Merge pull request #33836 from clayjohn/blinn-fix

Fix Specular Blinn function
This commit is contained in:
Rémi Verschelde 2019-12-03 07:50:37 +01:00 committed by GitHub
commit 65e6efaa3b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 98 additions and 113 deletions

View File

@ -251,12 +251,10 @@ void light_compute(
//normalized blinn always unless disabled
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float cVdotH = max(dot(V, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
float blinn = pow(cNdotH, shininess) * cNdotL;
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
specular_brdf_NL = blinn;
#endif
SRGB_APPROX(specular_brdf_NL)
@ -1270,9 +1268,9 @@ LIGHT_SHADER_CODE
//normalized blinn
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
float blinn = pow(cNdotH, shininess) * cNdotL;
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
specular_brdf_NL = blinn;
#elif defined(SPECULAR_PHONG)
@ -1547,157 +1545,157 @@ FRAGMENT_SHADER_CODE
#endif // !USE_SHADOW_TO_OPACITY
#ifdef BASE_PASS
{
// IBL precalculations
float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
vec3 f0 = F0(metallic, specular, albedo);
vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
// IBL precalculations
float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
vec3 f0 = F0(metallic, specular, albedo);
vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
#ifdef AMBIENT_LIGHT_DISABLED
ambient_light = vec3(0.0, 0.0, 0.0);
ambient_light = vec3(0.0, 0.0, 0.0);
#else
#ifdef USE_RADIANCE_MAP
vec3 ref_vec = reflect(-eye_position, N);
ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
vec3 ref_vec = reflect(-eye_position, N);
ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
ref_vec.z *= -1.0;
ref_vec.z *= -1.0;
specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
#ifndef USE_LIGHTMAP
{
vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, 4.0).xyz * bg_energy;
env_ambient *= 1.0 - F;
{
vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, 4.0).xyz * bg_energy;
env_ambient *= 1.0 - F;
ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
}
ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
}
#endif
#else
ambient_light = ambient_color.rgb;
specular_light = bg_color.rgb * bg_energy;
ambient_light = ambient_color.rgb;
specular_light = bg_color.rgb * bg_energy;
#endif
#endif // AMBIENT_LIGHT_DISABLED
ambient_light *= ambient_energy;
ambient_light *= ambient_energy;
#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
vec4 ambient_accum = vec4(0.0);
vec4 reflection_accum = vec4(0.0);
vec4 ambient_accum = vec4(0.0);
vec4 reflection_accum = vec4(0.0);
#ifdef USE_REFLECTION_PROBE1
reflection_process(reflection_probe1,
reflection_process(reflection_probe1,
#ifdef USE_VERTEX_LIGHTING
refprobe1_reflection_normal_blend.rgb,
refprobe1_reflection_normal_blend.rgb,
#ifndef USE_LIGHTMAP
refprobe1_ambient_normal,
refprobe1_ambient_normal,
#endif
refprobe1_reflection_normal_blend.a,
refprobe1_reflection_normal_blend.a,
#else
normal_interp, vertex_interp, refprobe1_local_matrix,
refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset,
normal_interp, vertex_interp, refprobe1_local_matrix,
refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset,
#endif
refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness,
ambient_light, specular_light, reflection_accum, ambient_accum);
refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness,
ambient_light, specular_light, reflection_accum, ambient_accum);
#endif // USE_REFLECTION_PROBE1
#ifdef USE_REFLECTION_PROBE2
reflection_process(reflection_probe2,
reflection_process(reflection_probe2,
#ifdef USE_VERTEX_LIGHTING
refprobe2_reflection_normal_blend.rgb,
refprobe2_reflection_normal_blend.rgb,
#ifndef USE_LIGHTMAP
refprobe2_ambient_normal,
refprobe2_ambient_normal,
#endif
refprobe2_reflection_normal_blend.a,
refprobe2_reflection_normal_blend.a,
#else
normal_interp, vertex_interp, refprobe2_local_matrix,
refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset,
normal_interp, vertex_interp, refprobe2_local_matrix,
refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset,
#endif
refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness,
ambient_light, specular_light, reflection_accum, ambient_accum);
refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness,
ambient_light, specular_light, reflection_accum, ambient_accum);
#endif // USE_REFLECTION_PROBE2
if (reflection_accum.a > 0.0) {
specular_light = reflection_accum.rgb / reflection_accum.a;
}
if (reflection_accum.a > 0.0) {
specular_light = reflection_accum.rgb / reflection_accum.a;
}
#ifndef USE_LIGHTMAP
if (ambient_accum.a > 0.0) {
ambient_light = ambient_accum.rgb / ambient_accum.a;
}
if (ambient_accum.a > 0.0) {
ambient_light = ambient_accum.rgb / ambient_accum.a;
}
#endif
#endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
// environment BRDF approximation
{
// environment BRDF approximation
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
// scales the specular reflections, needs to be be computed before lighting happens,
// but after environment and reflection probes are added
//TODO: this curve is not really designed for gammaspace, should be adjusted
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
specular_light *= env.x * F + env.y;
// scales the specular reflections, needs to be be computed before lighting happens,
// but after environment and reflection probes are added
//TODO: this curve is not really designed for gammaspace, should be adjusted
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
specular_light *= env.x * F + env.y;
#endif
}
}
#ifdef USE_LIGHTMAP
//ambient light will come entirely from lightmap is lightmap is used
ambient_light = texture2D(lightmap, uv2_interp).rgb * lightmap_energy;
//ambient light will come entirely from lightmap is lightmap is used
ambient_light = texture2D(lightmap, uv2_interp).rgb * lightmap_energy;
#endif
#ifdef USE_LIGHTMAP_CAPTURE
{
vec3 cone_dirs[12] = vec3[](
vec3(0.0, 0.0, 1.0),
vec3(0.866025, 0.0, 0.5),
vec3(0.267617, 0.823639, 0.5),
vec3(-0.700629, 0.509037, 0.5),
vec3(-0.700629, -0.509037, 0.5),
vec3(0.267617, -0.823639, 0.5),
vec3(0.0, 0.0, -1.0),
vec3(0.866025, 0.0, -0.5),
vec3(0.267617, 0.823639, -0.5),
vec3(-0.700629, 0.509037, -0.5),
vec3(-0.700629, -0.509037, -0.5),
vec3(0.267617, -0.823639, -0.5));
{
vec3 cone_dirs[12] = vec3[](
vec3(0.0, 0.0, 1.0),
vec3(0.866025, 0.0, 0.5),
vec3(0.267617, 0.823639, 0.5),
vec3(-0.700629, 0.509037, 0.5),
vec3(-0.700629, -0.509037, 0.5),
vec3(0.267617, -0.823639, 0.5),
vec3(0.0, 0.0, -1.0),
vec3(0.866025, 0.0, -0.5),
vec3(0.267617, 0.823639, -0.5),
vec3(-0.700629, 0.509037, -0.5),
vec3(-0.700629, -0.509037, -0.5),
vec3(0.267617, -0.823639, -0.5));
vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
vec4 captured = vec4(0.0);
float sum = 0.0;
for (int i = 0; i < 12; i++) {
float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
captured += lightmap_captures[i] * amount;
sum += amount;
}
captured /= sum;
if (lightmap_capture_sky) {
ambient_light = mix(ambient_light, captured.rgb, captured.a);
} else {
ambient_light = captured.rgb;
}
vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
vec4 captured = vec4(0.0);
float sum = 0.0;
for (int i = 0; i < 12; i++) {
float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
captured += lightmap_captures[i] * amount;
sum += amount;
}
captured /= sum;
if (lightmap_capture_sky) {
ambient_light = mix(ambient_light, captured.rgb, captured.a);
} else {
ambient_light = captured.rgb;
}
#endif
}
#endif
#endif //BASE PASS
//
@ -2052,17 +2050,6 @@ FRAGMENT_SHADER_CODE
specular_light += specular_interp * specular_blob_intensity * light_att;
diffuse_light += diffuse_interp * albedo * light_att;
// Same as above, needed for VERTEX_LIGHTING or else lights are too bright
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
vec3 f0 = F0(metallic, specular, albedo);
specular_light *= env.x * f0 + env.y;
#else
//fragment lighting
light_compute(

View File

@ -213,12 +213,10 @@ void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float roughness, in
//normalized blinn always unless disabled
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float cVdotH = max(dot(V, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
float blinn = pow(cNdotH, shininess) * cNdotL;
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
specular_brdf_NL = blinn;
#endif
specular += specular_brdf_NL * light_color * (1.0 / M_PI);
@ -1094,9 +1092,9 @@ LIGHT_SHADER_CODE
//normalized blinn
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
float blinn = pow(cNdotH, shininess) * cNdotL;
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
float intensity = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
float intensity = blinn;
specular_light += light_color * intensity * specular_blob_intensity * attenuation;