_offset+j],
SIG_SHIFT);
S1 += SHR32(MULT16_16(tmp, tmp), 8);
S1 += SHR32(MULT16_16(tmp, tmp), 10);
}
{
opus_val16 lpc_mem[LPC_ORDER];
/* Copy the last decoded samples (prior to the overlap region) to
@ -644,6 +742,10 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM)
celt_iir(buf+DECODE_BUFFER_SIZE-N, lpc+c*LPC_ORDER,
buf+DECODE_BUFFER_SIZE-N, extrapolation_len, LPC_ORDER,
lpc_mem, st->arch);
#ifdef FIXED_POINT
for (i=0; i < extrapolation_len; i++)
buf[DECODE_BUFFER_SIZE-N+i] = SATURATE(buf[DECODE_BUFFER_SIZE-N+i], SIG_SAT);
#endif
}
/* Check if the synthesis energy is higher than expected, which can
@ -654,7 +756,7 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM)
for (i=0;i<extrapolation_len;i++)
{
opus_val16 tmp = ROUND16(buf[DECODE_BUFFER_SIZE-N+i], SIG_SHIFT);
S2 += SHR32(MULT16_16(tmp, tmp), 8);
S2 += SHR32(MULT16_16(tmp, tmp), 10);
}
/* This checks for an "explosion" in the synthesis. */
#ifdef FIXED_POINT
@ -762,6 +864,7 @@ int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *dat
const opus_int16 *eBands;
ALLOC_STACK;
VALIDATE_CELT_DECODER(st);
mode = st->mode;
nbEBands = mode->nbEBands;
overlap = mode->overlap;
@ -956,7 +1059,7 @@ int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *dat
ALLOC(pulses, nbEBands, int);
ALLOC(fine_priority, nbEBands, int);
codedBands = compute_allocation(mode, start, end, offsets, cap,
codedBands = clt_compute_allocation(mode, start, end, offsets, cap,
alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses,
fine_quant, fine_priority, C, LM, dec, 0, 0, 0);
@ -979,7 +1082,8 @@ int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *dat
quant_all_bands(0, mode, start, end, X, C==2 ? X+N : NULL, collapse_masks,
NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res,
len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng, st->arch);
len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng, 0,
st->arch, st->disable_inv);
if (anti_collapse_rsv > 0)
{
@ -1234,6 +1338,26 @@ int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...)
*value=st->rng;
}
break;
case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST:
{
opus_int32 value = va_arg(ap, opus_int32);
if(value<0 || value>1)
{
goto bad_arg;
}
st->disable_inv = value;
}
break;
case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST:
{
opus_int32 *value = va_arg(ap, opus_int32*);
if (!value)
{
goto bad_arg;
}
*value = st->disable_inv;
}
break;
default:
goto bad_request;
}

View File

@ -73,8 +73,8 @@ struct OpusCustomEncoder {
int constrained_vbr; /* If zero, VBR can do whatever it likes with the rate */
int loss_rate;
int lsb_depth;
int variable_duration;
int lfe;
int disable_inv;
int arch;
/* Everything beyond this point gets cleared on a reset */
@ -98,6 +98,7 @@ struct OpusCustomEncoder {
#endif
int consec_transient;
AnalysisInfo analysis;
SILKInfo silk_info;
opus_val32 preemph_memE[2];
opus_val32 preemph_memD[2];
@ -123,6 +124,7 @@ struct OpusCustomEncoder {
/* opus_val16 oldBandE[], Size = channels*mode->nbEBands */
/* opus_val16 oldLogE[], Size = channels*mode->nbEBands */
/* opus_val16 oldLogE2[], Size = channels*mode->nbEBands */
/* opus_val16 energyError[], Size = channels*mode->nbEBands */
};
int celt_encoder_get_size(int channels)
@ -136,9 +138,10 @@ OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int
int size = sizeof(struct CELTEncoder)
+ (channels*mode->overlap-1)*sizeof(celt_sig) /* celt_sig in_mem[channels*mode->overlap]; */
+ channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */
+ 3*channels*mode->nbEBands*sizeof(opus_val16); /* opus_val16 oldBandE[channels*mode->nbEBands]; */
+ 4*channels*mode->nbEBands*sizeof(opus_val16); /* opus_val16 oldBandE[channels*mode->nbEBands]; */
/* opus_val16 oldLogE[channels*mode->nbEBands]; */
/* opus_val16 oldLogE2[channels*mode->nbEBands]; */
/* opus_val16 energyError[channels*mode->nbEBands]; */
return size;
}
@ -178,7 +181,6 @@ static int opus_custom_encoder_init_arch(CELTEncoder *st, const CELTMode *mode,
st->start = 0;
st->end = st->mode->effEBands;
st->signalling = 1;
st->arch = arch;
st->constrained_vbr = 1;
@ -223,7 +225,8 @@ void opus_custom_encoder_destroy(CELTEncoder *st)
static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C,
opus_val16 *tf_estimate, int *tf_chan)
opus_val16 *tf_estimate, int *tf_chan, int allow_weak_transients,
int *weak_transient)
{
int i;
VARDECL(opus_val16, tmp);
@ -233,6 +236,12 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int
int c;
opus_val16 tf_max;
int len2;
/* Forward masking: 6.7 dB/ms. */
#ifdef FIXED_POINT
int forward_shift = 4;
#else
opus_val16 forward_decay = QCONST16(.0625f,15);
#endif
/* Table of 6*64/x, trained on real data to minimize the average error */
static const unsigned char inv_table[128] = {
255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25,
@ -247,6 +256,19 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int
SAVE_STACK;
ALLOC(tmp, len, opus_val16);
*weak_transient = 0;
/* For lower bitrates, let's be more conservative and have a forward masking
decay of 3.3 dB/ms. This avoids having to code transients at very low
bitrate (mostly for hybrid), which can result in unstable energy and/or
partial collapse. */
if (allow_weak_transients)
{
#ifdef FIXED_POINT
forward_shift = 5;
#else
forward_decay = QCONST16(.03125f,15);
#endif
}
len2=len/2;
for (c=0;c<C;c++)
{
@ -269,7 +291,7 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int
mem0 = mem1 + y - 2*x;
mem1 = x - .5f*y;
#endif
tmp[i] = EXTRACT16(SHR32(y,2));
tmp[i] = SROUND16(y, 2);
/*printf("%f ", tmp[i]);*/
}
/*printf("\n");*/
@ -280,7 +302,7 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int
/* Normalize tmp to max range */
{
int shift=0;
shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len));
shift = 14-celt_ilog2(MAX16(1, celt_maxabs16(tmp, len)));
if (shift!=0)
{
for (i=0;i<len;i++)
@ -299,9 +321,9 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int
mean += x2;
#ifdef FIXED_POINT
/* FIXME: Use PSHR16() instead */
tmp[i] = mem0 + PSHR32(x2-mem0,4);
tmp[i] = mem0 + PSHR32(x2-mem0,forward_shift);
#else
tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0);
tmp[i] = mem0 + MULT16_16_P15(forward_decay,x2-mem0);
#endif
mem0 = tmp[i];
}
@ -311,6 +333,7 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int
/* Backward pass to compute the pre-echo threshold */
for (i=len2-1;i>=0;i--)
{
/* Backward masking: 13.9 dB/ms. */
#ifdef FIXED_POINT
/* FIXME: Use PSHR16() instead */
tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3);
@ -339,6 +362,12 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int
/* Compute harmonic mean discarding the unreliable boundaries
The data is smooth, so we only take 1/4th of the samples */
unmask=0;
/* We should never see NaNs here. If we find any, then something really bad happened and we better abort
before it does any damage later on. If these asserts are disabled (no hardening), then the table
lookup a few lines below (id = ...) is likely to crash dur to an out-of-bounds read. DO NOT FIX
that crash on NaN since it could result in a worse issue later on. */
celt_assert(!celt_isnan(tmp[0]));
celt_assert(!celt_isnan(norm));
for (i=12;i<len2-5;i+=4)
{
int id;
@ -359,7 +388,12 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int
}
}
is_transient = mask_metric>200;
/* For low bitrates, define "weak transients" that need to be
handled differently to avoid partial collapse. */
if (allow_weak_transients && is_transient && mask_metric<600) {
is_transient = 0;
*weak_transient = 1;
}
/* Arbitrary metric for VBR boost */
tf_max = MAX16(0,celt_sqrt(27*mask_metric)-42);
/* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */
@ -549,7 +583,7 @@ static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias
static int tf_analysis(const CELTMode *m, int len, int isTransient,
int *tf_res, int lambda, celt_norm *X, int N0, int LM,
int *tf_sum, opus_val16 tf_estimate, int tf_chan)
opus_val16 tf_estimate, int tf_chan, int *importance)
{
int i;
VARDECL(int, metric);
@ -574,7 +608,6 @@ static int tf_analysis(const CELTMode *m, int len, int isTransient,
ALLOC(path0, len, int);
ALLOC(path1, len, int);
*tf_sum = 0;
for (i=0;i<len;i++)
{
int k, N;
@ -629,27 +662,26 @@ static int tf_analysis(const CELTMode *m, int len, int isTransient,
metric[i] = 2*best_level;
else
metric[i] = -2*best_level;
*tf_sum += (isTransient ? LM : 0) - metric[i]/2;
/* For bands that can't be split to -1, set the metric to the half-way point to avoid
biasing the decision */
if (narrow && (metric[i]==0 || metric[i]==-2*LM))
metric[i]-=1;
/*printf("%d ", metric[i]);*/
/*printf("%d ", metric[i]/2 + (!isTransient)*LM);*/
}
/*printf("\n");*/
/* Search for the optimal tf resolution, including tf_select */
tf_select = 0;
for (sel=0;sel<2;sel++)
{
cost0 = 0;
cost1 = isTransient ? 0 : lambda;
cost0 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*sel+0]);
cost1 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*sel+1]) + (isTransient ? 0 : lambda);
for (i=1;i<len;i++)
{
int curr0, curr1;
curr0 = IMIN(cost0, cost1 + lambda);
curr1 = IMIN(cost0 + lambda, cost1);
cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]);
cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]);
cost0 = curr0 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]);
cost1 = curr1 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]);
}
cost0 = IMIN(cost0, cost1);
selcost[sel]=cost0;
@ -658,8 +690,8 @@ static int tf_analysis(const CELTMode *m, int len, int isTransient,
* If tests confirm it's useful for non-transients, we could allow it. */
if (selcost[1]<selcost[0] && isTransient)
tf_select=1;
cost0 = 0;
cost1 = isTransient ? 0 : lambda;
cost0 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]);
cost1 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]) + (isTransient ? 0 : lambda);
/* Viterbi forward pass */
for (i=1;i<len;i++)
{
@ -687,8 +719,8 @@ static int tf_analysis(const CELTMode *m, int len, int isTransient,
curr1 = from1;
path1[i]= 1;
}
cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]);
cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]);
cost0 = curr0 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]);
cost1 = curr1 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]);
}
tf_res[len-1] = cost0 < cost1 ? 0 : 1;
/* Viterbi backward pass to check the decisions */
@ -754,7 +786,7 @@ static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM,
static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X,
const opus_val16 *bandLogE, int end, int LM, int C, int N0,
AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate,
int intensity, opus_val16 surround_trim, int arch)
int intensity, opus_val16 surround_trim, opus_int32 equiv_rate, int arch)
{
int i;
opus_val32 diff=0;
@ -762,6 +794,14 @@ static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X,
int trim_index;
opus_val16 trim = QCONST16(5.f, 8);
opus_val16 logXC, logXC2;
/* At low bitrate, reducing the trim seems to help. At higher bitrates, it's less
clear what's best, so we're keeping it as it was before, at least for now. */
if (equiv_rate < 64000) {
trim = QCONST16(4.f, 8);
} else if (equiv_rate < 80000) {
opus_int32 frac = (equiv_rate-64000) >> 10;
trim = QCONST16(4.f, 8) + QCONST16(1.f/16.f, 8)*frac;
}
if (C==2)
{
opus_val16 sum = 0; /* Q10 */
@ -809,7 +849,7 @@ static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X,
} while (++c<C);
diff /= C*(end-1);
/*printf("%f\n", diff);*/
trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 ));
trim -= MAX32(-QCONST16(2.f, 8), MIN32(QCONST16(2.f, 8), SHR32(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 ));
trim -= SHR16(surround_trim, DB_SHIFT-8);
trim -= 2*SHR16(tf_estimate, 14-8);
#ifndef DISABLE_FLOAT_API
@ -930,7 +970,8 @@ static opus_val16 median_of_3(const opus_val16 *x)
static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 *bandLogE2,
int nbEBands, int start, int end, int C, int *offsets, int lsb_depth, const opus_int16 *logN,
int isTransient, int vbr, int constrained_vbr, const opus_int16 *eBands, int LM,
int effectiveBytes, opus_int32 *tot_boost_, int lfe, opus_val16 *surround_dynalloc)
int effectiveBytes, opus_int32 *tot_boost_, int lfe, opus_val16 *surround_dynalloc,
AnalysisInfo *analysis, int *importance, int *spread_weight)
{
int i, c;
opus_int32 tot_boost=0;
@ -956,6 +997,42 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16
for (i=0;i<end;i++)
maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor[i]);
} while (++c<C);
{
/* Compute a really simple masking model to avoid taking into account completely masked
bands when computing the spreading decision. */
VARDECL(opus_val16, mask);
VARDECL(opus_val16, sig);
ALLOC(mask, nbEBands, opus_val16);
ALLOC(sig, nbEBands, opus_val16);
for (i=0;i<end;i++)
mask[i] = bandLogE[i]-noise_floor[i];
if (C==2)
{
for (i=0;i<end;i++)
mask[i] = MAX16(mask[i], bandLogE[nbEBands+i]-noise_floor[i]);
}
OPUS_COPY(sig, mask, end);
for (i=1;i<end;i++)
mask[i] = MAX16(mask[i], mask[i-1] - QCONST16(2.f, DB_SHIFT));
for (i=end-2;i>=0;i--)
mask[i] = MAX16(mask[i], mask[i+1] - QCONST16(3.f, DB_SHIFT));
for (i=0;i<end;i++)
{
/* Compute SMR: Mask is never more than 72 dB below the peak and never below the noise floor.*/
opus_val16 smr = sig[i]-MAX16(MAX16(0, maxDepth-QCONST16(12.f, DB_SHIFT)), mask[i]);
/* Clamp SMR to make sure we're not shifting by something negative or too large. */
#ifdef FIXED_POINT
/* FIXME: Use PSHR16() instead */
int shift = -PSHR32(MAX16(-QCONST16(5.f, DB_SHIFT), MIN16(0, smr)), DB_SHIFT);
#else
int shift = IMIN(5, IMAX(0, -(int)floor(.5f + smr)));
#endif
spread_weight[i] = 32 >> shift;
}
/*for (i=0;i<end;i++)
printf("%d ", spread_weight[i]);
printf("\n");*/
}
/* Make sure that dynamic allocation can't make us bust the budget */
if (effectiveBytes > 50 && LM>=1 && !lfe)
{
@ -1012,6 +1089,14 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16
}
for (i=start;i<end;i++)
follower[i] = MAX16(follower[i], surround_dynalloc[i]);
for (i=start;i<end;i++)
{
#ifdef FIXED_POINT
importance[i] = PSHR32(13*celt_exp2(MIN16(follower[i], QCONST16(4.f, DB_SHIFT))), 16);
#else
importance[i] = (int)floor(.5f+13*celt_exp2(MIN16(follower[i], QCONST16(4.f, DB_SHIFT))));
#endif
}
/* For non-transient CBR/CVBR frames, halve the dynalloc contribution */
if ((!vbr || constrained_vbr)&&!isTransient)
{
@ -1020,14 +1105,26 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16
}
for (i=start;i<end;i++)
{
int width;
int boost;
int boost_bits;
if (i<8)
follower[i] *= 2;
if (i>=12)
follower[i] = HALF16(follower[i]);
}
#ifdef DISABLE_FLOAT_API
(void)analysis;
#else
if (analysis->valid)
{
for (i=start;i<IMIN(LEAK_BANDS, end);i++)
follower[i] = follower[i] + QCONST16(1.f/64.f, DB_SHIFT)*analysis->leak_boost[i];
}
#endif
for (i=start;i<end;i++)
{
int width;
int boost;
int boost_bits;
follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT));
width = C*(eBands[i+1]-eBands[i])<<LM;
@ -1042,11 +1139,11 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16
boost = (int)SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT);
boost_bits = boost*6<<BITRES;
}
/* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */
/* For CBR and non-transient CVBR frames, limit dynalloc to 2/3 of the bits */
if ((!vbr || (constrained_vbr&&!isTransient))
&& (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4)
&& (tot_boost+boost_bits)>>BITRES>>3 > 2*effectiveBytes/3)
{
opus_int32 cap = ((effectiveBytes/4)<<BITRES<<3);
opus_int32 cap = ((2*effectiveBytes/3)<<BITRES<<3);
offsets[i] = cap-tot_boost;
tot_boost = cap;
break;
@ -1055,6 +1152,9 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16
tot_boost += boost_bits;
}
}
} else {
for (i=start;i<end;i++)
importance[i] = 13;
}
*tot_boost_ = tot_boost;
RESTORE_STACK;
@ -1063,7 +1163,7 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16
static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N,
int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes)
int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes, AnalysisInfo *analysis)
{
int c;
VARDECL(celt_sig, _pre);
@ -1119,7 +1219,12 @@ static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem,
gain1 = 0;
pitch_index = COMBFILTER_MINPERIOD;
}
#ifndef DISABLE_FLOAT_API
if (analysis->valid)
gain1 = (opus_val16)(gain1 * analysis->max_pitch_ratio);
#else
(void)analysis;
#endif
/* Gain threshold for enabling the prefilter/postfilter */
pf_threshold = QCONST16(.2f,15);
@ -1193,7 +1298,7 @@ static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32
int LM, opus_int32 bitrate, int lastCodedBands, int C, int intensity,
int constrained_vbr, opus_val16 stereo_saving, int tot_boost,
opus_val16 tf_estimate, int pitch_change, opus_val16 maxDepth,
int variable_duration, int lfe, int has_surround_mask, opus_val16 surround_masking,
int lfe, int has_surround_mask, opus_val16 surround_masking,
opus_val16 temporal_vbr)
{
/* The target rate in 8th bits per frame */
@ -1235,10 +1340,9 @@ static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32
SHR32(MULT16_16(stereo_saving-QCONST16(0.1f,8),(coded_stereo_dof<<BITRES)),8));
}
/* Boost the rate according to dynalloc (minus the dynalloc average for calibration). */
target += tot_boost-(16<<LM);
target += tot_boost-(19<<LM);
/* Apply transient boost, compensating for average boost. */
tf_calibration = variable_duration==OPUS_FRAMESIZE_VARIABLE ?
QCONST16(0.02f,14) : QCONST16(0.04f,14);
tf_calibration = QCONST16(0.044f,14);
target += (opus_int32)SHL32(MULT16_32_Q15(tf_estimate-tf_calibration, target),1);
#ifndef DISABLE_FLOAT_API
@ -1249,7 +1353,7 @@ static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32
float tonal;
/* Tonality boost (compensating for the average). */
tonal = MAX16(0.f,analysis->tonality-.15f)-0.09f;
tonal = MAX16(0.f,analysis->tonality-.15f)-0.12f;
tonal_target = target + (opus_int32)((coded_bins<<BITRES)*1.2f*tonal);
if (pitch_change)
tonal_target += (opus_int32)((coded_bins<<BITRES)*.8f);
@ -1279,21 +1383,11 @@ static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32
/*printf("%f %d\n", maxDepth, floor_depth);*/
}
if ((!has_surround_mask||lfe) && (constrained_vbr || bitrate<64000))
/* Make VBR less aggressive for constrained VBR because we can't keep a higher bitrate
for long. Needs tuning. */
if ((!has_surround_mask||lfe) && constrained_vbr)
{
opus_val16 rate_factor = Q15ONE;
if (bitrate < 64000)
{
#ifdef FIXED_POINT
rate_factor = MAX16(0,(bitrate-32000));
#else
rate_factor = MAX16(0,(1.f/32768)*(bitrate-32000));
#endif
}
if (constrained_vbr)
rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15));
target = base_target + (opus_int32)MULT16_32_Q15(rate_factor, target-base_target);
target = base_target + (opus_int32)MULT16_32_Q15(QCONST16(0.67f, 15), target-base_target);
}
if (!has_surround_mask && tf_estimate < QCONST16(.2f, 14))
@ -1327,11 +1421,13 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
VARDECL(int, pulses);
VARDECL(int, cap);
VARDECL(int, offsets);
VARDECL(int, importance);
VARDECL(int, spread_weight);
VARDECL(int, fine_priority);
VARDECL(int, tf_res);
VARDECL(unsigned char, collapse_masks);
celt_sig *prefilter_mem;
opus_val16 *oldBandE, *oldLogE, *oldLogE2;
opus_val16 *oldBandE, *oldLogE, *oldLogE2, *energyError;
int shortBlocks=0;
int isTransient=0;
const int CC = st->channels;
@ -1343,7 +1439,6 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
int end;
int effEnd;
int codedBands;
int tf_sum;
int alloc_trim;
int pitch_index=COMBFILTER_MINPERIOD;
opus_val16 gain1 = 0;
@ -1355,6 +1450,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
opus_int32 total_boost;
opus_int32 balance;
opus_int32 tell;
opus_int32 tell0_frac;
int prefilter_tapset=0;
int pf_on;
int anti_collapse_rsv;
@ -1376,7 +1472,10 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
opus_val16 surround_masking=0;
opus_val16 temporal_vbr=0;
opus_val16 surround_trim = 0;
opus_int32 equiv_rate = 510000;
opus_int32 equiv_rate;
int hybrid;
int weak_transient = 0;
int enable_tf_analysis;
VARDECL(opus_val16, surround_dynalloc);
ALLOC_STACK;
@ -1386,6 +1485,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
eBands = mode->eBands;
start = st->start;
end = st->end;
hybrid = start != 0;
tf_estimate = 0;
if (nbCompressedBytes<2 || pcm==NULL)
{
@ -1409,12 +1509,14 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
oldBandE = (opus_val16*)(st->in_mem+CC*(overlap+COMBFILTER_MAXPERIOD));
oldLogE = oldBandE + CC*nbEBands;
oldLogE2 = oldLogE + CC*nbEBands;
energyError = oldLogE2 + CC*nbEBands;
if (enc==NULL)
{
tell=1;
tell0_frac=tell=1;
nbFilledBytes=0;
} else {
tell0_frac=ec_tell_frac(enc);
tell=ec_tell(enc);
nbFilledBytes=(tell+4)>>3;
}
@ -1467,10 +1569,11 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
if (st->bitrate!=OPUS_BITRATE_MAX)
nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes,
(tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling));
effectiveBytes = nbCompressedBytes;
effectiveBytes = nbCompressedBytes - nbFilledBytes;
}
equiv_rate = ((opus_int32)nbCompressedBytes*8*50 >> (3-LM)) - (40*C+20)*((400>>LM) - 50);
if (st->bitrate != OPUS_BITRATE_MAX)
equiv_rate = st->bitrate - (40*C+20)*((400>>LM) - 50);
equiv_rate = IMIN(equiv_rate, st->bitrate - (40*C+20)*((400>>LM) - 50));
if (enc==NULL)
{
@ -1558,17 +1661,17 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
{
int enabled;
int qg;
enabled = ((st->lfe&&nbAvailableBytes>3) || nbAvailableBytes>12*C) && start==0 && !silence && !st->disable_pf
&& st->complexity >= 5 && !(st->consec_transient && LM!=3 && st->variable_duration==OPUS_FRAMESIZE_VARIABLE);
enabled = ((st->lfe&&nbAvailableBytes>3) || nbAvailableBytes>12*C) && !hybrid && !silence && !st->disable_pf
&& st->complexity >= 5;
prefilter_tapset = st->tapset_decision;
pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes);
pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes, &st->analysis);
if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && (!st->analysis.valid || st->analysis.tonality > .3)
&& (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period))
pitch_change = 1;
if (pf_on==0)
{
if(start==0 && tell+16<=total_bits)
if(!hybrid && tell+16<=total_bits)
ec_enc_bit_logp(enc, 0, 1);
} else {
/*This block is not gated by a total bits check only because
@ -1589,8 +1692,12 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
shortBlocks = 0;
if (st->complexity >= 1 && !st->lfe)
{
/* Reduces the likelihood of energy instability on fricatives at low bitrate
in hybrid mode. It seems like we still want to have real transients on vowels
though (small SILK quantization offset value). */
int allow_weak_transients = hybrid && effectiveBytes<15 && st->silk_info.signalType != 2;
isTransient = transient_analysis(in, N+overlap, CC,
&tf_estimate, &tf_chan);
&tf_estimate, &tf_chan, allow_weak_transients, &weak_transient);
}
if (LM>0 && ec_tell(enc)+3<=total_bits)
{
@ -1610,16 +1717,19 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
if (secondMdct)
{
compute_mdcts(mode, 0, in, freq, C, CC, LM, st->upsample, st->arch);
compute_band_energies(mode, freq, bandE, effEnd, C, LM);
compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch);
amp2Log2(mode, effEnd, end, bandE, bandLogE2, C);
for (i=0;i<C*nbEBands;i++)
bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT));
}
compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample, st->arch);
/* This should catch any NaN in the CELT input. Since we're not supposed to see any (they're filtered
at the Opus layer), just abort. */
celt_assert(!celt_isnan(freq[0]) && (C==1 || !celt_isnan(freq[N])));
if (CC==2&&C==1)
tf_chan = 0;
compute_band_energies(mode, freq, bandE, effEnd, C, LM);
compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch);
if (st->lfe)
{
@ -1634,7 +1744,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
ALLOC(surround_dynalloc, C*nbEBands, opus_val16);
OPUS_CLEAR(surround_dynalloc, end);
/* This computes how much masking takes place between surround channels */
if (start==0&&st->energy_mask&&!st->lfe)
if (!hybrid&&st->energy_mask&&!st->lfe)
{
int mask_end;
int midband;
@ -1736,14 +1846,14 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
/* Last chance to catch any transient we might have missed in the
time-domain analysis */
if (LM>0 && ec_tell(enc)+3<=total_bits && !isTransient && st->complexity>=5 && !st->lfe)
if (LM>0 && ec_tell(enc)+3<=total_bits && !isTransient && st->complexity>=5 && !st->lfe && !hybrid)
{
if (patch_transient_decision(bandLogE, oldBandE, nbEBands, start, end, C))
{
isTransient = 1;
shortBlocks = M;
compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample, st->arch);
compute_band_energies(mode, freq, bandE, effEnd, C, LM);
compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch);
amp2Log2(mode, effEnd, end, bandE, bandLogE, C);
/* Compensate for the scaling of short vs long mdcts */
for (i=0;i<C*nbEBands;i++)
@ -1760,31 +1870,59 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
/* Band normalisation */
normalise_bands(mode, freq, X, bandE, effEnd, C, M);
enable_tf_analysis = effectiveBytes>=15*C && !hybrid && st->complexity>=2 && !st->lfe;
ALLOC(offsets, nbEBands, int);
ALLOC(importance, nbEBands, int);
ALLOC(spread_weight, nbEBands, int);
maxDepth = dynalloc_analysis(bandLogE, bandLogE2, nbEBands, start, end, C, offsets,
st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr,
eBands, LM, effectiveBytes, &tot_boost, st->lfe, surround_dynalloc, &st->analysis, importance, spread_weight);
ALLOC(tf_res, nbEBands, int);
/* Disable variable tf resolution for hybrid and at very low bitrate */
if (effectiveBytes>=15*C && start==0 && st->complexity>=2 && !st->lfe)
if (enable_tf_analysis)
{
int lambda;
if (effectiveBytes<40)
lambda = 12;
else if (effectiveBytes<60)
lambda = 6;
else if (effectiveBytes<100)
lambda = 4;
else
lambda = 3;
lambda*=2;
tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, &tf_sum, tf_estimate, tf_chan);
lambda = IMAX(80, 20480/effectiveBytes + 2);
tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, tf_estimate, tf_chan, importance);
for (i=effEnd;i<end;i++)
tf_res[i] = tf_res[effEnd-1];
} else if (hybrid && weak_transient)
{
/* For weak transients, we rely on the fact that improving time resolution using
TF on a long window is imperfect and will not result in an energy collapse at
low bitrate. */
for (i=0;i<end;i++)
tf_res[i] = 1;
tf_select=0;
} else if (hybrid && effectiveBytes<15 && st->silk_info.signalType != 2)
{
/* For low bitrate hybrid, we force temporal resolution to 5 ms rather than 2.5 ms. */
for (i=0;i<end;i++)
tf_res[i] = 0;
tf_select=isTransient;
} else {
tf_sum = 0;
for (i=0;i<end;i++)
tf_res[i] = isTransient;
tf_select=0;
}
ALLOC(error, C*nbEBands, opus_val16);
c=0;
do {
for (i=start;i<end;i++)
{
/* When the energy is stable, slightly bias energy quantization towards
the previous error to make the gain more stable (a constant offset is
better than fluctuations). */
if (ABS32(SUB32(bandLogE[i+c*nbEBands], oldBandE[i+c*nbEBands])) < QCONST16(2.f, DB_SHIFT))
{
bandLogE[i+c*nbEBands] -= MULT16_16_Q15(energyError[i+c*nbEBands], QCONST16(0.25f, 15));
}
}
} while (++c < C);
quant_coarse_energy(mode, start, end, effEnd, bandLogE,
oldBandE, total_bits, error, enc,
C, LM, nbAvailableBytes, st->force_intra,
@ -1798,7 +1936,15 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
{
st->tapset_decision = 0;
st->spread_decision = SPREAD_NORMAL;
} else if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C || start != 0)
} else if (hybrid)
{
if (st->complexity == 0)
st->spread_decision = SPREAD_NONE;
else if (isTransient)
st->spread_decision = SPREAD_NORMAL;
else
st->spread_decision = SPREAD_AGGRESSIVE;
} else if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C)
{
if (st->complexity == 0)
st->spread_decision = SPREAD_NONE;
@ -1822,7 +1968,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
{
st->spread_decision = spreading_decision(mode, X,
&st->tonal_average, st->spread_decision, &st->hf_average,
&st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M);
&st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M, spread_weight);
}
/*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/
/*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/
@ -1830,11 +1976,6 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5);
}
ALLOC(offsets, nbEBands, int);
maxDepth = dynalloc_analysis(bandLogE, bandLogE2, nbEBands, start, end, C, offsets,
st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr,
eBands, LM, effectiveBytes, &tot_boost, st->lfe, surround_dynalloc);
/* For LFE, everything interesting is in the first band */
if (st->lfe)
offsets[0] = IMIN(8, effectiveBytes/3);
@ -1896,12 +2037,15 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
alloc_trim = 5;
if (tell+(6<<BITRES) <= total_bits - total_boost)
{
if (st->lfe)
if (start > 0 || st->lfe)
{
st->stereo_saving = 0;
alloc_trim = 5;
else
} else {
alloc_trim = alloc_trim_analysis(mode, X, bandLogE,
end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate,
st->intensity, surround_trim, st->arch);
st->intensity, surround_trim, equiv_rate, st->arch);
}
ec_enc_icdf(enc, alloc_trim, trim_icdf, 7);
tell = ec_tell_frac(enc);
}
@ -1919,17 +2063,36 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
/* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms.
The CELT allocator will just not be able to use more than that anyway. */
nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM));
base_target = vbr_rate - ((40*C+20)<<BITRES);
if (!hybrid)
{
base_target = vbr_rate - ((40*C+20)<<BITRES);
} else {
base_target = IMAX(0, vbr_rate - ((9*C+4)<<BITRES));
}
if (st->constrained_vbr)
base_target += (st->vbr_offset>>lm_diff);
target = compute_vbr(mode, &st->analysis, base_target, LM, equiv_rate,
if (!hybrid)
{
target = compute_vbr(mode, &st->analysis, base_target, LM, equiv_rate,
st->lastCodedBands, C, st->intensity, st->constrained_vbr,
st->stereo_saving, tot_boost, tf_estimate, pitch_change, maxDepth,
st->variable_duration, st->lfe, st->energy_mask!=NULL, surround_masking,
st->lfe, st->energy_mask!=NULL, surround_masking,
temporal_vbr);
} else {
target = base_target;
/* Tonal frames (offset<100) need more bits than noisy (offset>100) ones. */
if (st->silk_info.offset < 100) target += 12 << BITRES >> (3-LM);
if (st->silk_info.offset > 100) target -= 18 << BITRES >> (3-LM);
/* Boosting bitrate on transients and vowels with significant temporal
spikes. */
target += (opus_int32)MULT16_16_Q14(tf_estimate-QCONST16(.25f,14), (50<<BITRES));
/* If we have a strong transient, let's make sure it has enough bits to code
the first two bands, so that it can use folding rather than noise. */
if (tf_estimate > QCONST16(.7f,14))
target = IMAX(target, 50<<BITRES);
}
/* The current offset is removed from the target and the space used
so far is added*/
target=target+tell;
@ -1937,11 +2100,16 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
result in the encoder running out of bits.
The margin of 2 bytes ensures that none of the bust-prevention logic
in the decoder will have triggered so far. */
min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes;
min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2;
/* Take into account the 37 bits we need to have left in the packet to
signal a redundant frame in hybrid mode. Creating a shorter packet would
create an entropy coder desync. */
if (hybrid)
min_allowed = IMAX(min_allowed, (tell0_frac+(37<<BITRES)+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3));
nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3);
nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes);
nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes;
nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes);
/* By how much did we "miss" the target on that frame */
delta = target - vbr_rate;
@ -1988,7 +2156,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
st->vbr_reservoir = 0;
/*printf ("+%d\n", adjust);*/
}
nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes);
nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes);
/*printf("%d\n", nbCompressedBytes*50*8);*/
/* This moves the raw bits to take into account the new compressed size */
ec_enc_shrink(enc, nbCompressedBytes);
@ -2023,7 +2191,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
#endif
if (st->lfe)
signalBandwidth = 1;
codedBands = compute_allocation(mode, start, end, offsets, cap,
codedBands = clt_compute_allocation(mode, start, end, offsets, cap,
alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses,
fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands, signalBandwidth);
if (st->lastCodedBands)
@ -2038,7 +2206,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
quant_all_bands(1, mode, start, end, X, C==2 ? X+N : NULL, collapse_masks,
bandE, pulses, shortBlocks, st->spread_decision,
dual_stereo, st->intensity, tf_res, nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv,
balance, enc, LM, codedBands, &st->rng, st->arch);
balance, enc, LM, codedBands, &st->rng, st->complexity, st->arch, st->disable_inv);
if (anti_collapse_rsv > 0)
{
@ -2049,6 +2217,14 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
ec_enc_bits(enc, anti_collapse_on, 1);
}
quant_energy_finalise(mode, start, end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C);
OPUS_CLEAR(energyError, nbEBands*CC);
c=0;
do {
for (i=start;i<end;i++)
{
energyError[i+c*nbEBands] = MAX16(-QCONST16(0.5f, 15), MIN16(QCONST16(0.5f, 15), error[i+c*nbEBands]));
}
} while (++c < C);
if (silence)
{
@ -2321,10 +2497,24 @@ int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...)
*value=st->lsb_depth;
}
break;
case OPUS_SET_EXPERT_FRAME_DURATION_REQUEST:
case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST:
{
opus_int32 value = va_arg(ap, opus_int32);
st->variable_duration = value;
if(value<0 || value>1)
{
goto bad_arg;
}
st->disable_inv = value;
}
break;
case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST:
{
opus_int32 *value = va_arg(ap, opus_int32*);
if (!value)
{
goto bad_arg;
}
*value = st->disable_inv;
}
break;
case OPUS_RESET_STATE:
@ -2368,6 +2558,13 @@ int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...)
OPUS_COPY(&st->analysis, info, 1);
}
break;
case CELT_SET_SILK_INFO_REQUEST:
{
SILKInfo *info = va_arg(ap, SILKInfo *);
if (info)
OPUS_COPY(&st->silk_info, info, 1);
}
break;
case CELT_GET_MODE_REQUEST:
{
const CELTMode ** value = va_arg(ap, const CELTMode**);

View File

@ -89,58 +89,40 @@ int p
void celt_fir_c(
const opus_val16 *_x,
const opus_val16 *x,
const opus_val16 *num,
opus_val16 *_y,
opus_val16 *y,
int N,
int ord,
opus_val16 *mem,
int arch)
{
int i,j;
VARDECL(opus_val16, rnum);
VARDECL(opus_val16, x);
SAVE_STACK;
celt_assert(x != y);
ALLOC(rnum, ord, opus_val16);
ALLOC(x, N+ord, opus_val16);
for(i=0;i<ord;i++)
rnum[i] = num[ord-i-1];
for(i=0;i<ord;i++)
x[i] = mem[ord-i-1];
for (i=0;i<N;i++)
x[i+ord]=_x[i];
for(i=0;i<ord;i++)
mem[i] = _x[N-i-1];
#ifdef SMALL_FOOTPRINT
(void)arch;
for (i=0;i<N;i++)
{
opus_val32 sum = SHL32(EXTEND32(_x[i]), SIG_SHIFT);
for (j=0;j<ord;j++)
{
sum = MAC16_16(sum,rnum[j],x[i+j]);
}
_y[i] = SATURATE16(PSHR32(sum, SIG_SHIFT));
}
#else
for (i=0;i<N-3;i+=4)
{
opus_val32 sum[4]={0,0,0,0};
xcorr_kernel(rnum, x+i, sum, ord, arch);
_y[i ] = SATURATE16(ADD32(EXTEND32(_x[i ]), PSHR32(sum[0], SIG_SHIFT)));
_y[i+1] = SATURATE16(ADD32(EXTEND32(_x[i+1]), PSHR32(sum[1], SIG_SHIFT)));
_y[i+2] = SATURATE16(ADD32(EXTEND32(_x[i+2]), PSHR32(sum[2], SIG_SHIFT)));
_y[i+3] = SATURATE16(ADD32(EXTEND32(_x[i+3]), PSHR32(sum[3], SIG_SHIFT)));
opus_val32 sum[4];
sum[0] = SHL32(EXTEND32(x[i ]), SIG_SHIFT);
sum[1] = SHL32(EXTEND32(x[i+1]), SIG_SHIFT);
sum[2] = SHL32(EXTEND32(x[i+2]), SIG_SHIFT);
sum[3] = SHL32(EXTEND32(x[i+3]), SIG_SHIFT);
xcorr_kernel(rnum, x+i-ord, sum, ord, arch);
y[i ] = ROUND16(sum[0], SIG_SHIFT);
y[i+1] = ROUND16(sum[1], SIG_SHIFT);
y[i+2] = ROUND16(sum[2], SIG_SHIFT);
y[i+3] = ROUND16(sum[3], SIG_SHIFT);
}
for (;i<N;i++)
{
opus_val32 sum = 0;
opus_val32 sum = SHL32(EXTEND32(x[i]), SIG_SHIFT);
for (j=0;j<ord;j++)
sum = MAC16_16(sum,rnum[j],x[i+j]);
_y[i] = SATURATE16(ADD32(EXTEND32(_x[i]), PSHR32(sum, SIG_SHIFT)));
sum = MAC16_16(sum,rnum[j],x[i+j-ord]);
y[i] = ROUND16(sum, SIG_SHIFT);
}
#endif
RESTORE_STACK;
}
@ -166,7 +148,7 @@ void celt_iir(const opus_val32 *_x,
{
mem[j]=mem[j-1];
}
mem[0] = ROUND16(sum,SIG_SHIFT);
mem[0] = SROUND16(sum, SIG_SHIFT);
_y[i] = sum;
}
#else
@ -195,20 +177,20 @@ void celt_iir(const opus_val32 *_x,
xcorr_kernel(rden, y+i, sum, ord, arch);
/* Patch up the result to compensate for the fact that this is an IIR */
y[i+ord ] = -ROUND16(sum[0],SIG_SHIFT);
y[i+ord ] = -SROUND16(sum[0],SIG_SHIFT);
_y[i ] = sum[0];
sum[1] = MAC16_16(sum[1], y[i+ord ], den[0]);
y[i+ord+1] = -ROUND16(sum[1],SIG_SHIFT);
y[i+ord+1] = -SROUND16(sum[1],SIG_SHIFT);
_y[i+1] = sum[1];
sum[2] = MAC16_16(sum[2], y[i+ord+1], den[0]);
sum[2] = MAC16_16(sum[2], y[i+ord ], den[1]);
y[i+ord+2] = -ROUND16(sum[2],SIG_SHIFT);
y[i+ord+2] = -SROUND16(sum[2],SIG_SHIFT);
_y[i+2] = sum[2];
sum[3] = MAC16_16(sum[3], y[i+ord+2], den[0]);
sum[3] = MAC16_16(sum[3], y[i+ord+1], den[1]);
sum[3] = MAC16_16(sum[3], y[i+ord ], den[2]);
y[i+ord+3] = -ROUND16(sum[3],SIG_SHIFT);
y[i+ord+3] = -SROUND16(sum[3],SIG_SHIFT);
_y[i+3] = sum[3];
}
for (;i<N;i++)
@ -216,7 +198,7 @@ void celt_iir(const opus_val32 *_x,
opus_val32 sum = _x[i];
for (j=0;j<ord;j++)
sum -= MULT16_16(rden[j],y[i+j]);
y[i+ord] = ROUND16(sum,SIG_SHIFT);
y[i+ord] = SROUND16(sum,SIG_SHIFT);
_y[i] = sum;
}
for(i=0;i<ord;i++)

View File

@ -45,12 +45,11 @@ void celt_fir_c(
opus_val16 *y,
int N,
int ord,
opus_val16 *mem,
int arch);
#if !defined(OVERRIDE_CELT_FIR)
#define celt_fir(x, num, y, N, ord, mem, arch) \
(celt_fir_c(x, num, y, N, ord, mem, arch))
#define celt_fir(x, num, y, N, ord, arch) \
(celt_fir_c(x, num, y, N, ord, arch))
#endif
void celt_iir(const opus_val32 *x,

View File

@ -482,7 +482,7 @@ static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y){
k0=_k;
q=row[_n];
if(q>_i){
celt_assert(p>q);
celt_sig_assert(p>q);
_k=_n;
do p=CELT_PVQ_U_ROW[--_k][_n];
while(p>_i);

View File

@ -122,7 +122,7 @@ opus_uint32 ec_tell_frac(ec_ctx *_this);
/* Tested exhaustively for all n and for 1<=d<=256 */
static OPUS_INLINE opus_uint32 celt_udiv(opus_uint32 n, opus_uint32 d) {
celt_assert(d>0);
celt_sig_assert(d>0);
#ifdef USE_SMALL_DIV_TABLE
if (d>256)
return n/d;
@ -138,7 +138,7 @@ static OPUS_INLINE opus_uint32 celt_udiv(opus_uint32 n, opus_uint32 d) {
}
static OPUS_INLINE opus_int32 celt_sudiv(opus_int32 n, opus_int32 d) {
celt_assert(d>0);
celt_sig_assert(d>0);
#ifdef USE_SMALL_DIV_TABLE
if (n<0)
return -(opus_int32)celt_udiv(-n, d);

View File

@ -85,7 +85,7 @@ int ec_dec_icdf(ec_dec *_this,const unsigned char *_icdf,unsigned _ftb);
The bits must have been encoded with ec_enc_uint().
No call to ec_dec_update() is necessary after this call.
_ft: The number of integers that can be decoded (one more than the max).
This must be at least one, and no more than 2**32-1.
This must be at least 2, and no more than 2**32-1.
Return: The decoded bits.*/
opus_uint32 ec_dec_uint(ec_dec *_this,opus_uint32 _ft);

View File

@ -67,7 +67,7 @@ void ec_enc_icdf(ec_enc *_this,int _s,const unsigned char *_icdf,unsigned _ftb);
/*Encodes a raw unsigned integer in the stream.
_fl: The integer to encode.
_ft: The number of integers that can be encoded (one more than the max).
This must be at least one, and no more than 2**32-1.*/
This must be at least 2, and no more than 2**32-1.*/
void ec_enc_uint(ec_enc *_this,opus_uint32 _fl,opus_uint32 _ft);
/*Encodes a sequence of raw bits in the stream.

79
thirdparty/opus/celt/fixed_c5x.h vendored Normal file
View File

@ -0,0 +1,79 @@
/* Copyright (C) 2003 Jean-Marc Valin */
/**
@file fixed_c5x.h
@brief Fixed-point operations for the TI C5x DSP family
*/
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FIXED_C5X_H
#define FIXED_C5X_H
#include "dsplib.h"
#undef IMUL32
static OPUS_INLINE long IMUL32(long i, long j)
{
long ac0, ac1;
ac0 = _lmpy(i>>16,j);
ac1 = ac0 + _lmpy(i,j>>16);
return _lmpyu(i,j) + (ac1<<16);
}
#undef MAX16
#define MAX16(a,b) _max(a,b)
#undef MIN16
#define MIN16(a,b) _min(a,b)
#undef MAX32
#define MAX32(a,b) _lmax(a,b)
#undef MIN32
#define MIN32(a,b) _lmin(a,b)
#undef VSHR32
#define VSHR32(a, shift) _lshl(a,-(shift))
#undef MULT16_16_Q15
#define MULT16_16_Q15(a,b) (_smpy(a,b))
#undef MULT16_16SU
#define MULT16_16SU(a,b) _lmpysu(a,b)
#undef MULT_16_16
#define MULT_16_16(a,b) _lmpy(a,b)
/* FIXME: This is technically incorrect and is bound to cause problems. Is there any cleaner solution? */
#undef MULT16_32_Q15
#define MULT16_32_Q15(a,b) ADD32(SHL(MULT16_16((a),SHR((b),16)),1), SHR(MULT16_16SU((a),(b)),15))
#define celt_ilog2(x) (30 - _lnorm(x))
#define OVERRIDE_CELT_ILOG2
#define celt_maxabs16(x, len) MAX32(EXTEND32(maxval((DATA *)x, len)),-EXTEND32(minval((DATA *)x, len)))
#define OVERRIDE_CELT_MAXABS16
#endif /* FIXED_C5X_H */

70
thirdparty/opus/celt/fixed_c6x.h vendored Normal file
View File

@ -0,0 +1,70 @@
/* Copyright (C) 2008 CSIRO */
/**
@file fixed_c6x.h
@brief Fixed-point operations for the TI C6x DSP family
*/
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FIXED_C6X_H
#define FIXED_C6X_H
#undef MULT16_16SU
#define MULT16_16SU(a,b) _mpysu(a,b)
#undef MULT_16_16
#define MULT_16_16(a,b) _mpy(a,b)
#define celt_ilog2(x) (30 - _norm(x))
#define OVERRIDE_CELT_ILOG2
#undef MULT16_32_Q15
#define MULT16_32_Q15(a,b) (_mpylill(a, b) >> 15)
#if 0
#include "dsplib.h"
#undef MAX16
#define MAX16(a,b) _max(a,b)
#undef MIN16
#define MIN16(a,b) _min(a,b)
#undef MAX32
#define MAX32(a,b) _lmax(a,b)
#undef MIN32
#define MIN32(a,b) _lmin(a,b)
#undef VSHR32
#define VSHR32(a, shift) _lshl(a,-(shift))
#undef MULT16_16_Q15
#define MULT16_16_Q15(a,b) (_smpy(a,b))
#define celt_maxabs16(x, len) MAX32(EXTEND32(maxval((DATA *)x, len)),-EXTEND32(minval((DATA *)x, len)))
#define OVERRIDE_CELT_MAXABS16
#endif /* FIXED_C6X_H */

View File

@ -59,6 +59,14 @@ extern opus_int64 celt_mips;
#define SHR(a,b) SHR32(a,b)
#define PSHR(a,b) PSHR32(a,b)
/** Add two 32-bit values, ignore any overflows */
#define ADD32_ovflw(a,b) (celt_mips+=2,(opus_val32)((opus_uint32)(a)+(opus_uint32)(b)))
/** Subtract two 32-bit values, ignore any overflows */
#define SUB32_ovflw(a,b) (celt_mips+=2,(opus_val32)((opus_uint32)(a)-(opus_uint32)(b)))
/* Avoid MSVC warning C4146: unary minus operator applied to unsigned type */
/** Negate 32-bit value, ignore any overflows */
#define NEG32_ovflw(a) (celt_mips+=2,(opus_val32)(0-(opus_uint32)(a)))
static OPUS_INLINE short NEG16(int x)
{
int res;
@ -227,12 +235,11 @@ static OPUS_INLINE int SHL32_(opus_int64 a, int shift, char *file, int line)
#define VSHR32(a, shift) (((shift)>0) ? SHR32(a, shift) : SHL32(a, -(shift)))
#define ROUND16(x,a) (celt_mips--,EXTRACT16(PSHR32((x),(a))))
#define SROUND16(x,a) (celt_mips--,EXTRACT16(SATURATE(PSHR32(x,a), 32767)));
#define HALF16(x) (SHR16(x,1))
#define HALF32(x) (SHR32(x,1))
//#define SHR(a,shift) ((a) >> (shift))
//#define SHL(a,shift) ((a) << (shift))
#define ADD16(a, b) ADD16_(a, b, __FILE__, __LINE__)
static OPUS_INLINE short ADD16_(int a, int b, char *file, int line)
{

View File

@ -104,6 +104,9 @@
/** Shift by a and round-to-neareast 32-bit value. Result is a 16-bit value */
#define ROUND16(x,a) (EXTRACT16(PSHR32((x),(a))))
/** Shift by a and round-to-neareast 32-bit value. Result is a saturated 16-bit value */
#define SROUND16(x,a) EXTRACT16(SATURATE(PSHR32(x,a), 32767));
/** Divide by two */
#define HALF16(x) (SHR16(x,1))
#define HALF32(x) (SHR32(x,1))
@ -117,6 +120,14 @@
/** Subtract two 32-bit values */
#define SUB32(a,b) ((opus_val32)(a)-(opus_val32)(b))
/** Add two 32-bit values, ignore any overflows */
#define ADD32_ovflw(a,b) ((opus_val32)((opus_uint32)(a)+(opus_uint32)(b)))
/** Subtract two 32-bit values, ignore any overflows */
#define SUB32_ovflw(a,b) ((opus_val32)((opus_uint32)(a)-(opus_uint32)(b)))
/* Avoid MSVC warning C4146: unary minus operator applied to unsigned type */
/** Negate 32-bit value, ignore any overflows */
#define NEG32_ovflw(a) ((opus_val32)(0-(opus_uint32)(a)))
/** 16x16 multiplication where the result fits in 16 bits */
#define MULT16_16_16(a,b) ((((opus_val16)(a))*((opus_val16)(b))))

View File

@ -61,7 +61,13 @@
** the config.h file.
*/
#if (HAVE_LRINTF)
/* With GCC, when SSE is available, the fastest conversion is cvtss2si. */
#if defined(__GNUC__) && defined(__SSE__)
#include <xmmintrin.h>
static OPUS_INLINE opus_int32 float2int(float x) {return _mm_cvt_ss2si(_mm_set_ss(x));}
#elif defined(HAVE_LRINTF)
/* These defines enable functionality introduced with the 1999 ISO C
** standard. They must be defined before the inclusion of math.h to
@ -90,10 +96,10 @@
#include <math.h>
#define float2int(x) lrint(x)
#elif (defined(_MSC_VER) && _MSC_VER >= 1400) && defined (_M_X64)
#elif (defined(_MSC_VER) && _MSC_VER >= 1400) && (defined(_M_X64) || (defined(_M_IX86_FP) && _M_IX86_FP >= 1))
#include <xmmintrin.h>
__inline long int float2int(float value)
static __inline long int float2int(float value)
{
return _mm_cvtss_si32(_mm_load_ss(&value));
}
@ -104,7 +110,7 @@
** Therefore implement OPUS_INLINE versions of these functions here.
*/
__inline long int
static __inline long int
float2int (float flt)
{ int intgr;

View File

@ -82,8 +82,8 @@ static void kf_bfly2(
C_SUB( Fout2[0] , Fout[0] , t );
C_ADDTO( Fout[0] , t );
t.r = S_MUL(Fout2[1].r+Fout2[1].i, tw);
t.i = S_MUL(Fout2[1].i-Fout2[1].r, tw);
t.r = S_MUL(ADD32_ovflw(Fout2[1].r, Fout2[1].i), tw);
t.i = S_MUL(SUB32_ovflw(Fout2[1].i, Fout2[1].r), tw);
C_SUB( Fout2[1] , Fout[1] , t );
C_ADDTO( Fout[1] , t );
@ -92,8 +92,8 @@ static void kf_bfly2(
C_SUB( Fout2[2] , Fout[2] , t );
C_ADDTO( Fout[2] , t );
t.r = S_MUL(Fout2[3].i-Fout2[3].r, tw);
t.i = S_MUL(-Fout2[3].i-Fout2[3].r, tw);
t.r = S_MUL(SUB32_ovflw(Fout2[3].i, Fout2[3].r), tw);
t.i = S_MUL(NEG32_ovflw(ADD32_ovflw(Fout2[3].i, Fout2[3].r)), tw);
C_SUB( Fout2[3] , Fout[3] , t );
C_ADDTO( Fout[3] , t );
Fout += 8;
@ -126,10 +126,10 @@ static void kf_bfly4(
C_ADDTO( *Fout , scratch1 );
C_SUB( scratch1 , Fout[1] , Fout[3] );
Fout[1].r = scratch0.r + scratch1.i;
Fout[1].i = scratch0.i - scratch1.r;
Fout[3].r = scratch0.r - scratch1.i;
Fout[3].i = scratch0.i + scratch1.r;
Fout[1].r = ADD32_ovflw(scratch0.r, scratch1.i);
Fout[1].i = SUB32_ovflw(scratch0.i, scratch1.r);
Fout[3].r = SUB32_ovflw(scratch0.r, scratch1.i);
Fout[3].i = ADD32_ovflw(scratch0.i, scratch1.r);
Fout+=4;
}
} else {
@ -160,10 +160,10 @@ static void kf_bfly4(
tw3 += fstride*3;
C_ADDTO( *Fout , scratch[3] );
Fout[m].r = scratch[5].r + scratch[4].i;
Fout[m].i = scratch[5].i - scratch[4].r;
Fout[m3].r = scratch[5].r - scratch[4].i;
Fout[m3].i = scratch[5].i + scratch[4].r;
Fout[m].r = ADD32_ovflw(scratch[5].r, scratch[4].i);
Fout[m].i = SUB32_ovflw(scratch[5].i, scratch[4].r);
Fout[m3].r = SUB32_ovflw(scratch[5].r, scratch[4].i);
Fout[m3].i = ADD32_ovflw(scratch[5].i, scratch[4].r);
++Fout;
}
}
@ -212,18 +212,18 @@ static void kf_bfly3(
tw1 += fstride;
tw2 += fstride*2;
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
Fout[m].r = SUB32_ovflw(Fout->r, HALF_OF(scratch[3].r));
Fout[m].i = SUB32_ovflw(Fout->i, HALF_OF(scratch[3].i));
C_MULBYSCALAR( scratch[0] , epi3.i );
C_ADDTO(*Fout,scratch[3]);
Fout[m2].r = Fout[m].r + scratch[0].i;
Fout[m2].i = Fout[m].i - scratch[0].r;
Fout[m2].r = ADD32_ovflw(Fout[m].r, scratch[0].i);
Fout[m2].i = SUB32_ovflw(Fout[m].i, scratch[0].r);
Fout[m].r -= scratch[0].i;
Fout[m].i += scratch[0].r;
Fout[m].r = SUB32_ovflw(Fout[m].r, scratch[0].i);
Fout[m].i = ADD32_ovflw(Fout[m].i, scratch[0].r);
++Fout;
} while(--k);
@ -282,22 +282,22 @@ static void kf_bfly5(
C_ADD( scratch[8],scratch[2],scratch[3]);
C_SUB( scratch[9],scratch[2],scratch[3]);
Fout0->r += scratch[7].r + scratch[8].r;
Fout0->i += scratch[7].i + scratch[8].i;
Fout0->r = ADD32_ovflw(Fout0->r, ADD32_ovflw(scratch[7].r, scratch[8].r));
Fout0->i = ADD32_ovflw(Fout0->i, ADD32_ovflw(scratch[7].i, scratch[8].i));
scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r);
scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r);
scratch[5].r = ADD32_ovflw(scratch[0].r, ADD32_ovflw(S_MUL(scratch[7].r,ya.r), S_MUL(scratch[8].r,yb.r)));
scratch[5].i = ADD32_ovflw(scratch[0].i, ADD32_ovflw(S_MUL(scratch[7].i,ya.r), S_MUL(scratch[8].i,yb.r)));
scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i);
scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i);
scratch[6].r = ADD32_ovflw(S_MUL(scratch[10].i,ya.i), S_MUL(scratch[9].i,yb.i));
scratch[6].i = NEG32_ovflw(ADD32_ovflw(S_MUL(scratch[10].r,ya.i), S_MUL(scratch[9].r,yb.i)));
C_SUB(*Fout1,scratch[5],scratch[6]);
C_ADD(*Fout4,scratch[5],scratch[6]);
scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r);
scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r);
scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i);
scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i);
scratch[11].r = ADD32_ovflw(scratch[0].r, ADD32_ovflw(S_MUL(scratch[7].r,yb.r), S_MUL(scratch[8].r,ya.r)));
scratch[11].i = ADD32_ovflw(scratch[0].i, ADD32_ovflw(S_MUL(scratch[7].i,yb.r), S_MUL(scratch[8].i,ya.r)));
scratch[12].r = SUB32_ovflw(S_MUL(scratch[9].i,ya.i), S_MUL(scratch[10].i,yb.i));
scratch[12].i = SUB32_ovflw(S_MUL(scratch[10].r,yb.i), S_MUL(scratch[9].r,ya.i));
C_ADD(*Fout2,scratch[11],scratch[12]);
C_SUB(*Fout3,scratch[11],scratch[12]);

View File

@ -38,7 +38,8 @@
#include "mathops.h"
/*Compute floor(sqrt(_val)) with exact arithmetic.
This has been tested on all possible 32-bit inputs.*/
_val must be greater than 0.
This has been tested on all possible 32-bit inputs greater than 0.*/
unsigned isqrt32(opus_uint32 _val){
unsigned b;
unsigned g;
@ -182,7 +183,7 @@ opus_val32 celt_rcp(opus_val32 x)
int i;
opus_val16 n;
opus_val16 r;
celt_assert2(x>0, "celt_rcp() only defined for positive values");
celt_sig_assert(x>0);
i = celt_ilog2(x);
/* n is Q15 with range [0,1). */
n = VSHR32(x,i-15)-32768;

View File

@ -38,11 +38,44 @@
#include "entcode.h"
#include "os_support.h"
#define PI 3.141592653f
/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
unsigned isqrt32(opus_uint32 _val);
/* CELT doesn't need it for fixed-point, by analysis.c does. */
#if !defined(FIXED_POINT) || defined(ANALYSIS_C)
#define cA 0.43157974f
#define cB 0.67848403f
#define cC 0.08595542f
#define cE ((float)PI/2)
static OPUS_INLINE float fast_atan2f(float y, float x) {
float x2, y2;
x2 = x*x;
y2 = y*y;
/* For very small values, we don't care about the answer, so
we can just return 0. */
if (x2 + y2 < 1e-18f)
{
return 0;
}
if(x2<y2){
float den = (y2 + cB*x2) * (y2 + cC*x2);
return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE);
}else{
float den = (x2 + cB*y2) * (x2 + cC*y2);
return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE);
}
}
#undef cA
#undef cB
#undef cC
#undef cE
#endif
#ifndef OVERRIDE_CELT_MAXABS16
static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
{
@ -80,7 +113,6 @@ static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
#ifndef FIXED_POINT
#define PI 3.141592653f
#define celt_sqrt(x) ((float)sqrt(x))
#define celt_rsqrt(x) (1.f/celt_sqrt(x))
#define celt_rsqrt_norm(x) (celt_rsqrt(x))
@ -147,7 +179,7 @@ static OPUS_INLINE float celt_exp2(float x)
/** Integer log in base2. Undefined for zero and negative numbers */
static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
{
celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
celt_sig_assert(x>0);
return EC_ILOG(x)-1;
}
#endif

View File

@ -270,8 +270,8 @@ void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_sca
int rev;
kiss_fft_scalar yr, yi;
rev = *bitrev++;
yr = S_MUL(*xp2, t[i]) + S_MUL(*xp1, t[N4+i]);
yi = S_MUL(*xp1, t[i]) - S_MUL(*xp2, t[N4+i]);
yr = ADD32_ovflw(S_MUL(*xp2, t[i]), S_MUL(*xp1, t[N4+i]));
yi = SUB32_ovflw(S_MUL(*xp1, t[i]), S_MUL(*xp2, t[N4+i]));
/* We swap real and imag because we use an FFT instead of an IFFT. */
yp[2*rev+1] = yr;
yp[2*rev] = yi;
@ -301,8 +301,8 @@ void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_sca
t0 = t[i];
t1 = t[N4+i];
/* We'd scale up by 2 here, but instead it's done when mixing the windows */
yr = S_MUL(re,t0) + S_MUL(im,t1);
yi = S_MUL(re,t1) - S_MUL(im,t0);
yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1));
yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0));
/* We swap real and imag because we're using an FFT instead of an IFFT. */
re = yp1[1];
im = yp1[0];
@ -312,8 +312,8 @@ void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_sca
t0 = t[(N4-i-1)];
t1 = t[(N2-i-1)];
/* We'd scale up by 2 here, but instead it's done when mixing the windows */
yr = S_MUL(re,t0) + S_MUL(im,t1);
yi = S_MUL(re,t1) - S_MUL(im,t0);
yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1));
yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0));
yp1[0] = yr;
yp0[1] = yi;
yp0 += 2;
@ -333,8 +333,8 @@ void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_sca
kiss_fft_scalar x1, x2;
x1 = *xp1;
x2 = *yp1;
*yp1++ = MULT16_32_Q15(*wp2, x2) - MULT16_32_Q15(*wp1, x1);
*xp1-- = MULT16_32_Q15(*wp1, x2) + MULT16_32_Q15(*wp2, x1);
*yp1++ = SUB32_ovflw(MULT16_32_Q15(*wp2, x2), MULT16_32_Q15(*wp1, x1));
*xp1-- = ADD32_ovflw(MULT16_32_Q15(*wp1, x2), MULT16_32_Q15(*wp2, x1));
wp1++;
wp2--;
}

View File

@ -53,6 +53,7 @@
#include "celt_lpc.h"
#include "vq.h"
#define OVERRIDE_COMB_FILTER_CONST
#define OVERRIDE_comb_filter
void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
opus_val16 g0, opus_val16 g1, int tapset0, int tapset1,

View File

@ -36,11 +36,6 @@
#include "mathops.h"
#include "arch.h"
static unsigned extract_collapse_mask(int *iy, int N, int B);
static void normalise_residual(int * OPUS_RESTRICT iy, celt_norm * OPUS_RESTRICT X, int N, opus_val32 Ryy, opus_val16 gain);
static void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread);
static void renormalise_vector_mips(celt_norm *X, int N, opus_val16 gain, int arch);
#define OVERRIDE_vq_exp_rotation1
static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_val16 s)
{
@ -69,11 +64,7 @@ static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_
}
#define OVERRIDE_renormalise_vector
#define renormalise_vector(X, N, gain, arch) \
(renormalise_vector_mips(X, N, gain, arch))
void renormalise_vector_mips(celt_norm *X, int N, opus_val16 gain, int arch)
void renormalise_vector(celt_norm *X, int N, opus_val16 gain, int arch)
{
int i;
#ifdef FIXED_POINT

View File

@ -427,7 +427,7 @@ void opus_custom_mode_destroy(CELTMode *mode)
}
#endif /* CUSTOM_MODES_ONLY */
opus_free((opus_int16*)mode->eBands);
opus_free((opus_int16*)mode->allocVectors);
opus_free((unsigned char*)mode->allocVectors);
opus_free((opus_val16*)mode->window);
opus_free((opus_int16*)mode->logN);

View File

@ -102,11 +102,9 @@ static void find_best_pitch(opus_val32 *xcorr, opus_val16 *y, int len,
}
}
static void celt_fir5(const opus_val16 *x,
static void celt_fir5(opus_val16 *x,
const opus_val16 *num,
opus_val16 *y,
int N,
opus_val16 *mem)
int N)
{
int i;
opus_val16 num0, num1, num2, num3, num4;
@ -116,11 +114,11 @@ static void celt_fir5(const opus_val16 *x,
num2=num[2];
num3=num[3];
num4=num[4];
mem0=mem[0];
mem1=mem[1];
mem2=mem[2];
mem3=mem[3];
mem4=mem[4];
mem0=0;
mem1=0;
mem2=0;
mem3=0;
mem4=0;
for (i=0;i<N;i++)
{
opus_val32 sum = SHL32(EXTEND32(x[i]), SIG_SHIFT);
@ -134,13 +132,8 @@ static void celt_fir5(const opus_val16 *x,
mem2 = mem1;
mem1 = mem0;
mem0 = x[i];
y[i] = ROUND16(sum, SIG_SHIFT);
x[i] = ROUND16(sum, SIG_SHIFT);
}
mem[0]=mem0;
mem[1]=mem1;
mem[2]=mem2;
mem[3]=mem3;
mem[4]=mem4;
}
@ -150,7 +143,7 @@ void pitch_downsample(celt_sig * OPUS_RESTRICT x[], opus_val16 * OPUS_RESTRICT x
int i;
opus_val32 ac[5];
opus_val16 tmp=Q15ONE;
opus_val16 lpc[4], mem[5]={0,0,0,0,0};
opus_val16 lpc[4];
opus_val16 lpc2[5];
opus_val16 c1 = QCONST16(.8f,15);
#ifdef FIXED_POINT
@ -211,7 +204,7 @@ void pitch_downsample(celt_sig * OPUS_RESTRICT x[], opus_val16 * OPUS_RESTRICT x
lpc2[2] = lpc[2] + MULT16_16_Q15(c1,lpc[1]);
lpc2[3] = lpc[3] + MULT16_16_Q15(c1,lpc[2]);
lpc2[4] = MULT16_16_Q15(c1,lpc[3]);
celt_fir5(x_lp, lpc2, x_lp, len>>1, mem);
celt_fir5(x_lp, lpc2, len>>1);
}
/* Pure C implementation. */
@ -220,13 +213,8 @@ opus_val32
#else
void
#endif
#if defined(OVERRIDE_PITCH_XCORR)
celt_pitch_xcorr_c(const opus_val16 *_x, const opus_val16 *_y,
opus_val32 *xcorr, int len, int max_pitch)
#else
celt_pitch_xcorr(const opus_val16 *_x, const opus_val16 *_y,
opus_val32 *xcorr, int len, int max_pitch, int arch)
#endif
{
#if 0 /* This is a simple version of the pitch correlation that should work
@ -261,15 +249,11 @@ celt_pitch_xcorr(const opus_val16 *_x, const opus_val16 *_y,
opus_val32 maxcorr=1;
#endif
celt_assert(max_pitch>0);
celt_assert((((unsigned char *)_x-(unsigned char *)NULL)&3)==0);
celt_sig_assert((((unsigned char *)_x-(unsigned char *)NULL)&3)==0);
for (i=0;i<max_pitch-3;i+=4)
{
opus_val32 sum[4]={0,0,0,0};
#if defined(OVERRIDE_PITCH_XCORR)
xcorr_kernel_c(_x, _y+i, sum, len);
#else
xcorr_kernel(_x, _y+i, sum, len, arch);
#endif
xcorr[i]=sum[0];
xcorr[i+1]=sum[1];
xcorr[i+2]=sum[2];
@ -285,11 +269,7 @@ celt_pitch_xcorr(const opus_val16 *_x, const opus_val16 *_y,
for (;i<max_pitch;i++)
{
opus_val32 sum;
#if defined(OVERRIDE_PITCH_XCORR)
sum = celt_inner_prod_c(_x, _y+i, len);
#else
sum = celt_inner_prod(_x, _y+i, len, arch);
#endif
xcorr[i] = sum;
#ifdef FIXED_POINT
maxcorr = MAX32(maxcorr, sum);
@ -378,7 +358,7 @@ void pitch_search(const opus_val16 * OPUS_RESTRICT x_lp, opus_val16 * OPUS_RESTR
for (j=0;j<len>>1;j++)
sum += SHR32(MULT16_16(x_lp[j],y[i+j]), shift);
#else
sum = celt_inner_prod_c(x_lp, y+i, len>>1);
sum = celt_inner_prod(x_lp, y+i, len>>1, arch);
#endif
xcorr[i] = MAX32(-1, sum);
#ifdef FIXED_POINT
@ -424,7 +404,7 @@ static opus_val16 compute_pitch_gain(opus_val32 xy, opus_val32 xx, opus_val32 yy
sx = celt_ilog2(xx)-14;
sy = celt_ilog2(yy)-14;
shift = sx + sy;
x2y2 = MULT16_16_Q14(VSHR32(xx, sx), VSHR32(yy, sy));
x2y2 = SHR32(MULT16_16(VSHR32(xx, sx), VSHR32(yy, sy)), 14);
if (shift & 1) {
if (x2y2 < 32768)
{

View File

@ -46,8 +46,7 @@
#include "mips/pitch_mipsr1.h"
#endif
#if ((defined(OPUS_ARM_ASM) && defined(FIXED_POINT)) \
|| defined(OPUS_ARM_MAY_HAVE_NEON_INTR))
#if (defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR))
# include "arm/pitch_arm.h"
#endif
@ -184,17 +183,10 @@ opus_val32
void
#endif
celt_pitch_xcorr_c(const opus_val16 *_x, const opus_val16 *_y,
opus_val32 *xcorr, int len, int max_pitch);
#if !defined(OVERRIDE_PITCH_XCORR)
#ifdef FIXED_POINT
opus_val32
#else
void
#endif
celt_pitch_xcorr(const opus_val16 *_x, const opus_val16 *_y,
opus_val32 *xcorr, int len, int max_pitch, int arch);
#ifndef OVERRIDE_PITCH_XCORR
# define celt_pitch_xcorr celt_pitch_xcorr_c
#endif
#endif

View File

@ -418,6 +418,7 @@ void quant_energy_finalise(const CELTMode *m, int start, int end, opus_val16 *ol
offset = (q2-.5f)*(1<<(14-fine_quant[i]-1))*(1.f/16384);
#endif
oldEBands[i+c*m->nbEBands] += offset;
error[i+c*m->nbEBands] -= offset;
bits_left--;
} while (++c < C);
}
@ -456,7 +457,7 @@ void unquant_coarse_energy(const CELTMode *m, int start, int end, opus_val16 *ol
/* It would be better to express this invariant as a
test on C at function entry, but that isn't enough
to make the static analyzer happy. */
celt_assert(c<2);
celt_sig_assert(c<2);
tell = ec_tell(dec);
if(budget-tell>=15)
{
@ -547,9 +548,15 @@ void amp2Log2(const CELTMode *m, int effEnd, int end,
c=0;
do {
for (i=0;i<effEnd;i++)
{
bandLogE[i+c*m->nbEBands] =
celt_log2(SHL32(bandE[i+c*m->nbEBands],2))
celt_log2(bandE[i+c*m->nbEBands])
- SHL16((opus_val16)eMeans[i],6);
#ifdef FIXED_POINT
/* Compensate for bandE[] being Q12 but celt_log2() taking a Q14 input. */
bandLogE[i+c*m->nbEBands] += QCONST16(2.f, DB_SHIFT);
#endif
}
for (i=effEnd;i<end;i++)
bandLogE[c*m->nbEBands+i] = -QCONST16(14.f,DB_SHIFT);
} while (++c < C);

View File

@ -348,12 +348,17 @@ static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end,
/*This if() block is the only part of the allocation function that
is not a mandatory part of the bitstream: any bands we choose to
skip here must be explicitly signaled.*/
/*Choose a threshold with some hysteresis to keep bands from
fluctuating in and out.*/
int depth_threshold;
/*We choose a threshold with some hysteresis to keep bands from
fluctuating in and out, but we try not to fold below a certain point. */
if (codedBands > 17)
depth_threshold = j<prev ? 7 : 9;
else
depth_threshold = 0;
#ifdef FUZZING
if ((rand()&0x1) == 0)
#else
if (codedBands<=start+2 || (band_bits > ((j<prev?7:9)*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth))
if (codedBands<=start+2 || (band_bits > (depth_threshold*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth))
#endif
{
ec_enc_bit_logp(ec, 1, 1);
@ -524,7 +529,7 @@ static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end,
return codedBands;
}
int compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo,
int clt_compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo,
opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
{
int lo, hi, len, j;

View File

@ -95,7 +95,7 @@ static OPUS_INLINE int pulses2bits(const CELTMode *m, int band, int LM, int puls
@param pulses Number of pulses per band (returned)
@return Total number of bits allocated
*/
int compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stero,
int clt_compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo,
opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth);
#endif

View File

@ -1,7 +1,7 @@
/* The contents of this file was automatically generated by
* dump_mode_arm_ne10.c with arguments: 48000 960
* It contains static definitions for some pre-defined modes. */
#include <NE10_init.h>
#include <NE10_types.h>
#ifndef NE10_FFT_PARAMS48000_960
#define NE10_FFT_PARAMS48000_960

View File

@ -1,7 +1,7 @@
/* The contents of this file was automatically generated by
* dump_mode_arm_ne10.c with arguments: 48000 960
* It contains static definitions for some pre-defined modes. */
#include <NE10_init.h>
#include <NE10_types.h>
#ifndef NE10_FFT_PARAMS48000_960
#define NE10_FFT_PARAMS48000_960

View File

@ -1,161 +0,0 @@
/* Copyright (c) 2008-2011 Xiph.Org Foundation, Mozilla Corporation,
Gregory Maxwell
Written by Jean-Marc Valin, Gregory Maxwell, and Timothy B. Terriberry */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <string.h>
#ifndef CUSTOM_MODES
#define CUSTOM_MODES
#else
#define TEST_CUSTOM_MODES
#endif
#define CELT_C
#include "stack_alloc.h"
#include "entenc.c"
#include "entdec.c"
#include "entcode.c"
#include "cwrs.c"
#include "mathops.c"
#include "rate.h"
#define NMAX (240)
#define KMAX (128)
#ifdef TEST_CUSTOM_MODES
#define NDIMS (44)
static const int pn[NDIMS]={
2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 18, 20, 22,
24, 26, 28, 30, 32, 36, 40, 44, 48,
52, 56, 60, 64, 72, 80, 88, 96, 104,
112, 120, 128, 144, 160, 176, 192, 208
};
static const int pkmax[NDIMS]={
128, 128, 128, 128, 88, 52, 36, 26, 22,
18, 16, 15, 13, 12, 12, 11, 10, 9,
9, 8, 8, 7, 7, 7, 7, 6, 6,
6, 6, 6, 5, 5, 5, 5, 5, 5,
4, 4, 4, 4, 4, 4, 4, 4
};
#else /* TEST_CUSTOM_MODES */
#define NDIMS (22)
static const int pn[NDIMS]={
2, 3, 4, 6, 8, 9, 11, 12, 16,
18, 22, 24, 32, 36, 44, 48, 64, 72,
88, 96, 144, 176
};
static const int pkmax[NDIMS]={
128, 128, 128, 88, 36, 26, 18, 16, 12,
11, 9, 9, 7, 7, 6, 6, 5, 5,
5, 5, 4, 4
};
#endif
int main(void){
int t;
int n;
ALLOC_STACK;
for(t=0;t<NDIMS;t++){
int pseudo;
n=pn[t];
for(pseudo=1;pseudo<41;pseudo++)
{
int k;
#if defined(SMALL_FOOTPRINT)
opus_uint32 uu[KMAX+2U];
#endif
opus_uint32 inc;
opus_uint32 nc;
opus_uint32 i;
k=get_pulses(pseudo);
if (k>pkmax[t])break;
printf("Testing CWRS with N=%i, K=%i...\n",n,k);
#if defined(SMALL_FOOTPRINT)
nc=ncwrs_urow(n,k,uu);
#else
nc=CELT_PVQ_V(n,k);
#endif
inc=nc/20000;
if(inc<1)inc=1;
for(i=0;i<nc;i+=inc){
#if defined(SMALL_FOOTPRINT)
opus_uint32 u[KMAX+2U];
#endif
int y[NMAX];
int sy;
opus_uint32 v;
opus_uint32 ii;
int j;
#if defined(SMALL_FOOTPRINT)
memcpy(u,uu,(k+2U)*sizeof(*u));
cwrsi(n,k,i,y,u);
#else
cwrsi(n,k,i,y);
#endif
sy=0;
for(j=0;j<n;j++)sy+=abs(y[j]);
if(sy!=k){
fprintf(stderr,"N=%d Pulse count mismatch in cwrsi (%d!=%d).\n",
n,sy,k);
return 99;
}
/*printf("%6u of %u:",i,nc);
for(j=0;j<n;j++)printf(" %+3i",y[j]);
printf(" ->");*/
#if defined(SMALL_FOOTPRINT)
ii=icwrs(n,k,&v,y,u);
#else
ii=icwrs(n,y);
v=CELT_PVQ_V(n,k);
#endif
if(ii!=i){
fprintf(stderr,"Combination-index mismatch (%lu!=%lu).\n",
(long)ii,(long)i);
return 1;
}
if(v!=nc){
fprintf(stderr,"Combination count mismatch (%lu!=%lu).\n",
(long)v,(long)nc);
return 2;
}
/*printf(" %6u\n",i);*/
}
/*printf("\n");*/
}
}
return 0;
}

View File

@ -1,189 +0,0 @@
/* Copyright (c) 2008 Xiph.Org Foundation
Written by Jean-Marc Valin */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#define SKIP_CONFIG_H
#ifndef CUSTOM_MODES
#define CUSTOM_MODES
#endif
#include <stdio.h>
#define CELT_C
#define TEST_UNIT_DFT_C
#include "stack_alloc.h"
#include "kiss_fft.h"
#include "kiss_fft.c"
#include "mathops.c"
#include "entcode.c"
#if defined(OPUS_X86_MAY_HAVE_SSE2) || defined(OPUS_X86_MAY_HAVE_SSE4_1)
# include "x86/x86cpu.c"
#elif defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
# include "arm/armcpu.c"
# include "celt_lpc.c"
# include "pitch.c"
# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
# include "arm/celt_neon_intr.c"
# if defined(HAVE_ARM_NE10)
# include "mdct.c"
# include "arm/celt_ne10_fft.c"
# include "arm/celt_ne10_mdct.c"
# endif
# endif
# include "arm/arm_celt_map.c"
#endif
#ifndef M_PI
#define M_PI 3.141592653
#endif
int ret = 0;
void check(kiss_fft_cpx * in,kiss_fft_cpx * out,int nfft,int isinverse)
{
int bin,k;
double errpow=0,sigpow=0, snr;
for (bin=0;bin<nfft;++bin) {
double ansr = 0;
double ansi = 0;
double difr;
double difi;
for (k=0;k<nfft;++k) {
double phase = -2*M_PI*bin*k/nfft;
double re = cos(phase);
double im = sin(phase);
if (isinverse)
im = -im;
if (!isinverse)
{
re /= nfft;
im /= nfft;
}
ansr += in[k].r * re - in[k].i * im;
ansi += in[k].r * im + in[k].i * re;
}
/*printf ("%d %d ", (int)ansr, (int)ansi);*/
difr = ansr - out[bin].r;
difi = ansi - out[bin].i;
errpow += difr*difr + difi*difi;
sigpow += ansr*ansr+ansi*ansi;
}
snr = 10*log10(sigpow/errpow);
printf("nfft=%d inverse=%d,snr = %f\n",nfft,isinverse,snr );
if (snr<60) {
printf( "** poor snr: %f ** \n", snr);
ret = 1;
}
}
void test1d(int nfft,int isinverse,int arch)
{
size_t buflen = sizeof(kiss_fft_cpx)*nfft;
kiss_fft_cpx * in = (kiss_fft_cpx*)malloc(buflen);
kiss_fft_cpx * out= (kiss_fft_cpx*)malloc(buflen);
kiss_fft_state *cfg = opus_fft_alloc(nfft,0,0,arch);
int k;
for (k=0;k<nfft;++k) {
in[k].r = (rand() % 32767) - 16384;
in[k].i = (rand() % 32767) - 16384;
}
for (k=0;k<nfft;++k) {
in[k].r *= 32768;
in[k].i *= 32768;
}
if (isinverse)
{
for (k=0;k<nfft;++k) {
in[k].r /= nfft;
in[k].i /= nfft;
}
}
/*for (k=0;k<nfft;++k) printf("%d %d ", in[k].r, in[k].i);printf("\n");*/
if (isinverse)
opus_ifft(cfg,in,out, arch);
else
opus_fft(cfg,in,out, arch);
/*for (k=0;k<nfft;++k) printf("%d %d ", out[k].r, out[k].i);printf("\n");*/
check(in,out,nfft,isinverse);
free(in);
free(out);
opus_fft_free(cfg, arch);
}
int main(int argc,char ** argv)
{
ALLOC_STACK;
int arch = opus_select_arch();
if (argc>1) {
int k;
for (k=1;k<argc;++k) {
test1d(atoi(argv[k]),0,arch);
test1d(atoi(argv[k]),1,arch);
}
}else{
test1d(32,0,arch);
test1d(32,1,arch);
test1d(128,0,arch);
test1d(128,1,arch);
test1d(256,0,arch);
test1d(256,1,arch);
#ifndef RADIX_TWO_ONLY
test1d(36,0,arch);
test1d(36,1,arch);
test1d(50,0,arch);
test1d(50,1,arch);
test1d(60,0,arch);
test1d(60,1,arch);
test1d(120,0,arch);
test1d(120,1,arch);
test1d(240,0,arch);
test1d(240,1,arch);
test1d(480,0,arch);
test1d(480,1,arch);
#endif
}
return ret;
}

View File

@ -1,382 +0,0 @@
/* Copyright (c) 2007-2011 Xiph.Org Foundation, Mozilla Corporation,
Gregory Maxwell
Written by Jean-Marc Valin, Gregory Maxwell, and Timothy B. Terriberry */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include "entcode.h"
#include "entenc.h"
#include "entdec.h"
#include <string.h>
#include "entenc.c"
#include "entdec.c"
#include "entcode.c"
#ifndef M_LOG2E
# define M_LOG2E 1.4426950408889634074
#endif
#define DATA_SIZE 10000000
#define DATA_SIZE2 10000
int main(int _argc,char **_argv){
ec_enc enc;
ec_dec dec;
long nbits;
long nbits2;
double entropy;
int ft;
int ftb;
int sz;
int i;
int ret;
unsigned int sym;
unsigned int seed;
unsigned char *ptr;
const char *env_seed;
ret=0;
entropy=0;
if (_argc > 2) {
fprintf(stderr, "Usage: %s [<seed>]\n", _argv[0]);
return 1;
}
env_seed = getenv("SEED");
if (_argc > 1)
seed = atoi(_argv[1]);
else if (env_seed)
seed = atoi(env_seed);
else
seed = time(NULL);
/*Testing encoding of raw bit values.*/
ptr = (unsigned char *)malloc(DATA_SIZE);
ec_enc_init(&enc,ptr, DATA_SIZE);
for(ft=2;ft<1024;ft++){
for(i=0;i<ft;i++){
entropy+=log(ft)*M_LOG2E;
ec_enc_uint(&enc,i,ft);
}
}
/*Testing encoding of raw bit values.*/
for(ftb=1;ftb<16;ftb++){
for(i=0;i<(1<<ftb);i++){
entropy+=ftb;
nbits=ec_tell(&enc);
ec_enc_bits(&enc,i,ftb);
nbits2=ec_tell(&enc);
if(nbits2-nbits!=ftb){
fprintf(stderr,"Used %li bits to encode %i bits directly.\n",
nbits2-nbits,ftb);
ret=-1;
}
}
}
nbits=ec_tell_frac(&enc);
ec_enc_done(&enc);
fprintf(stderr,
"Encoded %0.2lf bits of entropy to %0.2lf bits (%0.3lf%% wasted).\n",
entropy,ldexp(nbits,-3),100*(nbits-ldexp(entropy,3))/nbits);
fprintf(stderr,"Packed to %li bytes.\n",(long)ec_range_bytes(&enc));
ec_dec_init(&dec,ptr,DATA_SIZE);
for(ft=2;ft<1024;ft++){
for(i=0;i<ft;i++){
sym=ec_dec_uint(&dec,ft);
if(sym!=(unsigned)i){
fprintf(stderr,"Decoded %i instead of %i with ft of %i.\n",sym,i,ft);
ret=-1;
}
}
}
for(ftb=1;ftb<16;ftb++){
for(i=0;i<(1<<ftb);i++){
sym=ec_dec_bits(&dec,ftb);
if(sym!=(unsigned)i){
fprintf(stderr,"Decoded %i instead of %i with ftb of %i.\n",sym,i,ftb);
ret=-1;
}
}
}
nbits2=ec_tell_frac(&dec);
if(nbits!=nbits2){
fprintf(stderr,
"Reported number of bits used was %0.2lf, should be %0.2lf.\n",
ldexp(nbits2,-3),ldexp(nbits,-3));
ret=-1;
}
/*Testing an encoder bust prefers range coder data over raw bits.
This isn't a general guarantee, will only work for data that is buffered in
the encoder state and not yet stored in the user buffer, and should never
get used in practice.
It's mostly here for code coverage completeness.*/
/*Start with a 16-bit buffer.*/
ec_enc_init(&enc,ptr,2);
/*Write 7 raw bits.*/
ec_enc_bits(&enc,0x55,7);
/*Write 12.3 bits of range coder data.*/
ec_enc_uint(&enc,1,2);
ec_enc_uint(&enc,1,3);
ec_enc_uint(&enc,1,4);
ec_enc_uint(&enc,1,5);
ec_enc_uint(&enc,2,6);
ec_enc_uint(&enc,6,7);
ec_enc_done(&enc);
ec_dec_init(&dec,ptr,2);
if(!enc.error
/*The raw bits should have been overwritten by the range coder data.*/
||ec_dec_bits(&dec,7)!=0x05
/*And all the range coder data should have been encoded correctly.*/
||ec_dec_uint(&dec,2)!=1
||ec_dec_uint(&dec,3)!=1
||ec_dec_uint(&dec,4)!=1
||ec_dec_uint(&dec,5)!=1
||ec_dec_uint(&dec,6)!=2
||ec_dec_uint(&dec,7)!=6){
fprintf(stderr,"Encoder bust overwrote range coder data with raw bits.\n");
ret=-1;
}
srand(seed);
fprintf(stderr,"Testing random streams... Random seed: %u (%.4X)\n", seed, rand() % 65536);
for(i=0;i<409600;i++){
unsigned *data;
unsigned *tell;
unsigned tell_bits;
int j;
int zeros;
ft=rand()/((RAND_MAX>>(rand()%11U))+1U)+10;
sz=rand()/((RAND_MAX>>(rand()%9U))+1U);
data=(unsigned *)malloc(sz*sizeof(*data));
tell=(unsigned *)malloc((sz+1)*sizeof(*tell));
ec_enc_init(&enc,ptr,DATA_SIZE2);
zeros = rand()%13==0;
tell[0]=ec_tell_frac(&enc);
for(j=0;j<sz;j++){
if (zeros)
data[j]=0;
else
data[j]=rand()%ft;
ec_enc_uint(&enc,data[j],ft);
tell[j+1]=ec_tell_frac(&enc);
}
if (rand()%2==0)
while(ec_tell(&enc)%8 != 0)
ec_enc_uint(&enc, rand()%2, 2);
tell_bits = ec_tell(&enc);
ec_enc_done(&enc);
if(tell_bits!=(unsigned)ec_tell(&enc)){
fprintf(stderr,"ec_tell() changed after ec_enc_done(): %i instead of %i (Random seed: %u)\n",
ec_tell(&enc),tell_bits,seed);
ret=-1;
}
if ((tell_bits+7)/8 < ec_range_bytes(&enc))
{
fprintf (stderr, "ec_tell() lied, there's %i bytes instead of %d (Random seed: %u)\n",
ec_range_bytes(&enc), (tell_bits+7)/8,seed);
ret=-1;
}
ec_dec_init(&dec,ptr,DATA_SIZE2);
if(ec_tell_frac(&dec)!=tell[0]){
fprintf(stderr,
"Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n",
0,ec_tell_frac(&dec),tell[0],seed);
}
for(j=0;j<sz;j++){
sym=ec_dec_uint(&dec,ft);
if(sym!=data[j]){
fprintf(stderr,
"Decoded %i instead of %i with ft of %i at position %i of %i (Random seed: %u).\n",
sym,data[j],ft,j,sz,seed);
ret=-1;
}
if(ec_tell_frac(&dec)!=tell[j+1]){
fprintf(stderr,
"Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n",
j+1,ec_tell_frac(&dec),tell[j+1],seed);
}
}
free(tell);
free(data);
}
/*Test compatibility between multiple different encode/decode routines.*/
for(i=0;i<409600;i++){
unsigned *logp1;
unsigned *data;
unsigned *tell;
unsigned *enc_method;
int j;
sz=rand()/((RAND_MAX>>(rand()%9U))+1U);
logp1=(unsigned *)malloc(sz*sizeof(*logp1));
data=(unsigned *)malloc(sz*sizeof(*data));
tell=(unsigned *)malloc((sz+1)*sizeof(*tell));
enc_method=(unsigned *)malloc(sz*sizeof(*enc_method));
ec_enc_init(&enc,ptr,DATA_SIZE2);
tell[0]=ec_tell_frac(&enc);
for(j=0;j<sz;j++){
data[j]=rand()/((RAND_MAX>>1)+1);
logp1[j]=(rand()%15)+1;
enc_method[j]=rand()/((RAND_MAX>>2)+1);
switch(enc_method[j]){
case 0:{
ec_encode(&enc,data[j]?(1<<logp1[j])-1:0,
(1<<logp1[j])-(data[j]?0:1),1<<logp1[j]);
}break;
case 1:{
ec_encode_bin(&enc,data[j]?(1<<logp1[j])-1:0,
(1<<logp1[j])-(data[j]?0:1),logp1[j]);
}break;
case 2:{
ec_enc_bit_logp(&enc,data[j],logp1[j]);
}break;
case 3:{
unsigned char icdf[2];
icdf[0]=1;
icdf[1]=0;
ec_enc_icdf(&enc,data[j],icdf,logp1[j]);
}break;
}
tell[j+1]=ec_tell_frac(&enc);
}
ec_enc_done(&enc);
if((ec_tell(&enc)+7U)/8U<ec_range_bytes(&enc)){
fprintf(stderr,"tell() lied, there's %i bytes instead of %d (Random seed: %u)\n",
ec_range_bytes(&enc),(ec_tell(&enc)+7)/8,seed);
ret=-1;
}
ec_dec_init(&dec,ptr,DATA_SIZE2);
if(ec_tell_frac(&dec)!=tell[0]){
fprintf(stderr,
"Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n",
0,ec_tell_frac(&dec),tell[0],seed);
}
for(j=0;j<sz;j++){
int fs;
int dec_method;
dec_method=rand()/((RAND_MAX>>2)+1);
switch(dec_method){
case 0:{
fs=ec_decode(&dec,1<<logp1[j]);
sym=fs>=(1<<logp1[j])-1;
ec_dec_update(&dec,sym?(1<<logp1[j])-1:0,
(1<<logp1[j])-(sym?0:1),1<<logp1[j]);
}break;
case 1:{
fs=ec_decode_bin(&dec,logp1[j]);
sym=fs>=(1<<logp1[j])-1;
ec_dec_update(&dec,sym?(1<<logp1[j])-1:0,
(1<<logp1[j])-(sym?0:1),1<<logp1[j]);
}break;
case 2:{
sym=ec_dec_bit_logp(&dec,logp1[j]);
}break;
case 3:{
unsigned char icdf[2];
icdf[0]=1;
icdf[1]=0;
sym=ec_dec_icdf(&dec,icdf,logp1[j]);
}break;
}
if(sym!=data[j]){
fprintf(stderr,
"Decoded %i instead of %i with logp1 of %i at position %i of %i (Random seed: %u).\n",
sym,data[j],logp1[j],j,sz,seed);
fprintf(stderr,"Encoding method: %i, decoding method: %i\n",
enc_method[j],dec_method);
ret=-1;
}
if(ec_tell_frac(&dec)!=tell[j+1]){
fprintf(stderr,
"Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n",
j+1,ec_tell_frac(&dec),tell[j+1],seed);
}
}
free(enc_method);
free(tell);
free(data);
free(logp1);
}
ec_enc_init(&enc,ptr,DATA_SIZE2);
ec_enc_bit_logp(&enc,0,1);
ec_enc_bit_logp(&enc,0,1);
ec_enc_bit_logp(&enc,0,1);
ec_enc_bit_logp(&enc,0,1);
ec_enc_bit_logp(&enc,0,2);
ec_enc_patch_initial_bits(&enc,3,2);
if(enc.error){
fprintf(stderr,"patch_initial_bits failed");
ret=-1;
}
ec_enc_patch_initial_bits(&enc,0,5);
if(!enc.error){
fprintf(stderr,"patch_initial_bits didn't fail when it should have");
ret=-1;
}
ec_enc_done(&enc);
if(ec_range_bytes(&enc)!=1||ptr[0]!=192){
fprintf(stderr,"Got %d when expecting 192 for patch_initial_bits",ptr[0]);
ret=-1;
}
ec_enc_init(&enc,ptr,DATA_SIZE2);
ec_enc_bit_logp(&enc,0,1);
ec_enc_bit_logp(&enc,0,1);
ec_enc_bit_logp(&enc,1,6);
ec_enc_bit_logp(&enc,0,2);
ec_enc_patch_initial_bits(&enc,0,2);
if(enc.error){
fprintf(stderr,"patch_initial_bits failed");
ret=-1;
}
ec_enc_done(&enc);
if(ec_range_bytes(&enc)!=2||ptr[0]!=63){
fprintf(stderr,"Got %d when expecting 63 for patch_initial_bits",ptr[0]);
ret=-1;
}
ec_enc_init(&enc,ptr,2);
ec_enc_bit_logp(&enc,0,2);
for(i=0;i<48;i++){
ec_enc_bits(&enc,0,1);
}
ec_enc_done(&enc);
if(!enc.error){
fprintf(stderr,"Raw bits overfill didn't fail when it should have");
ret=-1;
}
ec_enc_init(&enc,ptr,2);
for(i=0;i<17;i++){
ec_enc_bits(&enc,0,1);
}
ec_enc_done(&enc);
if(!enc.error){
fprintf(stderr,"17 raw bits encoded in two bytes");
ret=-1;
}
free(ptr);
return ret;
}

View File

@ -1,93 +0,0 @@
/* Copyright (c) 2008-2011 Xiph.Org Foundation, Mozilla Corporation
Written by Jean-Marc Valin and Timothy B. Terriberry */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include "laplace.h"
#define CELT_C
#include "stack_alloc.h"
#include "entenc.c"
#include "entdec.c"
#include "entcode.c"
#include "laplace.c"
#define DATA_SIZE 40000
int ec_laplace_get_start_freq(int decay)
{
opus_uint32 ft = 32768 - LAPLACE_MINP*(2*LAPLACE_NMIN+1);
int fs = (ft*(16384-decay))/(16384+decay);
return fs+LAPLACE_MINP;
}
int main(void)
{
int i;
int ret = 0;
ec_enc enc;
ec_dec dec;
unsigned char *ptr;
int val[10000], decay[10000];
ALLOC_STACK;
ptr = (unsigned char *)malloc(DATA_SIZE);
ec_enc_init(&enc,ptr,DATA_SIZE);
val[0] = 3; decay[0] = 6000;
val[1] = 0; decay[1] = 5800;
val[2] = -1; decay[2] = 5600;
for (i=3;i<10000;i++)
{
val[i] = rand()%15-7;
decay[i] = rand()%11000+5000;
}
for (i=0;i<10000;i++)
ec_laplace_encode(&enc, &val[i],
ec_laplace_get_start_freq(decay[i]), decay[i]);
ec_enc_done(&enc);
ec_dec_init(&dec,ec_get_buffer(&enc),ec_range_bytes(&enc));
for (i=0;i<10000;i++)
{
int d = ec_laplace_decode(&dec,
ec_laplace_get_start_freq(decay[i]), decay[i]);
if (d != val[i])
{
fprintf (stderr, "Got %d instead of %d\n", d, val[i]);
ret = 1;
}
}
free(ptr);
return ret;
}

View File

@ -1,304 +0,0 @@
/* Copyright (c) 2008-2011 Xiph.Org Foundation, Mozilla Corporation,
Gregory Maxwell
Written by Jean-Marc Valin, Gregory Maxwell, and Timothy B. Terriberry */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifndef CUSTOM_MODES
#define CUSTOM_MODES
#endif
#define CELT_C
#include <stdio.h>
#include <math.h>
#include "mathops.c"
#include "entenc.c"
#include "entdec.c"
#include "entcode.c"
#include "bands.c"
#include "quant_bands.c"
#include "laplace.c"
#include "vq.c"
#include "cwrs.c"
#include "pitch.c"
#include "celt_lpc.c"
#include "celt.c"
#if defined(OPUS_X86_MAY_HAVE_SSE) || defined(OPUS_X86_MAY_HAVE_SSE2) || defined(OPUS_X86_MAY_HAVE_SSE4_1)
# if defined(OPUS_X86_MAY_HAVE_SSE)
# include "x86/pitch_sse.c"
# endif
# if defined(OPUS_X86_MAY_HAVE_SSE2)
# include "x86/pitch_sse2.c"
# endif
# if defined(OPUS_X86_MAY_HAVE_SSE4_1)
# include "x86/pitch_sse4_1.c"
# include "x86/celt_lpc_sse.c"
# endif
# include "x86/x86_celt_map.c"
#elif defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
# include "arm/armcpu.c"
# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
# include "arm/celt_neon_intr.c"
# if defined(HAVE_ARM_NE10)
# include "kiss_fft.c"
# include "mdct.c"
# include "arm/celt_ne10_fft.c"
# include "arm/celt_ne10_mdct.c"
# endif
# endif
# include "arm/arm_celt_map.c"
#endif
#ifdef FIXED_POINT
#define WORD "%d"
#else
#define WORD "%f"
#endif
int ret = 0;
void testdiv(void)
{
opus_int32 i;
for (i=1;i<=327670;i++)
{
double prod;
opus_val32 val;
val = celt_rcp(i);
#ifdef FIXED_POINT
prod = (1./32768./65526.)*val*i;
#else
prod = val*i;
#endif
if (fabs(prod-1) > .00025)
{
fprintf (stderr, "div failed: 1/%d="WORD" (product = %f)\n", i, val, prod);
ret = 1;
}
}
}
void testsqrt(void)
{
opus_int32 i;
for (i=1;i<=1000000000;i++)
{
double ratio;
opus_val16 val;
val = celt_sqrt(i);
ratio = val/sqrt(i);
if (fabs(ratio - 1) > .0005 && fabs(val-sqrt(i)) > 2)
{
fprintf (stderr, "sqrt failed: sqrt(%d)="WORD" (ratio = %f)\n", i, val, ratio);
ret = 1;
}
i+= i>>10;
}
}
void testbitexactcos(void)
{
int i;
opus_int32 min_d,max_d,last,chk;
chk=max_d=0;
last=min_d=32767;
for(i=64;i<=16320;i++)
{
opus_int32 d;
opus_int32 q=bitexact_cos(i);
chk ^= q*i;
d = last - q;
if (d>max_d)max_d=d;
if (d<min_d)min_d=d;
last = q;
}
if ((chk!=89408644)||(max_d!=5)||(min_d!=0)||(bitexact_cos(64)!=32767)||
(bitexact_cos(16320)!=200)||(bitexact_cos(8192)!=23171))
{
fprintf (stderr, "bitexact_cos failed\n");
ret = 1;
}
}
void testbitexactlog2tan(void)
{
int i,fail;
opus_int32 min_d,max_d,last,chk;
fail=chk=max_d=0;
last=min_d=15059;
for(i=64;i<8193;i++)
{
opus_int32 d;
opus_int32 mid=bitexact_cos(i);
opus_int32 side=bitexact_cos(16384-i);
opus_int32 q=bitexact_log2tan(mid,side);
chk ^= q*i;
d = last - q;
if (q!=-1*bitexact_log2tan(side,mid))
fail = 1;
if (d>max_d)max_d=d;
if (d<min_d)min_d=d;
last = q;
}
if ((chk!=15821257)||(max_d!=61)||(min_d!=-2)||fail||
(bitexact_log2tan(32767,200)!=15059)||(bitexact_log2tan(30274,12540)!=2611)||
(bitexact_log2tan(23171,23171)!=0))
{
fprintf (stderr, "bitexact_log2tan failed\n");
ret = 1;
}
}
#ifndef FIXED_POINT
void testlog2(void)
{
float x;
for (x=0.001;x<1677700.0;x+=(x/8.0))
{
float error = fabs((1.442695040888963387*log(x))-celt_log2(x));
if (error>0.0009)
{
fprintf (stderr, "celt_log2 failed: fabs((1.442695040888963387*log(x))-celt_log2(x))>0.001 (x = %f, error = %f)\n", x,error);
ret = 1;
}
}
}
void testexp2(void)
{
float x;
for (x=-11.0;x<24.0;x+=0.0007)
{
float error = fabs(x-(1.442695040888963387*log(celt_exp2(x))));
if (error>0.0002)
{
fprintf (stderr, "celt_exp2 failed: fabs(x-(1.442695040888963387*log(celt_exp2(x))))>0.0005 (x = %f, error = %f)\n", x,error);
ret = 1;
}
}
}
void testexp2log2(void)
{
float x;
for (x=-11.0;x<24.0;x+=0.0007)
{
float error = fabs(x-(celt_log2(celt_exp2(x))));
if (error>0.001)
{
fprintf (stderr, "celt_log2/celt_exp2 failed: fabs(x-(celt_log2(celt_exp2(x))))>0.001 (x = %f, error = %f)\n", x,error);
ret = 1;
}
}
}
#else
void testlog2(void)
{
opus_val32 x;
for (x=8;x<1073741824;x+=(x>>3))
{
float error = fabs((1.442695040888963387*log(x/16384.0))-celt_log2(x)/1024.0);
if (error>0.003)
{
fprintf (stderr, "celt_log2 failed: x = %ld, error = %f\n", (long)x,error);
ret = 1;
}
}
}
void testexp2(void)
{
opus_val16 x;
for (x=-32768;x<15360;x++)
{
float error1 = fabs(x/1024.0-(1.442695040888963387*log(celt_exp2(x)/65536.0)));
float error2 = fabs(exp(0.6931471805599453094*x/1024.0)-celt_exp2(x)/65536.0);
if (error1>0.0002&&error2>0.00004)
{
fprintf (stderr, "celt_exp2 failed: x = "WORD", error1 = %f, error2 = %f\n", x,error1,error2);
ret = 1;
}
}
}
void testexp2log2(void)
{
opus_val32 x;
for (x=8;x<65536;x+=(x>>3))
{
float error = fabs(x-0.25*celt_exp2(celt_log2(x)))/16384;
if (error>0.004)
{
fprintf (stderr, "celt_log2/celt_exp2 failed: fabs(x-(celt_exp2(celt_log2(x))))>0.001 (x = %ld, error = %f)\n", (long)x,error);
ret = 1;
}
}
}
void testilog2(void)
{
opus_val32 x;
for (x=1;x<=268435455;x+=127)
{
opus_val32 lg;
opus_val32 y;
lg = celt_ilog2(x);
if (lg<0 || lg>=31)
{
printf("celt_ilog2 failed: 0<=celt_ilog2(x)<31 (x = %d, celt_ilog2(x) = %d)\n",x,lg);
ret = 1;
}
y = 1<<lg;
if (x<y || (x>>1)>=y)
{
printf("celt_ilog2 failed: 2**celt_ilog2(x)<=x<2**(celt_ilog2(x)+1) (x = %d, 2**celt_ilog2(x) = %d)\n",x,y);
ret = 1;
}
}
}
#endif
int main(void)
{
testbitexactcos();
testbitexactlog2tan();
testdiv();
testsqrt();
testlog2();
testexp2();
testexp2log2();
#ifdef FIXED_POINT
testilog2();
#endif
return ret;
}

View File

@ -1,230 +0,0 @@
/* Copyright (c) 2008-2011 Xiph.Org Foundation
Written by Jean-Marc Valin */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#define SKIP_CONFIG_H
#ifndef CUSTOM_MODES
#define CUSTOM_MODES
#endif
#include <stdio.h>
#define CELT_C
#include "mdct.h"
#include "stack_alloc.h"
#include "kiss_fft.c"
#include "mdct.c"
#include "mathops.c"
#include "entcode.c"
#if defined(OPUS_X86_MAY_HAVE_SSE2) || defined(OPUS_X86_MAY_HAVE_SSE4_1)
# include "x86/x86cpu.c"
#elif defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
# include "arm/armcpu.c"
# include "pitch.c"
# include "celt_lpc.c"
# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
# include "arm/celt_neon_intr.c"
# if defined(HAVE_ARM_NE10)
# include "arm/celt_ne10_fft.c"
# include "arm/celt_ne10_mdct.c"
# endif
# endif
# include "arm/arm_celt_map.c"
#endif
#ifndef M_PI
#define M_PI 3.141592653
#endif
int ret = 0;
void check(kiss_fft_scalar * in,kiss_fft_scalar * out,int nfft,int isinverse)
{
int bin,k;
double errpow=0,sigpow=0;
double snr;
for (bin=0;bin<nfft/2;++bin) {
double ansr = 0;
double difr;
for (k=0;k<nfft;++k) {
double phase = 2*M_PI*(k+.5+.25*nfft)*(bin+.5)/nfft;
double re = cos(phase);
re /= nfft/4;
ansr += in[k] * re;
}
/*printf ("%f %f\n", ansr, out[bin]);*/
difr = ansr - out[bin];
errpow += difr*difr;
sigpow += ansr*ansr;
}
snr = 10*log10(sigpow/errpow);
printf("nfft=%d inverse=%d,snr = %f\n",nfft,isinverse,snr );
if (snr<60) {
printf( "** poor snr: %f **\n", snr);
ret = 1;
}
}
void check_inv(kiss_fft_scalar * in,kiss_fft_scalar * out,int nfft,int isinverse)
{
int bin,k;
double errpow=0,sigpow=0;
double snr;
for (bin=0;bin<nfft;++bin) {
double ansr = 0;
double difr;
for (k=0;k<nfft/2;++k) {
double phase = 2*M_PI*(bin+.5+.25*nfft)*(k+.5)/nfft;
double re = cos(phase);
/*re *= 2;*/
ansr += in[k] * re;
}
/*printf ("%f %f\n", ansr, out[bin]);*/
difr = ansr - out[bin];
errpow += difr*difr;
sigpow += ansr*ansr;
}
snr = 10*log10(sigpow/errpow);
printf("nfft=%d inverse=%d,snr = %f\n",nfft,isinverse,snr );
if (snr<60) {
printf( "** poor snr: %f **\n", snr);
ret = 1;
}
}
void test1d(int nfft,int isinverse,int arch)
{
mdct_lookup cfg;
size_t buflen = sizeof(kiss_fft_scalar)*nfft;
kiss_fft_scalar * in = (kiss_fft_scalar*)malloc(buflen);
kiss_fft_scalar * in_copy = (kiss_fft_scalar*)malloc(buflen);
kiss_fft_scalar * out= (kiss_fft_scalar*)malloc(buflen);
opus_val16 * window= (opus_val16*)malloc(sizeof(opus_val16)*nfft/2);
int k;
clt_mdct_init(&cfg, nfft, 0, arch);
for (k=0;k<nfft;++k) {
in[k] = (rand() % 32768) - 16384;
}
for (k=0;k<nfft/2;++k) {
window[k] = Q15ONE;
}
for (k=0;k<nfft;++k) {
in[k] *= 32768;
}
if (isinverse)
{
for (k=0;k<nfft;++k) {
in[k] /= nfft;
}
}
for (k=0;k<nfft;++k)
in_copy[k] = in[k];
/*for (k=0;k<nfft;++k) printf("%d %d ", in[k].r, in[k].i);printf("\n");*/
if (isinverse)
{
for (k=0;k<nfft;++k)
out[k] = 0;
clt_mdct_backward(&cfg,in,out, window, nfft/2, 0, 1, arch);
/* apply TDAC because clt_mdct_backward() no longer does that */
for (k=0;k<nfft/4;++k)
out[nfft-k-1] = out[nfft/2+k];
check_inv(in,out,nfft,isinverse);
} else {
clt_mdct_forward(&cfg,in,out,window, nfft/2, 0, 1, arch);
check(in_copy,out,nfft,isinverse);
}
/*for (k=0;k<nfft;++k) printf("%d %d ", out[k].r, out[k].i);printf("\n");*/
free(in);
free(in_copy);
free(out);
free(window);
clt_mdct_clear(&cfg, arch);
}
int main(int argc,char ** argv)
{
ALLOC_STACK;
int arch = opus_select_arch();
if (argc>1) {
int k;
for (k=1;k<argc;++k) {
test1d(atoi(argv[k]),0,arch);
test1d(atoi(argv[k]),1,arch);
}
}else{
test1d(32,0,arch);
test1d(32,1,arch);
test1d(256,0,arch);
test1d(256,1,arch);
test1d(512,0,arch);
test1d(512,1,arch);
test1d(1024,0,arch);
test1d(1024,1,arch);
test1d(2048,0,arch);
test1d(2048,1,arch);
#ifndef RADIX_TWO_ONLY
test1d(36,0,arch);
test1d(36,1,arch);
test1d(40,0,arch);
test1d(40,1,arch);
test1d(60,0,arch);
test1d(60,1,arch);
test1d(120,0,arch);
test1d(120,1,arch);
test1d(240,0,arch);
test1d(240,1,arch);
test1d(480,0,arch);
test1d(480,1,arch);
test1d(960,0,arch);
test1d(960,1,arch);
test1d(1920,0,arch);
test1d(1920,1,arch);
#endif
}
return ret;
}

View File

@ -1,120 +0,0 @@
/* Copyright (c) 2008-2011 Xiph.Org Foundation
Written by Jean-Marc Valin */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifndef CUSTOM_MODES
#define CUSTOM_MODES
#endif
#define CELT_C
#include <stdio.h>
#include <stdlib.h>
#include "vq.c"
#include "cwrs.c"
#include "entcode.c"
#include "entenc.c"
#include "entdec.c"
#include "mathops.c"
#include "bands.h"
#include "pitch.c"
#include "celt_lpc.c"
#include "celt.c"
#include <math.h>
#if defined(OPUS_X86_MAY_HAVE_SSE) || defined(OPUS_X86_MAY_HAVE_SSE2) || defined(OPUS_X86_MAY_HAVE_SSE4_1)
# if defined(OPUS_X86_MAY_HAVE_SSE)
# include "x86/pitch_sse.c"
# endif
# if defined(OPUS_X86_MAY_HAVE_SSE2)
# include "x86/pitch_sse2.c"
# endif
# if defined(OPUS_X86_MAY_HAVE_SSE4_1)
# include "x86/pitch_sse4_1.c"
# include "x86/celt_lpc_sse.c"
# endif
# include "x86/x86_celt_map.c"
#elif defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
# include "arm/armcpu.c"
# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
# include "arm/celt_neon_intr.c"
# if defined(HAVE_ARM_NE10)
# include "kiss_fft.c"
# include "mdct.c"
# include "arm/celt_ne10_fft.c"
# include "arm/celt_ne10_mdct.c"
# endif
# endif
# include "arm/arm_celt_map.c"
#endif
#define MAX_SIZE 100
int ret=0;
void test_rotation(int N, int K)
{
int i;
double err = 0, ener = 0, snr, snr0;
opus_val16 x0[MAX_SIZE];
opus_val16 x1[MAX_SIZE];
for (i=0;i<N;i++)
x1[i] = x0[i] = rand()%32767-16384;
exp_rotation(x1, N, 1, 1, K, SPREAD_NORMAL);
for (i=0;i<N;i++)
{
err += (x0[i]-(double)x1[i])*(x0[i]-(double)x1[i]);
ener += x0[i]*(double)x0[i];
}
snr0 = 20*log10(ener/err);
err = ener = 0;
exp_rotation(x1, N, -1, 1, K, SPREAD_NORMAL);
for (i=0;i<N;i++)
{
err += (x0[i]-(double)x1[i])*(x0[i]-(double)x1[i]);
ener += x0[i]*(double)x0[i];
}
snr = 20*log10(ener/err);
printf ("SNR for size %d (%d pulses) is %f (was %f without inverse)\n", N, K, snr, snr0);
if (snr < 60 || snr0 > 20)
{
fprintf(stderr, "FAIL!\n");
ret = 1;
}
}
int main(void)
{
ALLOC_STACK;
test_rotation(15, 3);
test_rotation(23, 5);
test_rotation(50, 3);
test_rotation(80, 1);
return ret;
}

View File

@ -39,6 +39,10 @@
#include "rate.h"
#include "pitch.h"
#if defined(MIPSr1_ASM)
#include "mips/vq_mipsr1.h"
#endif
#ifndef OVERRIDE_vq_exp_rotation1
static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_val16 s)
{
@ -67,7 +71,7 @@ static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_
}
#endif /* OVERRIDE_vq_exp_rotation1 */
static void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread)
void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread)
{
static const int SPREAD_FACTOR[3]={15,10,5};
int i;
@ -158,42 +162,27 @@ static unsigned extract_collapse_mask(int *iy, int N, int B)
return collapse_mask;
}
unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
#ifdef RESYNTH
, opus_val16 gain
#endif
)
opus_val16 op_pvq_search_c(celt_norm *X, int *iy, int K, int N, int arch)
{
VARDECL(celt_norm, y);
VARDECL(int, iy);
VARDECL(opus_val16, signx);
VARDECL(int, signx);
int i, j;
opus_val16 s;
int pulsesLeft;
opus_val32 sum;
opus_val32 xy;
opus_val16 yy;
unsigned collapse_mask;
SAVE_STACK;
celt_assert2(K>0, "alg_quant() needs at least one pulse");
celt_assert2(N>1, "alg_quant() needs at least two dimensions");
(void)arch;
ALLOC(y, N, celt_norm);
ALLOC(iy, N, int);
ALLOC(signx, N, opus_val16);
exp_rotation(X, N, 1, B, K, spread);
ALLOC(signx, N, int);
/* Get rid of the sign */
sum = 0;
j=0; do {
if (X[j]>0)
signx[j]=1;
else {
signx[j]=-1;
X[j]=-X[j];
}
signx[j] = X[j]<0;
/* OPT: Make sure the compiler doesn't use a branch on ABS16(). */
X[j] = ABS16(X[j]);
iy[j] = 0;
y[j] = 0;
} while (++j<N);
@ -225,7 +214,12 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
while (++j<N);
sum = QCONST16(1.f,14);
}
rcp = EXTRACT16(MULT16_32_Q16(K-1, celt_rcp(sum)));
#ifdef FIXED_POINT
rcp = EXTRACT16(MULT16_32_Q16(K, celt_rcp(sum)));
#else
/* Using K+e with e < 1 guarantees we cannot get more than K pulses. */
rcp = EXTRACT16(MULT16_32_Q16(K+0.8f, celt_rcp(sum)));
#endif
j=0; do {
#ifdef FIXED_POINT
/* It's really important to round *towards zero* here */
@ -240,12 +234,12 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
pulsesLeft -= iy[j];
} while (++j<N);
}
celt_assert2(pulsesLeft>=1, "Allocated too many pulses in the quick pass");
celt_sig_assert(pulsesLeft>=0);
/* This should never happen, but just in case it does (e.g. on silence)
we fill the first bin with pulses. */
#ifdef FIXED_POINT_DEBUG
celt_assert2(pulsesLeft<=N+3, "Not enough pulses in the quick pass");
celt_sig_assert(pulsesLeft<=N+3);
#endif
if (pulsesLeft > N+3)
{
@ -256,12 +250,12 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
pulsesLeft=0;
}
s = 1;
for (i=0;i<pulsesLeft;i++)
{
opus_val16 Rxy, Ryy;
int best_id;
opus_val32 best_num = -VERY_LARGE16;
opus_val16 best_den = 0;
opus_val32 best_num;
opus_val16 best_den;
#ifdef FIXED_POINT
int rshift;
#endif
@ -272,9 +266,22 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
/* The squared magnitude term gets added anyway, so we might as well
add it outside the loop */
yy = ADD16(yy, 1);
j=0;
/* Calculations for position 0 are out of the loop, in part to reduce
mispredicted branches (since the if condition is usually false)
in the loop. */
/* Temporary sums of the new pulse(s) */
Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[0])),rshift));
/* We're multiplying y[j] by two so we don't have to do it here */
Ryy = ADD16(yy, y[0]);
/* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
Rxy is positive because the sign is pre-computed) */
Rxy = MULT16_16_Q15(Rxy,Rxy);
best_den = Ryy;
best_num = Rxy;
j=1;
do {
opus_val16 Rxy, Ryy;
/* Temporary sums of the new pulse(s) */
Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[j])),rshift));
/* We're multiplying y[j] by two so we don't have to do it here */
@ -285,8 +292,11 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
Rxy = MULT16_16_Q15(Rxy,Rxy);
/* The idea is to check for num/den >= best_num/best_den, but that way
we can do it without any division */
/* OPT: Make sure to use conditional moves here */
if (MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num))
/* OPT: It's not clear whether a cmov is faster than a branch here
since the condition is more often false than true and using
a cmov introduces data dependencies across iterations. The optimal
choice may be architecture-dependent. */
if (opus_unlikely(MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num)))
{
best_den = Ryy;
best_num = Rxy;
@ -301,23 +311,47 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
/* Only now that we've made the final choice, update y/iy */
/* Multiplying y[j] by 2 so we don't have to do it everywhere else */
y[best_id] += 2*s;
y[best_id] += 2;
iy[best_id]++;
}
/* Put the original sign back */
j=0;
do {
X[j] = MULT16_16(signx[j],X[j]);
if (signx[j] < 0)
iy[j] = -iy[j];
/*iy[j] = signx[j] ? -iy[j] : iy[j];*/
/* OPT: The is more likely to be compiled without a branch than the code above
but has the same performance otherwise. */
iy[j] = (iy[j]^-signx[j]) + signx[j];
} while (++j<N);
RESTORE_STACK;
return yy;
}
unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc,
opus_val16 gain, int resynth, int arch)
{
VARDECL(int, iy);
opus_val16 yy;
unsigned collapse_mask;
SAVE_STACK;
celt_assert2(K>0, "alg_quant() needs at least one pulse");
celt_assert2(N>1, "alg_quant() needs at least two dimensions");
/* Covers vectorization by up to 4. */
ALLOC(iy, N+3, int);
exp_rotation(X, N, 1, B, K, spread);
yy = op_pvq_search(X, iy, K, N, arch);
encode_pulses(iy, N, K, enc);
#ifdef RESYNTH
normalise_residual(iy, X, N, yy, gain);
exp_rotation(X, N, -1, B, K, spread);
#endif
if (resynth)
{
normalise_residual(iy, X, N, yy, gain);
exp_rotation(X, N, -1, B, K, spread);
}
collapse_mask = extract_collapse_mask(iy, N, B);
RESTORE_STACK;
@ -401,7 +435,7 @@ int stereo_itheta(const celt_norm *X, const celt_norm *Y, int stereo, int N, int
/* 0.63662 = 2/pi */
itheta = MULT16_16_Q15(QCONST16(0.63662f,15),celt_atan2p(side, mid));
#else
itheta = (int)floor(.5f+16384*0.63662f*atan2(side,mid));
itheta = (int)floor(.5f+16384*0.63662f*fast_atan2f(side,mid));
#endif
return itheta;

View File

@ -37,10 +37,18 @@
#include "entdec.h"
#include "modes.h"
#if defined(MIPSr1_ASM)
#include "mips/vq_mipsr1.h"
#if (defined(OPUS_X86_MAY_HAVE_SSE2) && !defined(FIXED_POINT))
#include "x86/vq_sse.h"
#endif
void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread);
opus_val16 op_pvq_search_c(celt_norm *X, int *iy, int K, int N, int arch);
#if !defined(OVERRIDE_OP_PVQ_SEARCH)
#define op_pvq_search(x, iy, K, N, arch) \
(op_pvq_search_c(x, iy, K, N, arch))
#endif
/** Algebraic pulse-vector quantiser. The signal x is replaced by the sum of
* the pitch and a combination of pulses such that its norm is still equal
@ -51,12 +59,8 @@
* @param enc Entropy encoder state
* @ret A mask indicating which blocks in the band received pulses
*/
unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B,
ec_enc *enc
#ifdef RESYNTH
, opus_val16 gain
#endif
);
unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc,
opus_val16 gain, int resynth, int arch);
/** Algebraic pulse decoder
* @param X Decoded normalised spectrum (returned)

View File

@ -41,12 +41,11 @@ void celt_fir_sse4_1(
opus_val16 *y,
int N,
int ord,
opus_val16 *mem,
int arch);
#if defined(OPUS_X86_PRESUME_SSE4_1)
#define celt_fir(x, num, y, N, ord, mem, arch) \
((void)arch, celt_fir_sse4_1(x, num, y, N, ord, mem, arch))
#define celt_fir(x, num, y, N, ord, arch) \
((void)arch, celt_fir_sse4_1(x, num, y, N, ord, arch))
#else
@ -56,11 +55,10 @@ extern void (*const CELT_FIR_IMPL[OPUS_ARCHMASK + 1])(
opus_val16 *y,
int N,
int ord,
opus_val16 *mem,
int arch);
# define celt_fir(x, num, y, N, ord, mem, arch) \
((*CELT_FIR_IMPL[(arch) & OPUS_ARCHMASK])(x, num, y, N, ord, mem, arch))
# define celt_fir(x, num, y, N, ord, arch) \
((*CELT_FIR_IMPL[(arch) & OPUS_ARCHMASK])(x, num, y, N, ord, arch))
#endif
#endif

View File

@ -40,65 +40,23 @@
#if defined(FIXED_POINT)
void celt_fir_sse4_1(const opus_val16 *_x,
void celt_fir_sse4_1(const opus_val16 *x,
const opus_val16 *num,
opus_val16 *_y,
opus_val16 *y,
int N,
int ord,
opus_val16 *mem,
int arch)
{
int i,j;
VARDECL(opus_val16, rnum);
VARDECL(opus_val16, x);
__m128i vecNoA;
opus_int32 noA ;
SAVE_STACK;
ALLOC(rnum, ord, opus_val16);
ALLOC(x, N+ord, opus_val16);
for(i=0;i<ord;i++)
rnum[i] = num[ord-i-1];
for(i=0;i<ord;i++)
x[i] = mem[ord-i-1];
for (i=0;i<N-7;i+=8)
{
x[i+ord ]=_x[i ];
x[i+ord+1]=_x[i+1];
x[i+ord+2]=_x[i+2];
x[i+ord+3]=_x[i+3];
x[i+ord+4]=_x[i+4];
x[i+ord+5]=_x[i+5];
x[i+ord+6]=_x[i+6];
x[i+ord+7]=_x[i+7];
}
for (;i<N-3;i+=4)
{
x[i+ord ]=_x[i ];
x[i+ord+1]=_x[i+1];
x[i+ord+2]=_x[i+2];
x[i+ord+3]=_x[i+3];
}
for (;i<N;i++)
x[i+ord]=_x[i];
for(i=0;i<ord;i++)
mem[i] = _x[N-i-1];
#ifdef SMALL_FOOTPRINT
for (i=0;i<N;i++)
{
opus_val32 sum = SHL32(EXTEND32(_x[i]), SIG_SHIFT);
for (j=0;j<ord;j++)
{
sum = MAC16_16(sum,rnum[j],x[i+j]);
}
_y[i] = SATURATE16(PSHR32(sum, SIG_SHIFT));
}
#else
noA = EXTEND32(1) << SIG_SHIFT >> 1;
vecNoA = _mm_set_epi32(noA, noA, noA, noA);
@ -107,25 +65,24 @@ void celt_fir_sse4_1(const opus_val16 *_x,
opus_val32 sums[4] = {0};
__m128i vecSum, vecX;
xcorr_kernel(rnum, x+i, sums, ord, arch);
xcorr_kernel(rnum, x+i-ord, sums, ord, arch);
vecSum = _mm_loadu_si128((__m128i *)sums);
vecSum = _mm_add_epi32(vecSum, vecNoA);
vecSum = _mm_srai_epi32(vecSum, SIG_SHIFT);
vecX = OP_CVTEPI16_EPI32_M64(_x + i);
vecX = OP_CVTEPI16_EPI32_M64(x + i);
vecSum = _mm_add_epi32(vecSum, vecX);
vecSum = _mm_packs_epi32(vecSum, vecSum);
_mm_storel_epi64((__m128i *)(_y + i), vecSum);
_mm_storel_epi64((__m128i *)(y + i), vecSum);
}
for (;i<N;i++)
{
opus_val32 sum = 0;
for (j=0;j<ord;j++)
sum = MAC16_16(sum, rnum[j], x[i + j]);
_y[i] = SATURATE16(ADD32(EXTEND32(_x[i]), PSHR32(sum, SIG_SHIFT)));
sum = MAC16_16(sum, rnum[j], x[i+j-ord]);
y[i] = SATURATE16(ADD32(EXTEND32(x[i]), PSHR32(sum, SIG_SHIFT)));
}
#endif
RESTORE_STACK;
}

View File

@ -1,5 +1,4 @@
/* Copyright (c) 2008-2011 Xiph.Org Foundation
Written by Jean-Marc Valin */
/* Copyright (c) 2016 Jean-Marc Valin */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
@ -25,26 +24,27 @@
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#ifndef VQ_SSE_H
#define VQ_SSE_H
#if defined(OPUS_X86_MAY_HAVE_SSE2) && !defined(FIXED_POINT)
#define OVERRIDE_OP_PVQ_SEARCH
opus_val16 op_pvq_search_sse2(celt_norm *_X, int *iy, int K, int N, int arch);
#if defined(OPUS_X86_PRESUME_SSE2)
#define op_pvq_search(x, iy, K, N, arch) \
(op_pvq_search_sse2(x, iy, K, N, arch))
#else
extern opus_val16 (*const OP_PVQ_SEARCH_IMPL[OPUS_ARCHMASK + 1])(
celt_norm *_X, int *iy, int K, int N, int arch);
# define op_pvq_search(X, iy, K, N, arch) \
((*OP_PVQ_SEARCH_IMPL[(arch) & OPUS_ARCHMASK])(X, iy, K, N, arch))
#endif
#endif
#include "opus_types.h"
#include <stdio.h>
int main(void)
{
opus_int16 i = 1;
i <<= 14;
if (i>>14 != 1)
{
fprintf(stderr, "opus_int16 isn't 16 bits\n");
return 1;
}
if (sizeof(opus_int16)*2 != sizeof(opus_int32))
{
fprintf(stderr, "16*2 != 32\n");
return 1;
}
return 0;
}
#endif

217
thirdparty/opus/celt/x86/vq_sse2.c vendored Normal file
View File

@ -0,0 +1,217 @@
/* Copyright (c) 2007-2008 CSIRO
Copyright (c) 2007-2009 Xiph.Org Foundation
Copyright (c) 2007-2016 Jean-Marc Valin */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <xmmintrin.h>
#include <emmintrin.h>
#include "celt_lpc.h"
#include "stack_alloc.h"
#include "mathops.h"
#include "vq.h"
#include "x86cpu.h"
#ifndef FIXED_POINT
opus_val16 op_pvq_search_sse2(celt_norm *_X, int *iy, int K, int N, int arch)
{
int i, j;
int pulsesLeft;
float xy, yy;
VARDECL(celt_norm, y);
VARDECL(celt_norm, X);
VARDECL(float, signy);
__m128 signmask;
__m128 sums;
__m128i fours;
SAVE_STACK;
(void)arch;
/* All bits set to zero, except for the sign bit. */
signmask = _mm_set_ps1(-0.f);
fours = _mm_set_epi32(4, 4, 4, 4);
ALLOC(y, N+3, celt_norm);
ALLOC(X, N+3, celt_norm);
ALLOC(signy, N+3, float);
OPUS_COPY(X, _X, N);
X[N] = X[N+1] = X[N+2] = 0;
sums = _mm_setzero_ps();
for (j=0;j<N;j+=4)
{
__m128 x4, s4;
x4 = _mm_loadu_ps(&X[j]);
s4 = _mm_cmplt_ps(x4, _mm_setzero_ps());
/* Get rid of the sign */
x4 = _mm_andnot_ps(signmask, x4);
sums = _mm_add_ps(sums, x4);
/* Clear y and iy in case we don't do the projection. */
_mm_storeu_ps(&y[j], _mm_setzero_ps());
_mm_storeu_si128((__m128i*)&iy[j], _mm_setzero_si128());
_mm_storeu_ps(&X[j], x4);
_mm_storeu_ps(&signy[j], s4);
}
sums = _mm_add_ps(sums, _mm_shuffle_ps(sums, sums, _MM_SHUFFLE(1, 0, 3, 2)));
sums = _mm_add_ps(sums, _mm_shuffle_ps(sums, sums, _MM_SHUFFLE(2, 3, 0, 1)));
xy = yy = 0;
pulsesLeft = K;
/* Do a pre-search by projecting on the pyramid */
if (K > (N>>1))
{
__m128i pulses_sum;
__m128 yy4, xy4;
__m128 rcp4;
opus_val32 sum = _mm_cvtss_f32(sums);
/* If X is too small, just replace it with a pulse at 0 */
/* Prevents infinities and NaNs from causing too many pulses
to be allocated. 64 is an approximation of infinity here. */
if (!(sum > EPSILON && sum < 64))
{
X[0] = QCONST16(1.f,14);
j=1; do
X[j]=0;
while (++j<N);
sums = _mm_set_ps1(1.f);
}
/* Using K+e with e < 1 guarantees we cannot get more than K pulses. */
rcp4 = _mm_mul_ps(_mm_set_ps1((float)(K+.8)), _mm_rcp_ps(sums));
xy4 = yy4 = _mm_setzero_ps();
pulses_sum = _mm_setzero_si128();
for (j=0;j<N;j+=4)
{
__m128 rx4, x4, y4;
__m128i iy4;
x4 = _mm_loadu_ps(&X[j]);
rx4 = _mm_mul_ps(x4, rcp4);
iy4 = _mm_cvttps_epi32(rx4);
pulses_sum = _mm_add_epi32(pulses_sum, iy4);
_mm_storeu_si128((__m128i*)&iy[j], iy4);
y4 = _mm_cvtepi32_ps(iy4);
xy4 = _mm_add_ps(xy4, _mm_mul_ps(x4, y4));
yy4 = _mm_add_ps(yy4, _mm_mul_ps(y4, y4));
/* double the y[] vector so we don't have to do it in the search loop. */
_mm_storeu_ps(&y[j], _mm_add_ps(y4, y4));
}
pulses_sum = _mm_add_epi32(pulses_sum, _mm_shuffle_epi32(pulses_sum, _MM_SHUFFLE(1, 0, 3, 2)));
pulses_sum = _mm_add_epi32(pulses_sum, _mm_shuffle_epi32(pulses_sum, _MM_SHUFFLE(2, 3, 0, 1)));
pulsesLeft -= _mm_cvtsi128_si32(pulses_sum);
xy4 = _mm_add_ps(xy4, _mm_shuffle_ps(xy4, xy4, _MM_SHUFFLE(1, 0, 3, 2)));
xy4 = _mm_add_ps(xy4, _mm_shuffle_ps(xy4, xy4, _MM_SHUFFLE(2, 3, 0, 1)));
xy = _mm_cvtss_f32(xy4);
yy4 = _mm_add_ps(yy4, _mm_shuffle_ps(yy4, yy4, _MM_SHUFFLE(1, 0, 3, 2)));
yy4 = _mm_add_ps(yy4, _mm_shuffle_ps(yy4, yy4, _MM_SHUFFLE(2, 3, 0, 1)));
yy = _mm_cvtss_f32(yy4);
}
X[N] = X[N+1] = X[N+2] = -100;
y[N] = y[N+1] = y[N+2] = 100;
celt_sig_assert(pulsesLeft>=0);
/* This should never happen, but just in case it does (e.g. on silence)
we fill the first bin with pulses. */
if (pulsesLeft > N+3)
{
opus_val16 tmp = (opus_val16)pulsesLeft;
yy = MAC16_16(yy, tmp, tmp);
yy = MAC16_16(yy, tmp, y[0]);
iy[0] += pulsesLeft;
pulsesLeft=0;
}
for (i=0;i<pulsesLeft;i++)
{
int best_id;
__m128 xy4, yy4;
__m128 max, max2;
__m128i count;
__m128i pos;
/* The squared magnitude term gets added anyway, so we might as well
add it outside the loop */
yy = ADD16(yy, 1);
xy4 = _mm_load1_ps(&xy);
yy4 = _mm_load1_ps(&yy);
max = _mm_setzero_ps();
pos = _mm_setzero_si128();
count = _mm_set_epi32(3, 2, 1, 0);
for (j=0;j<N;j+=4)
{
__m128 x4, y4, r4;
x4 = _mm_loadu_ps(&X[j]);
y4 = _mm_loadu_ps(&y[j]);
x4 = _mm_add_ps(x4, xy4);
y4 = _mm_add_ps(y4, yy4);
y4 = _mm_rsqrt_ps(y4);
r4 = _mm_mul_ps(x4, y4);
/* Update the index of the max. */
pos = _mm_max_epi16(pos, _mm_and_si128(count, _mm_castps_si128(_mm_cmpgt_ps(r4, max))));
/* Update the max. */
max = _mm_max_ps(max, r4);
/* Update the indices (+4) */
count = _mm_add_epi32(count, fours);
}
/* Horizontal max */
max2 = _mm_max_ps(max, _mm_shuffle_ps(max, max, _MM_SHUFFLE(1, 0, 3, 2)));
max2 = _mm_max_ps(max2, _mm_shuffle_ps(max2, max2, _MM_SHUFFLE(2, 3, 0, 1)));
/* Now that max2 contains the max at all positions, look at which value(s) of the
partial max is equal to the global max. */
pos = _mm_and_si128(pos, _mm_castps_si128(_mm_cmpeq_ps(max, max2)));
pos = _mm_max_epi16(pos, _mm_unpackhi_epi64(pos, pos));
pos = _mm_max_epi16(pos, _mm_shufflelo_epi16(pos, _MM_SHUFFLE(1, 0, 3, 2)));
best_id = _mm_cvtsi128_si32(pos);
/* Updating the sums of the new pulse(s) */
xy = ADD32(xy, EXTEND32(X[best_id]));
/* We're multiplying y[j] by two so we don't have to do it here */
yy = ADD16(yy, y[best_id]);
/* Only now that we've made the final choice, update y/iy */
/* Multiplying y[j] by 2 so we don't have to do it everywhere else */
y[best_id] += 2;
iy[best_id]++;
}
/* Put the original sign back */
for (j=0;j<N;j+=4)
{
__m128i y4;
__m128i s4;
y4 = _mm_loadu_si128((__m128i*)&iy[j]);
s4 = _mm_castps_si128(_mm_loadu_ps(&signy[j]));
y4 = _mm_xor_si128(_mm_add_epi32(y4, s4), s4);
_mm_storeu_si128((__m128i*)&iy[j], y4);
}
RESTORE_STACK;
return yy;
}
#endif

View File

@ -33,6 +33,7 @@
#include "celt_lpc.h"
#include "pitch.h"
#include "pitch_sse.h"
#include "vq.h"
#if defined(OPUS_HAVE_RTCD)
@ -46,7 +47,6 @@ void (*const CELT_FIR_IMPL[OPUS_ARCHMASK + 1])(
opus_val16 *y,
int N,
int ord,
opus_val16 *mem,
int arch
) = {
celt_fir_c, /* non-sse */
@ -151,5 +151,17 @@ void (*const COMB_FILTER_CONST_IMPL[OPUS_ARCHMASK + 1])(
#endif
#if defined(OPUS_X86_MAY_HAVE_SSE2) && !defined(OPUS_X86_PRESUME_SSE2)
opus_val16 (*const OP_PVQ_SEARCH_IMPL[OPUS_ARCHMASK + 1])(
celt_norm *_X, int *iy, int K, int N, int arch
) = {
op_pvq_search_c, /* non-sse */
op_pvq_search_c,
MAY_HAVE_SSE2(op_pvq_search),
MAY_HAVE_SSE2(op_pvq_search),
MAY_HAVE_SSE2(op_pvq_search)
};
#endif
#endif
#endif

View File

@ -82,7 +82,9 @@ int opus_select_arch(void);
(_mm_cvtepi8_epi32(*(__m128i *)(x)))
#endif
# if !defined(__OPTIMIZE__)
/* similar reasoning about the instruction sequence as in the 32-bit macro above,
*/
# if defined(__clang__) || !defined(__OPTIMIZE__)
# define OP_CVTEPI16_EPI32_M64(x) \
(_mm_cvtepi16_epi32(_mm_loadl_epi64((__m128i *)(x))))
# else

View File

@ -1,5 +1,44 @@
/* Opus configuration header */
/* Based on the output of libopus configure script */
/* config.h. Generated from config.h.in by configure. */
/* config.h.in. Generated from configure.ac by autoheader. */
/* Get CPU Info by asm method */
#define CPU_INFO_BY_ASM 1
/* Get CPU Info by c method */
/* #undef CPU_INFO_BY_C */
/* Custom modes */
/* #undef CUSTOM_MODES */
/* Do not build the float API */
/* #undef DISABLE_FLOAT_API */
/* Disable bitstream fixes from RFC 8251 */
/* #undef DISABLE_UPDATE_DRAFT */
/* Assertions */
/* #undef ENABLE_ASSERTIONS */
/* Hardening */
#define ENABLE_HARDENING 1
/* Debug fixed-point implementation */
/* #undef FIXED_DEBUG */
/* Compile as fixed-point (for machines without a fast enough FPU) */
/* #undef FIXED_POINT */
/* Float approximations */
/* #undef FLOAT_APPROX */
/* Fuzzing */
/* #undef FUZZING */
/* Define to 1 if you have the <alloca.h> header file. */
/* #undef HAVE_ALLOCA_H */
/* NE10 library is installed on host. Make sure it is on target! */
/* #undef HAVE_ARM_NE10 */
/* Define to 1 if you have the <dlfcn.h> header file. */
#define HAVE_DLFCN_H 1
@ -41,6 +80,9 @@
/* Define to 1 if you have the <unistd.h> header file. */
#define HAVE_UNISTD_H 1
/* Define to 1 if you have the `__malloc_hook' function. */
#define HAVE___MALLOC_HOOK 1
/* Define to the sub-directory in which libtool stores uninstalled libraries.
*/
#define LT_OBJDIR ".libs/"
@ -92,9 +134,80 @@
#endif // OPUS_ARM64_OPT
/* Define if binary requires Aarch64 Neon Intrinsics */
/* #undef OPUS_ARM_PRESUME_AARCH64_NEON_INTR */
/* Define if binary requires EDSP instruction support */
/* #undef OPUS_ARM_PRESUME_EDSP */
/* Define if binary requires ARMv6 media instruction support */
/* #undef OPUS_ARM_PRESUME_MEDIA */
/* Define if binary requires NEON instruction support */
/* #undef OPUS_ARM_PRESUME_NEON */
/* Define if binary requires NEON intrinsics support */
/* #undef OPUS_ARM_PRESUME_NEON_INTR */
/* This is a build of OPUS */
#define OPUS_BUILD /**/
/* Run bit-exactness checks between optimized and c implementations */
/* #undef OPUS_CHECK_ASM */
#ifndef OPUS_ARM_OPT
/* Use run-time CPU capabilities detection */
#define OPUS_HAVE_RTCD 1
#endif
/* Compiler supports X86 AVX Intrinsics */
/* #define OPUS_X86_MAY_HAVE_AVX */
/* Compiler supports X86 SSE Intrinsics */
/* #define OPUS_X86_MAY_HAVE_SSE */
/* Compiler supports X86 SSE2 Intrinsics */
/* #define OPUS_X86_MAY_HAVE_SSE2 */
/* Compiler supports X86 SSE4.1 Intrinsics */
/* #define OPUS_X86_MAY_HAVE_SSE4_1 */
/* Define if binary requires AVX intrinsics support */
/* #undef OPUS_X86_PRESUME_AVX */
/* Define if binary requires SSE intrinsics support */
#define OPUS_X86_PRESUME_SSE 1
/* Define if binary requires SSE2 intrinsics support */
#define OPUS_X86_PRESUME_SSE2 1
/* Define if binary requires SSE4.1 intrinsics support */
#define OPUS_X86_PRESUME_SSE4_1 1
/* Define to the address where bug reports for this package should be sent. */
#define PACKAGE_BUGREPORT "opus@xiph.org"
/* Define to the full name of this package. */
#define PACKAGE_NAME "opus"
/* Define to the full name and version of this package. */
#define PACKAGE_STRING "opus unknown"
/* Define to the one symbol short name of this package. */
#define PACKAGE_TARNAME "opus"
/* Define to the home page for this package. */
#define PACKAGE_URL ""
/* Define to the version of this package. */
#define PACKAGE_VERSION "unknown"
/* Define to 1 if you have the ANSI C header files. */
#define STDC_HEADERS 1
/* Make use of alloca */
/* #undef USE_ALLOCA */
#ifndef WIN32
/* Use C99 variable-size arrays */
#define VAR_ARRAYS 1
@ -103,11 +216,13 @@
#define USE_ALLOCA 1
#endif
/* Define to empty if `const' does not conform to ANSI C. */
/* #undef const */
#ifndef OPUS_FIXED_POINT
#define FLOAT_APPROX 1
#endif
/* Define to `__inline__' or `__inline' if that's what the C compiler
calls it, or to nothing if 'inline' is not supported under any name. */
#ifndef __cplusplus

View File

@ -107,26 +107,32 @@ static int op_tags_ensure_capacity(OpusTags *_tags,size_t _ncomments){
char **user_comments;
int *comment_lengths;
int cur_ncomments;
char *binary_suffix_data;
int binary_suffix_len;
size_t size;
if(OP_UNLIKELY(_ncomments>=(size_t)INT_MAX))return OP_EFAULT;
size=sizeof(*_tags->comment_lengths)*(_ncomments+1);
if(size/sizeof(*_tags->comment_lengths)!=_ncomments+1)return OP_EFAULT;
cur_ncomments=_tags->comments;
comment_lengths=_tags->comment_lengths;
binary_suffix_len=comment_lengths==NULL?0:comment_lengths[cur_ncomments];
/*We only support growing.
Trimming requires cleaning up the allocated strings in the old space, and
is best handled separately if it's ever needed.*/
OP_ASSERT(_ncomments>=(size_t)cur_ncomments);
comment_lengths=(int *)_ogg_realloc(_tags->comment_lengths,size);
if(OP_UNLIKELY(comment_lengths==NULL))return OP_EFAULT;
comment_lengths[_ncomments]=binary_suffix_len;
if(_tags->comment_lengths==NULL){
OP_ASSERT(cur_ncomments==0);
comment_lengths[cur_ncomments]=0;
}
comment_lengths[_ncomments]=comment_lengths[cur_ncomments];
_tags->comment_lengths=comment_lengths;
size=sizeof(*_tags->user_comments)*(_ncomments+1);
if(size/sizeof(*_tags->user_comments)!=_ncomments+1)return OP_EFAULT;
user_comments=_tags->user_comments;
binary_suffix_data=user_comments==NULL?NULL:user_comments[cur_ncomments];
user_comments=(char **)_ogg_realloc(_tags->user_comments,size);
if(OP_UNLIKELY(user_comments==NULL))return OP_EFAULT;
user_comments[_ncomments]=binary_suffix_data;
if(_tags->user_comments==NULL){
OP_ASSERT(cur_ncomments==0);
user_comments[cur_ncomments]=NULL;
}
user_comments[_ncomments]=user_comments[cur_ncomments];
_tags->user_comments=user_comments;
return 0;
}
@ -275,28 +281,30 @@ int opus_tags_copy(OpusTags *_dst,const OpusTags *_src){
ret=opus_tags_copy_impl(&dst,_src);
if(OP_UNLIKELY(ret<0))opus_tags_clear(&dst);
else *_dst=*&dst;
return 0;
return ret;
}
int opus_tags_add(OpusTags *_tags,const char *_tag,const char *_value){
char *comment;
int tag_len;
int value_len;
int ncomments;
int ret;
char *comment;
size_t tag_len;
size_t value_len;
int ncomments;
int ret;
ncomments=_tags->comments;
ret=op_tags_ensure_capacity(_tags,ncomments+1);
if(OP_UNLIKELY(ret<0))return ret;
tag_len=strlen(_tag);
value_len=strlen(_value);
/*+2 for '=' and '\0'.*/
if(tag_len+value_len<tag_len)return OP_EFAULT;
if(tag_len+value_len>(size_t)INT_MAX-2)return OP_EFAULT;
comment=(char *)_ogg_malloc(sizeof(*comment)*(tag_len+value_len+2));
if(OP_UNLIKELY(comment==NULL))return OP_EFAULT;
memcpy(comment,_tag,sizeof(*comment)*tag_len);
comment[tag_len]='=';
memcpy(comment+tag_len+1,_value,sizeof(*comment)*(value_len+1));
_tags->user_comments[ncomments]=comment;
_tags->comment_lengths[ncomments]=tag_len+value_len+1;
_tags->comment_lengths[ncomments]=(int)(tag_len+value_len+1);
_tags->comments=ncomments+1;
return 0;
}
@ -337,7 +345,10 @@ int opus_tags_set_binary_suffix(OpusTags *_tags,
}
int opus_tagcompare(const char *_tag_name,const char *_comment){
return opus_tagncompare(_tag_name,strlen(_tag_name),_comment);
size_t tag_len;
tag_len=strlen(_tag_name);
if(OP_UNLIKELY(tag_len>(size_t)INT_MAX))return -1;
return opus_tagncompare(_tag_name,(int)tag_len,_comment);
}
int opus_tagncompare(const char *_tag_name,int _tag_len,const char *_comment){
@ -348,17 +359,18 @@ int opus_tagncompare(const char *_tag_name,int _tag_len,const char *_comment){
}
const char *opus_tags_query(const OpusTags *_tags,const char *_tag,int _count){
char **user_comments;
int tag_len;
int found;
int ncomments;
int ci;
char **user_comments;
size_t tag_len;
int found;
int ncomments;
int ci;
tag_len=strlen(_tag);
if(OP_UNLIKELY(tag_len>(size_t)INT_MAX))return NULL;
ncomments=_tags->comments;
user_comments=_tags->user_comments;
found=0;
for(ci=0;ci<ncomments;ci++){
if(!opus_tagncompare(_tag,tag_len,user_comments[ci])){
if(!opus_tagncompare(_tag,(int)tag_len,user_comments[ci])){
/*We return a pointer to the data, not a copy.*/
if(_count==found++)return user_comments[ci]+tag_len+1;
}
@ -368,17 +380,18 @@ const char *opus_tags_query(const OpusTags *_tags,const char *_tag,int _count){
}
int opus_tags_query_count(const OpusTags *_tags,const char *_tag){
char **user_comments;
int tag_len;
int found;
int ncomments;
int ci;
char **user_comments;
size_t tag_len;
int found;
int ncomments;
int ci;
tag_len=strlen(_tag);
if(OP_UNLIKELY(tag_len>(size_t)INT_MAX))return 0;
ncomments=_tags->comments;
user_comments=_tags->user_comments;
found=0;
for(ci=0;ci<ncomments;ci++){
if(!opus_tagncompare(_tag,tag_len,user_comments[ci]))found++;
if(!opus_tagncompare(_tag,(int)tag_len,user_comments[ci]))found++;
}
return found;
}
@ -403,7 +416,8 @@ static int opus_tags_get_gain(const OpusTags *_tags,int *_gain_q8,
ncomments=_tags->comments;
/*Look for the first valid tag with the name _tag_name and use that.*/
for(ci=0;ci<ncomments;ci++){
if(opus_tagncompare(_tag_name,_tag_len,comments[ci])==0){
OP_ASSERT(_tag_len<=(size_t)INT_MAX);
if(opus_tagncompare(_tag_name,(int)_tag_len,comments[ci])==0){
char *p;
opus_int32 gain_q8;
int negative;
@ -439,8 +453,7 @@ int opus_tags_get_track_gain(const OpusTags *_tags,int *_gain_q8){
}
static int op_is_jpeg(const unsigned char *_buf,size_t _buf_sz){
return _buf_sz>=11&&memcmp(_buf,"\xFF\xD8\xFF\xE0",4)==0
&&(_buf[4]<<8|_buf[5])>=16&&memcmp(_buf+6,"JFIF",5)==0;
return _buf_sz>=3&&memcmp(_buf,"\xFF\xD8\xFF",3)==0;
}
/*Tries to extract the width, height, bits per pixel, and palette size of a

View File

@ -136,6 +136,9 @@ struct OggOpusLink{
that end-trimming calculations work properly.
This is only valid for seekable sources.*/
opus_int64 end_offset;
/*The total duration of all prior links.
This is always zero for non-seekable sources.*/
ogg_int64_t pcm_file_offset;
/*The granule position of the last sample.
This is only valid for seekable sources.*/
ogg_int64_t pcm_end;
@ -150,23 +153,25 @@ struct OggOpusLink{
};
struct OggOpusFile{
/*The callbacks used to access the data source.*/
/*The callbacks used to access the stream.*/
OpusFileCallbacks callbacks;
/*A FILE *, memory bufer, etc.*/
void *source;
/*Whether or not we can seek with this data source.*/
/*A FILE *, memory buffer, etc.*/
void *stream;
/*Whether or not we can seek with this stream.*/
int seekable;
/*The number of links in this chained Ogg Opus file.*/
int nlinks;
/*The cached information from each link in a chained Ogg Opus file.
If source isn't seekable (e.g., it's a pipe), only the current link
If stream isn't seekable (e.g., it's a pipe), only the current link
appears.*/
OggOpusLink *links;
/*The number of serial numbers from a single link.*/
int nserialnos;
/*The capacity of the list of serial numbers from a single link.*/
int cserialnos;
/*Storage for the list of serial numbers from a single link.*/
/*Storage for the list of serial numbers from a single link.
This is a scratch buffer used when scanning the BOS pages at the start of
each link.*/
ogg_uint32_t *serialnos;
/*This is the current offset of the data processed by the ogg_sync_state.
After a seek, this should be set to the target offset so that we can track
@ -174,9 +179,9 @@ struct OggOpusFile{
After a call to op_get_next_page(), this will point to the first byte after
that page.*/
opus_int64 offset;
/*The total size of this data source, or -1 if it's unseekable.*/
/*The total size of this stream, or -1 if it's unseekable.*/
opus_int64 end;
/*Used to locate pages in the data source.*/
/*Used to locate pages in the stream.*/
ogg_sync_state oy;
/*One of OP_NOTOPEN, OP_PARTOPEN, OP_OPENED, OP_STREAMSET, OP_INITSET.*/
int ready_state;
@ -227,7 +232,7 @@ struct OggOpusFile{
/*The number of valid samples in the decoded buffer.*/
int od_buffer_size;
/*The type of gain offset to apply.
One of OP_HEADER_GAIN, OP_TRACK_GAIN, or OP_ABSOLUTE_GAIN.*/
One of OP_HEADER_GAIN, OP_ALBUM_GAIN, OP_TRACK_GAIN, or OP_ABSOLUTE_GAIN.*/
int gain_type;
/*The offset to apply to the gain.*/
opus_int32 gain_offset_q8;

378
thirdparty/opus/mapping_matrix.c vendored Normal file
View File

@ -0,0 +1,378 @@
/* Copyright (c) 2017 Google Inc.
Written by Andrew Allen */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arch.h"
#include "float_cast.h"
#include "opus_private.h"
#include "opus_defines.h"
#include "mapping_matrix.h"
#define MATRIX_INDEX(nb_rows, row, col) (nb_rows * col + row)
opus_int32 mapping_matrix_get_size(int rows, int cols)
{
opus_int32 size;
/* Mapping Matrix must only support up to 255 channels in or out.
* Additionally, the total cell count must be <= 65004 octets in order
* for the matrix to be stored in an OGG header.
*/
if (rows > 255 || cols > 255)
return 0;
size = rows * (opus_int32)cols * sizeof(opus_int16);
if (size > 65004)
return 0;
return align(sizeof(MappingMatrix)) + align(size);
}
opus_int16 *mapping_matrix_get_data(const MappingMatrix *matrix)
{
/* void* cast avoids clang -Wcast-align warning */
return (opus_int16*)(void*)((char*)matrix + align(sizeof(MappingMatrix)));
}
void mapping_matrix_init(MappingMatrix * const matrix,
int rows, int cols, int gain, const opus_int16 *data, opus_int32 data_size)
{
int i;
opus_int16 *ptr;
#if !defined(ENABLE_ASSERTIONS)
(void)data_size;
#endif
celt_assert(align(data_size) == align(rows * cols * sizeof(opus_int16)));
matrix->rows = rows;
matrix->cols = cols;
matrix->gain = gain;
ptr = mapping_matrix_get_data(matrix);
for (i = 0; i < rows * cols; i++)
{
ptr[i] = data[i];
}
}
#ifndef DISABLE_FLOAT_API
void mapping_matrix_multiply_channel_in_float(
const MappingMatrix *matrix,
const float *input,
int input_rows,
opus_val16 *output,
int output_row,
int output_rows,
int frame_size)
{
/* Matrix data is ordered col-wise. */
opus_int16* matrix_data;
int i, col;
celt_assert(input_rows <= matrix->cols && output_rows <= matrix->rows);
matrix_data = mapping_matrix_get_data(matrix);
for (i = 0; i < frame_size; i++)
{
float tmp = 0;
for (col = 0; col < input_rows; col++)
{
tmp +=
matrix_data[MATRIX_INDEX(matrix->rows, output_row, col)] *
input[MATRIX_INDEX(input_rows, col, i)];
}
#if defined(FIXED_POINT)
output[output_rows * i] = FLOAT2INT16((1/32768.f)*tmp);
#else
output[output_rows * i] = (1/32768.f)*tmp;
#endif
}
}
void mapping_matrix_multiply_channel_out_float(
const MappingMatrix *matrix,
const opus_val16 *input,
int input_row,
int input_rows,
float *output,
int output_rows,
int frame_size
)
{
/* Matrix data is ordered col-wise. */
opus_int16* matrix_data;
int i, row;
float input_sample;
celt_assert(input_rows <= matrix->cols && output_rows <= matrix->rows);
matrix_data = mapping_matrix_get_data(matrix);
for (i = 0; i < frame_size; i++)
{
#if defined(FIXED_POINT)
input_sample = (1/32768.f)*input[input_rows * i];
#else
input_sample = input[input_rows * i];
#endif
for (row = 0; row < output_rows; row++)
{
float tmp =
(1/32768.f)*matrix_data[MATRIX_INDEX(matrix->rows, row, input_row)] *
input_sample;
output[MATRIX_INDEX(output_rows, row, i)] += tmp;
}
}
}
#endif /* DISABLE_FLOAT_API */
void mapping_matrix_multiply_channel_in_short(
const MappingMatrix *matrix,
const opus_int16 *input,
int input_rows,
opus_val16 *output,
int output_row,
int output_rows,
int frame_size)
{
/* Matrix data is ordered col-wise. */
opus_int16* matrix_data;
int i, col;
celt_assert(input_rows <= matrix->cols && output_rows <= matrix->rows);
matrix_data = mapping_matrix_get_data(matrix);
for (i = 0; i < frame_size; i++)
{
opus_val32 tmp = 0;
for (col = 0; col < input_rows; col++)
{
#if defined(FIXED_POINT)
tmp +=
((opus_int32)matrix_data[MATRIX_INDEX(matrix->rows, output_row, col)] *
(opus_int32)input[MATRIX_INDEX(input_rows, col, i)]) >> 8;
#else
tmp +=
matrix_data[MATRIX_INDEX(matrix->rows, output_row, col)] *
input[MATRIX_INDEX(input_rows, col, i)];
#endif
}
#if defined(FIXED_POINT)
output[output_rows * i] = (opus_int16)((tmp + 64) >> 7);
#else
output[output_rows * i] = (1/(32768.f*32768.f))*tmp;
#endif
}
}
void mapping_matrix_multiply_channel_out_short(
const MappingMatrix *matrix,
const opus_val16 *input,
int input_row,
int input_rows,
opus_int16 *output,
int output_rows,
int frame_size)
{
/* Matrix data is ordered col-wise. */
opus_int16* matrix_data;
int i, row;
opus_int32 input_sample;
celt_assert(input_rows <= matrix->cols && output_rows <= matrix->rows);
matrix_data = mapping_matrix_get_data(matrix);
for (i = 0; i < frame_size; i++)
{
#if defined(FIXED_POINT)
input_sample = (opus_int32)input[input_rows * i];
#else
input_sample = (opus_int32)FLOAT2INT16(input[input_rows * i]);
#endif
for (row = 0; row < output_rows; row++)
{
opus_int32 tmp =
(opus_int32)matrix_data[MATRIX_INDEX(matrix->rows, row, input_row)] *
input_sample;
output[MATRIX_INDEX(output_rows, row, i)] += (tmp + 16384) >> 15;
}
}
}
const MappingMatrix mapping_matrix_foa_mixing = { 6, 6, 0 };
const opus_int16 mapping_matrix_foa_mixing_data[36] = {
16384, 0, -16384, 23170, 0, 0, 16384, 23170,
16384, 0, 0, 0, 16384, 0, -16384, -23170,
0, 0, 16384, -23170, 16384, 0, 0, 0,
0, 0, 0, 0, 32767, 0, 0, 0,
0, 0, 0, 32767
};
const MappingMatrix mapping_matrix_soa_mixing = { 11, 11, 0 };
const opus_int16 mapping_matrix_soa_mixing_data[121] = {
10923, 7723, 13377, -13377, 11585, 9459, 7723, -16384,
-6689, 0, 0, 10923, 7723, 13377, 13377, -11585,
9459, 7723, 16384, -6689, 0, 0, 10923, -15447,
13377, 0, 0, -18919, 7723, 0, 13377, 0,
0, 10923, 7723, -13377, -13377, 11585, -9459, 7723,
16384, -6689, 0, 0, 10923, -7723, 0, 13377,
-16384, 0, -15447, 0, 9459, 0, 0, 10923,
-7723, 0, -13377, 16384, 0, -15447, 0, 9459,
0, 0, 10923, 15447, 0, 0, 0, 0,
-15447, 0, -18919, 0, 0, 10923, 7723, -13377,
13377, -11585, -9459, 7723, -16384, -6689, 0, 0,
10923, -15447, -13377, 0, 0, 18919, 7723, 0,
13377, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 32767, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
32767
};
const MappingMatrix mapping_matrix_toa_mixing = { 18, 18, 0 };
const opus_int16 mapping_matrix_toa_mixing_data[324] = {
8208, 0, -881, 14369, 0, 0, -8192, -4163,
13218, 0, 0, 0, 11095, -8836, -6218, 14833,
0, 0, 8208, -10161, 881, 10161, -13218, -2944,
-8192, 2944, 0, -10488, -6218, 6248, -11095, -6248,
0, -10488, 0, 0, 8208, 10161, 881, -10161,
-13218, 2944, -8192, -2944, 0, 10488, -6218, -6248,
-11095, 6248, 0, 10488, 0, 0, 8176, 5566,
-11552, 5566, 9681, -11205, 8192, -11205, 0, 4920,
-15158, 9756, -3334, 9756, 0, -4920, 0, 0,
8176, 7871, 11552, 0, 0, 15846, 8192, 0,
-9681, -6958, 0, 13797, 3334, 0, -15158, 0,
0, 0, 8176, 0, 11552, 7871, 0, 0,
8192, 15846, 9681, 0, 0, 0, 3334, 13797,
15158, 6958, 0, 0, 8176, 5566, -11552, -5566,
-9681, -11205, 8192, 11205, 0, 4920, 15158, 9756,
-3334, -9756, 0, 4920, 0, 0, 8208, 14369,
-881, 0, 0, -4163, -8192, 0, -13218, -14833,
0, -8836, 11095, 0, 6218, 0, 0, 0,
8208, 10161, 881, 10161, 13218, 2944, -8192, 2944,
0, 10488, 6218, -6248, -11095, -6248, 0, -10488,
0, 0, 8208, -14369, -881, 0, 0, 4163,
-8192, 0, -13218, 14833, 0, 8836, 11095, 0,
6218, 0, 0, 0, 8208, 0, -881, -14369,
0, 0, -8192, 4163, 13218, 0, 0, 0,
11095, 8836, -6218, -14833, 0, 0, 8176, -5566,
-11552, 5566, -9681, 11205, 8192, -11205, 0, -4920,
15158, -9756, -3334, 9756, 0, -4920, 0, 0,
8176, 0, 11552, -7871, 0, 0, 8192, -15846,
9681, 0, 0, 0, 3334, -13797, 15158, -6958,
0, 0, 8176, -7871, 11552, 0, 0, -15846,
8192, 0, -9681, 6958, 0, -13797, 3334, 0,
-15158, 0, 0, 0, 8176, -5566, -11552, -5566,
9681, 11205, 8192, 11205, 0, -4920, -15158, -9756,
-3334, -9756, 0, 4920, 0, 0, 8208, -10161,
881, -10161, 13218, -2944, -8192, -2944, 0, -10488,
6218, 6248, -11095, 6248, 0, 10488, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
32767, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 32767
};
const MappingMatrix mapping_matrix_foa_demixing = { 6, 6, 0 };
const opus_int16 mapping_matrix_foa_demixing_data[36] = {
16384, 16384, 16384, 16384, 0, 0, 0, 23170,
0, -23170, 0, 0, -16384, 16384, -16384, 16384,
0, 0, 23170, 0, -23170, 0, 0, 0,
0, 0, 0, 0, 32767, 0, 0, 0,
0, 0, 0, 32767
};
const MappingMatrix mapping_matrix_soa_demixing = { 11, 11, 3050 };
const opus_int16 mapping_matrix_soa_demixing_data[121] = {
2771, 2771, 2771, 2771, 2771, 2771, 2771, 2771,
2771, 0, 0, 10033, 10033, -20066, 10033, 14189,
14189, -28378, 10033, -20066, 0, 0, 3393, 3393,
3393, -3393, 0, 0, 0, -3393, -3393, 0,
0, -17378, 17378, 0, -17378, -24576, 24576, 0,
17378, 0, 0, 0, -14189, 14189, 0, -14189,
-28378, 28378, 0, 14189, 0, 0, 0, 2399,
2399, -4799, -2399, 0, 0, 0, -2399, 4799,
0, 0, 1959, 1959, 1959, 1959, -3918, -3918,
-3918, 1959, 1959, 0, 0, -4156, 4156, 0,
4156, 0, 0, 0, -4156, 0, 0, 0,
8192, 8192, -16384, 8192, 16384, 16384, -32768, 8192,
-16384, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 8312, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
8312
};
const MappingMatrix mapping_matrix_toa_demixing = { 18, 18, 0 };
const opus_int16 mapping_matrix_toa_demixing_data[324] = {
8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192,
8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192,
0, 0, 0, -9779, 9779, 6263, 8857, 0,
6263, 13829, 9779, -13829, 0, -6263, 0, -8857,
-6263, -9779, 0, 0, -3413, 3413, 3413, -11359,
11359, 11359, -11359, -3413, 3413, -3413, -3413, -11359,
11359, 11359, -11359, 3413, 0, 0, 13829, 9779,
-9779, 6263, 0, 8857, -6263, 0, 9779, 0,
-13829, 6263, -8857, 0, -6263, -9779, 0, 0,
0, -15617, -15617, 6406, 0, 0, -6406, 0,
15617, 0, 0, -6406, 0, 0, 6406, 15617,
0, 0, 0, -5003, 5003, -10664, 15081, 0,
-10664, -7075, 5003, 7075, 0, 10664, 0, -15081,
10664, -5003, 0, 0, -8176, -8176, -8176, 8208,
8208, 8208, 8208, -8176, -8176, -8176, -8176, 8208,
8208, 8208, 8208, -8176, 0, 0, -7075, 5003,
-5003, -10664, 0, 15081, 10664, 0, 5003, 0,
7075, -10664, -15081, 0, 10664, -5003, 0, 0,
15617, 0, 0, 0, -6406, 6406, 0, -15617,
0, -15617, 15617, 0, 6406, -6406, 0, 0,
0, 0, 0, -11393, 11393, 2993, -4233, 0,
2993, -16112, 11393, 16112, 0, -2993, 0, 4233,
-2993, -11393, 0, 0, 0, -9974, -9974, -13617,
0, 0, 13617, 0, 9974, 0, 0, 13617,
0, 0, -13617, 9974, 0, 0, 0, 5579,
-5579, 10185, 14403, 0, 10185, -7890, -5579, 7890,
0, -10185, 0, -14403, -10185, 5579, 0, 0,
11826, -11826, -11826, -901, 901, 901, -901, 11826,
-11826, 11826, 11826, -901, 901, 901, -901, -11826,
0, 0, -7890, -5579, 5579, 10185, 0, 14403,
-10185, 0, -5579, 0, 7890, 10185, -14403, 0,
-10185, 5579, 0, 0, -9974, 0, 0, 0,
-13617, 13617, 0, 9974, 0, 9974, -9974, 0,
13617, -13617, 0, 0, 0, 0, 16112, -11393,
11393, -2993, 0, 4233, 2993, 0, -11393, 0,
-16112, -2993, -4233, 0, 2993, 11393, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
32767, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 32767
};

133
thirdparty/opus/mapping_matrix.h vendored Normal file
View File

@ -0,0 +1,133 @@
/* Copyright (c) 2017 Google Inc.
Written by Andrew Allen */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file mapping_matrix.h
* @brief Opus reference implementation mapping matrix API
*/
#ifndef MAPPING_MATRIX_H
#define MAPPING_MATRIX_H
#include "opus_types.h"
#include "opus_projection.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct MappingMatrix
{
int rows; /* number of channels outputted from matrix. */
int cols; /* number of channels inputted to matrix. */
int gain; /* in dB. S7.8-format. */
/* Matrix cell data goes here using col-wise ordering. */
} MappingMatrix;
opus_int32 mapping_matrix_get_size(int rows, int cols);
opus_int16 *mapping_matrix_get_data(const MappingMatrix *matrix);
void mapping_matrix_init(
MappingMatrix * const matrix,
int rows,
int cols,
int gain,
const opus_int16 *data,
opus_int32 data_size
);
#ifndef DISABLE_FLOAT_API
void mapping_matrix_multiply_channel_in_float(
const MappingMatrix *matrix,
const float *input,
int input_rows,
opus_val16 *output,
int output_row,
int output_rows,
int frame_size
);
void mapping_matrix_multiply_channel_out_float(
const MappingMatrix *matrix,
const opus_val16 *input,
int input_row,
int input_rows,
float *output,
int output_rows,
int frame_size
);
#endif /* DISABLE_FLOAT_API */
void mapping_matrix_multiply_channel_in_short(
const MappingMatrix *matrix,
const opus_int16 *input,
int input_rows,
opus_val16 *output,
int output_row,
int output_rows,
int frame_size
);
void mapping_matrix_multiply_channel_out_short(
const MappingMatrix *matrix,
const opus_val16 *input,
int input_row,
int input_rows,
opus_int16 *output,
int output_rows,
int frame_size
);
/* Pre-computed mixing and demixing matrices for 1st to 3rd-order ambisonics.
* foa: first-order ambisonics
* soa: second-order ambisonics
* toa: third-order ambisonics
*/
extern const MappingMatrix mapping_matrix_foa_mixing;
extern const opus_int16 mapping_matrix_foa_mixing_data[36];
extern const MappingMatrix mapping_matrix_soa_mixing;
extern const opus_int16 mapping_matrix_soa_mixing_data[121];
extern const MappingMatrix mapping_matrix_toa_mixing;
extern const opus_int16 mapping_matrix_toa_mixing_data[324];
extern const MappingMatrix mapping_matrix_foa_demixing;
extern const opus_int16 mapping_matrix_foa_demixing_data[36];
extern const MappingMatrix mapping_matrix_soa_demixing;
extern const opus_int16 mapping_matrix_soa_demixing_data[121];
extern const MappingMatrix mapping_matrix_toa_demixing;
extern const opus_int16 mapping_matrix_toa_demixing_data[324];
#ifdef __cplusplus
}
#endif
#endif /* MAPPING_MATRIX_H */

155
thirdparty/opus/mlp.c vendored
View File

@ -1,5 +1,5 @@
/* Copyright (c) 2008-2011 Octasic Inc.
Written by Jean-Marc Valin */
2012-2017 Jean-Marc Valin */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
@ -29,42 +29,13 @@
#include "config.h"
#endif
#include <math.h>
#include "opus_types.h"
#include "opus_defines.h"
#include <math.h>
#include "mlp.h"
#include "arch.h"
#include "tansig_table.h"
#define MAX_NEURONS 100
#include "mlp.h"
#if 0
static OPUS_INLINE opus_val16 tansig_approx(opus_val32 _x) /* Q19 */
{
int i;
opus_val16 xx; /* Q11 */
/*double x, y;*/
opus_val16 dy, yy; /* Q14 */
/*x = 1.9073e-06*_x;*/
if (_x>=QCONST32(8,19))
return QCONST32(1.,14);
if (_x<=-QCONST32(8,19))
return -QCONST32(1.,14);
xx = EXTRACT16(SHR32(_x, 8));
/*i = lrint(25*x);*/
i = SHR32(ADD32(1024,MULT16_16(25, xx)),11);
/*x -= .04*i;*/
xx -= EXTRACT16(SHR32(MULT16_16(20972,i),8));
/*x = xx*(1./2048);*/
/*y = tansig_table[250+i];*/
yy = tansig_table[250+i];
/*y = yy*(1./16384);*/
dy = 16384-MULT16_16_Q14(yy,yy);
yy = yy + MULT16_16_Q14(MULT16_16_Q11(xx,dy),(16384 - MULT16_16_Q11(yy,xx)));
return yy;
}
#else
/*extern const float tansig_table[501];*/
static OPUS_INLINE float tansig_approx(float x)
{
int i;
@ -92,54 +63,82 @@ static OPUS_INLINE float tansig_approx(float x)
y = y + x*dy*(1 - y*x);
return sign*y;
}
#endif
#if 0
void mlp_process(const MLP *m, const opus_val16 *in, opus_val16 *out)
static OPUS_INLINE float sigmoid_approx(float x)
{
int j;
opus_val16 hidden[MAX_NEURONS];
const opus_val16 *W = m->weights;
/* Copy to tmp_in */
for (j=0;j<m->topo[1];j++)
{
int k;
opus_val32 sum = SHL32(EXTEND32(*W++),8);
for (k=0;k<m->topo[0];k++)
sum = MAC16_16(sum, in[k],*W++);
hidden[j] = tansig_approx(sum);
}
for (j=0;j<m->topo[2];j++)
{
int k;
opus_val32 sum = SHL32(EXTEND32(*W++),14);
for (k=0;k<m->topo[1];k++)
sum = MAC16_16(sum, hidden[k], *W++);
out[j] = tansig_approx(EXTRACT16(PSHR32(sum,17)));
}
return .5f + .5f*tansig_approx(.5f*x);
}
#else
void mlp_process(const MLP *m, const float *in, float *out)
static void gemm_accum(float *out, const opus_int8 *weights, int rows, int cols, int col_stride, const float *x)
{
int j;
float hidden[MAX_NEURONS];
const float *W = m->weights;
/* Copy to tmp_in */
for (j=0;j<m->topo[1];j++)
{
int k;
float sum = *W++;
for (k=0;k<m->topo[0];k++)
sum = sum + in[k]**W++;
hidden[j] = tansig_approx(sum);
}
for (j=0;j<m->topo[2];j++)
{
int k;
float sum = *W++;
for (k=0;k<m->topo[1];k++)
sum = sum + hidden[k]**W++;
out[j] = tansig_approx(sum);
}
int i, j;
for (i=0;i<rows;i++)
{
for (j=0;j<cols;j++)
out[i] += weights[j*col_stride + i]*x[j];
}
}
#endif
void compute_dense(const DenseLayer *layer, float *output, const float *input)
{
int i;
int N, M;
int stride;
M = layer->nb_inputs;
N = layer->nb_neurons;
stride = N;
for (i=0;i<N;i++)
output[i] = layer->bias[i];
gemm_accum(output, layer->input_weights, N, M, stride, input);
for (i=0;i<N;i++)
output[i] *= WEIGHTS_SCALE;
if (layer->sigmoid) {
for (i=0;i<N;i++)
output[i] = sigmoid_approx(output[i]);
} else {
for (i=0;i<N;i++)
output[i] = tansig_approx(output[i]);
}
}
void compute_gru(const GRULayer *gru, float *state, const float *input)
{
int i;
int N, M;
int stride;
float tmp[MAX_NEURONS];
float z[MAX_NEURONS];
float r[MAX_NEURONS];
float h[MAX_NEURONS];
M = gru->nb_inputs;
N = gru->nb_neurons;
stride = 3*N;
/* Compute update gate. */
for (i=0;i<N;i++)
z[i] = gru->bias[i];
gemm_accum(z, gru->input_weights, N, M, stride, input);
gemm_accum(z, gru->recurrent_weights, N, N, stride, state);
for (i=0;i<N;i++)
z[i] = sigmoid_approx(WEIGHTS_SCALE*z[i]);
/* Compute reset gate. */
for (i=0;i<N;i++)
r[i] = gru->bias[N + i];
gemm_accum(r, &gru->input_weights[N], N, M, stride, input);
gemm_accum(r, &gru->recurrent_weights[N], N, N, stride, state);
for (i=0;i<N;i++)
r[i] = sigmoid_approx(WEIGHTS_SCALE*r[i]);
/* Compute output. */
for (i=0;i<N;i++)
h[i] = gru->bias[2*N + i];
for (i=0;i<N;i++)
tmp[i] = state[i] * r[i];
gemm_accum(h, &gru->input_weights[2*N], N, M, stride, input);
gemm_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp);
for (i=0;i<N;i++)
h[i] = z[i]*state[i] + (1-z[i])*tansig_approx(WEIGHTS_SCALE*h[i]);
for (i=0;i<N;i++)
state[i] = h[i];
}

35
thirdparty/opus/mlp.h vendored
View File

@ -1,5 +1,4 @@
/* Copyright (c) 2008-2011 Octasic Inc.
Written by Jean-Marc Valin */
/* Copyright (c) 2017 Jean-Marc Valin */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
@ -28,16 +27,34 @@
#ifndef _MLP_H_
#define _MLP_H_
#include "arch.h"
#include "opus_types.h"
#define WEIGHTS_SCALE (1.f/128)
#define MAX_NEURONS 32
typedef struct {
int layers;
const int *topo;
const float *weights;
} MLP;
const opus_int8 *bias;
const opus_int8 *input_weights;
int nb_inputs;
int nb_neurons;
int sigmoid;
} DenseLayer;
extern const MLP net;
typedef struct {
const opus_int8 *bias;
const opus_int8 *input_weights;
const opus_int8 *recurrent_weights;
int nb_inputs;
int nb_neurons;
} GRULayer;
void mlp_process(const MLP *m, const float *in, float *out);
extern const DenseLayer layer0;
extern const GRULayer layer1;
extern const DenseLayer layer2;
void compute_dense(const DenseLayer *layer, float *output, const float *input);
void compute_gru(const GRULayer *gru, float *state, const float *input);
#endif /* _MLP_H_ */

View File

@ -1,5 +1,4 @@
/* The contents of this file was automatically generated by mlp_train.c
It contains multi-layer perceptron (MLP) weights. */
/*This file is automatically generated from a Keras model*/
#ifdef HAVE_CONFIG_H
#include "config.h"
@ -7,103 +6,667 @@
#include "mlp.h"
/* RMS error was 0.138320, seed was 1361535663 */
static const float weights[422] = {
/* hidden layer */
-0.0941125f, -0.302976f, -0.603555f, -0.19393f, -0.185983f,
-0.601617f, -0.0465317f, -0.114563f, -0.103599f, -0.618938f,
-0.317859f, -0.169949f, -0.0702885f, 0.148065f, 0.409524f,
0.548432f, 0.367649f, -0.494393f, 0.764306f, -1.83957f,
0.170849f, 12.786f, -1.08848f, -1.27284f, -16.2606f,
24.1773f, -5.57454f, -0.17276f, -0.163388f, -0.224421f,
-0.0948944f, -0.0728695f, -0.26557f, -0.100283f, -0.0515459f,
-0.146142f, -0.120674f, -0.180655f, 0.12857f, 0.442138f,
-0.493735f, 0.167767f, 0.206699f, -0.197567f, 0.417999f,
1.50364f, -0.773341f, -10.0401f, 0.401872f, 2.97966f,
15.2165f, -1.88905f, -1.19254f, 0.0285397f, -0.00405139f,
0.0707565f, 0.00825699f, -0.0927269f, -0.010393f, -0.00428882f,
-0.00489743f, -0.0709731f, -0.00255992f, 0.0395619f, 0.226424f,
0.0325231f, 0.162175f, -0.100118f, 0.485789f, 0.12697f,
0.285937f, 0.0155637f, 0.10546f, 3.05558f, 1.15059f,
-1.00904f, -1.83088f, 3.31766f, -3.42516f, -0.119135f,
-0.0405654f, 0.00690068f, 0.0179877f, -0.0382487f, 0.00597941f,
-0.0183611f, 0.00190395f, -0.144322f, -0.0435671f, 0.000990594f,
0.221087f, 0.142405f, 0.484066f, 0.404395f, 0.511955f,
-0.237255f, 0.241742f, 0.35045f, -0.699428f, 10.3993f,
2.6507f, -2.43459f, -4.18838f, 1.05928f, 1.71067f,
0.00667811f, -0.0721335f, -0.0397346f, 0.0362704f, -0.11496f,
-0.0235776f, 0.0082161f, -0.0141741f, -0.0329699f, -0.0354253f,
0.00277404f, -0.290654f, -1.14767f, -0.319157f, -0.686544f,
0.36897f, 0.478899f, 0.182579f, -0.411069f, 0.881104f,
-4.60683f, 1.4697f, 0.335845f, -1.81905f, -30.1699f,
5.55225f, 0.0019508f, -0.123576f, -0.0727332f, -0.0641597f,
-0.0534458f, -0.108166f, -0.0937368f, -0.0697883f, -0.0275475f,
-0.192309f, -0.110074f, 0.285375f, -0.405597f, 0.0926724f,
-0.287881f, -0.851193f, -0.099493f, -0.233764f, -1.2852f,
1.13611f, 3.12168f, -0.0699f, -1.86216f, 2.65292f,
-7.31036f, 2.44776f, -0.00111802f, -0.0632786f, -0.0376296f,
-0.149851f, 0.142963f, 0.184368f, 0.123433f, 0.0756158f,
0.117312f, 0.0933395f, 0.0692163f, 0.0842592f, 0.0704683f,
0.0589963f, 0.0942205f, -0.448862f, 0.0262677f, 0.270352f,
-0.262317f, 0.172586f, 2.00227f, -0.159216f, 0.038422f,
10.2073f, 4.15536f, -2.3407f, -0.0550265f, 0.00964792f,
-0.141336f, 0.0274501f, 0.0343921f, -0.0487428f, 0.0950172f,
-0.00775017f, -0.0372492f, -0.00548121f, -0.0663695f, 0.0960506f,
-0.200008f, -0.0412827f, 0.58728f, 0.0515787f, 0.337254f,
0.855024f, 0.668371f, -0.114904f, -3.62962f, -0.467477f,
-0.215472f, 2.61537f, 0.406117f, -1.36373f, 0.0425394f,
0.12208f, 0.0934502f, 0.123055f, 0.0340935f, -0.142466f,
0.035037f, -0.0490666f, 0.0733208f, 0.0576672f, 0.123984f,
-0.0517194f, -0.253018f, 0.590565f, 0.145849f, 0.315185f,
0.221534f, -0.149081f, 0.216161f, -0.349575f, 24.5664f,
-0.994196f, 0.614289f, -18.7905f, -2.83277f, -0.716801f,
-0.347201f, 0.479515f, -0.246027f, 0.0758683f, 0.137293f,
-0.17781f, 0.118751f, -0.00108329f, -0.237334f, 0.355732f,
-0.12991f, -0.0547627f, -0.318576f, -0.325524f, 0.180494f,
-0.0625604f, 0.141219f, 0.344064f, 0.37658f, -0.591772f,
5.8427f, -0.38075f, 0.221894f, -1.41934f, -1.87943e+06f,
1.34114f, 0.0283355f, -0.0447856f, -0.0211466f, -0.0256927f,
0.0139618f, 0.0207934f, -0.0107666f, 0.0110969f, 0.0586069f,
-0.0253545f, -0.0328433f, 0.11872f, -0.216943f, 0.145748f,
0.119808f, -0.0915211f, -0.120647f, -0.0787719f, -0.143644f,
-0.595116f, -1.152f, -1.25335f, -1.17092f, 4.34023f,
-975268.f, -1.37033f, -0.0401123f, 0.210602f, -0.136656f,
0.135962f, -0.0523293f, 0.0444604f, 0.0143928f, 0.00412666f,
-0.0193003f, 0.218452f, -0.110204f, -2.02563f, 0.918238f,
-2.45362f, 1.19542f, -0.061362f, -1.92243f, 0.308111f,
0.49764f, 0.912356f, 0.209272f, -2.34525f, 2.19326f,
-6.47121f, 1.69771f, -0.725123f, 0.0118929f, 0.0377944f,
0.0554003f, 0.0226452f, -0.0704421f, -0.0300309f, 0.0122978f,
-0.0041782f, -0.0686612f, 0.0313115f, 0.039111f, 0.364111f,
-0.0945548f, 0.0229876f, -0.17414f, 0.329795f, 0.114714f,
0.30022f, 0.106997f, 0.132355f, 5.79932f, 0.908058f,
-0.905324f, -3.3561f, 0.190647f, 0.184211f, -0.673648f,
0.231807f, -0.0586222f, 0.230752f, -0.438277f, 0.245857f,
-0.17215f, 0.0876383f, -0.720512f, 0.162515f, 0.0170571f,
0.101781f, 0.388477f, 1.32931f, 1.08548f, -0.936301f,
-2.36958f, -6.71988f, -3.44376f, 2.13818f, 14.2318f,
4.91459f, -3.09052f, -9.69191f, -0.768234f, 1.79604f,
0.0549653f, 0.163399f, 0.0797025f, 0.0343933f, -0.0555876f,
-0.00505673f, 0.0187258f, 0.0326628f, 0.0231486f, 0.15573f,
0.0476223f, -0.254824f, 1.60155f, -0.801221f, 2.55496f,
0.737629f, -1.36249f, -0.695463f, -2.44301f, -1.73188f,
3.95279f, 1.89068f, 0.486087f, -11.3343f, 3.9416e+06f,
/* output layer */
-0.381439f, 0.12115f, -0.906927f, 2.93878f, 1.6388f,
0.882811f, 0.874344f, 1.21726f, -0.874545f, 0.321706f,
0.785055f, 0.946558f, -0.575066f, -3.46553f, 0.884905f,
0.0924047f, -9.90712f, 0.391338f, 0.160103f, -2.04954f,
4.1455f, 0.0684029f, -0.144761f, -0.285282f, 0.379244f,
-1.1584f, -0.0277241f, -9.85f, -4.82386f, 3.71333f,
3.87308f, 3.52558f};
static const int topo[3] = {25, 15, 2};
const MLP net = {
3,
topo,
weights
static const opus_int8 layer0_weights[800] = {
-30, -9, 2, -12, 5, -1, 8, 9,
9, 8, -13, 18, -17, -34, -5, 17,
-11, 0, -4, 10, 2, 10, 15, -8,
2, -1, 0, 5, 13, -3, -16, 1,
-5, 3, 7, -28, -13, 6, 36, -3,
19, -60, -17, -28, 7, -11, -30, -7,
2, -42, -21, -3, 6, -22, 33, -9,
7, -30, 21, -14, 24, -11, -20, -18,
-5, -12, 12, -49, -50, -49, 16, 9,
-37, -1, 9, 34, -13, -31, -31, 12,
16, 44, -42, 2, -9, 8, -18, -6,
9, 36, 19, 11, 13, 12, -21, 3,
-28, -12, 3, 33, 25, -14, 11, 1,
-94, -39, 18, -12, -11, -15, -7, 49,
52, 10, -43, 9, 57, 8, 21, -6,
14, -15, 44, -8, 7, -30, -13, -2,
-9, 25, -2, -127, 18, -11, -52, 26,
-27, 27, 10, -10, 7, 43, 6, -24,
41, 10, -18, -27, 10, 17, 9, 10,
-17, -10, 20, -6, 22, 55, 35, -80,
36, 25, -24, -36, 15, 9, -19, 88,
19, 64, -51, -35, 17, 0, -7, 41,
-16, 27, 4, 15, -1, 18, -16, 47,
-39, -54, -8, 13, -25, -20, 102, -18,
-5, 44, 11, -28, 71, 2, -51, -5,
5, 2, -83, -9, -29, 8, 21, -53,
58, -37, -7, 13, 38, 9, 34, -1,
-41, 21, 4, -24, -36, -33, -21, 32,
75, -2, 1, -68, -1, 47, -29, 32,
20, 12, -65, -87, 5, 16, -12, 24,
40, 15, 7, 19, -26, -17, 17, 6,
-2, -37, -30, -9, 32, -127, -39, 0,
-31, -27, 4, -22, 23, -6, -77, 35,
-61, 32, -37, -24, 13, -11, -1, -40,
-3, 17, -7, 13, 11, 59, -19, 10,
6, -18, 0, 13, 3, -6, -23, 19,
11, -17, 13, -1, -80, 40, -53, 69,
-29, -54, 0, -4, 33, -25, -2, 38,
35, 36, -15, 46, 2, -13, -16, -8,
-8, 12, -24, -9, -55, -5, -9, 32,
11, 7, 12, -18, -10, -86, -38, 54,
37, -25, 18, -43, 7, -27, -27, -54,
13, 9, 22, 70, 6, 35, -7, 23,
-15, -44, -6, 7, -66, -85, 32, 40,
-19, -9, -7, 12, -15, 7, 2, 6,
-35, 11, 28, 0, 26, 14, 1, 1,
4, 12, 18, 35, 22, -18, -3, 14,
-1, 7, 14, -8, -14, -3, 4, -3,
-19, -7, -1, -25, -27, 25, -26, -2,
33, -22, -27, -25, 4, -9, 7, 21,
26, -30, 10, -9, -20, 11, 27, 10,
5, -18, 14, -4, 2, -17, -5, -7,
-9, -13, 15, 29, 1, -10, -16, -10,
35, 36, -7, -22, -44, 17, 30, 22,
21, -1, 22, -11, 32, -8, -7, 5,
-10, 5, 30, -20, 29, -20, -34, 12,
-4, -6, 6, -13, 10, -5, -68, -1,
24, 9, 19, -24, -64, 31, 19, 27,
-26, 75, -45, 41, 39, -42, 8, 6,
23, -30, 16, -25, 30, 34, 8, -38,
-3, 18, 16, -31, 22, -4, -9, 1,
20, 9, 38, -32, 0, -45, 0, -6,
-13, 11, -25, -32, -22, 31, -24, -11,
-11, -4, -4, 20, -34, 22, 20, 9,
-25, 27, -5, 28, -29, 29, 6, 21,
-6, -18, 54, 4, -46, 23, 21, -14,
-31, 36, -41, -24, 4, 22, 10, 11,
7, 36, -32, -13, -52, -17, 24, 28,
-37, -36, -1, 24, 9, -38, 35, 48,
18, 2, -1, 45, 10, 39, 24, -38,
13, 8, -16, 8, 25, 11, 7, -29,
-11, 7, 20, -30, -38, -45, 14, -18,
-28, -9, 65, 61, 22, -53, -38, -16,
36, 46, 20, -39, 32, -61, -6, -6,
-36, -33, -18, -28, 56, 101, 45, 11,
-28, -23, -29, -61, 20, -47, 2, 48,
27, -17, 1, 40, 1, 3, -51, 15,
35, 28, 22, 35, 53, -61, -29, 12,
-6, -21, 10, 3, -20, 2, -25, 1,
-6, 31, 11, -3, 1, -10, -52, 6,
126, -105, 122, 127, -128, 127, 127, -128,
127, 108, 12, 127, 48, -128, -36, -128,
127, 127, -128, -128, 127, 89, -128, 127,
-128, -128, -128, 127, 127, -128, -128, -93,
-82, 20, 125, 65, -82, 127, 38, -74,
81, 88, -88, 79, 51, -47, -111, -26,
14, 83, -88, -112, 24, 35, -101, 98,
-99, -48, -45, 46, 83, -60, -79, 45,
-20, -41, 9, 4, 52, 54, 93, -10,
4, 13, 3, 123, 6, 94, -111, -69,
-14, -31, 10, 12, 53, -79, -11, -21,
-2, -44, -72, 92, 65, -57, 56, -38,
127, -56, -128, 127, 127, -128, 86, 117,
-75, -128, 127, -19, -99, -112, 127, -128,
127, -48, 114, 118, -128, -128, 117, -17,
-6, 121, -128, 127, -128, 82, 54, -106,
127, 127, -33, 100, -39, -23, 18, -78,
-34, -29, -1, -30, 127, -26, 127, -128,
126, -128, 27, -23, -79, -120, -127, 127,
72, 66, 29, 7, -66, -56, -117, -128
};
static const opus_int8 layer0_bias[32] = {
51, -16, 1, 13, -5, -6, -16, -7,
11, -6, 106, 26, 28, -14, 21, -29,
7, 18, -18, -17, 21, -17, -9, 20,
-25, -3, -34, 48, 11, -13, -31, -20
};
static const opus_int8 layer1_weights[2304] = {
22, -1, -7, 7, 29, -27, -31, -17,
-13, 33, 44, -8, 11, 33, 24, 78,
15, 19, 30, -2, -24, 5, 49, 5,
36, 29, -14, -11, -48, -33, 21, -42,
-38, -12, 55, -37, 54, -8, 1, 36,
17, 0, 51, 31, 59, 7, -12, 53,
4, 32, -14, 48, 5, -10, -16, -8,
1, -16, -56, -24, -6, 18, -2, 23,
6, 46, -6, -10, 20, 35, -44, -15,
-49, 36, 16, 5, -7, -79, -67, 12,
70, -3, -79, -54, -85, -24, 47, -22,
33, 21, 69, -1, 11, 22, 14, -16,
-16, -22, -28, -11, 11, -41, 31, -26,
-33, -19, -4, 27, 32, -50, 5, -10,
-38, -22, -8, 35, -31, 1, -41, -15,
-11, 44, 28, -17, -41, -23, 17, 2,
-23, -26, -13, -13, -17, 6, 14, -31,
-25, 9, -19, 39, -8, 4, 31, -1,
-45, -11, -28, -92, -46, -15, 21, 118,
-22, 45, -51, 11, -20, -20, -15, 13,
-21, -97, -29, -32, -23, -42, 94, 1,
23, -8, 63, -3, -46, 19, -26, 32,
-40, -74, -26, 26, -4, -13, 30, -20,
-30, -25, -14, -31, -45, -43, 4, -60,
-48, -12, -34, 2, 2, 3, 13, 15,
11, 16, 5, 46, -9, -55, -16, -57,
29, 14, 38, -50, -2, -44, -11, -8,
52, -27, -38, -7, 20, 47, 17, -59,
0, 47, 46, -63, 35, -17, 19, 33,
68, -19, 2, 15, -16, 28, -16, -103,
26, -35, 47, -39, -60, 30, 31, -23,
-52, -13, 116, 47, -25, 30, 40, 30,
-22, 2, 12, -27, -18, 31, -10, 27,
-8, -66, 12, 14, 4, -26, -28, -13,
3, 13, -26, -51, 37, 5, 2, -21,
47, 3, 13, 25, -41, -27, -8, -4,
5, -76, -33, 28, 10, 9, -46, -74,
19, 28, 25, 31, 54, -55, 68, 38,
-24, -32, 2, 4, 68, 11, -1, 99,
5, 16, -2, -74, 40, 26, -26, 33,
31, -1, -68, 14, -6, 25, 9, 29,
60, 61, 7, -7, 0, -24, 7, 77,
4, -1, 16, -7, 13, -15, -19, 28,
-31, -24, -16, 37, 24, 13, 30, 10,
-30, 11, 11, -10, 22, 60, 28, 45,
-3, -40, -62, -5, -102, 9, -32, -27,
-54, 21, 15, -5, 37, -43, -11, 37,
-19, 47, -64, -128, -27, -114, 21, -66,
59, 46, -3, -12, -87, -9, 4, 19,
-113, -36, 78, 57, -26, -38, -77, -10,
6, 6, -75, 25, -97, -11, 33, -46,
1, 13, -21, -33, -20, 16, -6, -3,
-11, -4, -27, 38, 8, -41, -2, -33,
18, 19, -26, 1, -29, -22, -4, -14,
-55, -11, -80, -3, 11, 34, 90, 51,
11, 17, 43, 36, 127, -32, 29, 103,
9, 27, 13, 64, 56, 70, -14, 3,
-12, 10, 37, 3, 12, -22, -10, 46,
28, 10, 20, 26, -24, 18, 9, 7,
14, 34, -5, -7, 31, -14, -56, 11,
-18, -8, -17, -7, -10, -40, 10, -33,
-32, -43, 5, 9, 11, -4, 10, 50,
-12, -5, 46, 9, 7, 1, 11, 15,
91, -17, 7, -50, 23, 6, -30, -99,
0, -17, 14, 8, -10, -25, -30, -69,
-62, 31, 127, 114, -23, 101, -5, -54,
-6, -22, 7, -56, 39, 18, -29, 0,
46, 8, -79, 4, -21, 18, -32, 62,
-12, -8, -12, -58, 31, -32, 17, 6,
-24, 25, 24, 9, -4, -19, 45, 6,
17, -14, 5, -27, 16, -4, -41, 25,
-36, 5, 15, 12, 50, 27, 25, 23,
-44, -69, -9, -19, -48, -8, 4, 12,
-6, 13, -19, -30, -36, 26, 37, -1,
-3, -30, -42, -14, -10, -20, 26, -54,
-27, -44, 4, 73, -26, 90, 32, -69,
-29, -16, 3, 103, 15, -17, 37, 24,
-23, -31, 33, -37, -64, 25, 13, -81,
-28, -32, 27, 5, -35, -23, 15, -22,
19, -7, 9, 30, 19, -23, 27, -13,
43, 29, -29, -6, 9, -40, -33, -33,
-32, 9, 11, -48, -8, -23, -52, 46,
17, -22, -42, 35, -15, -41, 16, 34,
31, -42, -19, -11, 55, 7, -39, 89,
-11, -33, 20, -14, 22, 32, 3, -17,
-6, 14, 34, 1, 55, -21, -90, -8,
18, 27, 13, -29, 21, 15, -33, -51,
-9, -11, 4, -16, -18, 23, -4, -4,
48, 1, 7, 29, -14, -12, -16, 17,
35, 8, 0, -7, -2, 9, 8, 17,
-6, 53, -32, -21, -50, 5, 99, -60,
-5, -53, 10, -31, 12, -5, 7, 80,
36, 18, -31, 9, 98, 36, -63, -35,
4, -13, -28, -24, 28, -13, 18, 16,
-1, -18, -34, 10, 20, 7, 4, 29,
11, 25, -7, 36, 14, 45, 24, 1,
-16, 30, 6, 35, -6, -11, -24, 13,
-1, 27, 39, 20, 48, -11, -4, -13,
28, 11, -31, -18, 31, -29, 22, -2,
-20, -16, 5, 30, -12, -28, -3, 93,
-16, 23, 18, -29, 6, -54, -37, 28,
-3, -3, -47, -3, -36, -55, -3, 41,
-10, 47, -2, 23, 42, -7, -71, -27,
83, -64, 7, -24, 8, 26, -17, 15,
12, 31, -30, -38, -13, -33, -56, 4,
-17, 20, 18, 1, -30, -5, -6, -31,
-14, -37, 0, 22, 10, -30, 37, -17,
18, 6, 5, 23, -36, -32, 14, 18,
-13, -61, -52, -69, 44, -30, 16, 18,
-4, -25, 14, 81, 26, -8, -23, -59,
52, -104, 17, 119, -32, 26, 17, 1,
23, 45, 29, -64, -57, -14, 73, 21,
-13, -13, 9, -68, -7, -52, 3, 24,
-39, 44, -15, 27, 14, 19, -9, -28,
-11, 5, 3, -34, -2, 2, 22, -6,
-23, 4, 3, 13, -22, -13, -10, -18,
29, 6, 44, -13, -24, -8, 2, 30,
14, 43, 6, 17, -73, -6, -7, 20,
-80, -7, -7, -28, 15, -69, -38, -5,
-100, -35, 15, -79, 23, 29, -18, -27,
21, -66, -37, 8, -22, -39, 48, 4,
-13, 1, -9, 11, -29, 22, 6, -49,
32, -14, 47, -18, -4, 44, -52, -74,
43, 30, 23, -14, 5, 0, -27, 4,
-7, 10, -4, 10, 1, -16, 11, -18,
-2, -5, 2, -11, 0, -20, -4, 38,
74, 59, 39, 64, -10, 26, -3, -40,
-68, 3, -30, -51, 8, -19, -27, -46,
51, 52, 54, 36, 90, 92, 14, 13,
-5, 0, 16, -62, 16, 11, -47, -37,
-6, -5, 21, 54, -57, 32, 42, -6,
62, -9, 16, 21, 24, 9, -10, -4,
33, 50, 13, -15, 1, -35, -48, 18,
-11, -17, -67, -13, 21, 38, -44, 36,
-16, 29, 17, 5, -10, 18, 17, -32,
2, 8, 22, -56, -15, -32, 40, 43,
19, 46, -7, -100, -96, 19, 53, 24,
21, -26, -48, -101, -82, 61, 38, -85,
-28, -34, -1, 63, -5, -5, 39, 39,
-38, 32, -12, -28, 20, 40, -8, 2,
31, 12, -35, -13, 20, -25, 30, 8,
3, -13, -9, -20, 2, -13, 24, 37,
-10, 33, 6, 20, -16, -24, -6, -6,
-19, -5, 22, 21, 10, 11, -4, -39,
-1, 6, 49, 41, -15, -57, 21, -62,
77, -69, -13, 0, -74, 1, -7, -38,
-8, 6, 63, 28, 4, 26, -52, 82,
63, 13, 45, -33, 44, -52, -65, -21,
-46, -49, 64, -17, 32, 24, 68, -39,
-16, -5, -26, 28, 5, -61, -28, 2,
24, 11, -12, -33, 9, -37, -3, -28,
22, -37, -12, 19, 0, -18, -2, 14,
1, 4, 8, -9, -2, 43, -17, -2,
-66, -31, 56, -40, -87, -36, -2, -4,
-42, -45, -1, 31, -43, -15, 27, 63,
-11, 32, -10, -33, 27, -19, 4, 15,
-26, -34, 29, -4, -39, -65, 14, -20,
-21, -17, -36, 13, 59, 47, -38, -33,
13, -37, -8, -37, -7, -6, -76, -31,
-12, -46, 7, 24, -21, -30, -14, 9,
15, -12, -13, 47, -27, -25, -1, -39,
0, 20, -9, 6, 7, 4, 3, 7,
39, 50, 22, -7, 14, -20, 1, 70,
-28, 29, -41, 10, -16, -5, -28, -2,
-37, 32, -18, 17, 62, -11, -20, -50,
36, 21, -62, -12, -56, 52, 50, 17,
3, 48, 44, -41, -25, 3, 16, -3,
0, 33, -6, 15, 27, 34, -25, 22,
9, 17, -11, 36, 16, -2, 12, 21,
-52, 45, -2, -10, 46, 21, -18, 67,
-28, -13, 30, 37, 42, 16, -9, 11,
75, 7, -64, -40, -10, 29, 57, -23,
5, 53, -77, 3, -17, -5, 47, -55,
-35, -36, -13, 52, -53, -71, 52, -111,
-23, -26, -28, 29, -43, 55, -19, 43,
-19, 54, -12, -33, -44, -39, -19, -10,
-31, -10, 21, 38, -57, -20, 2, -25,
8, -6, 50, 12, 15, 25, -25, 15,
-30, -6, 9, 25, 37, 19, -4, 31,
-22, 2, 4, 2, 36, 7, 3, -34,
-80, 36, -10, -2, -5, 31, -36, 49,
-70, 20, -36, 21, 24, 25, -46, -51,
36, -58, -48, -40, -10, 55, 71, 47,
10, -1, 1, 2, -46, -68, 16, 13,
0, -74, -29, 73, -52, -18, -11, 7,
-44, -82, -32, -70, -28, -1, -39, -68,
-6, -41, 12, -22, -16, 40, -11, -25,
51, -9, 21, 4, 4, -34, 7, -78,
16, 6, -38, -30, -2, -44, 32, 0,
22, 64, 5, -72, -2, -14, -10, -16,
-8, -25, 12, 102, -58, 37, -10, -23,
15, 49, 7, -7, 2, -20, -32, 45,
-6, 48, 28, 30, 33, -1, 22, -6,
30, 65, -17, 29, 74, 37, -26, -10,
15, -24, 19, -66, 22, -10, -31, -1,
-18, -9, 11, 37, -4, 45, 5, 41,
17, 1, 1, 24, -58, 41, 5, -51,
14, 8, 43, 16, -10, -1, 45, 32,
-64, 3, -33, -25, -3, -27, -68, 12,
23, -11, -13, -37, -40, 4, -21, -12,
32, -23, -19, 76, 41, -23, -24, -44,
-65, -1, -15, 1, 71, 63, 5, 20,
-3, 21, -23, 31, -32, 18, -2, 27,
31, 46, -5, -39, -5, -35, 18, -18,
-40, -10, 3, 12, 2, -2, -22, 40,
5, -6, 60, 36, 3, 29, -27, 10,
25, -54, 5, 26, 39, 35, -24, -37,
30, -91, 28, -4, -21, -27, -39, -6,
5, 12, -128, 38, -16, 29, -95, -29,
82, -2, 35, 2, 12, 8, -22, 10,
80, -47, 2, -25, -73, -79, 16, -30,
-32, -66, 48, 21, -45, -11, -47, 14,
-27, -17, -7, 15, -44, -14, -44, -26,
-32, 26, -23, 17, -7, -28, 26, -6,
28, 6, -26, 2, 13, -14, -23, -14,
19, 46, 16, 2, -33, -21, 28, -17,
-42, 44, -37, 1, -39, 28, 84, -46,
15, 10, 13, -44, 72, -26, 26, 32,
-28, -12, -83, 2, 10, -30, -44, -10,
-28, 53, 45, 65, 0, -25, 57, 36,
-33, 6, 29, 44, -53, 11, 19, -2,
-27, 35, 32, 49, 4, 23, 38, 36,
24, 10, 51, -39, 4, -7, 26, 37,
-35, 11, -47, -18, 28, 16, -35, 42,
17, -21, -41, 28, 14, -12, 11, -45,
7, -43, -15, 18, -5, 38, -40, -50,
-30, -21, 9, -98, 13, 12, 23, 75,
-56, -7, -3, -4, -1, -34, 12, -49,
11, 26, -18, -28, -17, 33, 13, -14,
40, 24, -72, -37, 10, 17, -6, 22,
16, 16, -6, -12, -30, -14, 10, 40,
-23, 12, 15, -3, -15, 13, -56, -4,
-30, 1, -3, -17, 27, 50, -5, 64,
-36, -19, 7, 29, 22, 25, 9, -16,
-58, -69, -40, -61, -71, -14, 42, 93,
26, 11, -6, -58, -11, 70, -52, 19,
9, -30, -33, 11, -37, -47, -21, -22,
-40, 10, 47, 4, -23, 17, 48, 41,
-48, 14, 10, 15, 34, -23, -2, -47,
23, -32, -13, -10, -26, -26, -4, 16,
38, -14, 0, -12, -7, -7, 20, 44,
-1, -32, -27, -16, 4, -6, -18, 14,
5, 4, -29, 28, 7, -7, 15, -11,
-20, -45, -36, 16, 84, 34, -59, -30,
22, 126, 8, 68, 79, -17, 21, -68,
37, 5, 15, 63, 49, 127, -90, 85,
43, 7, 16, 9, 6, -45, -57, -43,
57, 11, -23, -11, -29, 60, -26, 0,
7, 42, -24, 10, 23, -25, 8, -7,
-40, 19, -17, 35, 4, 27, -39, -91,
27, -36, 34, 2, 16, -24, 25, 7,
-21, 5, 17, 10, -22, -30, 9, -17,
-61, -26, 33, 21, 58, -51, -14, 69,
-38, 20, 7, 80, -4, -65, -6, -27,
53, -12, 47, -1, -15, 1, 60, 102,
-79, -4, 12, 9, 22, 37, -8, -4,
37, 2, -3, -15, -16, -11, -5, 19,
-6, -43, 20, -25, -18, 10, -27, 0,
-28, -27, -11, 10, -18, -2, -4, -16,
26, 14, -6, 7, -6, 1, 53, -2,
-29, 23, 9, -30, -6, -4, -6, 56,
70, 0, -33, -20, -17, -9, -24, 46,
-5, -105, 47, -46, -51, 20, 20, -53,
-81, -1, -7, 75, -5, -21, -65, 12,
-52, 22, -50, -12, 49, 54, 76, -81,
10, 45, -41, -59, 18, -19, 25, 14,
-31, -53, -5, 12, 31, 84, -23, 2,
7, 2, 10, -32, 39, -2, -12, 1,
-9, 0, -10, -11, 9, 15, -8, -2,
2, -1, 10, 14, -5, -40, 19, -7,
-7, 26, -4, 2, 1, -27, 35, 32,
21, -31, 26, 43, -9, 4, -32, 40,
-62, -52, 36, 22, 38, 22, 36, -96,
6, -10, -23, -49, 15, -33, -18, -3,
0, 41, 21, -19, 21, 23, -39, -23,
-6, 6, 47, 56, 4, 74, 0, -98,
29, -47, -14, -36, 21, -22, 22, 16,
13, 12, 16, -5, 13, 17, -13, -15,
1, -34, -26, 26, 12, 32, 27, 13,
-67, 27, 2, 8, 10, 18, 16, 20,
-17, -17, 57, -64, 5, 14, 19, 31,
-18, -44, -46, -16, 4, -25, 17, -126,
-24, 39, 4, 8, 55, -25, -34, 39,
-16, 3, 9, 71, 72, -31, -55, 6,
10, -25, 32, -85, -21, 18, -8, 15,
12, -27, -7, 1, -21, -2, -5, 48,
-16, 18, 1, -22, -26, 16, 14, -31,
27, -6, -15, -21, 4, -14, 18, -36
};
static const opus_int8 layer1_recur_weights[1728] = {
20, 67, -99, 12, 41, -25, 49, -44,
35, 81, 110, 47, 34, -66, -14, 14,
-60, 34, 29, -73, 10, 41, 35, 89,
7, -35, 22, 7, 27, -20, -6, 56,
26, 66, 6, 33, -55, 53, 1, -21,
14, 17, 68, 55, 59, 0, 18, -9,
5, -41, 6, -5, -114, -12, 29, 42,
-23, 10, 81, -27, 20, -53, -30, -62,
40, 95, 25, -4, 3, 18, -8, -15,
-29, -82, 2, -57, -3, -61, -29, -29,
49, 2, -55, 5, -69, -99, -49, -51,
6, -25, 12, 89, 44, -33, 5, 41,
1, 23, -37, -37, -28, -48, 3, 4,
-41, -30, -57, -35, -39, -1, -13, -56,
-5, 50, 49, 41, -4, -4, 33, -22,
-1, 33, 34, 18, 40, -42, 12, 1,
-6, -2, 18, 17, 39, 44, 11, 65,
-60, -45, 10, 91, 21, 9, -62, -11,
8, 69, 37, 24, -30, 21, 26, -27,
1, -28, 24, 66, -8, 6, -71, 34,
24, 44, 58, -78, -19, 57, 17, -60,
1, 12, -3, -1, -40, 22, 11, -5,
25, 12, 1, 72, 79, 7, -50, 23,
18, 13, 21, -11, -20, 5, 77, -94,
24, 15, 57, -51, 3, 36, 53, -1,
4, 14, 30, -31, 22, 40, 32, -11,
-34, -36, -59, 58, 25, 21, -54, -23,
40, 46, 18, 0, 12, 54, -96, -99,
-59, 5, 119, -38, 50, 55, 12, -16,
67, 0, 34, 35, 39, 35, -1, 69,
24, 27, -30, -35, -4, -70, 2, -44,
-7, -6, 19, -9, 60, 44, -21, -10,
37, 43, -16, -3, 30, -15, -65, 31,
-55, 18, -98, 76, 64, 25, 24, -18,
-7, -68, -10, 38, 27, -60, 36, 33,
16, 30, 34, -39, -37, 31, 12, 53,
-54, 14, -26, -49, -128, -13, -5, -22,
-11, -85, 55, -8, -51, -11, -33, -10,
-31, -76, -41, 23, 44, -40, -54, -127,
-101, 19, -23, -15, 15, 27, 58, -60,
8, 14, -33, 1, 48, -9, -11, -123,
3, 53, 23, 4, -28, 22, 2, -29,
-67, 36, 12, 7, 55, -21, 88, 20,
-1, -21, -17, 3, 41, 32, -10, -14,
-5, -57, 67, 57, 21, 23, -2, -27,
-73, -24, 120, 21, 18, -35, 42, -7,
3, -45, -25, 76, -34, 50, 11, -54,
-91, 3, -113, -20, -5, 47, 15, -47,
17, 27, -3, -26, -7, 10, 7, 74,
-40, 64, -7, -5, -24, -49, -24, -3,
-10, 27, -17, -8, -3, 14, -27, 33,
13, 39, 28, -7, -38, 29, 16, 44,
19, 55, -3, 9, -13, -57, 43, 43,
31, 0, -93, -17, 19, -56, 4, -12,
-25, 37, -85, -13, -118, 33, -17, 56,
71, -80, -4, 6, -11, -18, 47, -52,
25, 9, 48, -107, 1, 21, 20, -3,
10, -16, -4, 24, 17, 31, -61, -18,
-50, 24, -10, 12, 71, 26, 11, -3,
4, 1, 0, -7, -40, 18, 38, -34,
38, 17, 8, -34, 2, 21, 123, -32,
-26, 43, 14, -34, -1, -9, 37, -16,
6, -17, -62, 68, 22, 17, 11, -75,
33, -80, 62, -9, -75, 76, 36, -41,
-8, -40, -11, -71, 40, -39, 62, -49,
-81, 16, -9, -52, 52, 61, 17, -103,
-27, -10, -8, -54, -57, 21, 23, -16,
-52, 36, 18, 10, -5, 8, 15, -29,
5, -19, -37, 8, -53, 6, 19, -37,
38, -17, 48, 10, 0, 81, 46, 70,
-29, 101, 11, 44, -44, -3, 24, 11,
3, 14, -9, 11, 14, -45, 13, 46,
-3, -57, 68, 44, 63, 98, 25, -28,
-23, 15, 32, -10, 53, -6, -2, -9,
-6, 16, -107, -11, -11, -28, 59, 57,
-22, 38, 42, 83, 27, 5, 29, -30,
12, -21, -13, 31, 38, -21, 58, -10,
-10, -15, -2, -5, 11, 12, -73, -28,
-38, 22, 2, -25, 73, -52, -12, -55,
32, -63, 21, 51, 33, 52, -26, 55,
-26, -26, 57, -32, -4, -52, -61, 21,
-33, -91, -51, 69, -90, -53, -38, -44,
12, -76, -20, 77, -45, -7, 86, 43,
-109, -33, -105, -40, -121, -10, 0, -72,
45, -51, -75, -49, -38, -1, -62, 18,
-1, 30, -44, -14, -10, -67, 40, -10,
-34, 46, -64, -32, 29, -13, 33, 3,
-32, -5, 28, -27, -25, 93, 24, 68,
-40, 57, 23, -3, -21, -58, 17, -39,
-17, -22, -89, 11, 18, -46, 27, 24,
46, 127, 61, 87, 31, 127, -36, 47,
-23, 47, 127, -24, 110, 122, 30, 100,
0, 96, -12, 6, 50, 44, -13, 73,
4, 55, -11, -15, 49, 42, -6, 20,
-35, 58, 18, 38, 42, 72, 19, -21,
11, 9, -37, 7, 29, 31, 16, -17,
13, -50, 19, 5, -23, 51, -16, -5,
4, -24, 76, 10, -53, -28, -7, -65,
74, 40, -16, -29, 32, -16, -49, -35,
-3, 59, -96, -50, -43, -43, -61, -15,
-8, -36, -34, -33, -14, 11, -3, -39,
4, -114, -123, -11, -49, -21, 14, -56,
1, 43, -63, 26, 40, 18, -10, -26,
-14, -15, -35, -35, -11, 32, -44, -67,
2, 22, 7, 3, -9, -30, -51, -28,
28, 6, -22, 16, 34, -25, -52, -54,
-8, -6, 5, 8, 20, -16, -17, -44,
27, 3, 31, -5, -48, -1, -3, 116,
11, 71, -31, -47, 109, 50, -22, -12,
-57, 32, 66, 8, -25, -93, -54, -10,
19, -76, -34, 97, 48, -36, -18, -30,
-39, -26, -12, 28, 14, 12, -12, -31,
38, 2, 10, 4, -40, 20, 16, -61,
2, 64, 39, 5, 15, 33, 40, -61,
-49, 93, -10, 33, 28, -11, -27, -18,
39, -62, -6, -6, 62, 11, -8, 38,
-67, 12, 27, 39, -27, 123, -18, -6,
-65, 83, -64, 20, 19, -11, 33, 24,
17, 56, 78, 7, -15, 54, -101, -9,
115, -96, 50, 51, 35, 34, 27, 37,
-40, -11, 8, -36, 42, -45, 2, -23,
0, 67, -8, -9, -13, 50, -14, -27,
4, 0, -8, -14, 30, -9, 29, 15,
9, -38, 37, -8, 50, -46, 54, 41,
-11, -8, -11, -26, 39, 45, 14, -26,
-17, -27, 69, 38, 39, 98, 66, 0,
42, 123, -101, -19, -83, 117, -32, 56,
10, 12, -88, 79, -53, 56, 63, 95,
-62, 9, 36, -13, -79, -16, 37, -46,
35, -34, 14, 17, -54, 5, 21, -7,
7, 63, 56, 15, 27, -76, -25, 4,
-26, -63, 28, -67, -52, 43, -47, -70,
40, -12, 40, -66, -37, 0, 35, 37,
-53, 4, -17, -51, 11, 21, 14, -34,
-4, 24, -42, 29, 22, 7, 28, 12,
37, 39, -39, -19, 65, -60, -50, -2,
1, 82, 39, 19, -23, -43, -22, -67,
-35, -34, 32, 102, 81, 127, 36, 67,
-45, 1, -67, -52, -4, 35, 20, 28,
71, 86, -35, -9, -83, -34, 12, 9,
-23, 2, 14, 28, -23, 7, -25, 45,
7, 17, -37, 0, -19, 31, 26, 40,
-27, -16, 17, 5, -21, 23, 24, 96,
-55, 52, -19, -14, -6, 1, 50, -34,
86, -53, 38, 2, -52, -36, -13, 60,
-85, -120, 32, 7, -12, 22, 70, -7,
-94, 38, -76, -31, -20, 15, -28, 7,
6, 40, 53, 88, 3, 38, 18, -8,
-22, -23, 51, 37, -9, 13, -32, 25,
-21, 27, 31, 20, 18, -9, -13, 1,
21, -24, -13, 39, 15, -11, -29, -36,
18, 15, 8, 27, 21, -94, -1, -22,
49, 66, -1, 6, -3, -40, -18, 6,
28, 12, 33, -59, 62, 60, -48, 90,
-1, 108, 9, 18, -2, 27, 77, -65,
82, -48, -38, -19, -11, 127, 50, 66,
18, -13, -22, 60, -38, 40, -14, -26,
-13, 38, 67, 57, 30, 33, 26, 36,
38, -17, 27, -28, 20, 12, -64, 18,
5, -33, -27, 13, -26, 32, 35, -5,
-48, -14, 92, 43, -47, -14, 40, 11,
51, 66, 22, -63, -16, -61, 4, -28,
27, 20, -33, -30, -21, -29, -53, 31,
-40, 24, 43, -4, -19, 21, 67, 20,
100, -16, -93, 78, -6, -18, -52, -37,
-9, 66, -31, -8, 26, 18, 4, 24,
-22, 17, -2, -13, 27, 0, 8, -18,
-25, 5, -21, -24, -7, 18, -93, 21,
7, 2, -75, 69, 50, -5, -15, -17,
60, -42, 55, 1, -4, 3, 10, 46,
16, -13, 45, -7, -10, -44, -108, 49,
2, -15, -64, -12, -72, 32, -38, -45,
10, -54, 13, -13, -27, -36, -64, 58,
-62, -101, 88, -86, -71, -39, -9, -128,
32, 15, -4, 54, -16, -39, -26, -36,
46, 48, -64, -10, 19, 30, -13, 34,
-8, 50, 60, -22, -6, -11, -30, 5,
50, 32, 56, 0, 25, 6, 68, 11,
-29, 45, -9, -12, 4, 1, 18, -49,
0, -38, -19, 90, 29, 35, 51, 8,
-48, 96, -1, -12, -9, -32, -63, -65,
-7, 38, 89, 28, -85, -28, -23, -25,
-128, 56, 79, -36, 99, -6, -37, 7,
-13, -69, -46, -29, 25, 64, -21, 17,
1, 42, -66, 1, 80, 26, -32, 21,
15, 15, 6, 6, -10, 15, 127, 5,
38, 27, 87, -57, -25, 11, 72, -21,
-5, 11, -13, -66, 78, 36, -3, 41,
-21, 8, -33, 23, 73, 28, 57, -25,
-5, 4, -22, -47, 15, 4, -57, -72,
33, 1, 18, 2, 53, -71, -99, -21,
-3, -111, 108, 71, -14, 82, 25, 61,
-48, 5, 9, -51, -20, -25, -3, 14,
-33, 14, -3, -34, 22, 12, -19, -38,
-16, 2, 21, 16, 26, -31, 75, 44,
-31, 16, 26, 66, 17, -9, -22, -22,
22, -44, 22, 27, 2, 58, -14, 10,
-73, -42, 55, -25, -61, 72, -1, 30,
-58, -25, 63, 26, -48, -40, 26, -30,
60, 8, -17, -1, -18, -20, 43, -20,
-4, -28, 127, -106, 29, 70, 64, -27,
39, -33, -5, -88, -40, -52, 26, 44,
-17, 23, 2, -49, 22, -9, -8, 86,
49, -43, -60, 1, 10, 45, 36, -53,
-4, 33, 38, 48, -72, 1, 19, 21,
-65, 4, -5, -62, 27, -25, 17, -6,
6, -45, -39, -46, 4, 26, 127, -9,
18, -33, -18, -3, 33, 2, -5, 15,
-26, -22, -117, -63, -17, -59, 61, -74,
7, -47, -58, -128, -67, 15, -16, -128,
12, 2, 20, 9, -48, -40, 43, 3,
-40, -16, -38, -6, -22, -28, -16, -59,
-22, 6, -5, 11, -12, -66, -40, 27,
-62, -44, -19, 38, -3, 39, -8, 40,
-24, 13, 21, 50, -60, -22, 53, -29,
-6, 1, 22, -59, 0, 17, -39, 115
};
static const opus_int8 layer1_bias[72] = {
-42, 20, 16, 0, 105, 60, 1, -97,
24, 60, 18, 13, 62, 25, 127, 34,
79, 55, 118, 127, 95, 31, -4, 87,
21, 12, 2, -14, 18, 23, 8, 17,
-1, -8, 5, 4, 24, 37, 21, 13,
36, 13, 17, 18, 37, 30, 33, 1,
8, -16, -11, -5, -31, -3, -5, 0,
6, 3, 58, -7, -1, -16, 5, -13,
16, 10, -2, -14, 11, -4, 3, -11
};
static const opus_int8 layer2_weights[48] = {
-113, -88, 31, -128, -126, -61, 85, -35,
118, -128, -61, 127, -128, -17, -128, 127,
104, -9, -128, 33, 45, 127, 5, 83,
84, -128, -85, -128, -45, 48, -53, -128,
46, 127, -17, 125, 117, -41, -117, -91,
-127, -68, -1, -89, -80, 32, 106, 7
};
static const opus_int8 layer2_bias[2] = {
14, 117
};
const DenseLayer layer0 = {
layer0_bias,
layer0_weights,
25, 32, 0
};
const GRULayer layer1 = {
layer1_bias,
layer1_weights,
layer1_recur_weights,
32, 24
};
const DenseLayer layer2 = {
layer2_bias,
layer2_weights,
24, 2, 1
};

View File

@ -107,7 +107,7 @@ OPUS_EXPORT void opus_pcm_soft_clip(float *_x, int N, int C, float *declip_mem)
/* Slightly boost "a" by 2^-22. This is just enough to ensure -ffast-math
does not cause output values larger than +/-1, but small enough not
to matter even for 24-bit output. */
a += a*2.4e-7;
a += a*2.4e-7f;
if (x[i*C]>0)
a = -a;
/* Apply soft clipping */
@ -252,7 +252,7 @@ int opus_packet_parse_impl(const unsigned char *data, opus_int32 len,
/* Number of frames encoded in bits 0 to 5 */
ch = *data++;
count = ch&0x3F;
if (count <= 0 || framesize*count > 5760)
if (count <= 0 || framesize*(opus_int32)count > 5760)
return OPUS_INVALID_PACKET;
len--;
/* Padding flag is bit 6 */

View File

@ -531,7 +531,7 @@ OPUS_EXPORT int opus_packet_parse(
const unsigned char *frames[48],
opus_int16 size[48],
int *payload_offset
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(5);
/** Gets the bandwidth of an Opus packet.
* @param [in] data <tt>char*</tt>: Opus packet

View File

@ -165,8 +165,13 @@ extern "C" {
#define OPUS_GET_EXPERT_FRAME_DURATION_REQUEST 4041
#define OPUS_SET_PREDICTION_DISABLED_REQUEST 4042
#define OPUS_GET_PREDICTION_DISABLED_REQUEST 4043
/* Don't use 4045, it's already taken by OPUS_GET_GAIN_REQUEST */
#define OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST 4046
#define OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST 4047
#define OPUS_GET_IN_DTX_REQUEST 4049
/** Defines for the presence of extended APIs. */
#define OPUS_HAVE_OPUS_PROJECTION_H
/* Macros to trigger compilation errors when the wrong types are provided to a CTL */
#define __opus_check_int(x) (((void)((x) == (opus_int32)0)), (opus_int32)(x))
@ -208,6 +213,9 @@ extern "C" {
#define OPUS_FRAMESIZE_20_MS 5004 /**< Use 20 ms frames */
#define OPUS_FRAMESIZE_40_MS 5005 /**< Use 40 ms frames */
#define OPUS_FRAMESIZE_60_MS 5006 /**< Use 60 ms frames */
#define OPUS_FRAMESIZE_80_MS 5007 /**< Use 80 ms frames */
#define OPUS_FRAMESIZE_100_MS 5008 /**< Use 100 ms frames */
#define OPUS_FRAMESIZE_120_MS 5009 /**< Use 120 ms frames */
/**@}*/
@ -566,7 +574,9 @@ extern "C" {
* <dt>OPUS_FRAMESIZE_20_MS</dt><dd>Use 20 ms frames.</dd>
* <dt>OPUS_FRAMESIZE_40_MS</dt><dd>Use 40 ms frames.</dd>
* <dt>OPUS_FRAMESIZE_60_MS</dt><dd>Use 60 ms frames.</dd>
* <dt>OPUS_FRAMESIZE_VARIABLE</dt><dd>Optimize the frame size dynamically.</dd>
* <dt>OPUS_FRAMESIZE_80_MS</dt><dd>Use 80 ms frames.</dd>
* <dt>OPUS_FRAMESIZE_100_MS</dt><dd>Use 100 ms frames.</dd>
* <dt>OPUS_FRAMESIZE_120_MS</dt><dd>Use 120 ms frames.</dd>
* </dl>
* @hideinitializer */
#define OPUS_SET_EXPERT_FRAME_DURATION(x) OPUS_SET_EXPERT_FRAME_DURATION_REQUEST, __opus_check_int(x)
@ -581,7 +591,9 @@ extern "C" {
* <dt>OPUS_FRAMESIZE_20_MS</dt><dd>Use 20 ms frames.</dd>
* <dt>OPUS_FRAMESIZE_40_MS</dt><dd>Use 40 ms frames.</dd>
* <dt>OPUS_FRAMESIZE_60_MS</dt><dd>Use 60 ms frames.</dd>
* <dt>OPUS_FRAMESIZE_VARIABLE</dt><dd>Optimize the frame size dynamically.</dd>
* <dt>OPUS_FRAMESIZE_80_MS</dt><dd>Use 80 ms frames.</dd>
* <dt>OPUS_FRAMESIZE_100_MS</dt><dd>Use 100 ms frames.</dd>
* <dt>OPUS_FRAMESIZE_120_MS</dt><dd>Use 120 ms frames.</dd>
* </dl>
* @hideinitializer */
#define OPUS_GET_EXPERT_FRAME_DURATION(x) OPUS_GET_EXPERT_FRAME_DURATION_REQUEST, __opus_check_int_ptr(x)
@ -681,6 +693,40 @@ extern "C" {
*/
#define OPUS_GET_SAMPLE_RATE(x) OPUS_GET_SAMPLE_RATE_REQUEST, __opus_check_int_ptr(x)
/** If set to 1, disables the use of phase inversion for intensity stereo,
* improving the quality of mono downmixes, but slightly reducing normal
* stereo quality. Disabling phase inversion in the decoder does not comply
* with RFC 6716, although it does not cause any interoperability issue and
* is expected to become part of the Opus standard once RFC 6716 is updated
* by draft-ietf-codec-opus-update.
* @see OPUS_GET_PHASE_INVERSION_DISABLED
* @param[in] x <tt>opus_int32</tt>: Allowed values:
* <dl>
* <dt>0</dt><dd>Enable phase inversion (default).</dd>
* <dt>1</dt><dd>Disable phase inversion.</dd>
* </dl>
* @hideinitializer */
#define OPUS_SET_PHASE_INVERSION_DISABLED(x) OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST, __opus_check_int(x)
/** Gets the encoder's configured phase inversion status.
* @see OPUS_SET_PHASE_INVERSION_DISABLED
* @param[out] x <tt>opus_int32 *</tt>: Returns one of the following values:
* <dl>
* <dt>0</dt><dd>Stereo phase inversion enabled (default).</dd>
* <dt>1</dt><dd>Stereo phase inversion disabled.</dd>
* </dl>
* @hideinitializer */
#define OPUS_GET_PHASE_INVERSION_DISABLED(x) OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST, __opus_check_int_ptr(x)
/** Gets the DTX state of the encoder.
* Returns whether the last encoded frame was either a comfort noise update
* during DTX or not encoded because of DTX.
* @param[out] x <tt>opus_int32 *</tt>: Returns one of the following values:
* <dl>
* <dt>0</dt><dd>The encoder is not in DTX.</dd>
* <dt>1</dt><dd>The encoder is in DTX.</dd>
* </dl>
* @hideinitializer */
#define OPUS_GET_IN_DTX(x) OPUS_GET_IN_DTX_REQUEST, __opus_check_int_ptr(x)
/**@}*/
/** @defgroup opus_decoderctls Decoder related CTLs

View File

@ -273,7 +273,7 @@ OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusMSEncoder *opus_multistream_surround_enc
unsigned char *mapping,
int application,
int *error
) OPUS_ARG_NONNULL(5);
) OPUS_ARG_NONNULL(4) OPUS_ARG_NONNULL(5) OPUS_ARG_NONNULL(6);
/** Initialize a previously allocated multistream encoder state.
* The memory pointed to by \a st must be at least the size returned by
@ -342,7 +342,7 @@ OPUS_EXPORT int opus_multistream_surround_encoder_init(
int *coupled_streams,
unsigned char *mapping,
int application
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(6);
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(5) OPUS_ARG_NONNULL(6) OPUS_ARG_NONNULL(7);
/** Encodes a multistream Opus frame.
* @param st <tt>OpusMSEncoder*</tt>: Multistream encoder state.

568
thirdparty/opus/opus/opus_projection.h vendored Normal file
View File

@ -0,0 +1,568 @@
/* Copyright (c) 2017 Google Inc.
Written by Andrew Allen */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file opus_projection.h
* @brief Opus projection reference API
*/
#ifndef OPUS_PROJECTION_H
#define OPUS_PROJECTION_H
#include "opus_multistream.h"
#ifdef __cplusplus
extern "C" {
#endif
/** @cond OPUS_INTERNAL_DOC */
/** These are the actual encoder and decoder CTL ID numbers.
* They should not be used directly by applications.c
* In general, SETs should be even and GETs should be odd.*/
/**@{*/
#define OPUS_PROJECTION_GET_DEMIXING_MATRIX_GAIN_REQUEST 6001
#define OPUS_PROJECTION_GET_DEMIXING_MATRIX_SIZE_REQUEST 6003
#define OPUS_PROJECTION_GET_DEMIXING_MATRIX_REQUEST 6005
/**@}*/
/** @endcond */
/** @defgroup opus_projection_ctls Projection specific encoder and decoder CTLs
*
* These are convenience macros that are specific to the
* opus_projection_encoder_ctl() and opus_projection_decoder_ctl()
* interface.
* The CTLs from @ref opus_genericctls, @ref opus_encoderctls,
* @ref opus_decoderctls, and @ref opus_multistream_ctls may be applied to a
* projection encoder or decoder as well.
*/
/**@{*/
/** Gets the gain (in dB. S7.8-format) of the demixing matrix from the encoder.
* @param[out] x <tt>opus_int32 *</tt>: Returns the gain (in dB. S7.8-format)
* of the demixing matrix.
* @hideinitializer
*/
#define OPUS_PROJECTION_GET_DEMIXING_MATRIX_GAIN(x) OPUS_PROJECTION_GET_DEMIXING_MATRIX_GAIN_REQUEST, __opus_check_int_ptr(x)
/** Gets the size in bytes of the demixing matrix from the encoder.
* @param[out] x <tt>opus_int32 *</tt>: Returns the size in bytes of the
* demixing matrix.
* @hideinitializer
*/
#define OPUS_PROJECTION_GET_DEMIXING_MATRIX_SIZE(x) OPUS_PROJECTION_GET_DEMIXING_MATRIX_SIZE_REQUEST, __opus_check_int_ptr(x)
/** Copies the demixing matrix to the supplied pointer location.
* @param[out] x <tt>unsigned char *</tt>: Returns the demixing matrix to the
* supplied pointer location.
* @param y <tt>opus_int32</tt>: The size in bytes of the reserved memory at the
* pointer location.
* @hideinitializer
*/
#define OPUS_PROJECTION_GET_DEMIXING_MATRIX(x,y) OPUS_PROJECTION_GET_DEMIXING_MATRIX_REQUEST, x, __opus_check_int(y)
/**@}*/
/** Opus projection encoder state.
* This contains the complete state of a projection Opus encoder.
* It is position independent and can be freely copied.
* @see opus_projection_ambisonics_encoder_create
*/
typedef struct OpusProjectionEncoder OpusProjectionEncoder;
/** Opus projection decoder state.
* This contains the complete state of a projection Opus decoder.
* It is position independent and can be freely copied.
* @see opus_projection_decoder_create
* @see opus_projection_decoder_init
*/
typedef struct OpusProjectionDecoder OpusProjectionDecoder;
/**\name Projection encoder functions */
/**@{*/
/** Gets the size of an OpusProjectionEncoder structure.
* @param channels <tt>int</tt>: The total number of input channels to encode.
* This must be no more than 255.
* @param mapping_family <tt>int</tt>: The mapping family to use for selecting
* the appropriate projection.
* @returns The size in bytes on success, or a negative error code
* (see @ref opus_errorcodes) on error.
*/
OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_projection_ambisonics_encoder_get_size(
int channels,
int mapping_family
);
/** Allocates and initializes a projection encoder state.
* Call opus_projection_encoder_destroy() to release
* this object when finished.
* @param Fs <tt>opus_int32</tt>: Sampling rate of the input signal (in Hz).
* This must be one of 8000, 12000, 16000,
* 24000, or 48000.
* @param channels <tt>int</tt>: Number of channels in the input signal.
* This must be at most 255.
* It may be greater than the number of
* coded channels (<code>streams +
* coupled_streams</code>).
* @param mapping_family <tt>int</tt>: The mapping family to use for selecting
* the appropriate projection.
* @param[out] streams <tt>int *</tt>: The total number of streams that will
* be encoded from the input.
* @param[out] coupled_streams <tt>int *</tt>: Number of coupled (2 channel)
* streams that will be encoded from the input.
* @param application <tt>int</tt>: The target encoder application.
* This must be one of the following:
* <dl>
* <dt>#OPUS_APPLICATION_VOIP</dt>
* <dd>Process signal for improved speech intelligibility.</dd>
* <dt>#OPUS_APPLICATION_AUDIO</dt>
* <dd>Favor faithfulness to the original input.</dd>
* <dt>#OPUS_APPLICATION_RESTRICTED_LOWDELAY</dt>
* <dd>Configure the minimum possible coding delay by disabling certain modes
* of operation.</dd>
* </dl>
* @param[out] error <tt>int *</tt>: Returns #OPUS_OK on success, or an error
* code (see @ref opus_errorcodes) on
* failure.
*/
OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusProjectionEncoder *opus_projection_ambisonics_encoder_create(
opus_int32 Fs,
int channels,
int mapping_family,
int *streams,
int *coupled_streams,
int application,
int *error
) OPUS_ARG_NONNULL(4) OPUS_ARG_NONNULL(5);
/** Initialize a previously allocated projection encoder state.
* The memory pointed to by \a st must be at least the size returned by
* opus_projection_ambisonics_encoder_get_size().
* This is intended for applications which use their own allocator instead of
* malloc.
* To reset a previously initialized state, use the #OPUS_RESET_STATE CTL.
* @see opus_projection_ambisonics_encoder_create
* @see opus_projection_ambisonics_encoder_get_size
* @param st <tt>OpusProjectionEncoder*</tt>: Projection encoder state to initialize.
* @param Fs <tt>opus_int32</tt>: Sampling rate of the input signal (in Hz).
* This must be one of 8000, 12000, 16000,
* 24000, or 48000.
* @param channels <tt>int</tt>: Number of channels in the input signal.
* This must be at most 255.
* It may be greater than the number of
* coded channels (<code>streams +
* coupled_streams</code>).
* @param streams <tt>int</tt>: The total number of streams to encode from the
* input.
* This must be no more than the number of channels.
* @param coupled_streams <tt>int</tt>: Number of coupled (2 channel) streams
* to encode.
* This must be no larger than the total
* number of streams.
* Additionally, The total number of
* encoded channels (<code>streams +
* coupled_streams</code>) must be no
* more than the number of input channels.
* @param application <tt>int</tt>: The target encoder application.
* This must be one of the following:
* <dl>
* <dt>#OPUS_APPLICATION_VOIP</dt>
* <dd>Process signal for improved speech intelligibility.</dd>
* <dt>#OPUS_APPLICATION_AUDIO</dt>
* <dd>Favor faithfulness to the original input.</dd>
* <dt>#OPUS_APPLICATION_RESTRICTED_LOWDELAY</dt>
* <dd>Configure the minimum possible coding delay by disabling certain modes
* of operation.</dd>
* </dl>
* @returns #OPUS_OK on success, or an error code (see @ref opus_errorcodes)
* on failure.
*/
OPUS_EXPORT int opus_projection_ambisonics_encoder_init(
OpusProjectionEncoder *st,
opus_int32 Fs,
int channels,
int mapping_family,
int *streams,
int *coupled_streams,
int application
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(5) OPUS_ARG_NONNULL(6);
/** Encodes a projection Opus frame.
* @param st <tt>OpusProjectionEncoder*</tt>: Projection encoder state.
* @param[in] pcm <tt>const opus_int16*</tt>: The input signal as interleaved
* samples.
* This must contain
* <code>frame_size*channels</code>
* samples.
* @param frame_size <tt>int</tt>: Number of samples per channel in the input
* signal.
* This must be an Opus frame size for the
* encoder's sampling rate.
* For example, at 48 kHz the permitted values
* are 120, 240, 480, 960, 1920, and 2880.
* Passing in a duration of less than 10 ms
* (480 samples at 48 kHz) will prevent the
* encoder from using the LPC or hybrid modes.
* @param[out] data <tt>unsigned char*</tt>: Output payload.
* This must contain storage for at
* least \a max_data_bytes.
* @param [in] max_data_bytes <tt>opus_int32</tt>: Size of the allocated
* memory for the output
* payload. This may be
* used to impose an upper limit on
* the instant bitrate, but should
* not be used as the only bitrate
* control. Use #OPUS_SET_BITRATE to
* control the bitrate.
* @returns The length of the encoded packet (in bytes) on success or a
* negative error code (see @ref opus_errorcodes) on failure.
*/
OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_projection_encode(
OpusProjectionEncoder *st,
const opus_int16 *pcm,
int frame_size,
unsigned char *data,
opus_int32 max_data_bytes
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4);
/** Encodes a projection Opus frame from floating point input.
* @param st <tt>OpusProjectionEncoder*</tt>: Projection encoder state.
* @param[in] pcm <tt>const float*</tt>: The input signal as interleaved
* samples with a normal range of
* +/-1.0.
* Samples with a range beyond +/-1.0
* are supported but will be clipped by
* decoders using the integer API and
* should only be used if it is known
* that the far end supports extended
* dynamic range.
* This must contain
* <code>frame_size*channels</code>
* samples.
* @param frame_size <tt>int</tt>: Number of samples per channel in the input
* signal.
* This must be an Opus frame size for the
* encoder's sampling rate.
* For example, at 48 kHz the permitted values
* are 120, 240, 480, 960, 1920, and 2880.
* Passing in a duration of less than 10 ms
* (480 samples at 48 kHz) will prevent the
* encoder from using the LPC or hybrid modes.
* @param[out] data <tt>unsigned char*</tt>: Output payload.
* This must contain storage for at
* least \a max_data_bytes.
* @param [in] max_data_bytes <tt>opus_int32</tt>: Size of the allocated
* memory for the output
* payload. This may be
* used to impose an upper limit on
* the instant bitrate, but should
* not be used as the only bitrate
* control. Use #OPUS_SET_BITRATE to
* control the bitrate.
* @returns The length of the encoded packet (in bytes) on success or a
* negative error code (see @ref opus_errorcodes) on failure.
*/
OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_projection_encode_float(
OpusProjectionEncoder *st,
const float *pcm,
int frame_size,
unsigned char *data,
opus_int32 max_data_bytes
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4);
/** Frees an <code>OpusProjectionEncoder</code> allocated by
* opus_projection_ambisonics_encoder_create().
* @param st <tt>OpusProjectionEncoder*</tt>: Projection encoder state to be freed.
*/
OPUS_EXPORT void opus_projection_encoder_destroy(OpusProjectionEncoder *st);
/** Perform a CTL function on a projection Opus encoder.
*
* Generally the request and subsequent arguments are generated by a
* convenience macro.
* @param st <tt>OpusProjectionEncoder*</tt>: Projection encoder state.
* @param request This and all remaining parameters should be replaced by one
* of the convenience macros in @ref opus_genericctls,
* @ref opus_encoderctls, @ref opus_multistream_ctls, or
* @ref opus_projection_ctls
* @see opus_genericctls
* @see opus_encoderctls
* @see opus_multistream_ctls
* @see opus_projection_ctls
*/
OPUS_EXPORT int opus_projection_encoder_ctl(OpusProjectionEncoder *st, int request, ...) OPUS_ARG_NONNULL(1);
/**@}*/
/**\name Projection decoder functions */
/**@{*/
/** Gets the size of an <code>OpusProjectionDecoder</code> structure.
* @param channels <tt>int</tt>: The total number of output channels.
* This must be no more than 255.
* @param streams <tt>int</tt>: The total number of streams coded in the
* input.
* This must be no more than 255.
* @param coupled_streams <tt>int</tt>: Number streams to decode as coupled
* (2 channel) streams.
* This must be no larger than the total
* number of streams.
* Additionally, The total number of
* coded channels (<code>streams +
* coupled_streams</code>) must be no
* more than 255.
* @returns The size in bytes on success, or a negative error code
* (see @ref opus_errorcodes) on error.
*/
OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_projection_decoder_get_size(
int channels,
int streams,
int coupled_streams
);
/** Allocates and initializes a projection decoder state.
* Call opus_projection_decoder_destroy() to release
* this object when finished.
* @param Fs <tt>opus_int32</tt>: Sampling rate to decode at (in Hz).
* This must be one of 8000, 12000, 16000,
* 24000, or 48000.
* @param channels <tt>int</tt>: Number of channels to output.
* This must be at most 255.
* It may be different from the number of coded
* channels (<code>streams +
* coupled_streams</code>).
* @param streams <tt>int</tt>: The total number of streams coded in the
* input.
* This must be no more than 255.
* @param coupled_streams <tt>int</tt>: Number of streams to decode as coupled
* (2 channel) streams.
* This must be no larger than the total
* number of streams.
* Additionally, The total number of
* coded channels (<code>streams +
* coupled_streams</code>) must be no
* more than 255.
* @param[in] demixing_matrix <tt>const unsigned char[demixing_matrix_size]</tt>: Demixing matrix
* that mapping from coded channels to output channels,
* as described in @ref opus_projection and
* @ref opus_projection_ctls.
* @param demixing_matrix_size <tt>opus_int32</tt>: The size in bytes of the
* demixing matrix, as
* described in @ref
* opus_projection_ctls.
* @param[out] error <tt>int *</tt>: Returns #OPUS_OK on success, or an error
* code (see @ref opus_errorcodes) on
* failure.
*/
OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusProjectionDecoder *opus_projection_decoder_create(
opus_int32 Fs,
int channels,
int streams,
int coupled_streams,
unsigned char *demixing_matrix,
opus_int32 demixing_matrix_size,
int *error
) OPUS_ARG_NONNULL(5);
/** Intialize a previously allocated projection decoder state object.
* The memory pointed to by \a st must be at least the size returned by
* opus_projection_decoder_get_size().
* This is intended for applications which use their own allocator instead of
* malloc.
* To reset a previously initialized state, use the #OPUS_RESET_STATE CTL.
* @see opus_projection_decoder_create
* @see opus_projection_deocder_get_size
* @param st <tt>OpusProjectionDecoder*</tt>: Projection encoder state to initialize.
* @param Fs <tt>opus_int32</tt>: Sampling rate to decode at (in Hz).
* This must be one of 8000, 12000, 16000,
* 24000, or 48000.
* @param channels <tt>int</tt>: Number of channels to output.
* This must be at most 255.
* It may be different from the number of coded
* channels (<code>streams +
* coupled_streams</code>).
* @param streams <tt>int</tt>: The total number of streams coded in the
* input.
* This must be no more than 255.
* @param coupled_streams <tt>int</tt>: Number of streams to decode as coupled
* (2 channel) streams.
* This must be no larger than the total
* number of streams.
* Additionally, The total number of
* coded channels (<code>streams +
* coupled_streams</code>) must be no
* more than 255.
* @param[in] demixing_matrix <tt>const unsigned char[demixing_matrix_size]</tt>: Demixing matrix
* that mapping from coded channels to output channels,
* as described in @ref opus_projection and
* @ref opus_projection_ctls.
* @param demixing_matrix_size <tt>opus_int32</tt>: The size in bytes of the
* demixing matrix, as
* described in @ref
* opus_projection_ctls.
* @returns #OPUS_OK on success, or an error code (see @ref opus_errorcodes)
* on failure.
*/
OPUS_EXPORT int opus_projection_decoder_init(
OpusProjectionDecoder *st,
opus_int32 Fs,
int channels,
int streams,
int coupled_streams,
unsigned char *demixing_matrix,
opus_int32 demixing_matrix_size
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(6);
/** Decode a projection Opus packet.
* @param st <tt>OpusProjectionDecoder*</tt>: Projection decoder state.
* @param[in] data <tt>const unsigned char*</tt>: Input payload.
* Use a <code>NULL</code>
* pointer to indicate packet
* loss.
* @param len <tt>opus_int32</tt>: Number of bytes in payload.
* @param[out] pcm <tt>opus_int16*</tt>: Output signal, with interleaved
* samples.
* This must contain room for
* <code>frame_size*channels</code>
* samples.
* @param frame_size <tt>int</tt>: The number of samples per channel of
* available space in \a pcm.
* If this is less than the maximum packet duration
* (120 ms; 5760 for 48kHz), this function will not be capable
* of decoding some packets. In the case of PLC (data==NULL)
* or FEC (decode_fec=1), then frame_size needs to be exactly
* the duration of audio that is missing, otherwise the
* decoder will not be in the optimal state to decode the
* next incoming packet. For the PLC and FEC cases, frame_size
* <b>must</b> be a multiple of 2.5 ms.
* @param decode_fec <tt>int</tt>: Flag (0 or 1) to request that any in-band
* forward error correction data be decoded.
* If no such data is available, the frame is
* decoded as if it were lost.
* @returns Number of samples decoded on success or a negative error code
* (see @ref opus_errorcodes) on failure.
*/
OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_projection_decode(
OpusProjectionDecoder *st,
const unsigned char *data,
opus_int32 len,
opus_int16 *pcm,
int frame_size,
int decode_fec
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
/** Decode a projection Opus packet with floating point output.
* @param st <tt>OpusProjectionDecoder*</tt>: Projection decoder state.
* @param[in] data <tt>const unsigned char*</tt>: Input payload.
* Use a <code>NULL</code>
* pointer to indicate packet
* loss.
* @param len <tt>opus_int32</tt>: Number of bytes in payload.
* @param[out] pcm <tt>opus_int16*</tt>: Output signal, with interleaved
* samples.
* This must contain room for
* <code>frame_size*channels</code>
* samples.
* @param frame_size <tt>int</tt>: The number of samples per channel of
* available space in \a pcm.
* If this is less than the maximum packet duration
* (120 ms; 5760 for 48kHz), this function will not be capable
* of decoding some packets. In the case of PLC (data==NULL)
* or FEC (decode_fec=1), then frame_size needs to be exactly
* the duration of audio that is missing, otherwise the
* decoder will not be in the optimal state to decode the
* next incoming packet. For the PLC and FEC cases, frame_size
* <b>must</b> be a multiple of 2.5 ms.
* @param decode_fec <tt>int</tt>: Flag (0 or 1) to request that any in-band
* forward error correction data be decoded.
* If no such data is available, the frame is
* decoded as if it were lost.
* @returns Number of samples decoded on success or a negative error code
* (see @ref opus_errorcodes) on failure.
*/
OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_projection_decode_float(
OpusProjectionDecoder *st,
const unsigned char *data,
opus_int32 len,
float *pcm,
int frame_size,
int decode_fec
) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
/** Perform a CTL function on a projection Opus decoder.
*
* Generally the request and subsequent arguments are generated by a
* convenience macro.
* @param st <tt>OpusProjectionDecoder*</tt>: Projection decoder state.
* @param request This and all remaining parameters should be replaced by one
* of the convenience macros in @ref opus_genericctls,
* @ref opus_decoderctls, @ref opus_multistream_ctls, or
* @ref opus_projection_ctls.
* @see opus_genericctls
* @see opus_decoderctls
* @see opus_multistream_ctls
* @see opus_projection_ctls
*/
OPUS_EXPORT int opus_projection_decoder_ctl(OpusProjectionDecoder *st, int request, ...) OPUS_ARG_NONNULL(1);
/** Frees an <code>OpusProjectionDecoder</code> allocated by
* opus_projection_decoder_create().
* @param st <tt>OpusProjectionDecoder</tt>: Projection decoder state to be freed.
*/
OPUS_EXPORT void opus_projection_decoder_destroy(OpusProjectionDecoder *st);
/**@}*/
/**@}*/
#ifdef __cplusplus
}
#endif
#endif /* OPUS_PROJECTION_H */

View File

@ -33,14 +33,29 @@
#ifndef OPUS_TYPES_H
#define OPUS_TYPES_H
/* Use the real stdint.h if it's there (taken from Paul Hsieh's pstdint.h) */
#if (defined(__STDC__) && __STDC__ && __STDC_VERSION__ >= 199901L) || (defined(__GNUC__) && (defined(_STDINT_H) || defined(_STDINT_H_)) || defined (HAVE_STDINT_H))
#include <stdint.h>
#define opus_int int /* used for counters etc; at least 16 bits */
#define opus_int64 long long
#define opus_int8 signed char
#define opus_uint unsigned int /* used for counters etc; at least 16 bits */
#define opus_uint64 unsigned long long
#define opus_uint8 unsigned char
/* Use the real stdint.h if it's there (taken from Paul Hsieh's pstdint.h) */
#if (defined(__STDC__) && __STDC__ && defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || (defined(__GNUC__) && (defined(_STDINT_H) || defined(_STDINT_H_)) || defined (HAVE_STDINT_H))
#include <stdint.h>
# undef opus_int64
# undef opus_int8
# undef opus_uint64
# undef opus_uint8
typedef int8_t opus_int8;
typedef uint8_t opus_uint8;
typedef int16_t opus_int16;
typedef uint16_t opus_uint16;
typedef int32_t opus_int32;
typedef uint32_t opus_uint32;
typedef int64_t opus_int64;
typedef uint64_t opus_uint64;
#elif defined(_WIN32)
# if defined(__CYGWIN__)
@ -148,12 +163,4 @@
#endif
#define opus_int int /* used for counters etc; at least 16 bits */
#define opus_int64 long long
#define opus_int8 signed char
#define opus_uint unsigned int /* used for counters etc; at least 16 bits */
#define opus_uint64 unsigned long long
#define opus_uint8 unsigned char
#endif /* OPUS_TYPES_H */

View File

@ -239,7 +239,8 @@ struct OpusHead{
-32768...32767.
The <tt>libopusfile</tt> API will automatically apply this gain to the
decoded output before returning it, scaling it by
<code>pow(10,output_gain/(20.0*256))</code>.*/
<code>pow(10,output_gain/(20.0*256))</code>.
You can adjust this behavior with op_set_gain_offset().*/
int output_gain;
/**The channel mapping family, in the range 0...255.
Channel mapping family 0 covers mono or stereo in a single stream.
@ -1154,16 +1155,18 @@ OP_WARN_UNUSED_RESULT OggOpusFile *op_open_url(const char *_url,
int *_error,...) OP_ARG_NONNULL(1);
/**Open a stream using the given set of callbacks to access it.
\param _source The stream to read from (e.g., a <code>FILE *</code>).
\param _stream The stream to read from (e.g., a <code>FILE *</code>).
This value will be passed verbatim as the first
argument to all of the callbacks.
\param _cb The callbacks with which to access the stream.
<code><a href="#op_read_func">read()</a></code> must
be implemented.
<code><a href="#op_seek_func">seek()</a></code> and
<code><a href="#op_tell_func">tell()</a></code> may
be <code>NULL</code>, or may always return -1 to
indicate a source is unseekable, but if
indicate a stream is unseekable, but if
<code><a href="#op_seek_func">seek()</a></code> is
implemented and succeeds on a particular source, then
implemented and succeeds on a particular stream, then
<code><a href="#op_tell_func">tell()</a></code> must
also.
<code><a href="#op_close_func">close()</a></code> may
@ -1226,11 +1229,11 @@ OP_WARN_UNUSED_RESULT OggOpusFile *op_open_url(const char *_url,
basic validity checks.</dd>
</dl>
\return A freshly opened \c OggOpusFile, or <code>NULL</code> on error.
<tt>libopusfile</tt> does <em>not</em> take ownership of the source
<tt>libopusfile</tt> does <em>not</em> take ownership of the stream
if the call fails.
The calling application is responsible for closing the source if
The calling application is responsible for closing the stream if
this call returns an error.*/
OP_WARN_UNUSED_RESULT OggOpusFile *op_open_callbacks(void *_source,
OP_WARN_UNUSED_RESULT OggOpusFile *op_open_callbacks(void *_stream,
const OpusFileCallbacks *_cb,const unsigned char *_initial_data,
size_t _initial_bytes,int *_error) OP_ARG_NONNULL(2);
@ -1332,18 +1335,20 @@ OP_WARN_UNUSED_RESULT OggOpusFile *op_test_url(const char *_url,
For new code, you are likely better off using op_test() instead, which
is less resource-intensive, requires less data to succeed, and imposes a
hard limit on the amount of data it examines (important for unseekable
sources, where all such data must be buffered until you are sure of the
streams, where all such data must be buffered until you are sure of the
stream type).
\param _source The stream to read from (e.g., a <code>FILE *</code>).
\param _stream The stream to read from (e.g., a <code>FILE *</code>).
This value will be passed verbatim as the first
argument to all of the callbacks.
\param _cb The callbacks with which to access the stream.
<code><a href="#op_read_func">read()</a></code> must
be implemented.
<code><a href="#op_seek_func">seek()</a></code> and
<code><a href="#op_tell_func">tell()</a></code> may
be <code>NULL</code>, or may always return -1 to
indicate a source is unseekable, but if
indicate a stream is unseekable, but if
<code><a href="#op_seek_func">seek()</a></code> is
implemented and succeeds on a particular source, then
implemented and succeeds on a particular stream, then
<code><a href="#op_tell_func">tell()</a></code> must
also.
<code><a href="#op_close_func">close()</a></code> may
@ -1373,11 +1378,11 @@ OP_WARN_UNUSED_RESULT OggOpusFile *op_test_url(const char *_url,
See op_open_callbacks() for a full list of failure
codes.
\return A partially opened \c OggOpusFile, or <code>NULL</code> on error.
<tt>libopusfile</tt> does <em>not</em> take ownership of the source
<tt>libopusfile</tt> does <em>not</em> take ownership of the stream
if the call fails.
The calling application is responsible for closing the source if
The calling application is responsible for closing the stream if
this call returns an error.*/
OP_WARN_UNUSED_RESULT OggOpusFile *op_test_callbacks(void *_source,
OP_WARN_UNUSED_RESULT OggOpusFile *op_test_callbacks(void *_stream,
const OpusFileCallbacks *_cb,const unsigned char *_initial_data,
size_t _initial_bytes,int *_error) OP_ARG_NONNULL(2);
@ -1434,7 +1439,7 @@ void op_free(OggOpusFile *_of);
Their documention will indicate so explicitly.*/
/*@{*/
/**Returns whether or not the data source being read is seekable.
/**Returns whether or not the stream being read is seekable.
This is true if
<ol>
<li>The <code><a href="#op_seek_func">seek()</a></code> and
@ -1455,9 +1460,9 @@ int op_seekable(const OggOpusFile *_of) OP_ARG_NONNULL(1);
return 1.
The actual number of links is not known until the stream is fully opened.
\param _of The \c OggOpusFile from which to retrieve the link count.
\return For fully-open seekable sources, this returns the total number of
\return For fully-open seekable streams, this returns the total number of
links in the whole stream, which will be at least 1.
For partially-open or unseekable sources, this always returns 1.*/
For partially-open or unseekable streams, this always returns 1.*/
int op_link_count(const OggOpusFile *_of) OP_ARG_NONNULL(1);
/**Get the serial number of the given link in a (possibly-chained) Ogg Opus
@ -1471,7 +1476,7 @@ int op_link_count(const OggOpusFile *_of) OP_ARG_NONNULL(1);
\return The serial number of the given link.
If \a _li is greater than the total number of links, this returns
the serial number of the last link.
If the source is not seekable, this always returns the serial number
If the stream is not seekable, this always returns the serial number
of the current link.*/
opus_uint32 op_serialno(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1);
@ -1488,7 +1493,7 @@ opus_uint32 op_serialno(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1);
\return The channel count of the given link.
If \a _li is greater than the total number of links, this returns
the channel count of the last link.
If the source is not seekable, this always returns the channel count
If the stream is not seekable, this always returns the channel count
of the current link.*/
int op_channel_count(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1);
@ -1507,9 +1512,9 @@ int op_channel_count(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1);
compressed size of link \a _li if it is non-negative, or a negative
value on error.
The compressed size of the entire stream may be smaller than that
of the underlying source if trailing garbage was detected in the
of the underlying stream if trailing garbage was detected in the
file.
\retval #OP_EINVAL The source is not seekable (so we can't know the length),
\retval #OP_EINVAL The stream is not seekable (so we can't know the length),
\a _li wasn't less than the total number of links in
the stream, or the stream was only partially open.*/
opus_int64 op_raw_total(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1);
@ -1527,7 +1532,7 @@ opus_int64 op_raw_total(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1);
\return The PCM length of the entire stream if \a _li is negative, the PCM
length of link \a _li if it is non-negative, or a negative value on
error.
\retval #OP_EINVAL The source is not seekable (so we can't know the length),
\retval #OP_EINVAL The stream is not seekable (so we can't know the length),
\a _li wasn't less than the total number of links in
the stream, or the stream was only partially open.*/
ogg_int64_t op_pcm_total(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1);
@ -1575,8 +1580,8 @@ const OpusTags *op_tags(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1);
\param _of The \c OggOpusFile from which to retrieve the current link index.
\return The index of the current link on success, or a negative value on
failure.
For seekable streams, this is a number between 0 and the value
returned by op_link_count().
For seekable streams, this is a number between 0 (inclusive) and the
value returned by op_link_count() (exclusive).
For unseekable streams, this value starts at 0 and increments by one
each time a new link is encountered (even though op_link_count()
always returns 1).
@ -1640,10 +1645,10 @@ ogg_int64_t op_pcm_tell(const OggOpusFile *_of) OP_ARG_NONNULL(1);
/*@{*/
/**\name Functions for seeking in Opus streams
These functions let you seek in Opus streams, if the underlying source
These functions let you seek in Opus streams, if the underlying stream
support it.
Seeking is implemented for all built-in stream I/O routines, though some
individual sources may not be seekable (pipes, live HTTP streams, or HTTP
individual streams may not be seekable (pipes, live HTTP streams, or HTTP
streams from a server that does not support <code>Range</code> requests).
op_raw_seek() is the fastest: it is guaranteed to perform at most one
@ -1670,6 +1675,8 @@ ogg_int64_t op_pcm_tell(const OggOpusFile *_of) OP_ARG_NONNULL(1);
packets out of the tail of the link to which it seeks.
\param _of The \c OggOpusFile in which to seek.
\param _byte_offset The byte position to seek to.
This must be between 0 and #op_raw_total(\a _of,\c -1)
(inclusive).
\return 0 on success, or a negative error code on failure.
\retval #OP_EREAD The underlying seek operation failed.
\retval #OP_EINVAL The stream was only partially open, or the target was

View File

@ -363,6 +363,9 @@ int main(int _argc,const char **_argv){
Ef*=Ef;
err+=Ef*Ef;
}
free(xb);
free(X);
free(Y);
err=pow(err/nframes,1.0/16);
Q=100*(1-0.5*log(1+err)/log(1.13));
if(Q<0){

View File

@ -78,6 +78,26 @@ struct OpusDecoder {
opus_uint32 rangeFinal;
};
#if defined(ENABLE_HARDENING) || defined(ENABLE_ASSERTIONS)
static void validate_opus_decoder(OpusDecoder *st)
{
celt_assert(st->channels == 1 || st->channels == 2);
celt_assert(st->Fs == 48000 || st->Fs == 24000 || st->Fs == 16000 || st->Fs == 12000 || st->Fs == 8000);
celt_assert(st->DecControl.API_sampleRate == st->Fs);
celt_assert(st->DecControl.internalSampleRate == 0 || st->DecControl.internalSampleRate == 16000 || st->DecControl.internalSampleRate == 12000 || st->DecControl.internalSampleRate == 8000);
celt_assert(st->DecControl.nChannelsAPI == st->channels);
celt_assert(st->DecControl.nChannelsInternal == 0 || st->DecControl.nChannelsInternal == 1 || st->DecControl.nChannelsInternal == 2);
celt_assert(st->DecControl.payloadSize_ms == 0 || st->DecControl.payloadSize_ms == 10 || st->DecControl.payloadSize_ms == 20 || st->DecControl.payloadSize_ms == 40 || st->DecControl.payloadSize_ms == 60);
#ifdef OPUS_ARCHMASK
celt_assert(st->arch >= 0);
celt_assert(st->arch <= OPUS_ARCHMASK);
#endif
celt_assert(st->stream_channels == 1 || st->stream_channels == 2);
}
#define VALIDATE_OPUS_DECODER(st) validate_opus_decoder(st)
#else
#define VALIDATE_OPUS_DECODER(st)
#endif
int opus_decoder_get_size(int channels)
{
@ -104,7 +124,7 @@ int opus_decoder_init(OpusDecoder *st, opus_int32 Fs, int channels)
return OPUS_BAD_ARG;
OPUS_CLEAR((char*)st, opus_decoder_get_size(channels));
/* Initialize SILK encoder */
/* Initialize SILK decoder */
ret = silk_Get_Decoder_Size(&silkDecSizeBytes);
if (ret)
return OPUS_INTERNAL_ERROR;
@ -217,6 +237,7 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data,
int audiosize;
int mode;
int bandwidth;
int transition=0;
int start_band;
int redundancy=0;
@ -253,10 +274,12 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data,
{
audiosize = st->frame_size;
mode = st->mode;
bandwidth = st->bandwidth;
ec_dec_init(&dec,(unsigned char*)data,len);
} else {
audiosize = frame_size;
mode = st->prev_mode;
bandwidth = 0;
if (mode == 0)
{
@ -355,15 +378,15 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data,
{
st->DecControl.nChannelsInternal = st->stream_channels;
if( mode == MODE_SILK_ONLY ) {
if( st->bandwidth == OPUS_BANDWIDTH_NARROWBAND ) {
if( bandwidth == OPUS_BANDWIDTH_NARROWBAND ) {
st->DecControl.internalSampleRate = 8000;
} else if( st->bandwidth == OPUS_BANDWIDTH_MEDIUMBAND ) {
} else if( bandwidth == OPUS_BANDWIDTH_MEDIUMBAND ) {
st->DecControl.internalSampleRate = 12000;
} else if( st->bandwidth == OPUS_BANDWIDTH_WIDEBAND ) {
} else if( bandwidth == OPUS_BANDWIDTH_WIDEBAND ) {
st->DecControl.internalSampleRate = 16000;
} else {
st->DecControl.internalSampleRate = 16000;
silk_assert( 0 );
celt_assert( 0 );
}
} else {
/* Hybrid mode */
@ -427,29 +450,6 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data,
if (mode != MODE_CELT_ONLY)
start_band = 17;
{
int endband=21;
switch(st->bandwidth)
{
case OPUS_BANDWIDTH_NARROWBAND:
endband = 13;
break;
case OPUS_BANDWIDTH_MEDIUMBAND:
case OPUS_BANDWIDTH_WIDEBAND:
endband = 17;
break;
case OPUS_BANDWIDTH_SUPERWIDEBAND:
endband = 19;
break;
case OPUS_BANDWIDTH_FULLBAND:
endband = 21;
break;
}
celt_decoder_ctl(celt_dec, CELT_SET_END_BAND(endband));
celt_decoder_ctl(celt_dec, CELT_SET_CHANNELS(st->stream_channels));
}
if (redundancy)
{
transition = 0;
@ -464,6 +464,34 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data,
opus_decode_frame(st, NULL, 0, pcm_transition, IMIN(F5, audiosize), 0);
}
if (bandwidth)
{
int endband=21;
switch(bandwidth)
{
case OPUS_BANDWIDTH_NARROWBAND:
endband = 13;
break;
case OPUS_BANDWIDTH_MEDIUMBAND:
case OPUS_BANDWIDTH_WIDEBAND:
endband = 17;
break;
case OPUS_BANDWIDTH_SUPERWIDEBAND:
endband = 19;
break;
case OPUS_BANDWIDTH_FULLBAND:
endband = 21;
break;
default:
celt_assert(0);
break;
}
MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_END_BAND(endband)));
}
MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_CHANNELS(st->stream_channels)));
/* Only allocation memory for redundancy if/when needed */
redundant_audio_size = redundancy ? F5*st->channels : ALLOC_NONE;
ALLOC(redundant_audio, redundant_audio_size, opus_val16);
@ -471,21 +499,21 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data,
/* 5 ms redundant frame for CELT->SILK*/
if (redundancy && celt_to_silk)
{
celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0));
MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0)));
celt_decode_with_ec(celt_dec, data+len, redundancy_bytes,
redundant_audio, F5, NULL, 0);
celt_decoder_ctl(celt_dec, OPUS_GET_FINAL_RANGE(&redundant_rng));
MUST_SUCCEED(celt_decoder_ctl(celt_dec, OPUS_GET_FINAL_RANGE(&redundant_rng)));
}
/* MUST be after PLC */
celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(start_band));
MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(start_band)));
if (mode != MODE_SILK_ONLY)
{
int celt_frame_size = IMIN(F20, frame_size);
/* Make sure to discard any previous CELT state */
if (mode != st->prev_mode && st->prev_mode > 0 && !st->prev_redundancy)
celt_decoder_ctl(celt_dec, OPUS_RESET_STATE);
MUST_SUCCEED(celt_decoder_ctl(celt_dec, OPUS_RESET_STATE));
/* Decode CELT */
celt_ret = celt_decode_with_ec(celt_dec, decode_fec ? NULL : data,
len, pcm, celt_frame_size, &dec, celt_accum);
@ -500,7 +528,7 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data,
do a fade-out by decoding a silence frame */
if (st->prev_mode == MODE_HYBRID && !(redundancy && celt_to_silk && st->prev_redundancy) )
{
celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0));
MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0)));
celt_decode_with_ec(celt_dec, silence, 2, pcm, F2_5, NULL, celt_accum);
}
}
@ -518,18 +546,18 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data,
{
const CELTMode *celt_mode;
celt_decoder_ctl(celt_dec, CELT_GET_MODE(&celt_mode));
MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_GET_MODE(&celt_mode)));
window = celt_mode->window;
}
/* 5 ms redundant frame for SILK->CELT */
if (redundancy && !celt_to_silk)
{
celt_decoder_ctl(celt_dec, OPUS_RESET_STATE);
celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0));
MUST_SUCCEED(celt_decoder_ctl(celt_dec, OPUS_RESET_STATE));
MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0)));
celt_decode_with_ec(celt_dec, data+len, redundancy_bytes, redundant_audio, F5, NULL, 0);
celt_decoder_ctl(celt_dec, OPUS_GET_FINAL_RANGE(&redundant_rng));
MUST_SUCCEED(celt_decoder_ctl(celt_dec, OPUS_GET_FINAL_RANGE(&redundant_rng)));
smooth_fade(pcm+st->channels*(frame_size-F2_5), redundant_audio+st->channels*F2_5,
pcm+st->channels*(frame_size-F2_5), F2_5, st->channels, window, st->Fs);
}
@ -605,6 +633,7 @@ int opus_decode_native(OpusDecoder *st, const unsigned char *data,
int packet_frame_size, packet_bandwidth, packet_mode, packet_stream_channels;
/* 48 x 2.5 ms = 120 ms */
opus_int16 size[48];
VALIDATE_OPUS_DECODER(st);
if (decode_fec<0 || decode_fec>1)
return OPUS_BAD_ARG;
/* For FEC/PLC, frame_size has to be to have a multiple of 2.5 ms */
@ -740,6 +769,7 @@ int opus_decode_float(OpusDecoder *st, const unsigned char *data,
else
return OPUS_INVALID_PACKET;
}
celt_assert(st->channels == 1 || st->channels == 2);
ALLOC(out, frame_size*st->channels, opus_int16);
ret = opus_decode_native(st, data, len, out, frame_size, decode_fec, 0, NULL, 0);
@ -777,6 +807,7 @@ int opus_decode(OpusDecoder *st, const unsigned char *data,
else
return OPUS_INVALID_PACKET;
}
celt_assert(st->channels == 1 || st->channels == 2);
ALLOC(out, frame_size*st->channels, float);
ret = opus_decode_native(st, data, len, out, frame_size, decode_fec, 0, NULL, 1);
@ -864,7 +895,7 @@ int opus_decoder_ctl(OpusDecoder *st, int request, ...)
goto bad_arg;
}
if (st->prev_mode == MODE_CELT_ONLY)
celt_decoder_ctl(celt_dec, OPUS_GET_PITCH(value));
ret = celt_decoder_ctl(celt_dec, OPUS_GET_PITCH(value));
else
*value = st->DecControl.prevPitchLag;
}
@ -891,7 +922,7 @@ int opus_decoder_ctl(OpusDecoder *st, int request, ...)
break;
case OPUS_GET_LAST_PACKET_DURATION_REQUEST:
{
opus_uint32 *value = va_arg(ap, opus_uint32*);
opus_int32 *value = va_arg(ap, opus_int32*);
if (!value)
{
goto bad_arg;
@ -899,6 +930,26 @@ int opus_decoder_ctl(OpusDecoder *st, int request, ...)
*value = st->last_packet_duration;
}
break;
case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST:
{
opus_int32 value = va_arg(ap, opus_int32);
if(value<0 || value>1)
{
goto bad_arg;
}
ret = celt_decoder_ctl(celt_dec, OPUS_SET_PHASE_INVERSION_DISABLED(value));
}
break;
case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST:
{
opus_int32 *value = va_arg(ap, opus_int32*);
if (!value)
{
goto bad_arg;
}
ret = celt_decoder_ctl(celt_dec, OPUS_GET_PHASE_INVERSION_DISABLED(value));
}
break;
default:
/*fprintf(stderr, "unknown opus_decoder_ctl() request: %d", request);*/
ret = OPUS_UNIMPLEMENTED;

File diff suppressed because it is too large Load Diff

View File

@ -37,16 +37,19 @@
#include "float_cast.h"
#include "os_support.h"
struct OpusMSDecoder {
ChannelLayout layout;
/* Decoder states go here */
};
/* DECODER */
#if defined(ENABLE_HARDENING) || defined(ENABLE_ASSERTIONS)
static void validate_ms_decoder(OpusMSDecoder *st)
{
validate_layout(&st->layout);
}
#define VALIDATE_MS_DECODER(st) validate_ms_decoder(st)
#else
#define VALIDATE_MS_DECODER(st)
#endif
opus_int32 opus_multistream_decoder_get_size(int nb_streams, int nb_coupled_streams)
{
int coupled_size;
@ -143,15 +146,6 @@ OpusMSDecoder *opus_multistream_decoder_create(
return st;
}
typedef void (*opus_copy_channel_out_func)(
void *dst,
int dst_stride,
int dst_channel,
const opus_val16 *src,
int src_stride,
int frame_size
);
static int opus_multistream_packet_validate(const unsigned char *data,
opus_int32 len, int nb_streams, opus_int32 Fs)
{
@ -181,7 +175,7 @@ static int opus_multistream_packet_validate(const unsigned char *data,
return samples;
}
static int opus_multistream_decode_native(
int opus_multistream_decode_native(
OpusMSDecoder *st,
const unsigned char *data,
opus_int32 len,
@ -189,7 +183,8 @@ static int opus_multistream_decode_native(
opus_copy_channel_out_func copy_channel_out,
int frame_size,
int decode_fec,
int soft_clip
int soft_clip,
void *user_data
)
{
opus_int32 Fs;
@ -201,8 +196,14 @@ static int opus_multistream_decode_native(
VARDECL(opus_val16, buf);
ALLOC_STACK;
VALIDATE_MS_DECODER(st);
if (frame_size <= 0)
{
RESTORE_STACK;
return OPUS_BAD_ARG;
}
/* Limit frame_size to avoid excessive stack allocations. */
opus_multistream_decoder_ctl(st, OPUS_GET_SAMPLE_RATE(&Fs));
MUST_SUCCEED(opus_multistream_decoder_ctl(st, OPUS_GET_SAMPLE_RATE(&Fs)));
frame_size = IMIN(frame_size, Fs/25*3);
ALLOC(buf, 2*frame_size, opus_val16);
ptr = (char*)st + align(sizeof(OpusMSDecoder));
@ -237,7 +238,8 @@ static int opus_multistream_decode_native(
for (s=0;s<st->layout.nb_streams;s++)
{
OpusDecoder *dec;
int packet_offset, ret;
opus_int32 packet_offset;
int ret;
dec = (OpusDecoder*)ptr;
ptr += (s < st->layout.nb_coupled_streams) ? align(coupled_size) : align(mono_size);
@ -265,7 +267,7 @@ static int opus_multistream_decode_native(
while ( (chan = get_left_channel(&st->layout, s, prev)) != -1)
{
(*copy_channel_out)(pcm, st->layout.nb_channels, chan,
buf, 2, frame_size);
buf, 2, frame_size, user_data);
prev = chan;
}
prev = -1;
@ -273,7 +275,7 @@ static int opus_multistream_decode_native(
while ( (chan = get_right_channel(&st->layout, s, prev)) != -1)
{
(*copy_channel_out)(pcm, st->layout.nb_channels, chan,
buf+1, 2, frame_size);
buf+1, 2, frame_size, user_data);
prev = chan;
}
} else {
@ -283,7 +285,7 @@ static int opus_multistream_decode_native(
while ( (chan = get_mono_channel(&st->layout, s, prev)) != -1)
{
(*copy_channel_out)(pcm, st->layout.nb_channels, chan,
buf, 1, frame_size);
buf, 1, frame_size, user_data);
prev = chan;
}
}
@ -294,7 +296,7 @@ static int opus_multistream_decode_native(
if (st->layout.mapping[c] == 255)
{
(*copy_channel_out)(pcm, st->layout.nb_channels, c,
NULL, 0, frame_size);
NULL, 0, frame_size, user_data);
}
}
RESTORE_STACK;
@ -308,11 +310,13 @@ static void opus_copy_channel_out_float(
int dst_channel,
const opus_val16 *src,
int src_stride,
int frame_size
int frame_size,
void *user_data
)
{
float *float_dst;
opus_int32 i;
(void)user_data;
float_dst = (float*)dst;
if (src != NULL)
{
@ -337,11 +341,13 @@ static void opus_copy_channel_out_short(
int dst_channel,
const opus_val16 *src,
int src_stride,
int frame_size
int frame_size,
void *user_data
)
{
opus_int16 *short_dst;
opus_int32 i;
(void)user_data;
short_dst = (opus_int16*)dst;
if (src != NULL)
{
@ -372,7 +378,7 @@ int opus_multistream_decode(
)
{
return opus_multistream_decode_native(st, data, len,
pcm, opus_copy_channel_out_short, frame_size, decode_fec, 0);
pcm, opus_copy_channel_out_short, frame_size, decode_fec, 0, NULL);
}
#ifndef DISABLE_FLOAT_API
@ -380,7 +386,7 @@ int opus_multistream_decode_float(OpusMSDecoder *st, const unsigned char *data,
opus_int32 len, float *pcm, int frame_size, int decode_fec)
{
return opus_multistream_decode_native(st, data, len,
pcm, opus_copy_channel_out_float, frame_size, decode_fec, 0);
pcm, opus_copy_channel_out_float, frame_size, decode_fec, 0, NULL);
}
#endif
@ -390,32 +396,30 @@ int opus_multistream_decode(OpusMSDecoder *st, const unsigned char *data,
opus_int32 len, opus_int16 *pcm, int frame_size, int decode_fec)
{
return opus_multistream_decode_native(st, data, len,
pcm, opus_copy_channel_out_short, frame_size, decode_fec, 1);
pcm, opus_copy_channel_out_short, frame_size, decode_fec, 1, NULL);
}
int opus_multistream_decode_float(
OpusMSDecoder *st,
const unsigned char *data,
opus_int32 len,
float *pcm,
opus_val16 *pcm,
int frame_size,
int decode_fec
)
{
return opus_multistream_decode_native(st, data, len,
pcm, opus_copy_channel_out_float, frame_size, decode_fec, 0);
pcm, opus_copy_channel_out_float, frame_size, decode_fec, 0, NULL);
}
#endif
int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...)
int opus_multistream_decoder_ctl_va_list(OpusMSDecoder *st, int request,
va_list ap)
{
va_list ap;
int coupled_size, mono_size;
char *ptr;
int ret = OPUS_OK;
va_start(ap, request);
coupled_size = opus_decoder_get_size(2);
mono_size = opus_decoder_get_size(1);
ptr = (char*)st + align(sizeof(OpusMSDecoder));
@ -425,6 +429,7 @@ int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...)
case OPUS_GET_SAMPLE_RATE_REQUEST:
case OPUS_GET_GAIN_REQUEST:
case OPUS_GET_LAST_PACKET_DURATION_REQUEST:
case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST:
{
OpusDecoder *dec;
/* For int32* GET params, just query the first stream */
@ -482,7 +487,7 @@ int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...)
OpusDecoder **value;
stream_id = va_arg(ap, opus_int32);
if (stream_id<0 || stream_id >= st->layout.nb_streams)
ret = OPUS_BAD_ARG;
goto bad_arg;
value = va_arg(ap, OpusDecoder**);
if (!value)
{
@ -499,6 +504,7 @@ int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...)
}
break;
case OPUS_SET_GAIN_REQUEST:
case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST:
{
int s;
/* This works for int32 params */
@ -522,14 +528,20 @@ int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...)
ret = OPUS_UNIMPLEMENTED;
break;
}
va_end(ap);
return ret;
bad_arg:
va_end(ap);
return OPUS_BAD_ARG;
}
int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...)
{
int ret;
va_list ap;
va_start(ap, request);
ret = opus_multistream_decoder_ctl_va_list(st, request, ap);
va_end(ap);
return ret;
}
void opus_multistream_decoder_destroy(OpusMSDecoder *st)
{

View File

@ -61,38 +61,6 @@ static const VorbisLayout vorbis_mappings[8] = {
{5, 3, {0, 6, 1, 2, 3, 4, 5, 7}}, /* 8: 7.1 surround */
};
typedef void (*opus_copy_channel_in_func)(
opus_val16 *dst,
int dst_stride,
const void *src,
int src_stride,
int src_channel,
int frame_size
);
typedef enum {
MAPPING_TYPE_NONE,
MAPPING_TYPE_SURROUND
#ifdef ENABLE_EXPERIMENTAL_AMBISONICS
, /* Do not include comma at end of enumerator list */
MAPPING_TYPE_AMBISONICS
#endif
} MappingType;
struct OpusMSEncoder {
ChannelLayout layout;
int arch;
int lfe_stream;
int application;
int variable_duration;
MappingType mapping_type;
opus_int32 bitrate_bps;
float subframe_mem[3];
/* Encoder states go here */
/* then opus_val32 window_mem[channels*120]; */
/* then opus_val32 preemph_mem[channels]; */
};
static opus_val32 *ms_get_preemph_mem(OpusMSEncoder *st)
{
int s;
@ -133,6 +101,29 @@ static opus_val32 *ms_get_window_mem(OpusMSEncoder *st)
return (opus_val32*)(void*)ptr;
}
static int validate_ambisonics(int nb_channels, int *nb_streams, int *nb_coupled_streams)
{
int order_plus_one;
int acn_channels;
int nondiegetic_channels;
if (nb_channels < 1 || nb_channels > 227)
return 0;
order_plus_one = isqrt32(nb_channels);
acn_channels = order_plus_one * order_plus_one;
nondiegetic_channels = nb_channels - acn_channels;
if (nondiegetic_channels != 0 && nondiegetic_channels != 2)
return 0;
if (nb_streams)
*nb_streams = acn_channels + (nondiegetic_channels != 0);
if (nb_coupled_streams)
*nb_coupled_streams = nondiegetic_channels != 0;
return 1;
}
static int validate_encoder_layout(const ChannelLayout *layout)
{
int s;
@ -240,6 +231,7 @@ void surround_analysis(const CELTMode *celt_mode, const void *pcm, opus_val16 *b
int pos[8] = {0};
int upsample;
int frame_size;
int freq_size;
opus_val16 channel_offset;
opus_val32 bandE[21];
opus_val16 maskLogE[3][21];
@ -250,6 +242,7 @@ void surround_analysis(const CELTMode *celt_mode, const void *pcm, opus_val16 *b
upsample = resampling_factor(rate);
frame_size = len*upsample;
freq_size = IMIN(960, frame_size);
/* LM = log2(frame_size / 120) */
for (LM=0;LM<celt_mode->maxLM;LM++)
@ -258,7 +251,7 @@ void surround_analysis(const CELTMode *celt_mode, const void *pcm, opus_val16 *b
ALLOC(in, frame_size+overlap, opus_val32);
ALLOC(x, len, opus_val16);
ALLOC(freq, frame_size, opus_val32);
ALLOC(freq, freq_size, opus_val32);
channel_pos(channels, pos);
@ -268,8 +261,11 @@ void surround_analysis(const CELTMode *celt_mode, const void *pcm, opus_val16 *b
for (c=0;c<channels;c++)
{
int frame;
int nb_frames = frame_size/freq_size;
celt_assert(nb_frames*freq_size == frame_size);
OPUS_COPY(in, mem+c*overlap, overlap);
(*copy_channel_in)(x, 1, pcm, channels, c, len);
(*copy_channel_in)(x, 1, pcm, channels, c, len, NULL);
celt_preemphasis(x, in+overlap, frame_size, 1, upsample, celt_mode->preemph, preemph_mem+c, 0);
#ifndef FIXED_POINT
{
@ -284,18 +280,26 @@ void surround_analysis(const CELTMode *celt_mode, const void *pcm, opus_val16 *b
}
}
#endif
clt_mdct_forward(&celt_mode->mdct, in, freq, celt_mode->window,
overlap, celt_mode->maxLM-LM, 1, arch);
if (upsample != 1)
OPUS_CLEAR(bandE, 21);
for (frame=0;frame<nb_frames;frame++)
{
int bound = len;
for (i=0;i<bound;i++)
freq[i] *= upsample;
for (;i<frame_size;i++)
freq[i] = 0;
}
opus_val32 tmpE[21];
clt_mdct_forward(&celt_mode->mdct, in+960*frame, freq, celt_mode->window,
overlap, celt_mode->maxLM-LM, 1, arch);
if (upsample != 1)
{
int bound = freq_size/upsample;
for (i=0;i<bound;i++)
freq[i] *= upsample;
for (;i<freq_size;i++)
freq[i] = 0;
}
compute_band_energies(celt_mode, freq, bandE, 21, 1, LM);
compute_band_energies(celt_mode, freq, tmpE, 21, 1, LM, arch);
/* If we have multiple frames, take the max energy. */
for (i=0;i<21;i++)
bandE[i] = MAX32(bandE[i], tmpE[i]);
}
amp2Log2(celt_mode, 21, 21, bandE, bandLogE+21*c, 1);
/* Apply spreading function with -6 dB/band going up and -12 dB/band going down. */
for (i=1;i<21;i++)
@ -408,12 +412,10 @@ opus_int32 opus_multistream_surround_encoder_get_size(int channels, int mapping_
{
nb_streams=channels;
nb_coupled_streams=0;
#ifdef ENABLE_EXPERIMENTAL_AMBISONICS
} else if (mapping_family==254)
} else if (mapping_family==2)
{
nb_streams=channels;
nb_coupled_streams=0;
#endif
if (!validate_ambisonics(channels, &nb_streams, &nb_coupled_streams))
return 0;
} else
return 0;
size = opus_multistream_encoder_get_size(nb_streams, nb_coupled_streams);
@ -448,7 +450,6 @@ static int opus_multistream_encoder_init_impl(
st->layout.nb_channels = channels;
st->layout.nb_streams = streams;
st->layout.nb_coupled_streams = coupled_streams;
st->subframe_mem[0]=st->subframe_mem[1]=st->subframe_mem[2]=0;
if (mapping_type != MAPPING_TYPE_SURROUND)
st->lfe_stream = -1;
st->bitrate_bps = OPUS_AUTO;
@ -456,7 +457,13 @@ static int opus_multistream_encoder_init_impl(
st->variable_duration = OPUS_FRAMESIZE_ARG;
for (i=0;i<st->layout.nb_channels;i++)
st->layout.mapping[i] = mapping[i];
if (!validate_layout(&st->layout) || !validate_encoder_layout(&st->layout))
if (!validate_layout(&st->layout))
return OPUS_BAD_ARG;
if (mapping_type == MAPPING_TYPE_SURROUND &&
!validate_encoder_layout(&st->layout))
return OPUS_BAD_ARG;
if (mapping_type == MAPPING_TYPE_AMBISONICS &&
!validate_ambisonics(st->layout.nb_channels, NULL, NULL))
return OPUS_BAD_ARG;
ptr = (char*)st + align(sizeof(OpusMSEncoder));
coupled_size = opus_encoder_get_size(2);
@ -549,25 +556,23 @@ int opus_multistream_surround_encoder_init(
*coupled_streams=0;
for(i=0;i<channels;i++)
mapping[i] = i;
#ifdef ENABLE_EXPERIMENTAL_AMBISONICS
} else if (mapping_family==254)
} else if (mapping_family==2)
{
int i;
*streams=channels;
*coupled_streams=0;
for(i=0;i<channels;i++)
mapping[i] = i;
#endif
if (!validate_ambisonics(channels, streams, coupled_streams))
return OPUS_BAD_ARG;
for(i = 0; i < (*streams - *coupled_streams); i++)
mapping[i] = i + (*coupled_streams * 2);
for(i = 0; i < *coupled_streams * 2; i++)
mapping[i + (*streams - *coupled_streams)] = i;
} else
return OPUS_UNIMPLEMENTED;
if (channels>2 && mapping_family==1) {
mapping_type = MAPPING_TYPE_SURROUND;
#ifdef ENABLE_EXPERIMENTAL_AMBISONICS
} else if (mapping_family==254)
} else if (mapping_family==2)
{
mapping_type = MAPPING_TYPE_AMBISONICS;
#endif
} else
{
mapping_type = MAPPING_TYPE_NONE;
@ -672,62 +677,62 @@ static void surround_rate_allocation(
int lfe_offset;
int coupled_ratio; /* Q8 */
int lfe_ratio; /* Q8 */
int nb_lfe;
int nb_uncoupled;
int nb_coupled;
int nb_normal;
opus_int32 channel_offset;
opus_int32 bitrate;
int total;
if (st->bitrate_bps > st->layout.nb_channels*40000)
stream_offset = 20000;
else
stream_offset = st->bitrate_bps/st->layout.nb_channels/2;
stream_offset += 60*(Fs/frame_size-50);
/* We start by giving each stream (coupled or uncoupled) the same bitrate.
nb_lfe = (st->lfe_stream!=-1);
nb_coupled = st->layout.nb_coupled_streams;
nb_uncoupled = st->layout.nb_streams-nb_coupled-nb_lfe;
nb_normal = 2*nb_coupled + nb_uncoupled;
/* Give each non-LFE channel enough bits per channel for coding band energy. */
channel_offset = 40*IMAX(50, Fs/frame_size);
if (st->bitrate_bps==OPUS_AUTO)
{
bitrate = nb_normal*(channel_offset + Fs + 10000) + 8000*nb_lfe;
} else if (st->bitrate_bps==OPUS_BITRATE_MAX)
{
bitrate = nb_normal*300000 + nb_lfe*128000;
} else {
bitrate = st->bitrate_bps;
}
/* Give LFE some basic stream_channel allocation but never exceed 1/20 of the
total rate for the non-energy part to avoid problems at really low rate. */
lfe_offset = IMIN(bitrate/20, 3000) + 15*IMAX(50, Fs/frame_size);
/* We give each stream (coupled or uncoupled) a starting bitrate.
This models the main saving of coupled channels over uncoupled. */
/* The LFE stream is an exception to the above and gets fewer bits. */
lfe_offset = 3500 + 60*(Fs/frame_size-50);
/* Coupled streams get twice the mono rate after the first 20 kb/s. */
stream_offset = (bitrate - channel_offset*nb_normal - lfe_offset*nb_lfe)/nb_normal/2;
stream_offset = IMAX(0, IMIN(20000, stream_offset));
/* Coupled streams get twice the mono rate after the offset is allocated. */
coupled_ratio = 512;
/* Should depend on the bitrate, for now we assume LFE gets 1/8 the bits of mono */
lfe_ratio = 32;
/* Compute bitrate allocation between streams */
if (st->bitrate_bps==OPUS_AUTO)
{
channel_rate = Fs+60*Fs/frame_size;
} else if (st->bitrate_bps==OPUS_BITRATE_MAX)
{
channel_rate = 300000;
} else {
int nb_lfe;
int nb_uncoupled;
int nb_coupled;
int total;
nb_lfe = (st->lfe_stream!=-1);
nb_coupled = st->layout.nb_coupled_streams;
nb_uncoupled = st->layout.nb_streams-nb_coupled-nb_lfe;
total = (nb_uncoupled<<8) /* mono */
+ coupled_ratio*nb_coupled /* stereo */
+ nb_lfe*lfe_ratio;
channel_rate = 256*(st->bitrate_bps-lfe_offset*nb_lfe-stream_offset*(nb_coupled+nb_uncoupled))/total;
}
#ifndef FIXED_POINT
if (st->variable_duration==OPUS_FRAMESIZE_VARIABLE && frame_size != Fs/50)
{
opus_int32 bonus;
bonus = 60*(Fs/frame_size-50);
channel_rate += bonus;
}
#endif
total = (nb_uncoupled<<8) /* mono */
+ coupled_ratio*nb_coupled /* stereo */
+ nb_lfe*lfe_ratio;
channel_rate = 256*(opus_int64)(bitrate - lfe_offset*nb_lfe - stream_offset*(nb_coupled+nb_uncoupled) - channel_offset*nb_normal)/total;
for (i=0;i<st->layout.nb_streams;i++)
{
if (i<st->layout.nb_coupled_streams)
rate[i] = stream_offset+(channel_rate*coupled_ratio>>8);
rate[i] = 2*channel_offset + IMAX(0, stream_offset+(channel_rate*coupled_ratio>>8));
else if (i!=st->lfe_stream)
rate[i] = stream_offset+channel_rate;
rate[i] = channel_offset + IMAX(0, stream_offset + channel_rate);
else
rate[i] = lfe_offset+(channel_rate*lfe_ratio>>8);
rate[i] = IMAX(0, lfe_offset+(channel_rate*lfe_ratio>>8));
}
}
#ifdef ENABLE_EXPERIMENTAL_AMBISONICS
static void ambisonics_rate_allocation(
OpusMSEncoder *st,
opus_int32 *rate,
@ -736,50 +741,31 @@ static void ambisonics_rate_allocation(
)
{
int i;
int non_mono_rate;
int total_rate;
opus_int32 total_rate;
opus_int32 per_stream_rate;
/* The mono channel gets (rate_ratio_num / rate_ratio_den) times as many bits
* as all other channels */
const int rate_ratio_num = 4;
const int rate_ratio_den = 3;
const int num_channels = st->layout.nb_streams;
const int nb_channels = st->layout.nb_streams + st->layout.nb_coupled_streams;
if (st->bitrate_bps==OPUS_AUTO)
{
total_rate = num_channels * (20000 + st->layout.nb_streams*(Fs+60*Fs/frame_size));
total_rate = (st->layout.nb_coupled_streams + st->layout.nb_streams) *
(Fs+60*Fs/frame_size) + st->layout.nb_streams * (opus_int32)15000;
} else if (st->bitrate_bps==OPUS_BITRATE_MAX)
{
total_rate = num_channels * 320000;
} else {
total_rate = nb_channels * 320000;
} else
{
total_rate = st->bitrate_bps;
}
/* Let y be the non-mono rate and let p, q be integers such that the mono
* channel rate is (p/q) * y.
* Also let T be the total bitrate to allocate. Then
* (n - 1) y + (p/q) y = T
* y = (T q) / (qn - q + p)
*/
non_mono_rate =
total_rate * rate_ratio_den
/ (rate_ratio_den*num_channels + rate_ratio_num - rate_ratio_den);
#ifndef FIXED_POINT
if (st->variable_duration==OPUS_FRAMESIZE_VARIABLE && frame_size != Fs/50)
/* Allocate equal number of bits to Ambisonic (uncoupled) and non-diegetic
* (coupled) streams */
per_stream_rate = total_rate / st->layout.nb_streams;
for (i = 0; i < st->layout.nb_streams; i++)
{
opus_int32 bonus = 60*(Fs/frame_size-50);
non_mono_rate += bonus;
}
#endif
rate[0] = total_rate - (num_channels - 1) * non_mono_rate;
for (i=1;i<st->layout.nb_streams;i++)
{
rate[i] = non_mono_rate;
rate[i] = per_stream_rate;
}
}
#endif /* ENABLE_EXPERIMENTAL_AMBISONICS */
static opus_int32 rate_allocation(
OpusMSEncoder *st,
@ -795,11 +781,9 @@ static opus_int32 rate_allocation(
ptr = (char*)st + align(sizeof(OpusMSEncoder));
opus_encoder_ctl((OpusEncoder*)ptr, OPUS_GET_SAMPLE_RATE(&Fs));
#ifdef ENABLE_EXPERIMENTAL_AMBISONICS
if (st->mapping_type == MAPPING_TYPE_AMBISONICS) {
ambisonics_rate_allocation(st, rate, frame_size, Fs);
} else
#endif
{
surround_rate_allocation(st, rate, frame_size, Fs);
}
@ -812,9 +796,9 @@ static opus_int32 rate_allocation(
return rate_sum;
}
/* Max size in case the encoder decides to return three frames */
#define MS_FRAME_TMP (3*1275+7)
static int opus_multistream_encode_native
/* Max size in case the encoder decides to return six frames (6 x 20 ms = 120 ms) */
#define MS_FRAME_TMP (6*1275+12)
int opus_multistream_encode_native
(
OpusMSEncoder *st,
opus_copy_channel_in_func copy_channel_in,
@ -824,7 +808,8 @@ static int opus_multistream_encode_native
opus_int32 max_data_bytes,
int lsb_depth,
downmix_func downmix,
int float_api
int float_api,
void *user_data
)
{
opus_int32 Fs;
@ -859,32 +844,8 @@ static int opus_multistream_encode_native
opus_encoder_ctl((OpusEncoder*)ptr, OPUS_GET_VBR(&vbr));
opus_encoder_ctl((OpusEncoder*)ptr, CELT_GET_MODE(&celt_mode));
{
opus_int32 delay_compensation;
int channels;
channels = st->layout.nb_streams + st->layout.nb_coupled_streams;
opus_encoder_ctl((OpusEncoder*)ptr, OPUS_GET_LOOKAHEAD(&delay_compensation));
delay_compensation -= Fs/400;
frame_size = compute_frame_size(pcm, analysis_frame_size,
st->variable_duration, channels, Fs, st->bitrate_bps,
delay_compensation, downmix
#ifndef DISABLE_FLOAT_API
, st->subframe_mem
#endif
);
}
if (400*frame_size < Fs)
{
RESTORE_STACK;
return OPUS_BAD_ARG;
}
/* Validate frame_size before using it to allocate stack space.
This mirrors the checks in opus_encode[_float](). */
if (400*frame_size != Fs && 200*frame_size != Fs &&
100*frame_size != Fs && 50*frame_size != Fs &&
25*frame_size != Fs && 50*frame_size != 3*Fs)
frame_size = frame_size_select(analysis_frame_size, st->variable_duration, Fs);
if (frame_size <= 0)
{
RESTORE_STACK;
return OPUS_BAD_ARG;
@ -892,6 +853,9 @@ static int opus_multistream_encode_native
/* Smallest packet the encoder can produce. */
smallest_packet = st->layout.nb_streams*2-1;
/* 100 ms needs an extra byte per stream for the ToC. */
if (Fs/frame_size == 10)
smallest_packet += st->layout.nb_streams;
if (max_data_bytes < smallest_packet)
{
RESTORE_STACK;
@ -952,11 +916,9 @@ static int opus_multistream_encode_native
opus_encoder_ctl(enc, OPUS_SET_FORCE_CHANNELS(2));
}
}
#ifdef ENABLE_EXPERIMENTAL_AMBISONICS
else if (st->mapping_type == MAPPING_TYPE_AMBISONICS) {
opus_encoder_ctl(enc, OPUS_SET_FORCE_MODE(MODE_CELT_ONLY));
}
#endif
}
ptr = (char*)st + align(sizeof(OpusMSEncoder));
@ -979,9 +941,9 @@ static int opus_multistream_encode_native
left = get_left_channel(&st->layout, s, -1);
right = get_right_channel(&st->layout, s, -1);
(*copy_channel_in)(buf, 2,
pcm, st->layout.nb_channels, left, frame_size);
pcm, st->layout.nb_channels, left, frame_size, user_data);
(*copy_channel_in)(buf+1, 2,
pcm, st->layout.nb_channels, right, frame_size);
pcm, st->layout.nb_channels, right, frame_size, user_data);
ptr += align(coupled_size);
if (st->mapping_type == MAPPING_TYPE_SURROUND)
{
@ -997,7 +959,7 @@ static int opus_multistream_encode_native
int i;
int chan = get_mono_channel(&st->layout, s, -1);
(*copy_channel_in)(buf, 1,
pcm, st->layout.nb_channels, chan, frame_size);
pcm, st->layout.nb_channels, chan, frame_size, user_data);
ptr += align(mono_size);
if (st->mapping_type == MAPPING_TYPE_SURROUND)
{
@ -1013,6 +975,9 @@ static int opus_multistream_encode_native
curr_max = max_data_bytes - tot_size;
/* Reserve one byte for the last stream and two for the others */
curr_max -= IMAX(0,2*(st->layout.nb_streams-s-1)-1);
/* For 100 ms, reserve an extra byte per stream for the ToC */
if (Fs/frame_size == 10)
curr_max -= st->layout.nb_streams-s-1;
curr_max = IMIN(curr_max,MS_FRAME_TMP);
/* Repacketizer will add one or two bytes for self-delimited frames */
if (s != st->layout.nb_streams-1) curr_max -= curr_max>253 ? 2 : 1;
@ -1053,11 +1018,13 @@ static void opus_copy_channel_in_float(
const void *src,
int src_stride,
int src_channel,
int frame_size
int frame_size,
void *user_data
)
{
const float *float_src;
opus_int32 i;
(void)user_data;
float_src = (const float *)src;
for (i=0;i<frame_size;i++)
#if defined(FIXED_POINT)
@ -1074,11 +1041,13 @@ static void opus_copy_channel_in_short(
const void *src,
int src_stride,
int src_channel,
int frame_size
int frame_size,
void *user_data
)
{
const opus_int16 *short_src;
opus_int32 i;
(void)user_data;
short_src = (const opus_int16 *)src;
for (i=0;i<frame_size;i++)
#if defined(FIXED_POINT)
@ -1099,7 +1068,7 @@ int opus_multistream_encode(
)
{
return opus_multistream_encode_native(st, opus_copy_channel_in_short,
pcm, frame_size, data, max_data_bytes, 16, downmix_int, 0);
pcm, frame_size, data, max_data_bytes, 16, downmix_int, 0, NULL);
}
#ifndef DISABLE_FLOAT_API
@ -1112,7 +1081,7 @@ int opus_multistream_encode_float(
)
{
return opus_multistream_encode_native(st, opus_copy_channel_in_float,
pcm, frame_size, data, max_data_bytes, 16, downmix_float, 1);
pcm, frame_size, data, max_data_bytes, 16, downmix_float, 1, NULL);
}
#endif
@ -1128,7 +1097,7 @@ int opus_multistream_encode_float
)
{
return opus_multistream_encode_native(st, opus_copy_channel_in_float,
pcm, frame_size, data, max_data_bytes, 24, downmix_float, 1);
pcm, frame_size, data, max_data_bytes, 24, downmix_float, 1, NULL);
}
int opus_multistream_encode(
@ -1140,19 +1109,17 @@ int opus_multistream_encode(
)
{
return opus_multistream_encode_native(st, opus_copy_channel_in_short,
pcm, frame_size, data, max_data_bytes, 16, downmix_int, 0);
pcm, frame_size, data, max_data_bytes, 16, downmix_int, 0, NULL);
}
#endif
int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...)
int opus_multistream_encoder_ctl_va_list(OpusMSEncoder *st, int request,
va_list ap)
{
va_list ap;
int coupled_size, mono_size;
char *ptr;
int ret = OPUS_OK;
va_start(ap, request);
coupled_size = opus_encoder_get_size(2);
mono_size = opus_encoder_get_size(1);
ptr = (char*)st + align(sizeof(OpusMSEncoder));
@ -1161,9 +1128,11 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...)
case OPUS_SET_BITRATE_REQUEST:
{
opus_int32 value = va_arg(ap, opus_int32);
if (value<0 && value!=OPUS_AUTO && value!=OPUS_BITRATE_MAX)
if (value != OPUS_AUTO && value != OPUS_BITRATE_MAX)
{
goto bad_arg;
if (value <= 0)
goto bad_arg;
value = IMIN(300000*st->layout.nb_channels, IMAX(500*st->layout.nb_channels, value));
}
st->bitrate_bps = value;
}
@ -1206,6 +1175,7 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...)
case OPUS_GET_INBAND_FEC_REQUEST:
case OPUS_GET_FORCE_CHANNELS_REQUEST:
case OPUS_GET_PREDICTION_DISABLED_REQUEST:
case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST:
{
OpusEncoder *enc;
/* For int32* GET params, just query the first stream */
@ -1252,6 +1222,7 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...)
case OPUS_SET_FORCE_MODE_REQUEST:
case OPUS_SET_FORCE_CHANNELS_REQUEST:
case OPUS_SET_PREDICTION_DISABLED_REQUEST:
case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST:
{
int s;
/* This works for int32 params */
@ -1278,7 +1249,7 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...)
OpusEncoder **value;
stream_id = va_arg(ap, opus_int32);
if (stream_id<0 || stream_id >= st->layout.nb_streams)
ret = OPUS_BAD_ARG;
goto bad_arg;
value = va_arg(ap, OpusEncoder**);
if (!value)
{
@ -1313,7 +1284,6 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...)
case OPUS_RESET_STATE:
{
int s;
st->subframe_mem[0] = st->subframe_mem[1] = st->subframe_mem[2] = 0;
if (st->mapping_type == MAPPING_TYPE_SURROUND)
{
OPUS_CLEAR(ms_get_preemph_mem(st), st->layout.nb_channels);
@ -1337,14 +1307,21 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...)
ret = OPUS_UNIMPLEMENTED;
break;
}
va_end(ap);
return ret;
bad_arg:
va_end(ap);
return OPUS_BAD_ARG;
}
int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...)
{
int ret;
va_list ap;
va_start(ap, request);
ret = opus_multistream_encoder_ctl_va_list(st, request, ap);
va_end(ap);
return ret;
}
void opus_multistream_encoder_destroy(OpusMSEncoder *st)
{
opus_free(st);

View File

@ -33,6 +33,7 @@
#include "opus.h"
#include "celt.h"
#include <stdarg.h> /* va_list */
#include <stddef.h> /* offsetof */
struct OpusRepacketizer {
@ -50,12 +51,59 @@ typedef struct ChannelLayout {
unsigned char mapping[256];
} ChannelLayout;
typedef enum {
MAPPING_TYPE_NONE,
MAPPING_TYPE_SURROUND,
MAPPING_TYPE_AMBISONICS
} MappingType;
struct OpusMSEncoder {
ChannelLayout layout;
int arch;
int lfe_stream;
int application;
int variable_duration;
MappingType mapping_type;
opus_int32 bitrate_bps;
/* Encoder states go here */
/* then opus_val32 window_mem[channels*120]; */
/* then opus_val32 preemph_mem[channels]; */
};
struct OpusMSDecoder {
ChannelLayout layout;
/* Decoder states go here */
};
int opus_multistream_encoder_ctl_va_list(struct OpusMSEncoder *st, int request,
va_list ap);
int opus_multistream_decoder_ctl_va_list(struct OpusMSDecoder *st, int request,
va_list ap);
int validate_layout(const ChannelLayout *layout);
int get_left_channel(const ChannelLayout *layout, int stream_id, int prev);
int get_right_channel(const ChannelLayout *layout, int stream_id, int prev);
int get_mono_channel(const ChannelLayout *layout, int stream_id, int prev);
typedef void (*opus_copy_channel_in_func)(
opus_val16 *dst,
int dst_stride,
const void *src,
int src_stride,
int src_channel,
int frame_size,
void *user_data
);
typedef void (*opus_copy_channel_out_func)(
void *dst,
int dst_stride,
int dst_channel,
const opus_val16 *src,
int src_stride,
int frame_size,
void *user_data
);
#define MODE_SILK_ONLY 1000
#define MODE_HYBRID 1001
@ -87,19 +135,12 @@ int get_mono_channel(const ChannelLayout *layout, int stream_id, int prev);
typedef void (*downmix_func)(const void *, opus_val32 *, int, int, int, int, int);
void downmix_float(const void *_x, opus_val32 *sub, int subframe, int offset, int c1, int c2, int C);
void downmix_int(const void *_x, opus_val32 *sub, int subframe, int offset, int c1, int c2, int C);
int is_digital_silence(const opus_val16* pcm, int frame_size, int channels, int lsb_depth);
int encode_size(int size, unsigned char *data);
opus_int32 frame_size_select(opus_int32 frame_size, int variable_duration, opus_int32 Fs);
opus_int32 compute_frame_size(const void *analysis_pcm, int frame_size,
int variable_duration, int C, opus_int32 Fs, int bitrate_bps,
int delay_compensation, downmix_func downmix
#ifndef DISABLE_FLOAT_API
, float *subframe_mem
#endif
);
opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_size,
unsigned char *data, opus_int32 out_data_bytes, int lsb_depth,
const void *analysis_pcm, opus_int32 analysis_size, int c1, int c2,
@ -131,4 +172,30 @@ opus_int32 opus_repacketizer_out_range_impl(OpusRepacketizer *rp, int begin, int
int pad_frame(unsigned char *data, opus_int32 len, opus_int32 new_len);
int opus_multistream_encode_native
(
struct OpusMSEncoder *st,
opus_copy_channel_in_func copy_channel_in,
const void *pcm,
int analysis_frame_size,
unsigned char *data,
opus_int32 max_data_bytes,
int lsb_depth,
downmix_func downmix,
int float_api,
void *user_data
);
int opus_multistream_decode_native(
struct OpusMSDecoder *st,
const unsigned char *data,
opus_int32 len,
void *pcm,
opus_copy_channel_out_func copy_channel_out,
int frame_size,
int decode_fec,
int soft_clip,
void *user_data
);
#endif /* OPUS_PRIVATE_H */

View File

@ -0,0 +1,258 @@
/* Copyright (c) 2017 Google Inc.
Written by Andrew Allen */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "mathops.h"
#include "os_support.h"
#include "opus_private.h"
#include "opus_defines.h"
#include "opus_projection.h"
#include "opus_multistream.h"
#include "mapping_matrix.h"
#include "stack_alloc.h"
struct OpusProjectionDecoder
{
opus_int32 demixing_matrix_size_in_bytes;
/* Encoder states go here */
};
#if !defined(DISABLE_FLOAT_API)
static void opus_projection_copy_channel_out_float(
void *dst,
int dst_stride,
int dst_channel,
const opus_val16 *src,
int src_stride,
int frame_size,
void *user_data)
{
float *float_dst;
const MappingMatrix *matrix;
float_dst = (float *)dst;
matrix = (const MappingMatrix *)user_data;
if (dst_channel == 0)
OPUS_CLEAR(float_dst, frame_size * dst_stride);
if (src != NULL)
mapping_matrix_multiply_channel_out_float(matrix, src, dst_channel,
src_stride, float_dst, dst_stride, frame_size);
}
#endif
static void opus_projection_copy_channel_out_short(
void *dst,
int dst_stride,
int dst_channel,
const opus_val16 *src,
int src_stride,
int frame_size,
void *user_data)
{
opus_int16 *short_dst;
const MappingMatrix *matrix;
short_dst = (opus_int16 *)dst;
matrix = (const MappingMatrix *)user_data;
if (dst_channel == 0)
OPUS_CLEAR(short_dst, frame_size * dst_stride);
if (src != NULL)
mapping_matrix_multiply_channel_out_short(matrix, src, dst_channel,
src_stride, short_dst, dst_stride, frame_size);
}
static MappingMatrix *get_dec_demixing_matrix(OpusProjectionDecoder *st)
{
/* void* cast avoids clang -Wcast-align warning */
return (MappingMatrix*)(void*)((char*)st +
align(sizeof(OpusProjectionDecoder)));
}
static OpusMSDecoder *get_multistream_decoder(OpusProjectionDecoder *st)
{
/* void* cast avoids clang -Wcast-align warning */
return (OpusMSDecoder*)(void*)((char*)st +
align(sizeof(OpusProjectionDecoder) +
st->demixing_matrix_size_in_bytes));
}
opus_int32 opus_projection_decoder_get_size(int channels, int streams,
int coupled_streams)
{
opus_int32 matrix_size;
opus_int32 decoder_size;
matrix_size =
mapping_matrix_get_size(streams + coupled_streams, channels);
if (!matrix_size)
return 0;
decoder_size = opus_multistream_decoder_get_size(streams, coupled_streams);
if (!decoder_size)
return 0;
return align(sizeof(OpusProjectionDecoder)) + matrix_size + decoder_size;
}
int opus_projection_decoder_init(OpusProjectionDecoder *st, opus_int32 Fs,
int channels, int streams, int coupled_streams,
unsigned char *demixing_matrix, opus_int32 demixing_matrix_size)
{
int nb_input_streams;
opus_int32 expected_matrix_size;
int i, ret;
unsigned char mapping[255];
VARDECL(opus_int16, buf);
ALLOC_STACK;
/* Verify supplied matrix size. */
nb_input_streams = streams + coupled_streams;
expected_matrix_size = nb_input_streams * channels * sizeof(opus_int16);
if (expected_matrix_size != demixing_matrix_size)
{
RESTORE_STACK;
return OPUS_BAD_ARG;
}
/* Convert demixing matrix input into internal format. */
ALLOC(buf, nb_input_streams * channels, opus_int16);
for (i = 0; i < nb_input_streams * channels; i++)
{
int s = demixing_matrix[2*i + 1] << 8 | demixing_matrix[2*i];
s = ((s & 0xFFFF) ^ 0x8000) - 0x8000;
buf[i] = (opus_int16)s;
}
/* Assign demixing matrix. */
st->demixing_matrix_size_in_bytes =
mapping_matrix_get_size(channels, nb_input_streams);
if (!st->demixing_matrix_size_in_bytes)
{
RESTORE_STACK;
return OPUS_BAD_ARG;
}
mapping_matrix_init(get_dec_demixing_matrix(st), channels, nb_input_streams, 0,
buf, demixing_matrix_size);
/* Set trivial mapping so each input channel pairs with a matrix column. */
for (i = 0; i < channels; i++)
mapping[i] = i;
ret = opus_multistream_decoder_init(
get_multistream_decoder(st), Fs, channels, streams, coupled_streams, mapping);
RESTORE_STACK;
return ret;
}
OpusProjectionDecoder *opus_projection_decoder_create(
opus_int32 Fs, int channels, int streams, int coupled_streams,
unsigned char *demixing_matrix, opus_int32 demixing_matrix_size, int *error)
{
int size;
int ret;
OpusProjectionDecoder *st;
/* Allocate space for the projection decoder. */
size = opus_projection_decoder_get_size(channels, streams, coupled_streams);
if (!size) {
if (error)
*error = OPUS_ALLOC_FAIL;
return NULL;
}
st = (OpusProjectionDecoder *)opus_alloc(size);
if (!st)
{
if (error)
*error = OPUS_ALLOC_FAIL;
return NULL;
}
/* Initialize projection decoder with provided settings. */
ret = opus_projection_decoder_init(st, Fs, channels, streams, coupled_streams,
demixing_matrix, demixing_matrix_size);
if (ret != OPUS_OK)
{
opus_free(st);
st = NULL;
}
if (error)
*error = ret;
return st;
}
#ifdef FIXED_POINT
int opus_projection_decode(OpusProjectionDecoder *st, const unsigned char *data,
opus_int32 len, opus_int16 *pcm, int frame_size,
int decode_fec)
{
return opus_multistream_decode_native(get_multistream_decoder(st), data, len,
pcm, opus_projection_copy_channel_out_short, frame_size, decode_fec, 0,
get_dec_demixing_matrix(st));
}
#else
int opus_projection_decode(OpusProjectionDecoder *st, const unsigned char *data,
opus_int32 len, opus_int16 *pcm, int frame_size,
int decode_fec)
{
return opus_multistream_decode_native(get_multistream_decoder(st), data, len,
pcm, opus_projection_copy_channel_out_short, frame_size, decode_fec, 1,
get_dec_demixing_matrix(st));
}
#endif
#ifndef DISABLE_FLOAT_API
int opus_projection_decode_float(OpusProjectionDecoder *st, const unsigned char *data,
opus_int32 len, float *pcm, int frame_size, int decode_fec)
{
return opus_multistream_decode_native(get_multistream_decoder(st), data, len,
pcm, opus_projection_copy_channel_out_float, frame_size, decode_fec, 0,
get_dec_demixing_matrix(st));
}
#endif
int opus_projection_decoder_ctl(OpusProjectionDecoder *st, int request, ...)
{
va_list ap;
int ret = OPUS_OK;
va_start(ap, request);
ret = opus_multistream_decoder_ctl_va_list(get_multistream_decoder(st),
request, ap);
va_end(ap);
return ret;
}
void opus_projection_decoder_destroy(OpusProjectionDecoder *st)
{
opus_free(st);
}

View File

@ -0,0 +1,468 @@
/* Copyright (c) 2017 Google Inc.
Written by Andrew Allen */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "mathops.h"
#include "os_support.h"
#include "opus_private.h"
#include "opus_defines.h"
#include "opus_projection.h"
#include "opus_multistream.h"
#include "stack_alloc.h"
#include "mapping_matrix.h"
struct OpusProjectionEncoder
{
opus_int32 mixing_matrix_size_in_bytes;
opus_int32 demixing_matrix_size_in_bytes;
/* Encoder states go here */
};
#if !defined(DISABLE_FLOAT_API)
static void opus_projection_copy_channel_in_float(
opus_val16 *dst,
int dst_stride,
const void *src,
int src_stride,
int src_channel,
int frame_size,
void *user_data
)
{
mapping_matrix_multiply_channel_in_float((const MappingMatrix*)user_data,
(const float*)src, src_stride, dst, src_channel, dst_stride, frame_size);
}
#endif
static void opus_projection_copy_channel_in_short(
opus_val16 *dst,
int dst_stride,
const void *src,
int src_stride,
int src_channel,
int frame_size,
void *user_data
)
{
mapping_matrix_multiply_channel_in_short((const MappingMatrix*)user_data,
(const opus_int16*)src, src_stride, dst, src_channel, dst_stride, frame_size);
}
static int get_order_plus_one_from_channels(int channels, int *order_plus_one)
{
int order_plus_one_;
int acn_channels;
int nondiegetic_channels;
/* Allowed numbers of channels:
* (1 + n)^2 + 2j, for n = 0...14 and j = 0 or 1.
*/
if (channels < 1 || channels > 227)
return OPUS_BAD_ARG;
order_plus_one_ = isqrt32(channels);
acn_channels = order_plus_one_ * order_plus_one_;
nondiegetic_channels = channels - acn_channels;
if (nondiegetic_channels != 0 && nondiegetic_channels != 2)
return OPUS_BAD_ARG;
if (order_plus_one)
*order_plus_one = order_plus_one_;
return OPUS_OK;
}
static int get_streams_from_channels(int channels, int mapping_family,
int *streams, int *coupled_streams,
int *order_plus_one)
{
if (mapping_family == 3)
{
if (get_order_plus_one_from_channels(channels, order_plus_one) != OPUS_OK)
return OPUS_BAD_ARG;
if (streams)
*streams = (channels + 1) / 2;
if (coupled_streams)
*coupled_streams = channels / 2;
return OPUS_OK;
}
return OPUS_BAD_ARG;
}
static MappingMatrix *get_mixing_matrix(OpusProjectionEncoder *st)
{
/* void* cast avoids clang -Wcast-align warning */
return (MappingMatrix *)(void*)((char*)st +
align(sizeof(OpusProjectionEncoder)));
}
static MappingMatrix *get_enc_demixing_matrix(OpusProjectionEncoder *st)
{
/* void* cast avoids clang -Wcast-align warning */
return (MappingMatrix *)(void*)((char*)st +
align(sizeof(OpusProjectionEncoder) +
st->mixing_matrix_size_in_bytes));
}
static OpusMSEncoder *get_multistream_encoder(OpusProjectionEncoder *st)
{
/* void* cast avoids clang -Wcast-align warning */
return (OpusMSEncoder *)(void*)((char*)st +
align(sizeof(OpusProjectionEncoder) +
st->mixing_matrix_size_in_bytes +
st->demixing_matrix_size_in_bytes));
}
opus_int32 opus_projection_ambisonics_encoder_get_size(int channels,
int mapping_family)
{
int nb_streams;
int nb_coupled_streams;
int order_plus_one;
int mixing_matrix_rows, mixing_matrix_cols;
int demixing_matrix_rows, demixing_matrix_cols;
opus_int32 mixing_matrix_size, demixing_matrix_size;
opus_int32 encoder_size;
int ret;
ret = get_streams_from_channels(channels, mapping_family, &nb_streams,
&nb_coupled_streams, &order_plus_one);
if (ret != OPUS_OK)
return 0;
if (order_plus_one == 2)
{
mixing_matrix_rows = mapping_matrix_foa_mixing.rows;
mixing_matrix_cols = mapping_matrix_foa_mixing.cols;
demixing_matrix_rows = mapping_matrix_foa_demixing.rows;
demixing_matrix_cols = mapping_matrix_foa_demixing.cols;
}
else if (order_plus_one == 3)
{
mixing_matrix_rows = mapping_matrix_soa_mixing.rows;
mixing_matrix_cols = mapping_matrix_soa_mixing.cols;
demixing_matrix_rows = mapping_matrix_soa_demixing.rows;
demixing_matrix_cols = mapping_matrix_soa_demixing.cols;
}
else if (order_plus_one == 4)
{
mixing_matrix_rows = mapping_matrix_toa_mixing.rows;
mixing_matrix_cols = mapping_matrix_toa_mixing.cols;
demixing_matrix_rows = mapping_matrix_toa_demixing.rows;
demixing_matrix_cols = mapping_matrix_toa_demixing.cols;
}
else
return 0;
mixing_matrix_size =
mapping_matrix_get_size(mixing_matrix_rows, mixing_matrix_cols);
if (!mixing_matrix_size)
return 0;
demixing_matrix_size =
mapping_matrix_get_size(demixing_matrix_rows, demixing_matrix_cols);
if (!demixing_matrix_size)
return 0;
encoder_size =
opus_multistream_encoder_get_size(nb_streams, nb_coupled_streams);
if (!encoder_size)
return 0;
return align(sizeof(OpusProjectionEncoder)) +
mixing_matrix_size + demixing_matrix_size + encoder_size;
}
int opus_projection_ambisonics_encoder_init(OpusProjectionEncoder *st, opus_int32 Fs,
int channels, int mapping_family,
int *streams, int *coupled_streams,
int application)
{
MappingMatrix *mixing_matrix;
MappingMatrix *demixing_matrix;
OpusMSEncoder *ms_encoder;
int i;
int ret;
int order_plus_one;
unsigned char mapping[255];
if (streams == NULL || coupled_streams == NULL) {
return OPUS_BAD_ARG;
}
if (get_streams_from_channels(channels, mapping_family, streams,
coupled_streams, &order_plus_one) != OPUS_OK)
return OPUS_BAD_ARG;
if (mapping_family == 3)
{
/* Assign mixing matrix based on available pre-computed matrices. */
mixing_matrix = get_mixing_matrix(st);
if (order_plus_one == 2)
{
mapping_matrix_init(mixing_matrix, mapping_matrix_foa_mixing.rows,
mapping_matrix_foa_mixing.cols, mapping_matrix_foa_mixing.gain,
mapping_matrix_foa_mixing_data,
sizeof(mapping_matrix_foa_mixing_data));
}
else if (order_plus_one == 3)
{
mapping_matrix_init(mixing_matrix, mapping_matrix_soa_mixing.rows,
mapping_matrix_soa_mixing.cols, mapping_matrix_soa_mixing.gain,
mapping_matrix_soa_mixing_data,
sizeof(mapping_matrix_soa_mixing_data));
}
else if (order_plus_one == 4)
{
mapping_matrix_init(mixing_matrix, mapping_matrix_toa_mixing.rows,
mapping_matrix_toa_mixing.cols, mapping_matrix_toa_mixing.gain,
mapping_matrix_toa_mixing_data,
sizeof(mapping_matrix_toa_mixing_data));
}
else
return OPUS_BAD_ARG;
st->mixing_matrix_size_in_bytes = mapping_matrix_get_size(
mixing_matrix->rows, mixing_matrix->cols);
if (!st->mixing_matrix_size_in_bytes)
return OPUS_BAD_ARG;
/* Assign demixing matrix based on available pre-computed matrices. */
demixing_matrix = get_enc_demixing_matrix(st);
if (order_plus_one == 2)
{
mapping_matrix_init(demixing_matrix, mapping_matrix_foa_demixing.rows,
mapping_matrix_foa_demixing.cols, mapping_matrix_foa_demixing.gain,
mapping_matrix_foa_demixing_data,
sizeof(mapping_matrix_foa_demixing_data));
}
else if (order_plus_one == 3)
{
mapping_matrix_init(demixing_matrix, mapping_matrix_soa_demixing.rows,
mapping_matrix_soa_demixing.cols, mapping_matrix_soa_demixing.gain,
mapping_matrix_soa_demixing_data,
sizeof(mapping_matrix_soa_demixing_data));
}
else if (order_plus_one == 4)
{
mapping_matrix_init(demixing_matrix, mapping_matrix_toa_demixing.rows,
mapping_matrix_toa_demixing.cols, mapping_matrix_toa_demixing.gain,
mapping_matrix_toa_demixing_data,
sizeof(mapping_matrix_toa_demixing_data));
}
else
return OPUS_BAD_ARG;
st->demixing_matrix_size_in_bytes = mapping_matrix_get_size(
demixing_matrix->rows, demixing_matrix->cols);
if (!st->demixing_matrix_size_in_bytes)
return OPUS_BAD_ARG;
}
else
return OPUS_UNIMPLEMENTED;
/* Ensure matrices are large enough for desired coding scheme. */
if (*streams + *coupled_streams > mixing_matrix->rows ||
channels > mixing_matrix->cols ||
channels > demixing_matrix->rows ||
*streams + *coupled_streams > demixing_matrix->cols)
return OPUS_BAD_ARG;
/* Set trivial mapping so each input channel pairs with a matrix column. */
for (i = 0; i < channels; i++)
mapping[i] = i;
/* Initialize multistream encoder with provided settings. */
ms_encoder = get_multistream_encoder(st);
ret = opus_multistream_encoder_init(ms_encoder, Fs, channels, *streams,
*coupled_streams, mapping, application);
return ret;
}
OpusProjectionEncoder *opus_projection_ambisonics_encoder_create(
opus_int32 Fs, int channels, int mapping_family, int *streams,
int *coupled_streams, int application, int *error)
{
int size;
int ret;
OpusProjectionEncoder *st;
/* Allocate space for the projection encoder. */
size = opus_projection_ambisonics_encoder_get_size(channels, mapping_family);
if (!size) {
if (error)
*error = OPUS_ALLOC_FAIL;
return NULL;
}
st = (OpusProjectionEncoder *)opus_alloc(size);
if (!st)
{
if (error)
*error = OPUS_ALLOC_FAIL;
return NULL;
}
/* Initialize projection encoder with provided settings. */
ret = opus_projection_ambisonics_encoder_init(st, Fs, channels,
mapping_family, streams, coupled_streams, application);
if (ret != OPUS_OK)
{
opus_free(st);
st = NULL;
}
if (error)
*error = ret;
return st;
}
int opus_projection_encode(OpusProjectionEncoder *st, const opus_int16 *pcm,
int frame_size, unsigned char *data,
opus_int32 max_data_bytes)
{
return opus_multistream_encode_native(get_multistream_encoder(st),
opus_projection_copy_channel_in_short, pcm, frame_size, data,
max_data_bytes, 16, downmix_int, 0, get_mixing_matrix(st));
}
#ifndef DISABLE_FLOAT_API
#ifdef FIXED_POINT
int opus_projection_encode_float(OpusProjectionEncoder *st, const float *pcm,
int frame_size, unsigned char *data,
opus_int32 max_data_bytes)
{
return opus_multistream_encode_native(get_multistream_encoder(st),
opus_projection_copy_channel_in_float, pcm, frame_size, data,
max_data_bytes, 16, downmix_float, 1, get_mixing_matrix(st));
}
#else
int opus_projection_encode_float(OpusProjectionEncoder *st, const float *pcm,
int frame_size, unsigned char *data,
opus_int32 max_data_bytes)
{
return opus_multistream_encode_native(get_multistream_encoder(st),
opus_projection_copy_channel_in_float, pcm, frame_size, data,
max_data_bytes, 24, downmix_float, 1, get_mixing_matrix(st));
}
#endif
#endif
void opus_projection_encoder_destroy(OpusProjectionEncoder *st)
{
opus_free(st);
}
int opus_projection_encoder_ctl(OpusProjectionEncoder *st, int request, ...)
{
va_list ap;
MappingMatrix *demixing_matrix;
OpusMSEncoder *ms_encoder;
int ret = OPUS_OK;
ms_encoder = get_multistream_encoder(st);
demixing_matrix = get_enc_demixing_matrix(st);
va_start(ap, request);
switch(request)
{
case OPUS_PROJECTION_GET_DEMIXING_MATRIX_SIZE_REQUEST:
{
opus_int32 *value = va_arg(ap, opus_int32*);
if (!value)
{
goto bad_arg;
}
*value =
ms_encoder->layout.nb_channels * (ms_encoder->layout.nb_streams
+ ms_encoder->layout.nb_coupled_streams) * sizeof(opus_int16);
}
break;
case OPUS_PROJECTION_GET_DEMIXING_MATRIX_GAIN_REQUEST:
{
opus_int32 *value = va_arg(ap, opus_int32*);
if (!value)
{
goto bad_arg;
}
*value = demixing_matrix->gain;
}
break;
case OPUS_PROJECTION_GET_DEMIXING_MATRIX_REQUEST:
{
int i, j, k, l;
int nb_input_streams;
int nb_output_streams;
unsigned char *external_char;
opus_int16 *internal_short;
opus_int32 external_size;
opus_int32 internal_size;
/* (I/O is in relation to the decoder's perspective). */
nb_input_streams = ms_encoder->layout.nb_streams +
ms_encoder->layout.nb_coupled_streams;
nb_output_streams = ms_encoder->layout.nb_channels;
external_char = va_arg(ap, unsigned char *);
external_size = va_arg(ap, opus_int32);
if (!external_char)
{
goto bad_arg;
}
internal_short = mapping_matrix_get_data(demixing_matrix);
internal_size = nb_input_streams * nb_output_streams * sizeof(opus_int16);
if (external_size != internal_size)
{
goto bad_arg;
}
/* Copy demixing matrix subset to output destination. */
l = 0;
for (i = 0; i < nb_input_streams; i++) {
for (j = 0; j < nb_output_streams; j++) {
k = demixing_matrix->rows * i + j;
external_char[2*l] = (unsigned char)internal_short[k];
external_char[2*l+1] = (unsigned char)(internal_short[k] >> 8);
l++;
}
}
}
break;
default:
{
ret = opus_multistream_encoder_ctl_va_list(ms_encoder, request, ap);
}
break;
}
va_end(ap);
return ret;
bad_arg:
va_end(ap);
return OPUS_BAD_ARG;
}

View File

@ -86,14 +86,15 @@ int op_test(OpusHead *_head,
This is to prevent us spending a lot of time allocating memory and looking
for Ogg pages in non-Ogg files.*/
if(memcmp(_initial_data,"OggS",4)!=0)return OP_ENOTFORMAT;
if(OP_UNLIKELY(_initial_bytes>(size_t)LONG_MAX))return OP_EFAULT;
ogg_sync_init(&oy);
data=ogg_sync_buffer(&oy,_initial_bytes);
data=ogg_sync_buffer(&oy,(long)_initial_bytes);
if(data!=NULL){
ogg_stream_state os;
ogg_page og;
int ret;
memcpy(data,_initial_data,_initial_bytes);
ogg_sync_wrote(&oy,_initial_bytes);
ogg_sync_wrote(&oy,(long)_initial_bytes);
ogg_stream_init(&os,-1);
err=OP_FALSE;
do{
@ -147,7 +148,7 @@ static int op_get_data(OggOpusFile *_of,int _nbytes){
int nbytes;
OP_ASSERT(_nbytes>0);
buffer=(unsigned char *)ogg_sync_buffer(&_of->oy,_nbytes);
nbytes=(int)(*_of->callbacks.read)(_of->source,buffer,_nbytes);
nbytes=(int)(*_of->callbacks.read)(_of->stream,buffer,_nbytes);
OP_ASSERT(nbytes<=_nbytes);
if(OP_LIKELY(nbytes>0))ogg_sync_wrote(&_of->oy,nbytes);
return nbytes;
@ -157,7 +158,7 @@ static int op_get_data(OggOpusFile *_of,int _nbytes){
static int op_seek_helper(OggOpusFile *_of,opus_int64 _offset){
if(_offset==_of->offset)return 0;
if(_of->callbacks.seek==NULL
||(*_of->callbacks.seek)(_of->source,_offset,SEEK_SET)){
||(*_of->callbacks.seek)(_of->stream,_offset,SEEK_SET)){
return OP_EREAD;
}
_of->offset=_offset;
@ -165,7 +166,7 @@ static int op_seek_helper(OggOpusFile *_of,opus_int64 _offset){
return 0;
}
/*Get the current position indicator of the underlying source.
/*Get the current position indicator of the underlying stream.
This should be the same as the value reported by tell().*/
static opus_int64 op_position(const OggOpusFile *_of){
/*The current position indicator is _not_ simply offset.
@ -369,7 +370,7 @@ static int op_get_prev_page_serial(OggOpusFile *_of,OpusSeekRecord *_sr,
search_start=llret+1;
}
/*We started from the beginning of the stream and found nothing.
This should be impossible unless the contents of the source changed out
This should be impossible unless the contents of the stream changed out
from under us after we read from it.*/
if(OP_UNLIKELY(!begin)&&OP_UNLIKELY(_offset<0))return OP_EBADLINK;
/*Bump up the chunk size.
@ -455,7 +456,7 @@ static opus_int64 op_get_last_page(OggOpusFile *_of,ogg_int64_t *_gp,
}
}
/*We started from at or before the beginning of the link and found nothing.
This should be impossible unless the contents of the source changed out
This should be impossible unless the contents of the stream changed out
from under us after we read from it.*/
if((OP_UNLIKELY(left_link)||OP_UNLIKELY(!begin))&&OP_UNLIKELY(_offset<0)){
return OP_EBADLINK;
@ -855,6 +856,7 @@ static int op_find_initial_pcm_offset(OggOpusFile *_of,
/*Fail if the pre-skip is non-zero, since it's asking us to skip more
samples than exist.*/
if(_link->head.pre_skip>0)return OP_EBADTIMESTAMP;
_link->pcm_file_offset=0;
/*Set pcm_end and end_offset so we can skip the call to
op_find_final_pcm_offset().*/
_link->pcm_start=_link->pcm_end=0;
@ -866,7 +868,8 @@ static int op_find_initial_pcm_offset(OggOpusFile *_of,
if(_link->head.pre_skip>0)return OP_EBADTIMESTAMP;
/*Set pcm_end and end_offset so we can skip the call to
op_find_final_pcm_offset().*/
_link->pcm_end=_link->pcm_start=0;
_link->pcm_file_offset=0;
_link->pcm_start=_link->pcm_end=0;
_link->end_offset=_link->data_offset;
/*Tell the caller we've got a buffered page for them.*/
return 1;
@ -951,6 +954,7 @@ static int op_find_initial_pcm_offset(OggOpusFile *_of,
/*Update the packet count after end-trimming.*/
_of->op_count=pi;
_of->cur_discard_count=_link->head.pre_skip;
_link->pcm_file_offset=0;
_of->prev_packet_gp=_link->pcm_start=pcm_start;
_of->prev_page_offset=page_offset;
return 0;
@ -1271,6 +1275,7 @@ static int op_bisect_forward_serialno(OggOpusFile *_of,
always starts with a seek.*/
ret=op_find_initial_pcm_offset(_of,links+nlinks,NULL);
if(OP_UNLIKELY(ret<0))return ret;
links[nlinks].pcm_file_offset=total_duration;
_searched=_of->offset;
/*Mark the current link count so it can be cleaned up on error.*/
_of->nlinks=++nlinks;
@ -1390,8 +1395,8 @@ static int op_open_seekable2_impl(OggOpusFile *_of){
opus_int64 data_offset;
int ret;
/*We can seek, so set out learning all about this file.*/
(*_of->callbacks.seek)(_of->source,0,SEEK_END);
_of->offset=_of->end=(*_of->callbacks.tell)(_of->source);
(*_of->callbacks.seek)(_of->stream,0,SEEK_END);
_of->offset=_of->end=(*_of->callbacks.tell)(_of->stream);
if(OP_UNLIKELY(_of->end<0))return OP_EREAD;
data_offset=_of->links[0].data_offset;
if(OP_UNLIKELY(_of->end<data_offset))return OP_EBADLINK;
@ -1436,7 +1441,7 @@ static int op_open_seekable2(OggOpusFile *_of){
prev_page_offset=_of->prev_page_offset;
start_offset=_of->offset;
memcpy(op_start,_of->op,sizeof(*op_start)*start_op_count);
OP_ASSERT((*_of->callbacks.tell)(_of->source)==op_position(_of));
OP_ASSERT((*_of->callbacks.tell)(_of->stream)==op_position(_of));
ogg_sync_init(&_of->oy);
ogg_stream_init(&_of->os,-1);
ret=op_open_seekable2_impl(_of);
@ -1454,7 +1459,7 @@ static int op_open_seekable2(OggOpusFile *_of){
_of->cur_discard_count=_of->links[0].head.pre_skip;
if(OP_UNLIKELY(ret<0))return ret;
/*And restore the position indicator.*/
ret=(*_of->callbacks.seek)(_of->source,op_position(_of),SEEK_SET);
ret=(*_of->callbacks.seek)(_of->stream,op_position(_of),SEEK_SET);
return OP_UNLIKELY(ret<0)?OP_EREAD:0;
}
@ -1493,19 +1498,20 @@ static void op_clear(OggOpusFile *_of){
_ogg_free(_of->serialnos);
ogg_stream_clear(&_of->os);
ogg_sync_clear(&_of->oy);
if(_of->callbacks.close!=NULL)(*_of->callbacks.close)(_of->source);
if(_of->callbacks.close!=NULL)(*_of->callbacks.close)(_of->stream);
}
static int op_open1(OggOpusFile *_of,
void *_source,const OpusFileCallbacks *_cb,
void *_stream,const OpusFileCallbacks *_cb,
const unsigned char *_initial_data,size_t _initial_bytes){
ogg_page og;
ogg_page *pog;
int seekable;
int ret;
memset(_of,0,sizeof(*_of));
if(OP_UNLIKELY(_initial_bytes>(size_t)LONG_MAX))return OP_EFAULT;
_of->end=-1;
_of->source=_source;
_of->stream=_stream;
*&_of->callbacks=*_cb;
/*At a minimum, we need to be able to read data.*/
if(OP_UNLIKELY(_of->callbacks.read==NULL))return OP_EREAD;
@ -1520,18 +1526,18 @@ static int op_open1(OggOpusFile *_of,
decoding entire files from RAM.*/
if(_initial_bytes>0){
char *buffer;
buffer=ogg_sync_buffer(&_of->oy,_initial_bytes);
buffer=ogg_sync_buffer(&_of->oy,(long)_initial_bytes);
memcpy(buffer,_initial_data,_initial_bytes*sizeof(*buffer));
ogg_sync_wrote(&_of->oy,_initial_bytes);
ogg_sync_wrote(&_of->oy,(long)_initial_bytes);
}
/*Can we seek?
Stevens suggests the seek test is portable.*/
seekable=_cb->seek!=NULL&&(*_cb->seek)(_source,0,SEEK_CUR)!=-1;
seekable=_cb->seek!=NULL&&(*_cb->seek)(_stream,0,SEEK_CUR)!=-1;
/*If seek is implemented, tell must also be implemented.*/
if(seekable){
opus_int64 pos;
if(OP_UNLIKELY(_of->callbacks.tell==NULL))return OP_EINVAL;
pos=(*_of->callbacks.tell)(_of->source);
pos=(*_of->callbacks.tell)(_of->stream);
/*If the current position is not equal to the initial bytes consumed,
absolute seeking will not work.*/
if(OP_UNLIKELY(pos!=(opus_int64)_initial_bytes))return OP_EINVAL;
@ -1590,14 +1596,14 @@ static int op_open2(OggOpusFile *_of){
return ret;
}
OggOpusFile *op_test_callbacks(void *_source,const OpusFileCallbacks *_cb,
OggOpusFile *op_test_callbacks(void *_stream,const OpusFileCallbacks *_cb,
const unsigned char *_initial_data,size_t _initial_bytes,int *_error){
OggOpusFile *of;
int ret;
of=(OggOpusFile *)_ogg_malloc(sizeof(*of));
ret=OP_EFAULT;
if(OP_LIKELY(of!=NULL)){
ret=op_open1(of,_source,_cb,_initial_data,_initial_bytes);
ret=op_open1(of,_stream,_cb,_initial_data,_initial_bytes);
if(OP_LIKELY(ret>=0)){
if(_error!=NULL)*_error=0;
return of;
@ -1611,10 +1617,10 @@ OggOpusFile *op_test_callbacks(void *_source,const OpusFileCallbacks *_cb,
return NULL;
}
OggOpusFile *op_open_callbacks(void *_source,const OpusFileCallbacks *_cb,
OggOpusFile *op_open_callbacks(void *_stream,const OpusFileCallbacks *_cb,
const unsigned char *_initial_data,size_t _initial_bytes,int *_error){
OggOpusFile *of;
of=op_test_callbacks(_source,_cb,_initial_data,_initial_bytes,_error);
of=op_test_callbacks(_stream,_cb,_initial_data,_initial_bytes,_error);
if(OP_LIKELY(of!=NULL)){
int ret;
ret=op_open2(of);
@ -1627,15 +1633,15 @@ OggOpusFile *op_open_callbacks(void *_source,const OpusFileCallbacks *_cb,
/*Convenience routine to clean up from failure for the open functions that
create their own streams.*/
static OggOpusFile *op_open_close_on_failure(void *_source,
static OggOpusFile *op_open_close_on_failure(void *_stream,
const OpusFileCallbacks *_cb,int *_error){
OggOpusFile *of;
if(OP_UNLIKELY(_source==NULL)){
if(OP_UNLIKELY(_stream==NULL)){
if(_error!=NULL)*_error=OP_EFAULT;
return NULL;
}
of=op_open_callbacks(_source,_cb,NULL,0,_error);
if(OP_UNLIKELY(of==NULL))(*_cb->close)(_source);
of=op_open_callbacks(_stream,_cb,NULL,0,_error);
if(OP_UNLIKELY(of==NULL))(*_cb->close)(_stream);
return of;
}
@ -1653,15 +1659,15 @@ OggOpusFile *op_open_memory(const unsigned char *_data,size_t _size,
/*Convenience routine to clean up from failure for the open functions that
create their own streams.*/
static OggOpusFile *op_test_close_on_failure(void *_source,
static OggOpusFile *op_test_close_on_failure(void *_stream,
const OpusFileCallbacks *_cb,int *_error){
OggOpusFile *of;
if(OP_UNLIKELY(_source==NULL)){
if(OP_UNLIKELY(_stream==NULL)){
if(_error!=NULL)*_error=OP_EFAULT;
return NULL;
}
of=op_test_callbacks(_source,_cb,NULL,0,_error);
if(OP_UNLIKELY(of==NULL))(*_cb->close)(_source);
of=op_test_callbacks(_stream,_cb,NULL,0,_error);
if(OP_UNLIKELY(of==NULL))(*_cb->close)(_stream);
return of;
}
@ -1702,7 +1708,7 @@ int op_link_count(const OggOpusFile *_of){
return _of->nlinks;
}
ogg_uint32_t op_serialno(const OggOpusFile *_of,int _li){
opus_uint32 op_serialno(const OggOpusFile *_of,int _li){
if(OP_UNLIKELY(_li>=_of->nlinks))_li=_of->nlinks-1;
if(!_of->seekable)_li=0;
return _of->links[_li<0?_of->cur_link:_li].serialno;
@ -1718,13 +1724,14 @@ opus_int64 op_raw_total(const OggOpusFile *_of,int _li){
||OP_UNLIKELY(_li>=_of->nlinks)){
return OP_EINVAL;
}
if(_li<0)return _of->end-_of->links[0].offset;
if(_li<0)return _of->end;
return (_li+1>=_of->nlinks?_of->end:_of->links[_li+1].offset)
-_of->links[_li].offset;
-(_li>0?_of->links[_li].offset:0);
}
ogg_int64_t op_pcm_total(const OggOpusFile *_of,int _li){
OggOpusLink *links;
ogg_int64_t pcm_total;
ogg_int64_t diff;
int nlinks;
nlinks=_of->nlinks;
@ -1737,20 +1744,14 @@ ogg_int64_t op_pcm_total(const OggOpusFile *_of,int _li){
/*We verify that the granule position differences are larger than the
pre-skip and that the total duration does not overflow during link
enumeration, so we don't have to check here.*/
pcm_total=0;
if(_li<0){
ogg_int64_t pcm_total;
int li;
pcm_total=0;
for(li=0;li<nlinks;li++){
OP_ALWAYS_TRUE(!op_granpos_diff(&diff,
links[li].pcm_end,links[li].pcm_start));
pcm_total+=diff-links[li].head.pre_skip;
}
return pcm_total;
pcm_total=links[nlinks-1].pcm_file_offset;
_li=nlinks-1;
}
OP_ALWAYS_TRUE(!op_granpos_diff(&diff,
links[_li].pcm_end,links[_li].pcm_start));
return diff-links[_li].head.pre_skip;
return pcm_total+diff-links[_li].head.pre_skip;
}
const OpusHead *op_head(const OggOpusFile *_of,int _li){
@ -1820,6 +1821,34 @@ opus_int32 op_bitrate_instant(OggOpusFile *_of){
return ret;
}
/*Given a serialno, find a link with a corresponding Opus stream, if it exists.
Return: The index of the link to which the page belongs, or a negative number
if it was not a desired Opus bitstream section.*/
static int op_get_link_from_serialno(const OggOpusFile *_of,int _cur_link,
opus_int64 _page_offset,ogg_uint32_t _serialno){
const OggOpusLink *links;
int nlinks;
int li_lo;
int li_hi;
OP_ASSERT(_of->seekable);
links=_of->links;
nlinks=_of->nlinks;
li_lo=0;
/*Start off by guessing we're just a multiplexed page in the current link.*/
li_hi=_cur_link+1<nlinks&&_page_offset<links[_cur_link+1].offset?
_cur_link+1:nlinks;
do{
if(_page_offset>=links[_cur_link].offset)li_lo=_cur_link;
else li_hi=_cur_link;
_cur_link=li_lo+(li_hi-li_lo>>1);
}
while(li_hi-li_lo>1);
/*We've identified the link that should contain this page.
Make sure it's a page we care about.*/
if(links[_cur_link].serialno!=_serialno)return OP_FALSE;
return _cur_link;
}
/*Fetch and process a page.
This handles the case where we're at a bitstream boundary and dumps the
decoding machine.
@ -1876,19 +1905,28 @@ static int op_fetch_and_process_page(OggOpusFile *_of,
if(OP_UNLIKELY(_of->ready_state<OP_STREAMSET)){
if(seekable){
ogg_uint32_t serialno;
int nlinks;
int li;
serialno=ogg_page_serialno(&og);
/*Match the serialno to bitstream section.
We use this rather than offset positions to avoid problems near
logical bitstream boundaries.*/
nlinks=_of->nlinks;
for(li=0;li<nlinks&&links[li].serialno!=serialno;li++);
/*Not a desired Opus bitstream section.
Keep trying.*/
if(li>=nlinks)continue;
/*Match the serialno to bitstream section.*/
OP_ASSERT(cur_link>=0&&cur_link<_of->nlinks);
if(links[cur_link].serialno!=serialno){
/*It wasn't a page from the current link.
Is it from the next one?*/
if(OP_LIKELY(cur_link+1<_of->nlinks&&links[cur_link+1].serialno==
serialno)){
cur_link++;
}
else{
int new_link;
new_link=
op_get_link_from_serialno(_of,cur_link,_page_offset,serialno);
/*Not a desired Opus bitstream section.
Keep trying.*/
if(new_link<0)continue;
cur_link=new_link;
}
}
cur_serialno=serialno;
_of->cur_link=cur_link=li;
_of->cur_link=cur_link;
ogg_stream_reset_serialno(&_of->os,serialno);
_of->ready_state=OP_STREAMSET;
/*If we're at the start of this link, initialize the granule position
@ -1942,13 +1980,32 @@ static int op_fetch_and_process_page(OggOpusFile *_of,
opus_int32 total_duration;
int durations[255];
int op_count;
int report_hole;
report_hole=0;
total_duration=op_collect_audio_packets(_of,durations);
if(OP_UNLIKELY(total_duration<0)){
/*Drain the packets from the page anyway.*/
/*libogg reported a hole (a gap in the page sequence numbers).
Drain the packets from the page anyway.
If we don't, they'll still be there when we fetch the next page.
Then, when we go to pull out packets, we might get more than 255,
which would overrun our packet buffer.*/
total_duration=op_collect_audio_packets(_of,durations);
OP_ASSERT(total_duration>=0);
/*Report holes to the caller.*/
if(!_ignore_holes)return OP_HOLE;
if(!_ignore_holes){
/*Report the hole to the caller after we finish timestamping the
packets.*/
report_hole=1;
/*We had lost or damaged pages, so reset our granule position
tracking.
This makes holes behave the same as a small raw seek.
If the next page is the EOS page, we'll discard it (because we
can't perform end trimming properly), and we'll always discard at
least 80 ms of audio (to allow decoder state to re-converge).
We could try to fill in the gap with PLC by looking at timestamps
in the non-EOS case, but that's complicated and error prone and we
can't rely on the timestamps being valid.*/
_of->prev_packet_gp=-1;
}
}
op_count=_of->op_count;
/*If we found at least one audio data packet, compute per-packet granule
@ -1975,6 +2032,7 @@ static int op_fetch_and_process_page(OggOpusFile *_of,
Proceed to the next link, rather than risk playing back some
samples that shouldn't have been played.*/
_of->op_count=0;
if(report_hole)return OP_HOLE;
continue;
}
/*By default discard 80 ms of data after a seek, unless we seek
@ -2020,7 +2078,11 @@ static int op_fetch_and_process_page(OggOpusFile *_of,
&&OP_LIKELY(diff<total_duration)){
cur_packet_gp=prev_packet_gp;
for(pi=0;pi<op_count;pi++){
diff=durations[pi]-diff;
/*Check for overflow.*/
if(diff<0&&OP_UNLIKELY(OP_INT64_MAX+diff<durations[pi])){
diff=durations[pi]+1;
}
else diff=durations[pi]-diff;
/*If we have samples to trim...*/
if(diff>0){
/*If we trimmed the entire packet, stop (the spec says encoders
@ -2076,10 +2138,11 @@ static int op_fetch_and_process_page(OggOpusFile *_of,
}
_of->prev_packet_gp=prev_packet_gp;
_of->prev_page_offset=_page_offset;
_of->op_count=pi;
/*If end-trimming didn't trim all the packets, we're done.*/
if(OP_LIKELY(pi>0))return 0;
_of->op_count=op_count=pi;
}
if(report_hole)return OP_HOLE;
/*If end-trimming didn't trim all the packets, we're done.*/
if(op_count>0)return 0;
}
}
}
@ -2117,35 +2180,41 @@ static ogg_int64_t op_get_granulepos(const OggOpusFile *_of,
ogg_int64_t _pcm_offset,int *_li){
const OggOpusLink *links;
ogg_int64_t duration;
ogg_int64_t pcm_start;
opus_int32 pre_skip;
int nlinks;
int li;
int li_lo;
int li_hi;
OP_ASSERT(_pcm_offset>=0);
nlinks=_of->nlinks;
links=_of->links;
for(li=0;OP_LIKELY(li<nlinks);li++){
ogg_int64_t pcm_start;
opus_int32 pre_skip;
pcm_start=links[li].pcm_start;
pre_skip=links[li].head.pre_skip;
OP_ALWAYS_TRUE(!op_granpos_diff(&duration,links[li].pcm_end,pcm_start));
duration-=pre_skip;
if(_pcm_offset<duration){
_pcm_offset+=pre_skip;
if(OP_UNLIKELY(pcm_start>OP_INT64_MAX-_pcm_offset)){
/*Adding this amount to the granule position would overflow the positive
half of its 64-bit range.
Since signed overflow is undefined in C, do it in a way the compiler
isn't allowed to screw up.*/
_pcm_offset-=OP_INT64_MAX-pcm_start+1;
pcm_start=OP_INT64_MIN;
}
pcm_start+=_pcm_offset;
*_li=li;
return pcm_start;
}
_pcm_offset-=duration;
li_lo=0;
li_hi=nlinks;
do{
int li;
li=li_lo+(li_hi-li_lo>>1);
if(links[li].pcm_file_offset<=_pcm_offset)li_lo=li;
else li_hi=li;
}
return -1;
while(li_hi-li_lo>1);
_pcm_offset-=links[li_lo].pcm_file_offset;
pcm_start=links[li_lo].pcm_start;
pre_skip=links[li_lo].head.pre_skip;
OP_ALWAYS_TRUE(!op_granpos_diff(&duration,links[li_lo].pcm_end,pcm_start));
duration-=pre_skip;
if(_pcm_offset>=duration)return -1;
_pcm_offset+=pre_skip;
if(OP_UNLIKELY(pcm_start>OP_INT64_MAX-_pcm_offset)){
/*Adding this amount to the granule position would overflow the positive
half of its 64-bit range.
Since signed overflow is undefined in C, do it in a way the compiler
isn't allowed to screw up.*/
_pcm_offset-=OP_INT64_MAX-pcm_start+1;
pcm_start=OP_INT64_MIN;
}
pcm_start+=_pcm_offset;
*_li=li_lo;
return pcm_start;
}
/*A small helper to determine if an Ogg page contains data that continues onto
@ -2532,15 +2601,14 @@ int op_pcm_seek(OggOpusFile *_of,ogg_int64_t _pcm_offset){
ogg_int64_t gp;
gp=_of->prev_packet_gp;
if(OP_LIKELY(gp!=-1)){
int nbuffered;
ogg_int64_t discard_count;
int nbuffered;
nbuffered=OP_MAX(_of->od_buffer_size-_of->od_buffer_pos,0);
OP_ALWAYS_TRUE(!op_granpos_add(&gp,gp,-nbuffered));
/*We do _not_ add cur_discard_count to gp.
Otherwise the total amount to discard could grow without bound, and it
would be better just to do a full seek.*/
if(OP_LIKELY(!op_granpos_diff(&diff,gp,pcm_start))){
ogg_int64_t discard_count;
discard_count=_pcm_offset-diff;
if(OP_LIKELY(!op_granpos_diff(&discard_count,target_gp,gp))){
/*We use a threshold of 90 ms instead of 80, since 80 ms is the
_minimum_ we would have discarded after a full seek.
Assuming 20 ms frames (the default), we'd discard 90 ms on average.*/
@ -2606,22 +2674,14 @@ static ogg_int64_t op_get_pcm_offset(const OggOpusFile *_of,
ogg_int64_t _gp,int _li){
const OggOpusLink *links;
ogg_int64_t pcm_offset;
ogg_int64_t delta;
int li;
links=_of->links;
pcm_offset=0;
OP_ASSERT(_li<_of->nlinks);
for(li=0;li<_li;li++){
OP_ALWAYS_TRUE(!op_granpos_diff(&delta,
links[li].pcm_end,links[li].pcm_start));
delta-=links[li].head.pre_skip;
pcm_offset+=delta;
}
OP_ASSERT(_li>=0);
OP_ASSERT(_li>=0&&_li<_of->nlinks);
pcm_offset=links[_li].pcm_file_offset;
if(_of->seekable&&OP_UNLIKELY(op_granpos_cmp(_gp,links[_li].pcm_end)>0)){
_gp=links[_li].pcm_end;
}
if(OP_LIKELY(op_granpos_cmp(_gp,links[_li].pcm_start)>0)){
ogg_int64_t delta;
if(OP_UNLIKELY(op_granpos_diff(&delta,_gp,links[_li].pcm_start)<0)){
/*This means an unseekable stream claimed to have a page from more than
2 billion days after we joined.*/

View File

@ -213,7 +213,8 @@ opus_int32 opus_repacketizer_out_range_impl(OpusRepacketizer *rp, int begin, int
{
/* Using OPUS_MOVE() instead of OPUS_COPY() in case we're doing in-place
padding from opus_packet_pad or opus_packet_unpad(). */
celt_assert(frames[i] + len[i] <= data || ptr <= frames[i]);
/* assert disabled because it's not valid in C. */
/* celt_assert(frames[i] + len[i] <= data || ptr <= frames[i]); */
OPUS_MOVE(ptr, frames[i], len[i]);
ptr += len[i];
}

View File

@ -40,7 +40,7 @@ POSSIBILITY OF SUCH DAMAGE.
/* Number of binary divisions, when not in low complexity mode */
#define BIN_DIV_STEPS_A2NLSF_FIX 3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */
#define MAX_ITERATIONS_A2NLSF_FIX 30
#define MAX_ITERATIONS_A2NLSF_FIX 16
/* Helper function for A2NLSF(..) */
/* Transforms polynomials from cos(n*f) to cos(f)^n */
@ -130,7 +130,7 @@ void silk_A2NLSF(
const opus_int d /* I Filter order (must be even) */
)
{
opus_int i, k, m, dd, root_ix, ffrac;
opus_int i, k, m, dd, root_ix, ffrac;
opus_int32 xlo, xhi, xmid;
opus_int32 ylo, yhi, ymid, thr;
opus_int32 nom, den;
@ -239,13 +239,13 @@ void silk_A2NLSF(
/* Set NLSFs to white spectrum and exit */
NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 );
for( k = 1; k < d; k++ ) {
NLSF[ k ] = (opus_int16)silk_SMULBB( k + 1, NLSF[ 0 ] );
NLSF[ k ] = (opus_int16)silk_ADD16( NLSF[ k-1 ], NLSF[ 0 ] );
}
return;
}
/* Error: Apply progressively more bandwidth expansion and run again */
silk_bwexpander_32( a_Q16, d, 65536 - silk_SMULBB( 10 + i, i ) ); /* 10_Q16 = 0.00015*/
silk_bwexpander_32( a_Q16, d, 65536 - silk_LSHIFT( 1, i ) );
silk_A2NLSF_init( a_Q16, P, Q, dd );
p = P; /* Pointer to polynomial */

View File

@ -80,7 +80,8 @@ opus_int silk_Encode( /* O Returns error co
opus_int nSamplesIn, /* I Number of samples in input vector */
ec_enc *psRangeEnc, /* I/O Compressor data structure */
opus_int32 *nBytesOut, /* I/O Number of bytes in payload (input: Max bytes) */
const opus_int prefillFlag /* I Flag to indicate prefilling buffers no coding */
const opus_int prefillFlag, /* I Flag to indicate prefilling buffers no coding */
int activity /* I Decision of Opus voice activity detector */
);
/****************************************/

View File

@ -138,16 +138,16 @@ void silk_CNG(
gain_Q16 = silk_LSHIFT32( silk_SQRT_APPROX( gain_Q16 ), 8 );
}
gain_Q10 = silk_RSHIFT( gain_Q16, 6 );
silk_CNG_exc( CNG_sig_Q14 + MAX_LPC_ORDER, psCNG->CNG_exc_buf_Q14, length, &psCNG->rand_seed );
/* Convert CNG NLSF to filter representation */
silk_NLSF2A( A_Q12, psCNG->CNG_smth_NLSF_Q15, psDec->LPC_order );
silk_NLSF2A( A_Q12, psCNG->CNG_smth_NLSF_Q15, psDec->LPC_order, psDec->arch );
/* Generate CNG signal, by synthesis filtering */
silk_memcpy( CNG_sig_Q14, psCNG->CNG_synth_state, MAX_LPC_ORDER * sizeof( opus_int32 ) );
celt_assert( psDec->LPC_order == 10 || psDec->LPC_order == 16 );
for( i = 0; i < length; i++ ) {
silk_assert( psDec->LPC_order == 10 || psDec->LPC_order == 16 );
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
LPC_pred_Q10 = silk_RSHIFT( psDec->LPC_order, 1 );
LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, CNG_sig_Q14[ MAX_LPC_ORDER + i - 1 ], A_Q12[ 0 ] );
@ -170,11 +170,11 @@ void silk_CNG(
}
/* Update states */
CNG_sig_Q14[ MAX_LPC_ORDER + i ] = silk_ADD_LSHIFT( CNG_sig_Q14[ MAX_LPC_ORDER + i ], LPC_pred_Q10, 4 );
CNG_sig_Q14[ MAX_LPC_ORDER + i ] = silk_ADD_SAT32( CNG_sig_Q14[ MAX_LPC_ORDER + i ], silk_LSHIFT_SAT32( LPC_pred_Q10, 4 ) );
/* Scale with Gain and add to input signal */
frame[ i ] = (opus_int16)silk_ADD_SAT16( frame[ i ], silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( CNG_sig_Q14[ MAX_LPC_ORDER + i ], gain_Q10 ), 8 ) ) );
}
silk_memcpy( psCNG->CNG_synth_state, &CNG_sig_Q14[ length ], MAX_LPC_ORDER * sizeof( opus_int32 ) );
} else {

View File

@ -39,6 +39,13 @@ POSSIBILITY OF SUCH DAMAGE.
/* first d output samples are set to zero */
/*******************************************/
/* OPT: Using celt_fir() for this function should be faster, but it may cause
integer overflows in intermediate values (not final results), which the
current implementation silences by casting to unsigned. Enabling
this should be safe in pretty much all cases, even though it is not technically
C89-compliant. */
#define USE_CELT_FIR 0
void silk_LPC_analysis_filter(
opus_int16 *out, /* O Output signal */
const opus_int16 *in, /* I Input signal */
@ -49,8 +56,7 @@ void silk_LPC_analysis_filter(
)
{
opus_int j;
#ifdef FIXED_POINT
opus_int16 mem[SILK_MAX_ORDER_LPC];
#if defined(FIXED_POINT) && USE_CELT_FIR
opus_int16 num[SILK_MAX_ORDER_LPC];
#else
int ix;
@ -58,19 +64,16 @@ void silk_LPC_analysis_filter(
const opus_int16 *in_ptr;
#endif
silk_assert( d >= 6 );
silk_assert( (d & 1) == 0 );
silk_assert( d <= len );
celt_assert( d >= 6 );
celt_assert( (d & 1) == 0 );
celt_assert( d <= len );
#ifdef FIXED_POINT
silk_assert( d <= SILK_MAX_ORDER_LPC );
#if defined(FIXED_POINT) && USE_CELT_FIR
celt_assert( d <= SILK_MAX_ORDER_LPC );
for ( j = 0; j < d; j++ ) {
num[ j ] = -B[ j ];
}
for (j=0;j<d;j++) {
mem[ j ] = in[ d - j - 1 ];
}
celt_fir( in + d, num, out + d, len - d, d, mem, arch );
celt_fir( in + d, num, out + d, len - d, d, arch );
for ( j = 0; j < d; j++ ) {
out[ j ] = 0;
}

81
thirdparty/opus/silk/LPC_fit.c vendored Normal file
View File

@ -0,0 +1,81 @@
/***********************************************************************
Copyright (c) 2013, Koen Vos. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Internet Society, IETF or IETF Trust, nor the
names of specific contributors, may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "SigProc_FIX.h"
/* Convert int32 coefficients to int16 coefs and make sure there's no wrap-around */
void silk_LPC_fit(
opus_int16 *a_QOUT, /* O Output signal */
opus_int32 *a_QIN, /* I/O Input signal */
const opus_int QOUT, /* I Input Q domain */
const opus_int QIN, /* I Input Q domain */
const opus_int d /* I Filter order */
)
{
opus_int i, k, idx = 0;
opus_int32 maxabs, absval, chirp_Q16;
/* Limit the maximum absolute value of the prediction coefficients, so that they'll fit in int16 */
for( i = 0; i < 10; i++ ) {
/* Find maximum absolute value and its index */
maxabs = 0;
for( k = 0; k < d; k++ ) {
absval = silk_abs( a_QIN[k] );
if( absval > maxabs ) {
maxabs = absval;
idx = k;
}
}
maxabs = silk_RSHIFT_ROUND( maxabs, QIN - QOUT );
if( maxabs > silk_int16_MAX ) {
/* Reduce magnitude of prediction coefficients */
maxabs = silk_min( maxabs, 163838 ); /* ( silk_int32_MAX >> 14 ) + silk_int16_MAX = 163838 */
chirp_Q16 = SILK_FIX_CONST( 0.999, 16 ) - silk_DIV32( silk_LSHIFT( maxabs - silk_int16_MAX, 14 ),
silk_RSHIFT32( silk_MUL( maxabs, idx + 1), 2 ) );
silk_bwexpander_32( a_QIN, d, chirp_Q16 );
} else {
break;
}
}
if( i == 10 ) {
/* Reached the last iteration, clip the coefficients */
for( k = 0; k < d; k++ ) {
a_QOUT[ k ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( a_QIN[ k ], QIN - QOUT ) );
a_QIN[ k ] = silk_LSHIFT( (opus_int32)a_QOUT[ k ], QIN - QOUT );
}
} else {
for( k = 0; k < d; k++ ) {
a_QOUT[ k ] = (opus_int16)silk_RSHIFT_ROUND( a_QIN[ k ], QIN - QOUT );
}
}
}

View File

@ -30,6 +30,7 @@ POSSIBILITY OF SUCH DAMAGE.
#endif
#include "SigProc_FIX.h"
#include "define.h"
#define QA 24
#define A_LIMIT SILK_FIX_CONST( 0.99975, QA )
@ -38,117 +39,103 @@ POSSIBILITY OF SUCH DAMAGE.
/* Compute inverse of LPC prediction gain, and */
/* test if LPC coefficients are stable (all poles within unit circle) */
static opus_int32 LPC_inverse_pred_gain_QA( /* O Returns inverse prediction gain in energy domain, Q30 */
opus_int32 A_QA[ 2 ][ SILK_MAX_ORDER_LPC ], /* I Prediction coefficients */
static opus_int32 LPC_inverse_pred_gain_QA_c( /* O Returns inverse prediction gain in energy domain, Q30 */
opus_int32 A_QA[ SILK_MAX_ORDER_LPC ], /* I Prediction coefficients */
const opus_int order /* I Prediction order */
)
{
opus_int k, n, mult2Q;
opus_int32 invGain_Q30, rc_Q31, rc_mult1_Q30, rc_mult2, tmp_QA;
opus_int32 *Aold_QA, *Anew_QA;
opus_int32 invGain_Q30, rc_Q31, rc_mult1_Q30, rc_mult2, tmp1, tmp2;
Anew_QA = A_QA[ order & 1 ];
invGain_Q30 = (opus_int32)1 << 30;
invGain_Q30 = SILK_FIX_CONST( 1, 30 );
for( k = order - 1; k > 0; k-- ) {
/* Check for stability */
if( ( Anew_QA[ k ] > A_LIMIT ) || ( Anew_QA[ k ] < -A_LIMIT ) ) {
if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) {
return 0;
}
/* Set RC equal to negated AR coef */
rc_Q31 = -silk_LSHIFT( Anew_QA[ k ], 31 - QA );
rc_Q31 = -silk_LSHIFT( A_QA[ k ], 31 - QA );
/* rc_mult1_Q30 range: [ 1 : 2^30 ] */
rc_mult1_Q30 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) );
silk_assert( rc_mult1_Q30 > ( 1 << 15 ) ); /* reduce A_LIMIT if fails */
silk_assert( rc_mult1_Q30 <= ( 1 << 30 ) );
/* rc_mult2 range: [ 2^30 : silk_int32_MAX ] */
mult2Q = 32 - silk_CLZ32( silk_abs( rc_mult1_Q30 ) );
rc_mult2 = silk_INVERSE32_varQ( rc_mult1_Q30, mult2Q + 30 );
/* Update inverse gain */
/* invGain_Q30 range: [ 0 : 2^30 ] */
invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 );
silk_assert( invGain_Q30 >= 0 );
silk_assert( invGain_Q30 <= ( 1 << 30 ) );
if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) {
return 0;
}
/* Swap pointers */
Aold_QA = Anew_QA;
Anew_QA = A_QA[ k & 1 ];
/* rc_mult2 range: [ 2^30 : silk_int32_MAX ] */
mult2Q = 32 - silk_CLZ32( silk_abs( rc_mult1_Q30 ) );
rc_mult2 = silk_INVERSE32_varQ( rc_mult1_Q30, mult2Q + 30 );
/* Update AR coefficient */
for( n = 0; n < k; n++ ) {
tmp_QA = Aold_QA[ n ] - MUL32_FRAC_Q( Aold_QA[ k - n - 1 ], rc_Q31, 31 );
Anew_QA[ n ] = MUL32_FRAC_Q( tmp_QA, rc_mult2 , mult2Q );
for( n = 0; n < (k + 1) >> 1; n++ ) {
opus_int64 tmp64;
tmp1 = A_QA[ n ];
tmp2 = A_QA[ k - n - 1 ];
tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp1,
MUL32_FRAC_Q( tmp2, rc_Q31, 31 ) ), rc_mult2 ), mult2Q);
if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
return 0;
}
A_QA[ n ] = ( opus_int32 )tmp64;
tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp2,
MUL32_FRAC_Q( tmp1, rc_Q31, 31 ) ), rc_mult2), mult2Q);
if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
return 0;
}
A_QA[ k - n - 1 ] = ( opus_int32 )tmp64;
}
}
/* Check for stability */
if( ( Anew_QA[ 0 ] > A_LIMIT ) || ( Anew_QA[ 0 ] < -A_LIMIT ) ) {
if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) {
return 0;
}
/* Set RC equal to negated AR coef */
rc_Q31 = -silk_LSHIFT( Anew_QA[ 0 ], 31 - QA );
rc_Q31 = -silk_LSHIFT( A_QA[ 0 ], 31 - QA );
/* Range: [ 1 : 2^30 ] */
rc_mult1_Q30 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) );
/* Update inverse gain */
/* Range: [ 0 : 2^30 ] */
invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 );
silk_assert( invGain_Q30 >= 0 );
silk_assert( invGain_Q30 <= 1<<30 );
silk_assert( invGain_Q30 >= 0 );
silk_assert( invGain_Q30 <= ( 1 << 30 ) );
if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) {
return 0;
}
return invGain_Q30;
}
/* For input in Q12 domain */
opus_int32 silk_LPC_inverse_pred_gain( /* O Returns inverse prediction gain in energy domain, Q30 */
opus_int32 silk_LPC_inverse_pred_gain_c( /* O Returns inverse prediction gain in energy domain, Q30 */
const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */
const opus_int order /* I Prediction order */
)
{
opus_int k;
opus_int32 Atmp_QA[ 2 ][ SILK_MAX_ORDER_LPC ];
opus_int32 *Anew_QA;
opus_int32 Atmp_QA[ SILK_MAX_ORDER_LPC ];
opus_int32 DC_resp = 0;
Anew_QA = Atmp_QA[ order & 1 ];
/* Increase Q domain of the AR coefficients */
for( k = 0; k < order; k++ ) {
DC_resp += (opus_int32)A_Q12[ k ];
Anew_QA[ k ] = silk_LSHIFT32( (opus_int32)A_Q12[ k ], QA - 12 );
Atmp_QA[ k ] = silk_LSHIFT32( (opus_int32)A_Q12[ k ], QA - 12 );
}
/* If the DC is unstable, we don't even need to do the full calculations */
if( DC_resp >= 4096 ) {
return 0;
}
return LPC_inverse_pred_gain_QA( Atmp_QA, order );
return LPC_inverse_pred_gain_QA_c( Atmp_QA, order );
}
#ifdef FIXED_POINT
/* For input in Q24 domain */
opus_int32 silk_LPC_inverse_pred_gain_Q24( /* O Returns inverse prediction gain in energy domain, Q30 */
const opus_int32 *A_Q24, /* I Prediction coefficients [order] */
const opus_int order /* I Prediction order */
)
{
opus_int k;
opus_int32 Atmp_QA[ 2 ][ SILK_MAX_ORDER_LPC ];
opus_int32 *Anew_QA;
Anew_QA = Atmp_QA[ order & 1 ];
/* Increase Q domain of the AR coefficients */
for( k = 0; k < order; k++ ) {
Anew_QA[ k ] = silk_RSHIFT32( A_Q24[ k ], 24 - QA );
}
return LPC_inverse_pred_gain_QA( Atmp_QA, order );
}
#endif

View File

@ -130,6 +130,6 @@ void silk_LP_variable_cutoff(
/* ARMA low-pass filtering */
silk_assert( TRANSITION_NB == 3 && TRANSITION_NA == 2 );
silk_biquad_alt( frame, B_Q28, A_Q28, psLP->In_LP_State, frame, frame_length, 1);
silk_biquad_alt_stride1( frame, B_Q28, A_Q28, psLP->In_LP_State, frame, frame_length);
}
}

View File

@ -319,14 +319,6 @@ static OPUS_INLINE opus_int32 silk_ADD_POS_SAT32(opus_int64 a, opus_int64 b){
return(tmp);
}
#undef silk_ADD_POS_SAT64
static OPUS_INLINE opus_int64 silk_ADD_POS_SAT64(opus_int64 a, opus_int64 b){
opus_int64 tmp;
ops_count += 1;
tmp = ((((a)+(b)) & 0x8000000000000000LL) ? silk_int64_MAX : ((a)+(b)));
return(tmp);
}
#undef silk_LSHIFT8
static OPUS_INLINE opus_int8 silk_LSHIFT8(opus_int8 a, opus_int32 shift){
opus_int8 ret;
@ -699,7 +691,7 @@ return(ret);
#undef silk_LIMIT_32
static OPUS_INLINE opus_int silk_LIMIT_32(opus_int32 a, opus_int32 limit1, opus_int32 limit2)
static OPUS_INLINE opus_int32 silk_LIMIT_32(opus_int32 a, opus_int32 limit1, opus_int32 limit2)
{
opus_int32 ret;
ops_count += 6;

View File

@ -539,8 +539,7 @@ static OPUS_INLINE opus_int32 silk_DIV32_16_(opus_int32 a32, opus_int32 b32, cha
no checking needed for silk_POS_SAT32
no checking needed for silk_ADD_POS_SAT8
no checking needed for silk_ADD_POS_SAT16
no checking needed for silk_ADD_POS_SAT32
no checking needed for silk_ADD_POS_SAT64 */
no checking needed for silk_ADD_POS_SAT32 */
#undef silk_LSHIFT8
#define silk_LSHIFT8(a,b) silk_LSHIFT8_((a), (b), __FILE__, __LINE__)

View File

@ -66,7 +66,8 @@ static OPUS_INLINE void silk_NLSF2A_find_poly(
void silk_NLSF2A(
opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */
const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */
const opus_int d /* I filter order (should be even) */
const opus_int d, /* I filter order (should be even) */
int arch /* I Run-time architecture */
)
{
/* This ordering was found to maximize quality. It improves numerical accuracy of
@ -83,15 +84,14 @@ void silk_NLSF2A(
opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ], Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
opus_int32 Ptmp, Qtmp, f_int, f_frac, cos_val, delta;
opus_int32 a32_QA1[ SILK_MAX_ORDER_LPC ];
opus_int32 maxabs, absval, idx=0, sc_Q16;
silk_assert( LSF_COS_TAB_SZ_FIX == 128 );
silk_assert( d==10||d==16 );
celt_assert( d==10 || d==16 );
/* convert LSFs to 2*cos(LSF), using piecewise linear curve from table */
ordering = d == 16 ? ordering16 : ordering10;
for( k = 0; k < d; k++ ) {
silk_assert(NLSF[k] >= 0 );
silk_assert( NLSF[k] >= 0 );
/* f_int on a scale 0-127 (rounded down) */
f_int = silk_RSHIFT( NLSF[k], 15 - 7 );
@ -126,52 +126,15 @@ void silk_NLSF2A(
a32_QA1[ d-k-1 ] = Qtmp - Ptmp; /* QA+1 */
}
/* Limit the maximum absolute value of the prediction coefficients, so that they'll fit in int16 */
for( i = 0; i < 10; i++ ) {
/* Find maximum absolute value and its index */
maxabs = 0;
for( k = 0; k < d; k++ ) {
absval = silk_abs( a32_QA1[k] );
if( absval > maxabs ) {
maxabs = absval;
idx = k;
}
}
maxabs = silk_RSHIFT_ROUND( maxabs, QA + 1 - 12 ); /* QA+1 -> Q12 */
/* Convert int32 coefficients to Q12 int16 coefs */
silk_LPC_fit( a_Q12, a32_QA1, 12, QA + 1, d );
if( maxabs > silk_int16_MAX ) {
/* Reduce magnitude of prediction coefficients */
maxabs = silk_min( maxabs, 163838 ); /* ( silk_int32_MAX >> 14 ) + silk_int16_MAX = 163838 */
sc_Q16 = SILK_FIX_CONST( 0.999, 16 ) - silk_DIV32( silk_LSHIFT( maxabs - silk_int16_MAX, 14 ),
silk_RSHIFT32( silk_MUL( maxabs, idx + 1), 2 ) );
silk_bwexpander_32( a32_QA1, d, sc_Q16 );
} else {
break;
}
}
if( i == 10 ) {
/* Reached the last iteration, clip the coefficients */
for( i = 0; silk_LPC_inverse_pred_gain( a_Q12, d, arch ) == 0 && i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) {
/* Prediction coefficients are (too close to) unstable; apply bandwidth expansion */
/* on the unscaled coefficients, convert to Q12 and measure again */
silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) );
for( k = 0; k < d; k++ ) {
a_Q12[ k ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ) ); /* QA+1 -> Q12 */
a32_QA1[ k ] = silk_LSHIFT( (opus_int32)a_Q12[ k ], QA + 1 - 12 );
}
} else {
for( k = 0; k < d; k++ ) {
a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */
}
}
for( i = 0; i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) {
if( silk_LPC_inverse_pred_gain( a_Q12, d ) < SILK_FIX_CONST( 1.0 / MAX_PREDICTION_POWER_GAIN, 30 ) ) {
/* Prediction coefficients are (too close to) unstable; apply bandwidth expansion */
/* on the unscaled coefficients, convert to Q12 and measure again */
silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) );
for( k = 0; k < d; k++ ) {
a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */
}
} else {
break;
a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */
}
}
}

Some files were not shown because too many files have changed in this diff Show More