[Mono] Alphabetize Mathf

This commit is contained in:
Aaron Franke 2019-10-29 09:44:41 -04:00
parent b8daad9779
commit 4922a48a9e
No known key found for this signature in database
GPG Key ID: 40A1750B977E56BF
2 changed files with 39 additions and 33 deletions

View File

@ -19,12 +19,12 @@ namespace Godot
private const real_t Deg2RadConst = (real_t) 0.0174532925199432957692369077M; // 0.0174532924f and 0.0174532925199433
private const real_t Rad2DegConst = (real_t) 57.295779513082320876798154814M; // 57.29578f and 57.2957795130823
public static real_t Abs(real_t s)
public static int Abs(int s)
{
return Math.Abs(s);
}
public static int Abs(int s)
public static real_t Abs(real_t s)
{
return Math.Abs(s);
}
@ -79,29 +79,6 @@ namespace Godot
return (real_t)Math.Cosh(s);
}
public static int StepDecimals(real_t step)
{
double[] sd = new double[] {
0.9999,
0.09999,
0.009999,
0.0009999,
0.00009999,
0.000009999,
0.0000009999,
0.00000009999,
0.000000009999,
};
double abs = Mathf.Abs(step);
double decs = abs - (int)abs; // Strip away integer part
for (int i = 0; i < sd.Length; i++) {
if (decs >= sd[i]) {
return i;
}
}
return 0;
}
public static real_t Deg2Rad(real_t deg)
{
return deg * Deg2RadConst;
@ -159,12 +136,14 @@ namespace Godot
public static bool IsEqualApprox(real_t a, real_t b)
{
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
if (a == b)
{
return true;
}
// Then check for approximate equality.
real_t tolerance = Epsilon * Abs(a);
if (tolerance < Epsilon) {
if (tolerance < Epsilon)
{
tolerance = Epsilon;
}
return Abs(a - b) < tolerance;
@ -190,7 +169,8 @@ namespace Godot
return from + (to - from) * weight;
}
public static real_t LerpAngle(real_t from, real_t to, real_t weight) {
public static real_t LerpAngle(real_t from, real_t to, real_t weight)
{
real_t difference = (to - from) % Mathf.Tau;
real_t distance = ((2 * difference) % Mathf.Tau) - difference;
return from + distance * weight;
@ -246,9 +226,9 @@ namespace Godot
/// <summary>
/// Performs a canonical Modulus operation, where the output is on the range [0, b).
/// </summary>
public static real_t PosMod(real_t a, real_t b)
public static int PosMod(int a, int b)
{
real_t c = a % b;
int c = a % b;
if ((c < 0 && b > 0) || (c > 0 && b < 0))
{
c += b;
@ -259,9 +239,9 @@ namespace Godot
/// <summary>
/// Performs a canonical Modulus operation, where the output is on the range [0, b).
/// </summary>
public static int PosMod(int a, int b)
public static real_t PosMod(real_t a, real_t b)
{
int c = a % b;
real_t c = a % b;
if ((c < 0 && b > 0) || (c > 0 && b < 0))
{
c += b;
@ -319,6 +299,31 @@ namespace Godot
return (real_t)Math.Sqrt(s);
}
public static int StepDecimals(real_t step)
{
double[] sd = new double[] {
0.9999,
0.09999,
0.009999,
0.0009999,
0.00009999,
0.000009999,
0.0000009999,
0.00000009999,
0.000000009999,
};
double abs = Mathf.Abs(step);
double decs = abs - (int)abs; // Strip away integer part
for (int i = 0; i < sd.Length; i++)
{
if (decs >= sd[i])
{
return i;
}
}
return 0;
}
public static real_t Stepify(real_t s, real_t step)
{
if (step != 0f)

View File

@ -49,7 +49,8 @@ namespace Godot
public static bool IsEqualApprox(real_t a, real_t b, real_t tolerance)
{
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
if (a == b)
{
return true;
}
// Then check for approximate equality.