2022-05-19 15:00:06 +00:00
|
|
|
/**************************************************************************/
|
|
|
|
/* hash_set.h */
|
|
|
|
/**************************************************************************/
|
|
|
|
/* This file is part of: */
|
|
|
|
/* GODOT ENGINE */
|
|
|
|
/* https://godotengine.org */
|
|
|
|
/**************************************************************************/
|
|
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
|
|
/* */
|
|
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
|
|
/* a copy of this software and associated documentation files (the */
|
|
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
|
|
/* the following conditions: */
|
|
|
|
/* */
|
|
|
|
/* The above copyright notice and this permission notice shall be */
|
|
|
|
/* included in all copies or substantial portions of the Software. */
|
|
|
|
/* */
|
|
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
|
|
/**************************************************************************/
|
|
|
|
|
|
|
|
#ifndef HASH_SET_H
|
|
|
|
#define HASH_SET_H
|
|
|
|
|
|
|
|
#include "core/math/math_funcs.h"
|
|
|
|
#include "core/os/memory.h"
|
|
|
|
#include "core/templates/hash_map.h"
|
|
|
|
#include "core/templates/hashfuncs.h"
|
|
|
|
#include "core/templates/paged_allocator.h"
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Implementation of Set using a bidi indexed hash map.
|
|
|
|
* Use RBSet instead of this only if the following conditions are met:
|
|
|
|
*
|
|
|
|
* - You need to keep an iterator or const pointer to Key and you intend to add/remove elements in the meantime.
|
|
|
|
* - Iteration order does matter (via operator<)
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
template <typename TKey,
|
|
|
|
typename Hasher = HashMapHasherDefault,
|
|
|
|
typename Comparator = HashMapComparatorDefault<TKey>>
|
|
|
|
class HashSet {
|
|
|
|
public:
|
|
|
|
static constexpr uint32_t MIN_CAPACITY_INDEX = 2; // Use a prime.
|
|
|
|
static constexpr float MAX_OCCUPANCY = 0.75;
|
|
|
|
static constexpr uint32_t EMPTY_HASH = 0;
|
|
|
|
|
|
|
|
private:
|
|
|
|
TKey *keys = nullptr;
|
|
|
|
uint32_t *hash_to_key = nullptr;
|
|
|
|
uint32_t *key_to_hash = nullptr;
|
|
|
|
uint32_t *hashes = nullptr;
|
|
|
|
|
|
|
|
uint32_t capacity_index = 0;
|
|
|
|
uint32_t num_elements = 0;
|
|
|
|
|
|
|
|
_FORCE_INLINE_ uint32_t _hash(const TKey &p_key) const {
|
|
|
|
uint32_t hash = Hasher::hash(p_key);
|
|
|
|
|
|
|
|
if (unlikely(hash == EMPTY_HASH)) {
|
|
|
|
hash = EMPTY_HASH + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return hash;
|
|
|
|
}
|
|
|
|
|
2022-06-23 16:08:52 +00:00
|
|
|
static _FORCE_INLINE_ uint32_t _get_probe_length(const uint32_t p_pos, const uint32_t p_hash, const uint32_t p_capacity, const uint64_t p_capacity_inv) {
|
|
|
|
const uint32_t original_pos = fastmod(p_hash, p_capacity_inv, p_capacity);
|
|
|
|
return fastmod(p_pos - original_pos + p_capacity, p_capacity_inv, p_capacity);
|
2022-05-19 15:00:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool _lookup_pos(const TKey &p_key, uint32_t &r_pos) const {
|
2023-04-10 16:45:53 +00:00
|
|
|
if (keys == nullptr || num_elements == 0) {
|
2022-05-19 15:00:06 +00:00
|
|
|
return false; // Failed lookups, no elements
|
|
|
|
}
|
|
|
|
|
2022-06-23 16:08:52 +00:00
|
|
|
const uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
|
|
const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index];
|
2022-05-19 15:00:06 +00:00
|
|
|
uint32_t hash = _hash(p_key);
|
2022-06-23 16:08:52 +00:00
|
|
|
uint32_t pos = fastmod(hash, capacity_inv, capacity);
|
2022-05-19 15:00:06 +00:00
|
|
|
uint32_t distance = 0;
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
if (hashes[pos] == EMPTY_HASH) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2022-06-23 16:08:52 +00:00
|
|
|
if (distance > _get_probe_length(pos, hashes[pos], capacity, capacity_inv)) {
|
2022-05-19 15:00:06 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hashes[pos] == hash && Comparator::compare(keys[hash_to_key[pos]], p_key)) {
|
|
|
|
r_pos = hash_to_key[pos];
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2022-06-23 16:08:52 +00:00
|
|
|
pos = fastmod(pos + 1, capacity_inv, capacity);
|
2022-05-19 15:00:06 +00:00
|
|
|
distance++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t _insert_with_hash(uint32_t p_hash, uint32_t p_index) {
|
2022-06-23 16:08:52 +00:00
|
|
|
const uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
|
|
const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index];
|
2022-05-19 15:00:06 +00:00
|
|
|
uint32_t hash = p_hash;
|
|
|
|
uint32_t index = p_index;
|
|
|
|
uint32_t distance = 0;
|
2022-06-23 16:08:52 +00:00
|
|
|
uint32_t pos = fastmod(hash, capacity_inv, capacity);
|
2022-05-19 15:00:06 +00:00
|
|
|
|
|
|
|
while (true) {
|
|
|
|
if (hashes[pos] == EMPTY_HASH) {
|
|
|
|
hashes[pos] = hash;
|
|
|
|
key_to_hash[index] = pos;
|
|
|
|
hash_to_key[pos] = index;
|
|
|
|
return pos;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Not an empty slot, let's check the probing length of the existing one.
|
2022-06-23 16:08:52 +00:00
|
|
|
uint32_t existing_probe_len = _get_probe_length(pos, hashes[pos], capacity, capacity_inv);
|
2022-05-19 15:00:06 +00:00
|
|
|
if (existing_probe_len < distance) {
|
|
|
|
key_to_hash[index] = pos;
|
|
|
|
SWAP(hash, hashes[pos]);
|
|
|
|
SWAP(index, hash_to_key[pos]);
|
|
|
|
distance = existing_probe_len;
|
|
|
|
}
|
|
|
|
|
2022-06-23 16:08:52 +00:00
|
|
|
pos = fastmod(pos + 1, capacity_inv, capacity);
|
2022-05-19 15:00:06 +00:00
|
|
|
distance++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void _resize_and_rehash(uint32_t p_new_capacity_index) {
|
|
|
|
// Capacity can't be 0.
|
|
|
|
capacity_index = MAX((uint32_t)MIN_CAPACITY_INDEX, p_new_capacity_index);
|
|
|
|
|
|
|
|
uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
|
|
|
|
|
|
uint32_t *old_hashes = hashes;
|
|
|
|
uint32_t *old_key_to_hash = key_to_hash;
|
|
|
|
|
|
|
|
hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
|
|
|
|
keys = reinterpret_cast<TKey *>(Memory::realloc_static(keys, sizeof(TKey) * capacity));
|
|
|
|
key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
|
|
|
|
hash_to_key = reinterpret_cast<uint32_t *>(Memory::realloc_static(hash_to_key, sizeof(uint32_t) * capacity));
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
|
|
hashes[i] = EMPTY_HASH;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < num_elements; i++) {
|
|
|
|
uint32_t h = old_hashes[old_key_to_hash[i]];
|
|
|
|
_insert_with_hash(h, i);
|
|
|
|
}
|
|
|
|
|
|
|
|
Memory::free_static(old_hashes);
|
|
|
|
Memory::free_static(old_key_to_hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ int32_t _insert(const TKey &p_key) {
|
|
|
|
uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
|
|
if (unlikely(keys == nullptr)) {
|
|
|
|
// Allocate on demand to save memory.
|
|
|
|
|
|
|
|
hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
|
|
|
|
keys = reinterpret_cast<TKey *>(Memory::alloc_static(sizeof(TKey) * capacity));
|
|
|
|
key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
|
|
|
|
hash_to_key = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
|
|
hashes[i] = EMPTY_HASH;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t pos = 0;
|
|
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
|
|
|
|
|
|
if (exists) {
|
|
|
|
return pos;
|
|
|
|
} else {
|
|
|
|
if (num_elements + 1 > MAX_OCCUPANCY * capacity) {
|
|
|
|
ERR_FAIL_COND_V_MSG(capacity_index + 1 == HASH_TABLE_SIZE_MAX, -1, "Hash table maximum capacity reached, aborting insertion.");
|
|
|
|
_resize_and_rehash(capacity_index + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t hash = _hash(p_key);
|
|
|
|
memnew_placement(&keys[num_elements], TKey(p_key));
|
|
|
|
_insert_with_hash(hash, num_elements);
|
|
|
|
num_elements++;
|
|
|
|
return num_elements - 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void _init_from(const HashSet &p_other) {
|
|
|
|
capacity_index = p_other.capacity_index;
|
|
|
|
num_elements = p_other.num_elements;
|
|
|
|
|
|
|
|
if (p_other.num_elements == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
|
|
|
|
|
|
hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
|
|
|
|
keys = reinterpret_cast<TKey *>(Memory::alloc_static(sizeof(TKey) * capacity));
|
|
|
|
key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
|
|
|
|
hash_to_key = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < num_elements; i++) {
|
|
|
|
memnew_placement(&keys[i], TKey(p_other.keys[i]));
|
|
|
|
key_to_hash[i] = p_other.key_to_hash[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
|
|
hashes[i] = p_other.hashes[i];
|
|
|
|
hash_to_key[i] = p_other.hash_to_key[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
_FORCE_INLINE_ uint32_t get_capacity() const { return hash_table_size_primes[capacity_index]; }
|
|
|
|
_FORCE_INLINE_ uint32_t size() const { return num_elements; }
|
|
|
|
|
|
|
|
/* Standard Godot Container API */
|
|
|
|
|
|
|
|
bool is_empty() const {
|
|
|
|
return num_elements == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void clear() {
|
2023-04-10 16:45:53 +00:00
|
|
|
if (keys == nullptr || num_elements == 0) {
|
2022-05-19 15:00:06 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
|
|
for (uint32_t i = 0; i < capacity; i++) {
|
|
|
|
hashes[i] = EMPTY_HASH;
|
|
|
|
}
|
|
|
|
for (uint32_t i = 0; i < num_elements; i++) {
|
|
|
|
keys[i].~TKey();
|
|
|
|
}
|
|
|
|
|
|
|
|
num_elements = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ bool has(const TKey &p_key) const {
|
|
|
|
uint32_t _pos = 0;
|
|
|
|
return _lookup_pos(p_key, _pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool erase(const TKey &p_key) {
|
|
|
|
uint32_t pos = 0;
|
|
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
|
|
|
|
|
|
if (!exists) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t key_pos = pos;
|
|
|
|
pos = key_to_hash[pos]; //make hash pos
|
|
|
|
|
2022-06-23 16:08:52 +00:00
|
|
|
const uint32_t capacity = hash_table_size_primes[capacity_index];
|
|
|
|
const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index];
|
|
|
|
uint32_t next_pos = fastmod(pos + 1, capacity_inv, capacity);
|
|
|
|
while (hashes[next_pos] != EMPTY_HASH && _get_probe_length(next_pos, hashes[next_pos], capacity, capacity_inv) != 0) {
|
2022-05-19 15:00:06 +00:00
|
|
|
uint32_t kpos = hash_to_key[pos];
|
|
|
|
uint32_t kpos_next = hash_to_key[next_pos];
|
|
|
|
SWAP(key_to_hash[kpos], key_to_hash[kpos_next]);
|
|
|
|
SWAP(hashes[next_pos], hashes[pos]);
|
|
|
|
SWAP(hash_to_key[next_pos], hash_to_key[pos]);
|
|
|
|
|
|
|
|
pos = next_pos;
|
2022-06-23 16:08:52 +00:00
|
|
|
next_pos = fastmod(pos + 1, capacity_inv, capacity);
|
2022-05-19 15:00:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
hashes[pos] = EMPTY_HASH;
|
|
|
|
keys[key_pos].~TKey();
|
|
|
|
num_elements--;
|
|
|
|
if (key_pos < num_elements) {
|
|
|
|
// Not the last key, move the last one here to keep keys lineal
|
|
|
|
memnew_placement(&keys[key_pos], TKey(keys[num_elements]));
|
|
|
|
keys[num_elements].~TKey();
|
|
|
|
key_to_hash[key_pos] = key_to_hash[num_elements];
|
|
|
|
hash_to_key[key_to_hash[num_elements]] = key_pos;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reserves space for a number of elements, useful to avoid many resizes and rehashes.
|
|
|
|
// If adding a known (possibly large) number of elements at once, must be larger than old capacity.
|
|
|
|
void reserve(uint32_t p_new_capacity) {
|
|
|
|
uint32_t new_index = capacity_index;
|
|
|
|
|
|
|
|
while (hash_table_size_primes[new_index] < p_new_capacity) {
|
|
|
|
ERR_FAIL_COND_MSG(new_index + 1 == (uint32_t)HASH_TABLE_SIZE_MAX, nullptr);
|
|
|
|
new_index++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (new_index == capacity_index) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (keys == nullptr) {
|
|
|
|
capacity_index = new_index;
|
|
|
|
return; // Unallocated yet.
|
|
|
|
}
|
|
|
|
_resize_and_rehash(new_index);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Iterator API **/
|
|
|
|
|
|
|
|
struct Iterator {
|
|
|
|
_FORCE_INLINE_ const TKey &operator*() const {
|
|
|
|
return keys[index];
|
|
|
|
}
|
|
|
|
_FORCE_INLINE_ const TKey *operator->() const {
|
|
|
|
return &keys[index];
|
|
|
|
}
|
|
|
|
_FORCE_INLINE_ Iterator &operator++() {
|
|
|
|
index++;
|
|
|
|
if (index >= (int32_t)num_keys) {
|
|
|
|
index = -1;
|
|
|
|
keys = nullptr;
|
|
|
|
num_keys = 0;
|
|
|
|
}
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
_FORCE_INLINE_ Iterator &operator--() {
|
|
|
|
index--;
|
|
|
|
if (index < 0) {
|
|
|
|
index = -1;
|
|
|
|
keys = nullptr;
|
|
|
|
num_keys = 0;
|
|
|
|
}
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ bool operator==(const Iterator &b) const { return keys == b.keys && index == b.index; }
|
|
|
|
_FORCE_INLINE_ bool operator!=(const Iterator &b) const { return keys != b.keys || index != b.index; }
|
|
|
|
|
|
|
|
_FORCE_INLINE_ explicit operator bool() const {
|
|
|
|
return keys != nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ Iterator(const TKey *p_keys, uint32_t p_num_keys, int32_t p_index = -1) {
|
|
|
|
keys = p_keys;
|
|
|
|
num_keys = p_num_keys;
|
|
|
|
index = p_index;
|
|
|
|
}
|
|
|
|
_FORCE_INLINE_ Iterator() {}
|
|
|
|
_FORCE_INLINE_ Iterator(const Iterator &p_it) {
|
|
|
|
keys = p_it.keys;
|
|
|
|
num_keys = p_it.num_keys;
|
|
|
|
index = p_it.index;
|
|
|
|
}
|
|
|
|
_FORCE_INLINE_ void operator=(const Iterator &p_it) {
|
|
|
|
keys = p_it.keys;
|
|
|
|
num_keys = p_it.num_keys;
|
|
|
|
index = p_it.index;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
const TKey *keys = nullptr;
|
|
|
|
uint32_t num_keys = 0;
|
|
|
|
int32_t index = -1;
|
|
|
|
};
|
|
|
|
|
|
|
|
_FORCE_INLINE_ Iterator begin() const {
|
|
|
|
return num_elements ? Iterator(keys, num_elements, 0) : Iterator();
|
|
|
|
}
|
|
|
|
_FORCE_INLINE_ Iterator end() const {
|
|
|
|
return Iterator();
|
|
|
|
}
|
|
|
|
_FORCE_INLINE_ Iterator last() const {
|
|
|
|
if (num_elements == 0) {
|
|
|
|
return Iterator();
|
|
|
|
}
|
|
|
|
return Iterator(keys, num_elements, num_elements - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ Iterator find(const TKey &p_key) const {
|
|
|
|
uint32_t pos = 0;
|
|
|
|
bool exists = _lookup_pos(p_key, pos);
|
|
|
|
if (!exists) {
|
|
|
|
return end();
|
|
|
|
}
|
|
|
|
return Iterator(keys, num_elements, pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ void remove(const Iterator &p_iter) {
|
|
|
|
if (p_iter) {
|
|
|
|
erase(*p_iter);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Insert */
|
|
|
|
|
|
|
|
Iterator insert(const TKey &p_key) {
|
|
|
|
uint32_t pos = _insert(p_key);
|
|
|
|
return Iterator(keys, num_elements, pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Constructors */
|
|
|
|
|
|
|
|
HashSet(const HashSet &p_other) {
|
|
|
|
_init_from(p_other);
|
|
|
|
}
|
|
|
|
|
|
|
|
void operator=(const HashSet &p_other) {
|
|
|
|
if (this == &p_other) {
|
|
|
|
return; // Ignore self assignment.
|
|
|
|
}
|
|
|
|
|
|
|
|
clear();
|
|
|
|
|
|
|
|
if (keys != nullptr) {
|
|
|
|
Memory::free_static(keys);
|
|
|
|
Memory::free_static(key_to_hash);
|
|
|
|
Memory::free_static(hash_to_key);
|
|
|
|
Memory::free_static(hashes);
|
|
|
|
keys = nullptr;
|
|
|
|
hashes = nullptr;
|
|
|
|
hash_to_key = nullptr;
|
|
|
|
key_to_hash = nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
_init_from(p_other);
|
|
|
|
}
|
|
|
|
|
|
|
|
HashSet(uint32_t p_initial_capacity) {
|
|
|
|
// Capacity can't be 0.
|
|
|
|
capacity_index = 0;
|
|
|
|
reserve(p_initial_capacity);
|
|
|
|
}
|
|
|
|
HashSet() {
|
|
|
|
capacity_index = MIN_CAPACITY_INDEX;
|
|
|
|
}
|
|
|
|
|
|
|
|
void reset() {
|
|
|
|
clear();
|
|
|
|
|
|
|
|
if (keys != nullptr) {
|
|
|
|
Memory::free_static(keys);
|
|
|
|
Memory::free_static(key_to_hash);
|
|
|
|
Memory::free_static(hash_to_key);
|
|
|
|
Memory::free_static(hashes);
|
|
|
|
keys = nullptr;
|
|
|
|
hashes = nullptr;
|
|
|
|
hash_to_key = nullptr;
|
|
|
|
key_to_hash = nullptr;
|
|
|
|
}
|
|
|
|
capacity_index = MIN_CAPACITY_INDEX;
|
|
|
|
}
|
|
|
|
|
|
|
|
~HashSet() {
|
|
|
|
clear();
|
|
|
|
|
|
|
|
if (keys != nullptr) {
|
|
|
|
Memory::free_static(keys);
|
|
|
|
Memory::free_static(key_to_hash);
|
|
|
|
Memory::free_static(hash_to_key);
|
|
|
|
Memory::free_static(hashes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif // HASH_SET_H
|