godot/SConstruct

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

943 lines
38 KiB
Python
Raw Normal View History

#!/usr/bin/env python
EnsureSConsVersion(3, 0, 0)
EnsurePythonVersion(3, 6)
2014-02-10 01:10:30 +00:00
# System
import atexit
2014-02-10 01:10:30 +00:00
import glob
import os
import pickle
2014-02-10 01:10:30 +00:00
import sys
import time
from types import ModuleType
from collections import OrderedDict
from importlib.util import spec_from_file_location, module_from_spec
# Explicitly resolve the helper modules, this is done to avoid clash with
# modules of the same name that might be randomly added (e.g. someone adding
# an `editor.py` file at the root of the module creates a clash with the editor
# folder when doing `import editor.template_builder`)
def _helper_module(name, path):
spec = spec_from_file_location(name, path)
module = module_from_spec(spec)
spec.loader.exec_module(module)
sys.modules[name] = module
# Ensure the module's parents are in loaded to avoid loading the wrong parent
# when doing "import foo.bar" while only "foo.bar" as declared as helper module
child_module = module
parent_name = name
while True:
try:
parent_name, child_name = parent_name.rsplit(".", 1)
except ValueError:
break
try:
parent_module = sys.modules[parent_name]
except KeyError:
parent_module = ModuleType(parent_name)
sys.modules[parent_name] = parent_module
setattr(parent_module, child_name, child_module)
_helper_module("gles3_builders", "gles3_builders.py")
_helper_module("glsl_builders", "glsl_builders.py")
_helper_module("methods", "methods.py")
_helper_module("platform_methods", "platform_methods.py")
_helper_module("version", "version.py")
_helper_module("core.core_builders", "core/core_builders.py")
_helper_module("main.main_builders", "main/main_builders.py")
_helper_module("modules.modules_builders", "modules/modules_builders.py")
# Local
2014-02-10 01:10:30 +00:00
import methods
import glsl_builders
import gles3_builders
from platform_methods import architectures, architecture_aliases
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
if ARGUMENTS.get("target", "editor") == "editor":
_helper_module("editor.editor_builders", "editor/editor_builders.py")
_helper_module("editor.template_builders", "editor/template_builders.py")
# Scan possible build platforms
2014-02-10 01:10:30 +00:00
platform_list = [] # list of platforms
platform_opts = {} # options for each platform
platform_flags = {} # flags for each platform
2014-02-10 01:10:30 +00:00
active_platforms = []
active_platform_ids = []
platform_exporters = []
platform_apis = []
2014-02-10 01:10:30 +00:00
time_at_start = time.time()
for x in sorted(glob.glob("platform/*")):
if not os.path.isdir(x) or not os.path.exists(x + "/detect.py"):
continue
tmppath = "./" + x
sys.path.insert(0, tmppath)
import detect
if os.path.exists(x + "/export/export.cpp"):
platform_exporters.append(x[9:])
if os.path.exists(x + "/api/api.cpp"):
platform_apis.append(x[9:])
if detect.is_active():
active_platforms.append(detect.get_name())
active_platform_ids.append(x)
if detect.can_build():
x = x.replace("platform/", "") # rest of world
x = x.replace("platform\\", "") # win32
platform_list += [x]
platform_opts[x] = detect.get_opts()
platform_flags[x] = detect.get_flags()
sys.path.remove(tmppath)
sys.modules.pop("detect")
2014-02-10 01:10:30 +00:00
methods.save_active_platforms(active_platforms, active_platform_ids)
2014-02-10 01:10:30 +00:00
custom_tools = ["default"]
2014-02-10 01:10:30 +00:00
2016-10-09 19:23:27 +00:00
platform_arg = ARGUMENTS.get("platform", ARGUMENTS.get("p", False))
2022-06-01 07:54:08 +00:00
if platform_arg == "android":
custom_tools = ["clang", "clang++", "as", "ar", "link"]
elif platform_arg == "web":
# Use generic POSIX build toolchain for Emscripten.
custom_tools = ["cc", "c++", "ar", "link", "textfile", "zip"]
2022-06-01 07:54:08 +00:00
elif os.name == "nt" and methods.get_cmdline_bool("use_mingw", False):
custom_tools = ["mingw"]
2014-02-10 01:10:30 +00:00
# We let SCons build its default ENV as it includes OS-specific things which we don't
# want to have to pull in manually.
# Then we prepend PATH to make it take precedence, while preserving SCons' own entries.
env_base = Environment(tools=custom_tools)
env_base.PrependENVPath("PATH", os.getenv("PATH"))
env_base.PrependENVPath("PKG_CONFIG_PATH", os.getenv("PKG_CONFIG_PATH"))
if "TERM" in os.environ: # Used for colored output.
env_base["ENV"]["TERM"] = os.environ["TERM"]
env_base.disabled_modules = []
env_base.module_version_string = ""
env_base.msvc = False
2014-02-10 01:10:30 +00:00
env_base.__class__.disable_module = methods.disable_module
env_base.__class__.add_module_version_string = methods.add_module_version_string
2014-02-10 01:10:30 +00:00
env_base.__class__.add_source_files = methods.add_source_files
env_base.__class__.use_windows_spawn_fix = methods.use_windows_spawn_fix
2014-02-10 01:10:30 +00:00
env_base.__class__.add_shared_library = methods.add_shared_library
env_base.__class__.add_library = methods.add_library
env_base.__class__.add_program = methods.add_program
2018-06-21 04:33:25 +00:00
env_base.__class__.CommandNoCache = methods.CommandNoCache
env_base.__class__.Run = methods.Run
env_base.__class__.disable_warnings = methods.disable_warnings
env_base.__class__.force_optimization_on_debug = methods.force_optimization_on_debug
env_base.__class__.module_add_dependencies = methods.module_add_dependencies
env_base.__class__.module_check_dependencies = methods.module_check_dependencies
env_base["x86_libtheora_opt_gcc"] = False
env_base["x86_libtheora_opt_vc"] = False
2015-11-25 03:28:03 +00:00
# avoid issues when building with different versions of python out of the same directory
env_base.SConsignFile(".sconsign{0}.dblite".format(pickle.HIGHEST_PROTOCOL))
# Build options
customs = ["custom.py"]
2014-02-10 01:10:30 +00:00
profile = ARGUMENTS.get("profile", "")
2014-02-10 01:10:30 +00:00
if profile:
if os.path.isfile(profile):
customs.append(profile)
elif os.path.isfile(profile + ".py"):
customs.append(profile + ".py")
2014-02-10 01:10:30 +00:00
opts = Variables(customs, ARGUMENTS)
# Target build options
opts.Add("platform", "Target platform (%s)" % ("|".join(platform_list),), "")
opts.Add("p", "Platform (alias for 'platform')", "")
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
opts.Add(EnumVariable("target", "Compilation target", "editor", ("editor", "template_release", "template_debug")))
opts.Add(EnumVariable("arch", "CPU architecture", "auto", ["auto"] + architectures, architecture_aliases))
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
opts.Add(BoolVariable("dev_build", "Developer build with dev-only debugging code (DEV_ENABLED)", False))
opts.Add(
EnumVariable(
"optimize", "Optimization level", "speed_trace", ("none", "custom", "debug", "speed", "speed_trace", "size")
)
)
opts.Add(BoolVariable("debug_symbols", "Build with debugging symbols", True))
opts.Add(BoolVariable("separate_debug_symbols", "Extract debugging symbols to a separate file", False))
opts.Add(EnumVariable("lto", "Link-time optimization (production builds)", "none", ("none", "auto", "thin", "full")))
opts.Add(BoolVariable("production", "Set defaults to build Godot for use in production", False))
# Components
opts.Add(BoolVariable("deprecated", "Enable compatibility code for deprecated and removed features", True))
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
opts.Add(EnumVariable("float", "Floating-point precision", "32", ("32", "64")))
opts.Add(BoolVariable("minizip", "Enable ZIP archive support using minizip", True))
opts.Add(BoolVariable("xaudio2", "Enable the XAudio2 audio driver", False))
opts.Add(BoolVariable("vulkan", "Enable the vulkan video driver", True))
opts.Add(BoolVariable("opengl3", "Enable the OpenGL/GLES3 video driver", True))
2021-12-14 01:44:12 +00:00
opts.Add(BoolVariable("openxr", "Enable the OpenXR driver", True))
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
opts.Add(BoolVariable("use_volk", "Use the volk library to load the Vulkan loader dynamically", True))
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
opts.Add("custom_modules", "A list of comma-separated directory paths containing custom modules to build.", "")
opts.Add(BoolVariable("custom_modules_recursive", "Detect custom modules recursively for each specified path.", True))
# Advanced options
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
opts.Add(BoolVariable("dev_mode", "Alias for dev options: verbose=yes warnings=extra werror=yes tests=yes", False))
opts.Add(BoolVariable("tests", "Build the unit tests", False))
opts.Add(BoolVariable("fast_unsafe", "Enable unsafe options for faster rebuilds", False))
opts.Add(BoolVariable("compiledb", "Generate compilation DB (`compile_commands.json`) for external tools", False))
opts.Add(BoolVariable("verbose", "Enable verbose output for the compilation", False))
opts.Add(BoolVariable("progress", "Show a progress indicator during compilation", True))
opts.Add(EnumVariable("warnings", "Level of compilation warnings", "all", ("extra", "all", "moderate", "no")))
opts.Add(BoolVariable("werror", "Treat compiler warnings as errors", False))
opts.Add("extra_suffix", "Custom extra suffix added to the base filename of all generated binary files", "")
opts.Add(BoolVariable("vsproj", "Generate a Visual Studio solution", False))
opts.Add(BoolVariable("disable_3d", "Disable 3D nodes for a smaller executable", False))
opts.Add(BoolVariable("disable_advanced_gui", "Disable advanced GUI nodes and behaviors", False))
opts.Add("build_feature_profile", "Path to a file containing a feature build profile", "")
2020-08-04 07:22:30 +00:00
opts.Add(BoolVariable("modules_enabled_by_default", "If no, disable all modules except ones explicitly enabled", True))
opts.Add(BoolVariable("no_editor_splash", "Don't use the custom splash screen for the editor", True))
opts.Add("system_certs_path", "Use this path as SSL certificates default for editor (for package maintainers)", "")
opts.Add(BoolVariable("use_precise_math_checks", "Math checks use very precise epsilon (debug option)", False))
# Thirdparty libraries
opts.Add(BoolVariable("builtin_certs", "Use the built-in SSL certificates bundles", True))
opts.Add(BoolVariable("builtin_embree", "Use the built-in Embree library", True))
opts.Add(BoolVariable("builtin_enet", "Use the built-in ENet library", True))
opts.Add(BoolVariable("builtin_freetype", "Use the built-in FreeType library", True))
opts.Add(BoolVariable("builtin_msdfgen", "Use the built-in MSDFgen library", True))
opts.Add(BoolVariable("builtin_glslang", "Use the built-in glslang library", True))
opts.Add(BoolVariable("builtin_graphite", "Use the built-in Graphite library", True))
opts.Add(BoolVariable("builtin_harfbuzz", "Use the built-in HarfBuzz library", True))
opts.Add(BoolVariable("builtin_icu", "Use the built-in ICU library", True))
opts.Add(BoolVariable("builtin_libogg", "Use the built-in libogg library", True))
opts.Add(BoolVariable("builtin_libpng", "Use the built-in libpng library", True))
opts.Add(BoolVariable("builtin_libtheora", "Use the built-in libtheora library", True))
opts.Add(BoolVariable("builtin_libvorbis", "Use the built-in libvorbis library", True))
opts.Add(BoolVariable("builtin_libwebp", "Use the built-in libwebp library", True))
opts.Add(BoolVariable("builtin_wslay", "Use the built-in wslay library", True))
opts.Add(BoolVariable("builtin_mbedtls", "Use the built-in mbedTLS library", True))
opts.Add(BoolVariable("builtin_miniupnpc", "Use the built-in miniupnpc library", True))
opts.Add(BoolVariable("builtin_pcre2", "Use the built-in PCRE2 library", True))
opts.Add(BoolVariable("builtin_pcre2_with_jit", "Use JIT compiler for the built-in PCRE2 library", True))
opts.Add(BoolVariable("builtin_recast", "Use the built-in Recast library", True))
opts.Add(BoolVariable("builtin_rvo2", "Use the built-in RVO2 library", True))
opts.Add(BoolVariable("builtin_squish", "Use the built-in squish library", True))
opts.Add(BoolVariable("builtin_xatlas", "Use the built-in xatlas library", True))
opts.Add(BoolVariable("builtin_zlib", "Use the built-in zlib library", True))
opts.Add(BoolVariable("builtin_zstd", "Use the built-in Zstd library", True))
# Compilation environment setup
opts.Add("CXX", "C++ compiler")
opts.Add("CC", "C compiler")
opts.Add("LINK", "Linker")
opts.Add("CCFLAGS", "Custom flags for both the C and C++ compilers")
opts.Add("CFLAGS", "Custom flags for the C compiler")
opts.Add("CXXFLAGS", "Custom flags for the C++ compiler")
opts.Add("LINKFLAGS", "Custom flags for the linker")
# Update the environment to have all above options defined
# in following code (especially platform and custom_modules).
opts.Update(env_base)
# Platform selection: validate input, and add options.
selected_platform = ""
if env_base["platform"] != "":
selected_platform = env_base["platform"]
elif env_base["p"] != "":
selected_platform = env_base["p"]
else:
# Missing `platform` argument, try to detect platform automatically
if (
sys.platform.startswith("linux")
or sys.platform.startswith("dragonfly")
or sys.platform.startswith("freebsd")
or sys.platform.startswith("netbsd")
or sys.platform.startswith("openbsd")
):
selected_platform = "linuxbsd"
elif sys.platform == "darwin":
selected_platform = "macos"
elif sys.platform == "win32":
selected_platform = "windows"
else:
print("Could not detect platform automatically. Supported platforms:")
for x in platform_list:
print("\t" + x)
print("\nPlease run SCons again and select a valid platform: platform=<string>")
if selected_platform != "":
print("Automatically detected platform: " + selected_platform)
if selected_platform in ["macos", "osx"]:
if selected_platform == "osx":
# Deprecated alias kept for compatibility.
print('Platform "osx" has been renamed to "macos" in Godot 4.0. Building for platform "macos".')
# Alias for convenience.
selected_platform = "macos"
if selected_platform in ["ios", "iphone"]:
if selected_platform == "iphone":
# Deprecated alias kept for compatibility.
print('Platform "iphone" has been renamed to "ios" in Godot 4.0. Building for platform "ios".')
# Alias for convenience.
selected_platform = "ios"
if selected_platform in ["linux", "bsd", "x11"]:
if selected_platform == "x11":
# Deprecated alias kept for compatibility.
print('Platform "x11" has been renamed to "linuxbsd" in Godot 4.0. Building for platform "linuxbsd".')
# Alias for convenience.
selected_platform = "linuxbsd"
# Make sure to update this to the found, valid platform as it's used through the buildsystem as the reference.
# It should always be re-set after calling `opts.Update()` otherwise it uses the original input value.
env_base["platform"] = selected_platform
# Add platform-specific options.
if selected_platform in platform_opts:
for opt in platform_opts[selected_platform]:
opts.Add(opt)
# Update the environment to take platform-specific options into account.
opts.Update(env_base)
env_base["platform"] = selected_platform # Must always be re-set after calling opts.Update().
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
# Detect modules.
modules_detected = OrderedDict()
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
module_search_paths = ["modules"] # Built-in path.
if env_base["custom_modules"]:
paths = env_base["custom_modules"].split(",")
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
for p in paths:
try:
module_search_paths.append(methods.convert_custom_modules_path(p))
except ValueError as e:
print(e)
Exit(255)
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
for path in module_search_paths:
if path == "modules":
# Built-in modules don't have nested modules,
# so save the time it takes to parse directories.
modules = methods.detect_modules(path, recursive=False)
else: # Custom.
modules = methods.detect_modules(path, env_base["custom_modules_recursive"])
# Provide default include path for both the custom module search `path`
# and the base directory containing custom modules, as it may be different
# from the built-in "modules" name (e.g. "custom_modules/summator/summator.h"),
# so it can be referenced simply as `#include "summator/summator.h"`
# independently of where a module is located on user's filesystem.
env_base.Prepend(CPPPATH=[path, os.path.dirname(path)])
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
# Note: custom modules can override built-in ones.
modules_detected.update(modules)
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
# Add module options.
for name, path in modules_detected.items():
sys.path.insert(0, path)
import config
2020-08-04 07:22:30 +00:00
if env_base["modules_enabled_by_default"]:
enabled = True
try:
enabled = config.is_enabled()
except AttributeError:
pass
else:
enabled = False
# Add module-specific options.
try:
for opt in config.get_opts(selected_platform):
opts.Add(opt)
except AttributeError:
pass
sys.path.remove(path)
sys.modules.pop("config")
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
opts.Add(BoolVariable("module_" + name + "_enabled", "Enable module '%s'" % (name,), enabled))
methods.write_modules(modules_detected)
2014-02-10 01:10:30 +00:00
# Update the environment again after all the module options are added.
opts.Update(env_base)
env_base["platform"] = selected_platform # Must always be re-set after calling opts.Update().
Help(opts.GenerateHelpText(env_base))
2014-02-10 01:10:30 +00:00
# add default include paths
env_base.Prepend(CPPPATH=["#"])
2014-12-27 16:42:37 +00:00
# configure ENV for platform
env_base.platform_exporters = platform_exporters
env_base.platform_apis = platform_apis
2014-02-10 01:10:30 +00:00
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
# Configuration of build targets:
# - Editor or template
# - Debug features (DEBUG_ENABLED code)
# - Dev only code (DEV_ENABLED code)
# - Optimization level
# - Debug symbols for crash traces / debuggers
env_base.editor_build = env_base["target"] == "editor"
env_base.dev_build = env_base["dev_build"]
env_base.debug_features = env_base["target"] in ["editor", "template_debug"]
if env_base.dev_build:
opt_level = "none"
elif env_base.debug_features:
opt_level = "speed_trace"
else: # Release
opt_level = "speed"
env_base["optimize"] = ARGUMENTS.get("optimize", opt_level)
env_base["debug_symbols"] = methods.get_cmdline_bool("debug_symbols", env_base.dev_build)
if env_base.editor_build:
env_base.Append(CPPDEFINES=["TOOLS_ENABLED"])
if env_base.debug_features:
# DEBUG_ENABLED enables debugging *features* and debug-only code, which is intended
# to give *users* extra debugging information for their game development.
env_base.Append(CPPDEFINES=["DEBUG_ENABLED"])
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
if env_base.dev_build:
# DEV_ENABLED enables *engine developer* code which should only be compiled for those
# working on the engine itself.
env_base.Append(CPPDEFINES=["DEV_ENABLED"])
else:
# Disable assert() for production targets (only used in thirdparty code).
env_base.Append(CPPDEFINES=["NDEBUG"])
# SCons speed optimization controlled by the `fast_unsafe` option, which provide
# more than 10 s speed up for incremental rebuilds.
# Unsafe as they reduce the certainty of rebuilding all changed files, so it's
# enabled by default for `debug` builds, and can be overridden from command line.
# Ref: https://github.com/SCons/scons/wiki/GoFastButton
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
if methods.get_cmdline_bool("fast_unsafe", env_base.dev_build):
# Renamed to `content-timestamp` in SCons >= 4.2, keeping MD5 for compat.
env_base.Decider("MD5-timestamp")
env_base.SetOption("implicit_cache", 1)
env_base.SetOption("max_drift", 60)
if env_base["use_precise_math_checks"]:
env_base.Append(CPPDEFINES=["PRECISE_MATH_CHECKS"])
2014-02-10 01:10:30 +00:00
if not env_base.File("#main/splash_editor.png").exists():
# Force disabling editor splash if missing.
env_base["no_editor_splash"] = True
if env_base["no_editor_splash"]:
env_base.Append(CPPDEFINES=["NO_EDITOR_SPLASH"])
if not env_base["deprecated"]:
env_base.Append(CPPDEFINES=["DISABLE_DEPRECATED"])
2021-08-09 22:15:17 +00:00
if env_base["float"] == "64":
env_base.Append(CPPDEFINES=["REAL_T_IS_DOUBLE"])
if selected_platform in platform_list:
tmppath = "./platform/" + selected_platform
sys.path.insert(0, tmppath)
import detect
2022-06-01 07:54:08 +00:00
env = env_base.Clone()
# Default num_jobs to local cpu count if not user specified.
# SCons has a peculiarity where user-specified options won't be overridden
# by SetOption, so we can rely on this to know if we should use our default.
initial_num_jobs = env.GetOption("num_jobs")
altered_num_jobs = initial_num_jobs + 1
env.SetOption("num_jobs", altered_num_jobs)
if env.GetOption("num_jobs") == altered_num_jobs:
cpu_count = os.cpu_count()
if cpu_count is None:
print("Couldn't auto-detect CPU count to configure build parallelism. Specify it with the -j argument.")
else:
safer_cpu_count = cpu_count if cpu_count <= 4 else cpu_count - 1
print(
"Auto-detected %d CPU cores available for build parallelism. Using %d cores by default. You can override it with the -j argument."
% (cpu_count, safer_cpu_count)
)
env.SetOption("num_jobs", safer_cpu_count)
env.extra_suffix = ""
if env["extra_suffix"] != "":
env.extra_suffix += "." + env["extra_suffix"]
# Environment flags
CCFLAGS = env.get("CCFLAGS", "")
env["CCFLAGS"] = ""
env.Append(CCFLAGS=str(CCFLAGS).split())
CFLAGS = env.get("CFLAGS", "")
env["CFLAGS"] = ""
env.Append(CFLAGS=str(CFLAGS).split())
CXXFLAGS = env.get("CXXFLAGS", "")
env["CXXFLAGS"] = ""
env.Append(CXXFLAGS=str(CXXFLAGS).split())
LINKFLAGS = env.get("LINKFLAGS", "")
env["LINKFLAGS"] = ""
env.Append(LINKFLAGS=str(LINKFLAGS).split())
# Platform specific flags.
# These can sometimes override default options.
flag_list = platform_flags[selected_platform]
for f in flag_list:
if not (f[0] in ARGUMENTS) or ARGUMENTS[f[0]] == "auto": # Allow command line to override platform flags
env[f[0]] = f[1]
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
# 'dev_mode' and 'production' are aliases to set default options if they haven't been
# set manually by the user.
# These need to be checked *after* platform specific flags so that different
# default values can be set (e.g. to keep LTO off for `production` on some platforms).
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
if env["dev_mode"]:
env["verbose"] = methods.get_cmdline_bool("verbose", True)
env["warnings"] = ARGUMENTS.get("warnings", "extra")
env["werror"] = methods.get_cmdline_bool("werror", True)
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
env["tests"] = methods.get_cmdline_bool("tests", True)
if env["production"]:
env["use_static_cpp"] = methods.get_cmdline_bool("use_static_cpp", True)
env["debug_symbols"] = methods.get_cmdline_bool("debug_symbols", False)
# LTO "auto" means we handle the preferred option in each platform detect.py.
env["lto"] = ARGUMENTS.get("lto", "auto")
# Must happen after the flags' definition, as configure is when most flags
# are actually handled to change compile options, etc.
detect.configure(env)
print(f'Building for platform "{selected_platform}", architecture "{env["arch"]}", target "{env["target"]}".')
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
if env.dev_build:
print("NOTE: Developer build, with debug optimization level and debug symbols (unless overridden).")
# Set optimize and debug_symbols flags.
# "custom" means do nothing and let users set their own optimization flags.
# Needs to happen after configure to have `env.msvc` defined.
if env.msvc:
if env["debug_symbols"]:
env.Append(CCFLAGS=["/Zi", "/FS"])
env.Append(LINKFLAGS=["/DEBUG:FULL"])
if env["optimize"] == "speed" or env["optimize"] == "speed_trace":
env.Append(CCFLAGS=["/O2"])
env.Append(LINKFLAGS=["/OPT:REF"])
elif env["optimize"] == "size":
env.Append(CCFLAGS=["/O1"])
env.Append(LINKFLAGS=["/OPT:REF"])
elif env["optimize"] == "debug" or env["optimize"] == "none":
env.Append(CCFLAGS=["/Od"])
else:
if env["debug_symbols"]:
if env.dev_build:
env.Append(CCFLAGS=["-g3"])
else:
env.Append(CCFLAGS=["-g2"])
if env["optimize"] == "speed":
env.Append(CCFLAGS=["-O3"])
# `-O2` is friendlier to debuggers than `-O3`, leading to better crash backtraces.
elif env["optimize"] == "speed_trace":
env.Append(CCFLAGS=["-O2"])
elif env["optimize"] == "size":
env.Append(CCFLAGS=["-Os"])
elif env["optimize"] == "debug":
env.Append(CCFLAGS=["-Og"])
elif env["optimize"] == "none":
env.Append(CCFLAGS=["-O0"])
# Needs to happen after configure to handle "auto".
if env["lto"] != "none":
print("Using LTO: " + env["lto"])
# Set our C and C++ standard requirements.
# C++17 is required as we need guaranteed copy elision as per GH-36436.
# Prepending to make it possible to override.
# This needs to come after `configure`, otherwise we don't have env.msvc.
if not env.msvc:
# Specifying GNU extensions support explicitly, which are supported by
# both GCC and Clang. Both currently default to gnu11 and gnu++14.
env.Prepend(CFLAGS=["-std=gnu11"])
env.Prepend(CXXFLAGS=["-std=gnu++17"])
else:
# MSVC doesn't have clear C standard support, /std only covers C++.
# We apply it to CCFLAGS (both C and C++ code) in case it impacts C features.
env.Prepend(CCFLAGS=["/std:c++17"])
# Enforce our minimal compiler version requirements
2021-05-27 17:42:30 +00:00
cc_version = methods.get_compiler_version(env) or {
"major": None,
"minor": None,
"patch": None,
"metadata1": None,
"metadata2": None,
"date": None,
}
cc_version_major = int(cc_version["major"] or -1)
cc_version_minor = int(cc_version["minor"] or -1)
cc_version_metadata1 = cc_version["metadata1"] or ""
if methods.using_gcc(env):
2021-05-27 17:42:30 +00:00
if cc_version_major == -1:
print(
"Couldn't detect compiler version, skipping version checks. "
"Build may fail if the compiler doesn't support C++17 fully."
)
# GCC 8 before 8.4 has a regression in the support of guaranteed copy elision
# which causes a build failure: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86521
2021-05-27 17:42:30 +00:00
elif cc_version_major == 8 and cc_version_minor < 4:
print(
"Detected GCC 8 version < 8.4, which is not supported due to a "
"regression in its C++17 guaranteed copy elision support. Use a "
'newer GCC version, or Clang 6 or later by passing "use_llvm=yes" '
"to the SCons command line."
)
Exit(255)
elif cc_version_major < 7:
print(
"Detected GCC version older than 7, which does not fully support "
"C++17. Supported versions are GCC 7, 9 and later. Use a newer GCC "
'version, or Clang 6 or later by passing "use_llvm=yes" to the '
"SCons command line."
)
Exit(255)
2021-05-27 17:42:30 +00:00
elif cc_version_metadata1 == "win32":
print(
"Detected mingw version is not using posix threads. Only posix "
"version of mingw is supported. "
'Use "update-alternatives --config <platform>-w64-mingw32-[gcc|g++]" '
"to switch to posix threads."
)
Exit(255)
elif methods.using_clang(env):
2021-05-27 17:42:30 +00:00
if cc_version_major == -1:
print(
"Couldn't detect compiler version, skipping version checks. "
"Build may fail if the compiler doesn't support C++17 fully."
)
# Apple LLVM versions differ from upstream LLVM version \o/, compare
# in https://en.wikipedia.org/wiki/Xcode#Toolchain_versions
elif env["platform"] == "macos" or env["platform"] == "ios":
vanilla = methods.is_vanilla_clang(env)
if vanilla and cc_version_major < 6:
print(
"Detected Clang version older than 6, which does not fully support "
"C++17. Supported versions are Clang 6 and later."
)
Exit(255)
elif not vanilla and cc_version_major < 10:
print(
"Detected Apple Clang version older than 10, which does not fully "
"support C++17. Supported versions are Apple Clang 10 and later."
)
Exit(255)
elif cc_version_major < 6:
print(
"Detected Clang version older than 6, which does not fully support "
"C++17. Supported versions are Clang 6 and later."
)
Exit(255)
# Configure compiler warnings
if env.msvc: # MSVC
# Truncations, narrowing conversions, signed/unsigned comparisons...
disable_nonessential_warnings = ["/wd4267", "/wd4244", "/wd4305", "/wd4018", "/wd4800"]
if env["warnings"] == "extra":
env.Append(CCFLAGS=["/Wall"]) # Implies /W4
elif env["warnings"] == "all":
env.Append(CCFLAGS=["/W3"] + disable_nonessential_warnings)
elif env["warnings"] == "moderate":
env.Append(CCFLAGS=["/W2"] + disable_nonessential_warnings)
else: # 'no'
env.Append(CCFLAGS=["/w"])
# Set exception handling model to avoid warnings caused by Windows system headers.
env.Append(CCFLAGS=["/EHsc"])
if env["werror"]:
env.Append(CCFLAGS=["/WX"])
else: # GCC, Clang
common_warnings = []
if methods.using_gcc(env):
common_warnings += ["-Wshadow-local", "-Wno-misleading-indentation"]
elif methods.using_clang(env) or methods.using_emcc(env):
# We often implement `operator<` for structs of pointers as a requirement
# for putting them in `Set` or `Map`. We don't mind about unreliable ordering.
common_warnings += ["-Wno-ordered-compare-function-pointers"]
if env["warnings"] == "extra":
env.Append(CCFLAGS=["-Wall", "-Wextra", "-Wwrite-strings", "-Wno-unused-parameter"] + common_warnings)
env.Append(CXXFLAGS=["-Wctor-dtor-privacy", "-Wnon-virtual-dtor"])
if methods.using_gcc(env):
env.Append(
CCFLAGS=[
"-Walloc-zero",
"-Wduplicated-branches",
"-Wduplicated-cond",
"-Wstringop-overflow=4",
"-Wlogical-op",
]
)
# -Wnoexcept was removed temporarily due to GH-36325.
env.Append(CXXFLAGS=["-Wplacement-new=1"])
if cc_version_major >= 9:
env.Append(CCFLAGS=["-Wattribute-alias=2"])
elif methods.using_clang(env) or methods.using_emcc(env):
env.Append(CCFLAGS=["-Wimplicit-fallthrough"])
elif env["warnings"] == "all":
env.Append(CCFLAGS=["-Wall"] + common_warnings)
elif env["warnings"] == "moderate":
env.Append(CCFLAGS=["-Wall", "-Wno-unused"] + common_warnings)
else: # 'no'
env.Append(CCFLAGS=["-w"])
if env["werror"]:
env.Append(CCFLAGS=["-Werror"])
# FIXME: Temporary workaround after the Vulkan merge, remove once warnings are fixed.
if methods.using_gcc(env):
env.Append(CXXFLAGS=["-Wno-error=cpp"])
if cc_version_major == 7: # Bogus warning fixed in 8+.
env.Append(CCFLAGS=["-Wno-error=strict-overflow"])
if cc_version_major >= 12: # False positives in our error macros, see GH-58747.
env.Append(CCFLAGS=["-Wno-error=return-type"])
elif methods.using_clang(env) or methods.using_emcc(env):
env.Append(CXXFLAGS=["-Wno-error=#warnings"])
if hasattr(detect, "get_program_suffix"):
2018-10-25 13:59:26 +00:00
suffix = "." + detect.get_program_suffix()
else:
suffix = "." + selected_platform
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
suffix += "." + env["target"]
if env.dev_build:
suffix += ".dev"
2021-08-09 22:15:17 +00:00
if env_base["float"] == "64":
suffix += ".double"
suffix += "." + env["arch"]
suffix += env.extra_suffix
sys.path.remove(tmppath)
sys.modules.pop("detect")
modules_enabled = OrderedDict()
env.module_dependencies = {}
env.module_icons_paths = []
env.doc_class_path = {}
for name, path in modules_detected.items():
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
if not env["module_" + name + "_enabled"]:
continue
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
sys.path.insert(0, path)
env.current_module = name
import config
if config.can_build(env, selected_platform):
# Disable it if a required dependency is missing.
if not env.module_check_dependencies(name):
continue
config.configure(env)
# Get doc classes paths (if present)
2017-09-14 12:34:53 +00:00
try:
doc_classes = config.get_doc_classes()
doc_path = config.get_doc_path()
for c in doc_classes:
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
env.doc_class_path[c] = path + "/" + doc_path
except Exception:
2017-09-14 12:34:53 +00:00
pass
# Get icon paths (if present)
try:
icons_path = config.get_icons_path()
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
env.module_icons_paths.append(path + "/" + icons_path)
except Exception:
# Default path for module icons
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
env.module_icons_paths.append(path + "/" + "icons")
modules_enabled[name] = path
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
sys.path.remove(path)
sys.modules.pop("config")
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
env.module_list = modules_enabled
methods.sort_module_list(env)
Add `custom_modules` build option to compile external user modules This patch adds ability to include external, user-defined C++ modules to be compiled as part of Godot via `custom_modules` build option which can be passed to `scons`. ``` scons platform=x11 tools=yes custom_modules="../project/modules" ``` Features: - detects all available modules under `custom_modules` directory the same way as it does for built-in modules (not recursive); - works with both relative and absolute paths on the filesystem; - multiple search paths can be specified as a comma-separated list. Module custom documentation and editor icons collection and generation process is adapted to work with absolute paths needed by such modules. Also fixed doctool bug mixing absolute and relative paths respectively. Implementation details: - `env.module_list` is a dictionary now, which holds both module name as key and either a relative or absolute path to a module as a value. - `methods.detect_modules` is run twice: once for built-in modules, and second for external modules, all combined later. - `methods.detect_modules` was not doing what it says on the tin. It is split into `detect_modules` which collects a list of available modules and `write_modules` which generates `register_types` sources for each. - whether a module is built-in or external is distinguished by relative or absolute paths respectively. `custom_modules` scons converter ensures that the path is absolute even if relative path is supplied, including expanding user paths and symbolic links. - treats the parent directory as if it was Godot's base directory, so that there's no need to change include paths in cases where custom modules are included as dependencies in other modules.
2020-03-08 16:34:09 +00:00
methods.generate_version_header(env.module_version_string)
env["PROGSUFFIX"] = suffix + env.module_version_string + env["PROGSUFFIX"]
env["OBJSUFFIX"] = suffix + env["OBJSUFFIX"]
# (SH)LIBSUFFIX will be used for our own built libraries
# LIBSUFFIXES contains LIBSUFFIX and SHLIBSUFFIX by default,
# so we need to append the default suffixes to keep the ability
# to link against thirdparty libraries (.a, .so, .lib, etc.).
if os.name == "nt":
# On Windows, only static libraries and import libraries can be
# statically linked - both using .lib extension
env["LIBSUFFIXES"] += [env["LIBSUFFIX"]]
else:
env["LIBSUFFIXES"] += [env["LIBSUFFIX"], env["SHLIBSUFFIX"]]
env["LIBSUFFIX"] = suffix + env["LIBSUFFIX"]
env["SHLIBSUFFIX"] = suffix + env["SHLIBSUFFIX"]
disabled_classes = []
if env["build_feature_profile"] != "":
print("Using build feature profile: " + env["build_feature_profile"])
import json
try:
ft = json.load(open(env["build_feature_profile"]))
if "disabled_classes" in ft:
disabled_classes = ft["disabled_classes"]
if "disabled_build_options" in ft:
dbo = ft["disabled_build_options"]
for c in dbo:
env[c] = dbo[c]
except:
print("Error opening feature build profile: " + env["build_feature_profile"])
Exit(255)
methods.write_disabled_classes(disabled_classes)
if env["disable_3d"]:
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
if env.editor_build:
print("Build option 'disable_3d=yes' cannot be used for editor builds, but only for export templates.")
Exit(255)
else:
env.Append(CPPDEFINES=["_3D_DISABLED"])
if env["disable_advanced_gui"]:
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
if env.editor_build:
print(
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
"Build option 'disable_advanced_gui=yes' cannot be used for editor builds, "
"but only for export templates."
)
Exit(255)
else:
env.Append(CPPDEFINES=["ADVANCED_GUI_DISABLED"])
if env["minizip"]:
env.Append(CPPDEFINES=["MINIZIP_ENABLED"])
if not env["verbose"]:
methods.no_verbose(sys, env)
2017-01-08 13:08:18 +00:00
2021-05-25 14:17:08 +00:00
GLSL_BUILDERS = {
"RD_GLSL": env.Builder(
action=env.Run(glsl_builders.build_rd_headers, 'Building RD_GLSL header: "$TARGET"'),
suffix="glsl.gen.h",
src_suffix=".glsl",
),
"GLSL_HEADER": env.Builder(
action=env.Run(glsl_builders.build_raw_headers, 'Building GLSL header: "$TARGET"'),
suffix="glsl.gen.h",
src_suffix=".glsl",
),
"GLES3_GLSL": env.Builder(
action=env.Run(gles3_builders.build_gles3_headers, 'Building GLES3 GLSL header: "$TARGET"'),
suffix="glsl.gen.h",
src_suffix=".glsl",
),
2021-05-25 14:17:08 +00:00
}
env.Append(BUILDERS=GLSL_BUILDERS)
scons_cache_path = os.environ.get("SCONS_CACHE")
if scons_cache_path != None:
CacheDir(scons_cache_path)
print("Scons cache enabled... (path: '" + scons_cache_path + "')")
2020-09-19 14:39:11 +00:00
if env["vsproj"]:
env.vs_incs = []
env.vs_srcs = []
if env["compiledb"]:
# Generating the compilation DB (`compile_commands.json`) requires SCons 4.0.0 or later.
from SCons import __version__ as scons_raw_version
scons_ver = env._get_major_minor_revision(scons_raw_version)
if scons_ver < (4, 0, 0):
print("The `compiledb=yes` option requires SCons 4.0 or later, but your version is %s." % scons_raw_version)
Exit(255)
env.Tool("compilation_db")
env.Alias("compiledb", env.CompilationDatabase())
Export("env")
# Build subdirs, the build order is dependent on link order.
SConscript("core/SCsub")
SConscript("servers/SCsub")
SConscript("scene/SCsub")
SCons: Unify tools/target build type configuration Implements https://github.com/godotengine/godot-proposals/issues/3371. New `target` presets ==================== The `tools` option is removed and `target` changes to use three new presets, which match the builds users are familiar with. These targets control the default optimization level and enable editor-specific and debugging code: - `editor`: Replaces `tools=yes target=release_debug`. * Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2` - `template_debug`: Replaces `tools=no target=release_debug`. * Defines: `DEBUG_ENABLED`, `-O2`/`/O2` - `template_release`: Replaces `tools=no target=release`. * Defines: `-O3`/`/O2` New `dev_build` option ====================== The previous `target=debug` is now replaced by a separate `dev_build=yes` option, which can be used in combination with either of the three targets, and changes the following: - `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`), enables generating debug symbols, does not define `NDEBUG` so `assert()` works in thirdparty libraries, adds a `.dev` suffix to the binary name. Note: Unlike previously, `dev_build` defaults to off so that users who compile Godot from source get an optimized and small build by default. Engine contributors should now set `dev_build=yes` in their build scripts or IDE configuration manually. Changed binary names ==================== The name of generated binaries and object files are changed too, to follow this format: `godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]` For example: - `godot.linuxbsd.editor.dev.arm64` - `godot.windows.template_release.double.x86_64.mono.exe` Be sure to update your links/scripts/IDE config accordingly. More flexible `optimize` and `debug_symbols` options ==================================================== The optimization level and whether to generate debug symbols can be further specified with the `optimize` and `debug_symbols` options. So the default values listed above for the various `target` and `dev_build` combinations are indicative and can be replaced when compiling, e.g.: `scons p=linuxbsd target=template_debug dev_build=yes optimize=debug` will make a "debug" export template with dev-only code enabled, `-Og` optimization level for GCC/Clang, and debug symbols. Perfect for debugging complex crashes at runtime in an exported project.
2022-09-22 06:28:55 +00:00
if env.editor_build:
SConscript("editor/SCsub")
SConscript("drivers/SCsub")
SConscript("platform/SCsub")
SConscript("modules/SCsub")
if env["tests"]:
SConscript("tests/SCsub")
SConscript("main/SCsub")
SConscript("platform/" + selected_platform + "/SCsub") # Build selected platform.
# Microsoft Visual Studio Project Generation
if env["vsproj"]:
if os.name != "nt":
print("Error: The `vsproj` option is only usable on Windows with Visual Studio.")
Exit(255)
env["CPPPATH"] = [Dir(path) for path in env["CPPPATH"]]
2017-08-28 15:17:26 +00:00
methods.generate_vs_project(env, GetOption("num_jobs"))
methods.generate_cpp_hint_file("cpp.hint")
# Check for the existence of headers
conf = Configure(env)
if "check_c_headers" in env:
for header in env["check_c_headers"]:
if conf.CheckCHeader(header[0]):
env.AppendUnique(CPPDEFINES=[header[1]])
elif selected_platform != "":
if selected_platform == "list":
print("The following platforms are available:\n")
else:
print('Invalid target platform "' + selected_platform + '".')
print("The following platforms were detected:\n")
2014-02-10 01:10:30 +00:00
for x in platform_list:
print("\t" + x)
print("\nPlease run SCons again and select a valid platform: platform=<string>")
if selected_platform == "list":
# Exit early to suppress the rest of the built-in SCons messages
Exit()
else:
Exit(255)
# The following only makes sense when the 'env' is defined, and assumes it is.
if "env" in locals():
# FIXME: This method mixes both cosmetic progress stuff and cache handling...
methods.show_progress(env)
# TODO: replace this with `env.Dump(format="json")`
# once we start requiring SCons 4.0 as min version.
methods.dump(env)
def print_elapsed_time():
elapsed_time_sec = round(time.time() - time_at_start, 3)
time_ms = round((elapsed_time_sec % 1) * 1000)
print("[Time elapsed: {}.{:03}]".format(time.strftime("%H:%M:%S", time.gmtime(elapsed_time_sec)), time_ms))
atexit.register(print_elapsed_time)