mirror of
https://github.com/torvalds/linux.git
synced 2024-11-16 17:12:06 +00:00
c3c52bce69
I implemented opstate_init() as a inline function in linux/edac.h. added calling opstate_init() to: i82443bxgx_edac.c i82860_edac.c i82875p_edac.c i82975x_edac.c I wrote a fixed patch of edac-fix-module-initialization-on-several-modules.patch, and tested building 2.6.25-rc7 with applying this. It was succeed. I think the patch is now correct. Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Signed-off-by: Hitoshi Mitake <h.mitake@gmail.com> Signed-off-by: Doug Thompson <dougthompson@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1500 lines
40 KiB
C
1500 lines
40 KiB
C
/*
|
|
* Intel 5000(P/V/X) class Memory Controllers kernel module
|
|
*
|
|
* This file may be distributed under the terms of the
|
|
* GNU General Public License.
|
|
*
|
|
* Written by Douglas Thompson Linux Networx (http://lnxi.com)
|
|
* norsk5@xmission.com
|
|
*
|
|
* This module is based on the following document:
|
|
*
|
|
* Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
|
|
* http://developer.intel.com/design/chipsets/datashts/313070.htm
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/edac.h>
|
|
#include <asm/mmzone.h>
|
|
|
|
#include "edac_core.h"
|
|
|
|
/*
|
|
* Alter this version for the I5000 module when modifications are made
|
|
*/
|
|
#define I5000_REVISION " Ver: 2.0.12 " __DATE__
|
|
#define EDAC_MOD_STR "i5000_edac"
|
|
|
|
#define i5000_printk(level, fmt, arg...) \
|
|
edac_printk(level, "i5000", fmt, ##arg)
|
|
|
|
#define i5000_mc_printk(mci, level, fmt, arg...) \
|
|
edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
|
|
|
|
#ifndef PCI_DEVICE_ID_INTEL_FBD_0
|
|
#define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_INTEL_FBD_1
|
|
#define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6
|
|
#endif
|
|
|
|
/* Device 16,
|
|
* Function 0: System Address
|
|
* Function 1: Memory Branch Map, Control, Errors Register
|
|
* Function 2: FSB Error Registers
|
|
*
|
|
* All 3 functions of Device 16 (0,1,2) share the SAME DID
|
|
*/
|
|
#define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
|
|
|
|
/* OFFSETS for Function 0 */
|
|
|
|
/* OFFSETS for Function 1 */
|
|
#define AMBASE 0x48
|
|
#define MAXCH 0x56
|
|
#define MAXDIMMPERCH 0x57
|
|
#define TOLM 0x6C
|
|
#define REDMEMB 0x7C
|
|
#define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF)
|
|
#define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
|
|
#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00)
|
|
#define MIR0 0x80
|
|
#define MIR1 0x84
|
|
#define MIR2 0x88
|
|
#define AMIR0 0x8C
|
|
#define AMIR1 0x90
|
|
#define AMIR2 0x94
|
|
|
|
#define FERR_FAT_FBD 0x98
|
|
#define NERR_FAT_FBD 0x9C
|
|
#define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
|
|
#define FERR_FAT_FBDCHAN 0x30000000
|
|
#define FERR_FAT_M3ERR 0x00000004
|
|
#define FERR_FAT_M2ERR 0x00000002
|
|
#define FERR_FAT_M1ERR 0x00000001
|
|
#define FERR_FAT_MASK (FERR_FAT_M1ERR | \
|
|
FERR_FAT_M2ERR | \
|
|
FERR_FAT_M3ERR)
|
|
|
|
#define FERR_NF_FBD 0xA0
|
|
|
|
/* Thermal and SPD or BFD errors */
|
|
#define FERR_NF_M28ERR 0x01000000
|
|
#define FERR_NF_M27ERR 0x00800000
|
|
#define FERR_NF_M26ERR 0x00400000
|
|
#define FERR_NF_M25ERR 0x00200000
|
|
#define FERR_NF_M24ERR 0x00100000
|
|
#define FERR_NF_M23ERR 0x00080000
|
|
#define FERR_NF_M22ERR 0x00040000
|
|
#define FERR_NF_M21ERR 0x00020000
|
|
|
|
/* Correctable errors */
|
|
#define FERR_NF_M20ERR 0x00010000
|
|
#define FERR_NF_M19ERR 0x00008000
|
|
#define FERR_NF_M18ERR 0x00004000
|
|
#define FERR_NF_M17ERR 0x00002000
|
|
|
|
/* Non-Retry or redundant Retry errors */
|
|
#define FERR_NF_M16ERR 0x00001000
|
|
#define FERR_NF_M15ERR 0x00000800
|
|
#define FERR_NF_M14ERR 0x00000400
|
|
#define FERR_NF_M13ERR 0x00000200
|
|
|
|
/* Uncorrectable errors */
|
|
#define FERR_NF_M12ERR 0x00000100
|
|
#define FERR_NF_M11ERR 0x00000080
|
|
#define FERR_NF_M10ERR 0x00000040
|
|
#define FERR_NF_M9ERR 0x00000020
|
|
#define FERR_NF_M8ERR 0x00000010
|
|
#define FERR_NF_M7ERR 0x00000008
|
|
#define FERR_NF_M6ERR 0x00000004
|
|
#define FERR_NF_M5ERR 0x00000002
|
|
#define FERR_NF_M4ERR 0x00000001
|
|
|
|
#define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \
|
|
FERR_NF_M11ERR | \
|
|
FERR_NF_M10ERR | \
|
|
FERR_NF_M8ERR | \
|
|
FERR_NF_M7ERR | \
|
|
FERR_NF_M6ERR | \
|
|
FERR_NF_M5ERR | \
|
|
FERR_NF_M4ERR)
|
|
#define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \
|
|
FERR_NF_M19ERR | \
|
|
FERR_NF_M18ERR | \
|
|
FERR_NF_M17ERR)
|
|
#define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \
|
|
FERR_NF_M28ERR)
|
|
#define FERR_NF_THERMAL (FERR_NF_M26ERR | \
|
|
FERR_NF_M25ERR | \
|
|
FERR_NF_M24ERR | \
|
|
FERR_NF_M23ERR)
|
|
#define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR)
|
|
#define FERR_NF_NORTH_CRC (FERR_NF_M21ERR)
|
|
#define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \
|
|
FERR_NF_M14ERR | \
|
|
FERR_NF_M15ERR)
|
|
|
|
#define NERR_NF_FBD 0xA4
|
|
#define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \
|
|
FERR_NF_CORRECTABLE | \
|
|
FERR_NF_DIMM_SPARE | \
|
|
FERR_NF_THERMAL | \
|
|
FERR_NF_SPD_PROTOCOL | \
|
|
FERR_NF_NORTH_CRC | \
|
|
FERR_NF_NON_RETRY)
|
|
|
|
#define EMASK_FBD 0xA8
|
|
#define EMASK_FBD_M28ERR 0x08000000
|
|
#define EMASK_FBD_M27ERR 0x04000000
|
|
#define EMASK_FBD_M26ERR 0x02000000
|
|
#define EMASK_FBD_M25ERR 0x01000000
|
|
#define EMASK_FBD_M24ERR 0x00800000
|
|
#define EMASK_FBD_M23ERR 0x00400000
|
|
#define EMASK_FBD_M22ERR 0x00200000
|
|
#define EMASK_FBD_M21ERR 0x00100000
|
|
#define EMASK_FBD_M20ERR 0x00080000
|
|
#define EMASK_FBD_M19ERR 0x00040000
|
|
#define EMASK_FBD_M18ERR 0x00020000
|
|
#define EMASK_FBD_M17ERR 0x00010000
|
|
|
|
#define EMASK_FBD_M15ERR 0x00004000
|
|
#define EMASK_FBD_M14ERR 0x00002000
|
|
#define EMASK_FBD_M13ERR 0x00001000
|
|
#define EMASK_FBD_M12ERR 0x00000800
|
|
#define EMASK_FBD_M11ERR 0x00000400
|
|
#define EMASK_FBD_M10ERR 0x00000200
|
|
#define EMASK_FBD_M9ERR 0x00000100
|
|
#define EMASK_FBD_M8ERR 0x00000080
|
|
#define EMASK_FBD_M7ERR 0x00000040
|
|
#define EMASK_FBD_M6ERR 0x00000020
|
|
#define EMASK_FBD_M5ERR 0x00000010
|
|
#define EMASK_FBD_M4ERR 0x00000008
|
|
#define EMASK_FBD_M3ERR 0x00000004
|
|
#define EMASK_FBD_M2ERR 0x00000002
|
|
#define EMASK_FBD_M1ERR 0x00000001
|
|
|
|
#define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \
|
|
EMASK_FBD_M2ERR | \
|
|
EMASK_FBD_M3ERR)
|
|
|
|
#define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \
|
|
EMASK_FBD_M5ERR | \
|
|
EMASK_FBD_M6ERR | \
|
|
EMASK_FBD_M7ERR | \
|
|
EMASK_FBD_M8ERR | \
|
|
EMASK_FBD_M9ERR | \
|
|
EMASK_FBD_M10ERR | \
|
|
EMASK_FBD_M11ERR | \
|
|
EMASK_FBD_M12ERR)
|
|
#define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \
|
|
EMASK_FBD_M18ERR | \
|
|
EMASK_FBD_M19ERR | \
|
|
EMASK_FBD_M20ERR)
|
|
#define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \
|
|
EMASK_FBD_M28ERR)
|
|
#define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \
|
|
EMASK_FBD_M25ERR | \
|
|
EMASK_FBD_M24ERR | \
|
|
EMASK_FBD_M23ERR)
|
|
#define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR)
|
|
#define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR)
|
|
#define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \
|
|
EMASK_FBD_M14ERR | \
|
|
EMASK_FBD_M13ERR)
|
|
|
|
#define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \
|
|
ENABLE_EMASK_FBD_NORTH_CRC | \
|
|
ENABLE_EMASK_FBD_SPD_PROTOCOL | \
|
|
ENABLE_EMASK_FBD_THERMALS | \
|
|
ENABLE_EMASK_FBD_DIMM_SPARE | \
|
|
ENABLE_EMASK_FBD_FATAL_ERRORS | \
|
|
ENABLE_EMASK_FBD_CORRECTABLE | \
|
|
ENABLE_EMASK_FBD_UNCORRECTABLE)
|
|
|
|
#define ERR0_FBD 0xAC
|
|
#define ERR1_FBD 0xB0
|
|
#define ERR2_FBD 0xB4
|
|
#define MCERR_FBD 0xB8
|
|
#define NRECMEMA 0xBE
|
|
#define NREC_BANK(x) (((x)>>12) & 0x7)
|
|
#define NREC_RDWR(x) (((x)>>11) & 1)
|
|
#define NREC_RANK(x) (((x)>>8) & 0x7)
|
|
#define NRECMEMB 0xC0
|
|
#define NREC_CAS(x) (((x)>>16) & 0xFFFFFF)
|
|
#define NREC_RAS(x) ((x) & 0x7FFF)
|
|
#define NRECFGLOG 0xC4
|
|
#define NREEECFBDA 0xC8
|
|
#define NREEECFBDB 0xCC
|
|
#define NREEECFBDC 0xD0
|
|
#define NREEECFBDD 0xD4
|
|
#define NREEECFBDE 0xD8
|
|
#define REDMEMA 0xDC
|
|
#define RECMEMA 0xE2
|
|
#define REC_BANK(x) (((x)>>12) & 0x7)
|
|
#define REC_RDWR(x) (((x)>>11) & 1)
|
|
#define REC_RANK(x) (((x)>>8) & 0x7)
|
|
#define RECMEMB 0xE4
|
|
#define REC_CAS(x) (((x)>>16) & 0xFFFFFF)
|
|
#define REC_RAS(x) ((x) & 0x7FFF)
|
|
#define RECFGLOG 0xE8
|
|
#define RECFBDA 0xEC
|
|
#define RECFBDB 0xF0
|
|
#define RECFBDC 0xF4
|
|
#define RECFBDD 0xF8
|
|
#define RECFBDE 0xFC
|
|
|
|
/* OFFSETS for Function 2 */
|
|
|
|
/*
|
|
* Device 21,
|
|
* Function 0: Memory Map Branch 0
|
|
*
|
|
* Device 22,
|
|
* Function 0: Memory Map Branch 1
|
|
*/
|
|
#define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5
|
|
#define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6
|
|
|
|
#define AMB_PRESENT_0 0x64
|
|
#define AMB_PRESENT_1 0x66
|
|
#define MTR0 0x80
|
|
#define MTR1 0x84
|
|
#define MTR2 0x88
|
|
#define MTR3 0x8C
|
|
|
|
#define NUM_MTRS 4
|
|
#define CHANNELS_PER_BRANCH (2)
|
|
|
|
/* Defines to extract the vaious fields from the
|
|
* MTRx - Memory Technology Registers
|
|
*/
|
|
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8))
|
|
#define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4)
|
|
#define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4)
|
|
#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
|
|
#define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1)
|
|
#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
|
|
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
|
|
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
|
|
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
|
|
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
|
|
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
static char *numrow_toString[] = {
|
|
"8,192 - 13 rows",
|
|
"16,384 - 14 rows",
|
|
"32,768 - 15 rows",
|
|
"reserved"
|
|
};
|
|
|
|
static char *numcol_toString[] = {
|
|
"1,024 - 10 columns",
|
|
"2,048 - 11 columns",
|
|
"4,096 - 12 columns",
|
|
"reserved"
|
|
};
|
|
#endif
|
|
|
|
/* Enumeration of supported devices */
|
|
enum i5000_chips {
|
|
I5000P = 0,
|
|
I5000V = 1, /* future */
|
|
I5000X = 2 /* future */
|
|
};
|
|
|
|
/* Device name and register DID (Device ID) */
|
|
struct i5000_dev_info {
|
|
const char *ctl_name; /* name for this device */
|
|
u16 fsb_mapping_errors; /* DID for the branchmap,control */
|
|
};
|
|
|
|
/* Table of devices attributes supported by this driver */
|
|
static const struct i5000_dev_info i5000_devs[] = {
|
|
[I5000P] = {
|
|
.ctl_name = "I5000",
|
|
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
|
|
},
|
|
};
|
|
|
|
struct i5000_dimm_info {
|
|
int megabytes; /* size, 0 means not present */
|
|
int dual_rank;
|
|
};
|
|
|
|
#define MAX_CHANNELS 6 /* max possible channels */
|
|
#define MAX_CSROWS (8*2) /* max possible csrows per channel */
|
|
|
|
/* driver private data structure */
|
|
struct i5000_pvt {
|
|
struct pci_dev *system_address; /* 16.0 */
|
|
struct pci_dev *branchmap_werrors; /* 16.1 */
|
|
struct pci_dev *fsb_error_regs; /* 16.2 */
|
|
struct pci_dev *branch_0; /* 21.0 */
|
|
struct pci_dev *branch_1; /* 22.0 */
|
|
|
|
u16 tolm; /* top of low memory */
|
|
u64 ambase; /* AMB BAR */
|
|
|
|
u16 mir0, mir1, mir2;
|
|
|
|
u16 b0_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
|
|
u16 b0_ambpresent0; /* Branch 0, Channel 0 */
|
|
u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
|
|
|
|
u16 b1_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
|
|
u16 b1_ambpresent0; /* Branch 1, Channel 8 */
|
|
u16 b1_ambpresent1; /* Branch 1, Channel 1 */
|
|
|
|
/* DIMM information matrix, allocating architecture maximums */
|
|
struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
|
|
|
|
/* Actual values for this controller */
|
|
int maxch; /* Max channels */
|
|
int maxdimmperch; /* Max DIMMs per channel */
|
|
};
|
|
|
|
/* I5000 MCH error information retrieved from Hardware */
|
|
struct i5000_error_info {
|
|
|
|
/* These registers are always read from the MC */
|
|
u32 ferr_fat_fbd; /* First Errors Fatal */
|
|
u32 nerr_fat_fbd; /* Next Errors Fatal */
|
|
u32 ferr_nf_fbd; /* First Errors Non-Fatal */
|
|
u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
|
|
|
|
/* These registers are input ONLY if there was a Recoverable Error */
|
|
u32 redmemb; /* Recoverable Mem Data Error log B */
|
|
u16 recmema; /* Recoverable Mem Error log A */
|
|
u32 recmemb; /* Recoverable Mem Error log B */
|
|
|
|
/* These registers are input ONLY if there was a
|
|
* Non-Recoverable Error */
|
|
u16 nrecmema; /* Non-Recoverable Mem log A */
|
|
u16 nrecmemb; /* Non-Recoverable Mem log B */
|
|
|
|
};
|
|
|
|
static struct edac_pci_ctl_info *i5000_pci;
|
|
|
|
/*
|
|
* i5000_get_error_info Retrieve the hardware error information from
|
|
* the hardware and cache it in the 'info'
|
|
* structure
|
|
*/
|
|
static void i5000_get_error_info(struct mem_ctl_info *mci,
|
|
struct i5000_error_info *info)
|
|
{
|
|
struct i5000_pvt *pvt;
|
|
u32 value;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* read in the 1st FATAL error register */
|
|
pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
|
|
|
|
/* Mask only the bits that the doc says are valid
|
|
*/
|
|
value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
|
|
|
|
/* If there is an error, then read in the */
|
|
/* NEXT FATAL error register and the Memory Error Log Register A */
|
|
if (value & FERR_FAT_MASK) {
|
|
info->ferr_fat_fbd = value;
|
|
|
|
/* harvest the various error data we need */
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
|
NERR_FAT_FBD, &info->nerr_fat_fbd);
|
|
pci_read_config_word(pvt->branchmap_werrors,
|
|
NRECMEMA, &info->nrecmema);
|
|
pci_read_config_word(pvt->branchmap_werrors,
|
|
NRECMEMB, &info->nrecmemb);
|
|
|
|
/* Clear the error bits, by writing them back */
|
|
pci_write_config_dword(pvt->branchmap_werrors,
|
|
FERR_FAT_FBD, value);
|
|
} else {
|
|
info->ferr_fat_fbd = 0;
|
|
info->nerr_fat_fbd = 0;
|
|
info->nrecmema = 0;
|
|
info->nrecmemb = 0;
|
|
}
|
|
|
|
/* read in the 1st NON-FATAL error register */
|
|
pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
|
|
|
|
/* If there is an error, then read in the 1st NON-FATAL error
|
|
* register as well */
|
|
if (value & FERR_NF_MASK) {
|
|
info->ferr_nf_fbd = value;
|
|
|
|
/* harvest the various error data we need */
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
|
NERR_NF_FBD, &info->nerr_nf_fbd);
|
|
pci_read_config_word(pvt->branchmap_werrors,
|
|
RECMEMA, &info->recmema);
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
|
RECMEMB, &info->recmemb);
|
|
pci_read_config_dword(pvt->branchmap_werrors,
|
|
REDMEMB, &info->redmemb);
|
|
|
|
/* Clear the error bits, by writing them back */
|
|
pci_write_config_dword(pvt->branchmap_werrors,
|
|
FERR_NF_FBD, value);
|
|
} else {
|
|
info->ferr_nf_fbd = 0;
|
|
info->nerr_nf_fbd = 0;
|
|
info->recmema = 0;
|
|
info->recmemb = 0;
|
|
info->redmemb = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* i5000_process_fatal_error_info(struct mem_ctl_info *mci,
|
|
* struct i5000_error_info *info,
|
|
* int handle_errors);
|
|
*
|
|
* handle the Intel FATAL errors, if any
|
|
*/
|
|
static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
|
|
struct i5000_error_info *info,
|
|
int handle_errors)
|
|
{
|
|
char msg[EDAC_MC_LABEL_LEN + 1 + 90];
|
|
u32 allErrors;
|
|
int branch;
|
|
int channel;
|
|
int bank;
|
|
int rank;
|
|
int rdwr;
|
|
int ras, cas;
|
|
|
|
/* mask off the Error bits that are possible */
|
|
allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
|
|
if (!allErrors)
|
|
return; /* if no error, return now */
|
|
|
|
/* ONLY ONE of the possible error bits will be set, as per the docs */
|
|
i5000_mc_printk(mci, KERN_ERR,
|
|
"FATAL ERRORS Found!!! 1st FATAL Err Reg= 0x%x\n",
|
|
allErrors);
|
|
|
|
branch = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
|
|
channel = branch;
|
|
|
|
/* Use the NON-Recoverable macros to extract data */
|
|
bank = NREC_BANK(info->nrecmema);
|
|
rank = NREC_RANK(info->nrecmema);
|
|
rdwr = NREC_RDWR(info->nrecmema);
|
|
ras = NREC_RAS(info->nrecmemb);
|
|
cas = NREC_CAS(info->nrecmemb);
|
|
|
|
debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
|
|
"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
|
|
rank, channel, channel + 1, branch >> 1, bank,
|
|
rdwr ? "Write" : "Read", ras, cas);
|
|
|
|
/* Only 1 bit will be on */
|
|
if (allErrors & FERR_FAT_M1ERR) {
|
|
i5000_mc_printk(mci, KERN_ERR,
|
|
"Alert on non-redundant retry or fast "
|
|
"reset timeout\n");
|
|
|
|
} else if (allErrors & FERR_FAT_M2ERR) {
|
|
i5000_mc_printk(mci, KERN_ERR,
|
|
"Northbound CRC error on non-redundant "
|
|
"retry\n");
|
|
|
|
} else if (allErrors & FERR_FAT_M3ERR) {
|
|
i5000_mc_printk(mci, KERN_ERR,
|
|
">Tmid Thermal event with intelligent "
|
|
"throttling disabled\n");
|
|
}
|
|
|
|
/* Form out message */
|
|
snprintf(msg, sizeof(msg),
|
|
"(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d "
|
|
"FATAL Err=0x%x)",
|
|
branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
|
|
allErrors);
|
|
|
|
/* Call the helper to output message */
|
|
edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
|
|
}
|
|
|
|
/*
|
|
* i5000_process_fatal_error_info(struct mem_ctl_info *mci,
|
|
* struct i5000_error_info *info,
|
|
* int handle_errors);
|
|
*
|
|
* handle the Intel NON-FATAL errors, if any
|
|
*/
|
|
static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
|
|
struct i5000_error_info *info,
|
|
int handle_errors)
|
|
{
|
|
char msg[EDAC_MC_LABEL_LEN + 1 + 90];
|
|
u32 allErrors;
|
|
u32 ue_errors;
|
|
u32 ce_errors;
|
|
u32 misc_errors;
|
|
int branch;
|
|
int channel;
|
|
int bank;
|
|
int rank;
|
|
int rdwr;
|
|
int ras, cas;
|
|
|
|
/* mask off the Error bits that are possible */
|
|
allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
|
|
if (!allErrors)
|
|
return; /* if no error, return now */
|
|
|
|
/* ONLY ONE of the possible error bits will be set, as per the docs */
|
|
i5000_mc_printk(mci, KERN_WARNING,
|
|
"NON-FATAL ERRORS Found!!! 1st NON-FATAL Err "
|
|
"Reg= 0x%x\n", allErrors);
|
|
|
|
ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
|
|
if (ue_errors) {
|
|
debugf0("\tUncorrected bits= 0x%x\n", ue_errors);
|
|
|
|
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
|
|
channel = branch;
|
|
bank = NREC_BANK(info->nrecmema);
|
|
rank = NREC_RANK(info->nrecmema);
|
|
rdwr = NREC_RDWR(info->nrecmema);
|
|
ras = NREC_RAS(info->nrecmemb);
|
|
cas = NREC_CAS(info->nrecmemb);
|
|
|
|
debugf0
|
|
("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
|
|
"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
|
|
rank, channel, channel + 1, branch >> 1, bank,
|
|
rdwr ? "Write" : "Read", ras, cas);
|
|
|
|
/* Form out message */
|
|
snprintf(msg, sizeof(msg),
|
|
"(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
|
|
"CAS=%d, UE Err=0x%x)",
|
|
branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
|
|
ue_errors);
|
|
|
|
/* Call the helper to output message */
|
|
edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
|
|
}
|
|
|
|
/* Check correctable errors */
|
|
ce_errors = allErrors & FERR_NF_CORRECTABLE;
|
|
if (ce_errors) {
|
|
debugf0("\tCorrected bits= 0x%x\n", ce_errors);
|
|
|
|
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
|
|
|
|
channel = 0;
|
|
if (REC_ECC_LOCATOR_ODD(info->redmemb))
|
|
channel = 1;
|
|
|
|
/* Convert channel to be based from zero, instead of
|
|
* from branch base of 0 */
|
|
channel += branch;
|
|
|
|
bank = REC_BANK(info->recmema);
|
|
rank = REC_RANK(info->recmema);
|
|
rdwr = REC_RDWR(info->recmema);
|
|
ras = REC_RAS(info->recmemb);
|
|
cas = REC_CAS(info->recmemb);
|
|
|
|
debugf0("\t\tCSROW= %d Channel= %d (Branch %d "
|
|
"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
|
|
rank, channel, branch >> 1, bank,
|
|
rdwr ? "Write" : "Read", ras, cas);
|
|
|
|
/* Form out message */
|
|
snprintf(msg, sizeof(msg),
|
|
"(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
|
|
"CAS=%d, CE Err=0x%x)", branch >> 1, bank,
|
|
rdwr ? "Write" : "Read", ras, cas, ce_errors);
|
|
|
|
/* Call the helper to output message */
|
|
edac_mc_handle_fbd_ce(mci, rank, channel, msg);
|
|
}
|
|
|
|
/* See if any of the thermal errors have fired */
|
|
misc_errors = allErrors & FERR_NF_THERMAL;
|
|
if (misc_errors) {
|
|
i5000_printk(KERN_WARNING, "\tTHERMAL Error, bits= 0x%x\n",
|
|
misc_errors);
|
|
}
|
|
|
|
/* See if any of the thermal errors have fired */
|
|
misc_errors = allErrors & FERR_NF_NON_RETRY;
|
|
if (misc_errors) {
|
|
i5000_printk(KERN_WARNING, "\tNON-Retry Errors, bits= 0x%x\n",
|
|
misc_errors);
|
|
}
|
|
|
|
/* See if any of the thermal errors have fired */
|
|
misc_errors = allErrors & FERR_NF_NORTH_CRC;
|
|
if (misc_errors) {
|
|
i5000_printk(KERN_WARNING,
|
|
"\tNORTHBOUND CRC Error, bits= 0x%x\n",
|
|
misc_errors);
|
|
}
|
|
|
|
/* See if any of the thermal errors have fired */
|
|
misc_errors = allErrors & FERR_NF_SPD_PROTOCOL;
|
|
if (misc_errors) {
|
|
i5000_printk(KERN_WARNING,
|
|
"\tSPD Protocol Error, bits= 0x%x\n",
|
|
misc_errors);
|
|
}
|
|
|
|
/* See if any of the thermal errors have fired */
|
|
misc_errors = allErrors & FERR_NF_DIMM_SPARE;
|
|
if (misc_errors) {
|
|
i5000_printk(KERN_WARNING, "\tDIMM-Spare Error, bits= 0x%x\n",
|
|
misc_errors);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* i5000_process_error_info Process the error info that is
|
|
* in the 'info' structure, previously retrieved from hardware
|
|
*/
|
|
static void i5000_process_error_info(struct mem_ctl_info *mci,
|
|
struct i5000_error_info *info,
|
|
int handle_errors)
|
|
{
|
|
/* First handle any fatal errors that occurred */
|
|
i5000_process_fatal_error_info(mci, info, handle_errors);
|
|
|
|
/* now handle any non-fatal errors that occurred */
|
|
i5000_process_nonfatal_error_info(mci, info, handle_errors);
|
|
}
|
|
|
|
/*
|
|
* i5000_clear_error Retrieve any error from the hardware
|
|
* but do NOT process that error.
|
|
* Used for 'clearing' out of previous errors
|
|
* Called by the Core module.
|
|
*/
|
|
static void i5000_clear_error(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5000_error_info info;
|
|
|
|
i5000_get_error_info(mci, &info);
|
|
}
|
|
|
|
/*
|
|
* i5000_check_error Retrieve and process errors reported by the
|
|
* hardware. Called by the Core module.
|
|
*/
|
|
static void i5000_check_error(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5000_error_info info;
|
|
debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
|
|
i5000_get_error_info(mci, &info);
|
|
i5000_process_error_info(mci, &info, 1);
|
|
}
|
|
|
|
/*
|
|
* i5000_get_devices Find and perform 'get' operation on the MCH's
|
|
* device/functions we want to reference for this driver
|
|
*
|
|
* Need to 'get' device 16 func 1 and func 2
|
|
*/
|
|
static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
|
|
{
|
|
//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
|
|
struct i5000_pvt *pvt;
|
|
struct pci_dev *pdev;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Attempt to 'get' the MCH register we want */
|
|
pdev = NULL;
|
|
while (1) {
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
|
|
|
|
/* End of list, leave */
|
|
if (pdev == NULL) {
|
|
i5000_printk(KERN_ERR,
|
|
"'system address,Process Bus' "
|
|
"device not found:"
|
|
"vendor 0x%x device 0x%x FUNC 1 "
|
|
"(broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I5000_DEV16);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Scan for device 16 func 1 */
|
|
if (PCI_FUNC(pdev->devfn) == 1)
|
|
break;
|
|
}
|
|
|
|
pvt->branchmap_werrors = pdev;
|
|
|
|
/* Attempt to 'get' the MCH register we want */
|
|
pdev = NULL;
|
|
while (1) {
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
|
|
|
|
if (pdev == NULL) {
|
|
i5000_printk(KERN_ERR,
|
|
"MC: 'branchmap,control,errors' "
|
|
"device not found:"
|
|
"vendor 0x%x device 0x%x Func 2 "
|
|
"(broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I5000_DEV16);
|
|
|
|
pci_dev_put(pvt->branchmap_werrors);
|
|
return 1;
|
|
}
|
|
|
|
/* Scan for device 16 func 1 */
|
|
if (PCI_FUNC(pdev->devfn) == 2)
|
|
break;
|
|
}
|
|
|
|
pvt->fsb_error_regs = pdev;
|
|
|
|
debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->system_address),
|
|
pvt->system_address->vendor, pvt->system_address->device);
|
|
debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->branchmap_werrors),
|
|
pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
|
|
debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->fsb_error_regs),
|
|
pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
|
|
|
|
pdev = NULL;
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
|
|
|
|
if (pdev == NULL) {
|
|
i5000_printk(KERN_ERR,
|
|
"MC: 'BRANCH 0' device not found:"
|
|
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
|
|
|
|
pci_dev_put(pvt->branchmap_werrors);
|
|
pci_dev_put(pvt->fsb_error_regs);
|
|
return 1;
|
|
}
|
|
|
|
pvt->branch_0 = pdev;
|
|
|
|
/* If this device claims to have more than 2 channels then
|
|
* fetch Branch 1's information
|
|
*/
|
|
if (pvt->maxch >= CHANNELS_PER_BRANCH) {
|
|
pdev = NULL;
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
|
|
|
|
if (pdev == NULL) {
|
|
i5000_printk(KERN_ERR,
|
|
"MC: 'BRANCH 1' device not found:"
|
|
"vendor 0x%x device 0x%x Func 0 "
|
|
"(broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_I5000_BRANCH_1);
|
|
|
|
pci_dev_put(pvt->branchmap_werrors);
|
|
pci_dev_put(pvt->fsb_error_regs);
|
|
pci_dev_put(pvt->branch_0);
|
|
return 1;
|
|
}
|
|
|
|
pvt->branch_1 = pdev;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* i5000_put_devices 'put' all the devices that we have
|
|
* reserved via 'get'
|
|
*/
|
|
static void i5000_put_devices(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5000_pvt *pvt;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */
|
|
pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */
|
|
pci_dev_put(pvt->branch_0); /* DEV 21 */
|
|
|
|
/* Only if more than 2 channels do we release the second branch */
|
|
if (pvt->maxch >= CHANNELS_PER_BRANCH)
|
|
pci_dev_put(pvt->branch_1); /* DEV 22 */
|
|
}
|
|
|
|
/*
|
|
* determine_amb_resent
|
|
*
|
|
* the information is contained in NUM_MTRS different registers
|
|
* determineing which of the NUM_MTRS requires knowing
|
|
* which channel is in question
|
|
*
|
|
* 2 branches, each with 2 channels
|
|
* b0_ambpresent0 for channel '0'
|
|
* b0_ambpresent1 for channel '1'
|
|
* b1_ambpresent0 for channel '2'
|
|
* b1_ambpresent1 for channel '3'
|
|
*/
|
|
static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
|
|
{
|
|
int amb_present;
|
|
|
|
if (channel < CHANNELS_PER_BRANCH) {
|
|
if (channel & 0x1)
|
|
amb_present = pvt->b0_ambpresent1;
|
|
else
|
|
amb_present = pvt->b0_ambpresent0;
|
|
} else {
|
|
if (channel & 0x1)
|
|
amb_present = pvt->b1_ambpresent1;
|
|
else
|
|
amb_present = pvt->b1_ambpresent0;
|
|
}
|
|
|
|
return amb_present;
|
|
}
|
|
|
|
/*
|
|
* determine_mtr(pvt, csrow, channel)
|
|
*
|
|
* return the proper MTR register as determine by the csrow and channel desired
|
|
*/
|
|
static int determine_mtr(struct i5000_pvt *pvt, int csrow, int channel)
|
|
{
|
|
int mtr;
|
|
|
|
if (channel < CHANNELS_PER_BRANCH)
|
|
mtr = pvt->b0_mtr[csrow >> 1];
|
|
else
|
|
mtr = pvt->b1_mtr[csrow >> 1];
|
|
|
|
return mtr;
|
|
}
|
|
|
|
/*
|
|
*/
|
|
static void decode_mtr(int slot_row, u16 mtr)
|
|
{
|
|
int ans;
|
|
|
|
ans = MTR_DIMMS_PRESENT(mtr);
|
|
|
|
debugf2("\tMTR%d=0x%x: DIMMs are %s\n", slot_row, mtr,
|
|
ans ? "Present" : "NOT Present");
|
|
if (!ans)
|
|
return;
|
|
|
|
debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
|
|
debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
|
|
debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
|
|
debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
|
|
debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
|
|
}
|
|
|
|
static void handle_channel(struct i5000_pvt *pvt, int csrow, int channel,
|
|
struct i5000_dimm_info *dinfo)
|
|
{
|
|
int mtr;
|
|
int amb_present_reg;
|
|
int addrBits;
|
|
|
|
mtr = determine_mtr(pvt, csrow, channel);
|
|
if (MTR_DIMMS_PRESENT(mtr)) {
|
|
amb_present_reg = determine_amb_present_reg(pvt, channel);
|
|
|
|
/* Determine if there is a DIMM present in this DIMM slot */
|
|
if (amb_present_reg & (1 << (csrow >> 1))) {
|
|
dinfo->dual_rank = MTR_DIMM_RANK(mtr);
|
|
|
|
if (!((dinfo->dual_rank == 0) &&
|
|
((csrow & 0x1) == 0x1))) {
|
|
/* Start with the number of bits for a Bank
|
|
* on the DRAM */
|
|
addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
|
|
/* Add thenumber of ROW bits */
|
|
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
|
|
/* add the number of COLUMN bits */
|
|
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
|
|
|
|
addrBits += 6; /* add 64 bits per DIMM */
|
|
addrBits -= 20; /* divide by 2^^20 */
|
|
addrBits -= 3; /* 8 bits per bytes */
|
|
|
|
dinfo->megabytes = 1 << addrBits;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* calculate_dimm_size
|
|
*
|
|
* also will output a DIMM matrix map, if debug is enabled, for viewing
|
|
* how the DIMMs are populated
|
|
*/
|
|
static void calculate_dimm_size(struct i5000_pvt *pvt)
|
|
{
|
|
struct i5000_dimm_info *dinfo;
|
|
int csrow, max_csrows;
|
|
char *p, *mem_buffer;
|
|
int space, n;
|
|
int channel;
|
|
|
|
/* ================= Generate some debug output ================= */
|
|
space = PAGE_SIZE;
|
|
mem_buffer = p = kmalloc(space, GFP_KERNEL);
|
|
if (p == NULL) {
|
|
i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
|
|
__FILE__, __func__);
|
|
return;
|
|
}
|
|
|
|
n = snprintf(p, space, "\n");
|
|
p += n;
|
|
space -= n;
|
|
|
|
/* Scan all the actual CSROWS (which is # of DIMMS * 2)
|
|
* and calculate the information for each DIMM
|
|
* Start with the highest csrow first, to display it first
|
|
* and work toward the 0th csrow
|
|
*/
|
|
max_csrows = pvt->maxdimmperch * 2;
|
|
for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
|
|
|
|
/* on an odd csrow, first output a 'boundary' marker,
|
|
* then reset the message buffer */
|
|
if (csrow & 0x1) {
|
|
n = snprintf(p, space, "---------------------------"
|
|
"--------------------------------");
|
|
p += n;
|
|
space -= n;
|
|
debugf2("%s\n", mem_buffer);
|
|
p = mem_buffer;
|
|
space = PAGE_SIZE;
|
|
}
|
|
n = snprintf(p, space, "csrow %2d ", csrow);
|
|
p += n;
|
|
space -= n;
|
|
|
|
for (channel = 0; channel < pvt->maxch; channel++) {
|
|
dinfo = &pvt->dimm_info[csrow][channel];
|
|
handle_channel(pvt, csrow, channel, dinfo);
|
|
n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
n = snprintf(p, space, "\n");
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
|
|
/* Output the last bottom 'boundary' marker */
|
|
n = snprintf(p, space, "---------------------------"
|
|
"--------------------------------\n");
|
|
p += n;
|
|
space -= n;
|
|
|
|
/* now output the 'channel' labels */
|
|
n = snprintf(p, space, " ");
|
|
p += n;
|
|
space -= n;
|
|
for (channel = 0; channel < pvt->maxch; channel++) {
|
|
n = snprintf(p, space, "channel %d | ", channel);
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
n = snprintf(p, space, "\n");
|
|
p += n;
|
|
space -= n;
|
|
|
|
/* output the last message and free buffer */
|
|
debugf2("%s\n", mem_buffer);
|
|
kfree(mem_buffer);
|
|
}
|
|
|
|
/*
|
|
* i5000_get_mc_regs read in the necessary registers and
|
|
* cache locally
|
|
*
|
|
* Fills in the private data members
|
|
*/
|
|
static void i5000_get_mc_regs(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5000_pvt *pvt;
|
|
u32 actual_tolm;
|
|
u16 limit;
|
|
int slot_row;
|
|
int maxch;
|
|
int maxdimmperch;
|
|
int way0, way1;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
pci_read_config_dword(pvt->system_address, AMBASE,
|
|
(u32 *) & pvt->ambase);
|
|
pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
|
|
((u32 *) & pvt->ambase) + sizeof(u32));
|
|
|
|
maxdimmperch = pvt->maxdimmperch;
|
|
maxch = pvt->maxch;
|
|
|
|
debugf2("AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
|
|
(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
|
|
|
|
/* Get the Branch Map regs */
|
|
pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
|
|
pvt->tolm >>= 12;
|
|
debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
|
|
pvt->tolm);
|
|
|
|
actual_tolm = pvt->tolm << 28;
|
|
debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);
|
|
|
|
pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
|
|
pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
|
|
pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
|
|
|
|
/* Get the MIR[0-2] regs */
|
|
limit = (pvt->mir0 >> 4) & 0x0FFF;
|
|
way0 = pvt->mir0 & 0x1;
|
|
way1 = pvt->mir0 & 0x2;
|
|
debugf2("MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
|
|
limit = (pvt->mir1 >> 4) & 0x0FFF;
|
|
way0 = pvt->mir1 & 0x1;
|
|
way1 = pvt->mir1 & 0x2;
|
|
debugf2("MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
|
|
limit = (pvt->mir2 >> 4) & 0x0FFF;
|
|
way0 = pvt->mir2 & 0x1;
|
|
way1 = pvt->mir2 & 0x2;
|
|
debugf2("MIR2: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
|
|
|
|
/* Get the MTR[0-3] regs */
|
|
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
|
|
int where = MTR0 + (slot_row * sizeof(u32));
|
|
|
|
pci_read_config_word(pvt->branch_0, where,
|
|
&pvt->b0_mtr[slot_row]);
|
|
|
|
debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
|
|
pvt->b0_mtr[slot_row]);
|
|
|
|
if (pvt->maxch >= CHANNELS_PER_BRANCH) {
|
|
pci_read_config_word(pvt->branch_1, where,
|
|
&pvt->b1_mtr[slot_row]);
|
|
debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
|
|
where, pvt->b0_mtr[slot_row]);
|
|
} else {
|
|
pvt->b1_mtr[slot_row] = 0;
|
|
}
|
|
}
|
|
|
|
/* Read and dump branch 0's MTRs */
|
|
debugf2("\nMemory Technology Registers:\n");
|
|
debugf2(" Branch 0:\n");
|
|
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
|
|
decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
|
|
}
|
|
pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
|
|
&pvt->b0_ambpresent0);
|
|
debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
|
|
pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
|
|
&pvt->b0_ambpresent1);
|
|
debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
|
|
|
|
/* Only if we have 2 branchs (4 channels) */
|
|
if (pvt->maxch < CHANNELS_PER_BRANCH) {
|
|
pvt->b1_ambpresent0 = 0;
|
|
pvt->b1_ambpresent1 = 0;
|
|
} else {
|
|
/* Read and dump branch 1's MTRs */
|
|
debugf2(" Branch 1:\n");
|
|
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
|
|
decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
|
|
}
|
|
pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
|
|
&pvt->b1_ambpresent0);
|
|
debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
|
|
pvt->b1_ambpresent0);
|
|
pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
|
|
&pvt->b1_ambpresent1);
|
|
debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
|
|
pvt->b1_ambpresent1);
|
|
}
|
|
|
|
/* Go and determine the size of each DIMM and place in an
|
|
* orderly matrix */
|
|
calculate_dimm_size(pvt);
|
|
}
|
|
|
|
/*
|
|
* i5000_init_csrows Initialize the 'csrows' table within
|
|
* the mci control structure with the
|
|
* addressing of memory.
|
|
*
|
|
* return:
|
|
* 0 success
|
|
* 1 no actual memory found on this MC
|
|
*/
|
|
static int i5000_init_csrows(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5000_pvt *pvt;
|
|
struct csrow_info *p_csrow;
|
|
int empty, channel_count;
|
|
int max_csrows;
|
|
int mtr;
|
|
int csrow_megs;
|
|
int channel;
|
|
int csrow;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
channel_count = pvt->maxch;
|
|
max_csrows = pvt->maxdimmperch * 2;
|
|
|
|
empty = 1; /* Assume NO memory */
|
|
|
|
for (csrow = 0; csrow < max_csrows; csrow++) {
|
|
p_csrow = &mci->csrows[csrow];
|
|
|
|
p_csrow->csrow_idx = csrow;
|
|
|
|
/* use branch 0 for the basis */
|
|
mtr = pvt->b0_mtr[csrow >> 1];
|
|
|
|
/* if no DIMMS on this row, continue */
|
|
if (!MTR_DIMMS_PRESENT(mtr))
|
|
continue;
|
|
|
|
/* FAKE OUT VALUES, FIXME */
|
|
p_csrow->first_page = 0 + csrow * 20;
|
|
p_csrow->last_page = 9 + csrow * 20;
|
|
p_csrow->page_mask = 0xFFF;
|
|
|
|
p_csrow->grain = 8;
|
|
|
|
csrow_megs = 0;
|
|
for (channel = 0; channel < pvt->maxch; channel++) {
|
|
csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
|
|
}
|
|
|
|
p_csrow->nr_pages = csrow_megs << 8;
|
|
|
|
/* Assume DDR2 for now */
|
|
p_csrow->mtype = MEM_FB_DDR2;
|
|
|
|
/* ask what device type on this row */
|
|
if (MTR_DRAM_WIDTH(mtr))
|
|
p_csrow->dtype = DEV_X8;
|
|
else
|
|
p_csrow->dtype = DEV_X4;
|
|
|
|
p_csrow->edac_mode = EDAC_S8ECD8ED;
|
|
|
|
empty = 0;
|
|
}
|
|
|
|
return empty;
|
|
}
|
|
|
|
/*
|
|
* i5000_enable_error_reporting
|
|
* Turn on the memory reporting features of the hardware
|
|
*/
|
|
static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
|
|
{
|
|
struct i5000_pvt *pvt;
|
|
u32 fbd_error_mask;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Read the FBD Error Mask Register */
|
|
pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
|
|
&fbd_error_mask);
|
|
|
|
/* Enable with a '0' */
|
|
fbd_error_mask &= ~(ENABLE_EMASK_ALL);
|
|
|
|
pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
|
|
fbd_error_mask);
|
|
}
|
|
|
|
/*
|
|
* i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
|
|
*
|
|
* ask the device how many channels are present and how many CSROWS
|
|
* as well
|
|
*/
|
|
static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
|
|
int *num_dimms_per_channel,
|
|
int *num_channels)
|
|
{
|
|
u8 value;
|
|
|
|
/* Need to retrieve just how many channels and dimms per channel are
|
|
* supported on this memory controller
|
|
*/
|
|
pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
|
|
*num_dimms_per_channel = (int)value *2;
|
|
|
|
pci_read_config_byte(pdev, MAXCH, &value);
|
|
*num_channels = (int)value;
|
|
}
|
|
|
|
/*
|
|
* i5000_probe1 Probe for ONE instance of device to see if it is
|
|
* present.
|
|
* return:
|
|
* 0 for FOUND a device
|
|
* < 0 for error code
|
|
*/
|
|
static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct i5000_pvt *pvt;
|
|
int num_channels;
|
|
int num_dimms_per_channel;
|
|
int num_csrows;
|
|
|
|
debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
|
|
__func__,
|
|
pdev->bus->number,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
|
|
|
|
/* We only are looking for func 0 of the set */
|
|
if (PCI_FUNC(pdev->devfn) != 0)
|
|
return -ENODEV;
|
|
|
|
/* Ask the devices for the number of CSROWS and CHANNELS so
|
|
* that we can calculate the memory resources, etc
|
|
*
|
|
* The Chipset will report what it can handle which will be greater
|
|
* or equal to what the motherboard manufacturer will implement.
|
|
*
|
|
* As we don't have a motherboard identification routine to determine
|
|
* actual number of slots/dimms per channel, we thus utilize the
|
|
* resource as specified by the chipset. Thus, we might have
|
|
* have more DIMMs per channel than actually on the mobo, but this
|
|
* allows the driver to support upto the chipset max, without
|
|
* some fancy mobo determination.
|
|
*/
|
|
i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
|
|
&num_channels);
|
|
num_csrows = num_dimms_per_channel * 2;
|
|
|
|
debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
|
|
__func__, num_channels, num_dimms_per_channel, num_csrows);
|
|
|
|
/* allocate a new MC control structure */
|
|
mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
|
|
|
|
if (mci == NULL)
|
|
return -ENOMEM;
|
|
|
|
debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
|
|
|
|
mci->dev = &pdev->dev; /* record ptr to the generic device */
|
|
|
|
pvt = mci->pvt_info;
|
|
pvt->system_address = pdev; /* Record this device in our private */
|
|
pvt->maxch = num_channels;
|
|
pvt->maxdimmperch = num_dimms_per_channel;
|
|
|
|
/* 'get' the pci devices we want to reserve for our use */
|
|
if (i5000_get_devices(mci, dev_idx))
|
|
goto fail0;
|
|
|
|
/* Time to get serious */
|
|
i5000_get_mc_regs(mci); /* retrieve the hardware registers */
|
|
|
|
mci->mc_idx = 0;
|
|
mci->mtype_cap = MEM_FLAG_FB_DDR2;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
mci->mod_name = "i5000_edac.c";
|
|
mci->mod_ver = I5000_REVISION;
|
|
mci->ctl_name = i5000_devs[dev_idx].ctl_name;
|
|
mci->dev_name = pci_name(pdev);
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
/* Set the function pointer to an actual operation function */
|
|
mci->edac_check = i5000_check_error;
|
|
|
|
/* initialize the MC control structure 'csrows' table
|
|
* with the mapping and control information */
|
|
if (i5000_init_csrows(mci)) {
|
|
debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
|
|
" because i5000_init_csrows() returned nonzero "
|
|
"value\n");
|
|
mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
|
|
} else {
|
|
debugf1("MC: Enable error reporting now\n");
|
|
i5000_enable_error_reporting(mci);
|
|
}
|
|
|
|
/* add this new MC control structure to EDAC's list of MCs */
|
|
if (edac_mc_add_mc(mci)) {
|
|
debugf0("MC: " __FILE__
|
|
": %s(): failed edac_mc_add_mc()\n", __func__);
|
|
/* FIXME: perhaps some code should go here that disables error
|
|
* reporting if we just enabled it
|
|
*/
|
|
goto fail1;
|
|
}
|
|
|
|
i5000_clear_error(mci);
|
|
|
|
/* allocating generic PCI control info */
|
|
i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
|
|
if (!i5000_pci) {
|
|
printk(KERN_WARNING
|
|
"%s(): Unable to create PCI control\n",
|
|
__func__);
|
|
printk(KERN_WARNING
|
|
"%s(): PCI error report via EDAC not setup\n",
|
|
__func__);
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* Error exit unwinding stack */
|
|
fail1:
|
|
|
|
i5000_put_devices(mci);
|
|
|
|
fail0:
|
|
edac_mc_free(mci);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* i5000_init_one constructor for one instance of device
|
|
*
|
|
* returns:
|
|
* negative on error
|
|
* count (>= 0)
|
|
*/
|
|
static int __devinit i5000_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *id)
|
|
{
|
|
int rc;
|
|
|
|
debugf0("MC: " __FILE__ ": %s()\n", __func__);
|
|
|
|
/* wake up device */
|
|
rc = pci_enable_device(pdev);
|
|
if (rc == -EIO)
|
|
return rc;
|
|
|
|
/* now probe and enable the device */
|
|
return i5000_probe1(pdev, id->driver_data);
|
|
}
|
|
|
|
/*
|
|
* i5000_remove_one destructor for one instance of device
|
|
*
|
|
*/
|
|
static void __devexit i5000_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
|
|
debugf0(__FILE__ ": %s()\n", __func__);
|
|
|
|
if (i5000_pci)
|
|
edac_pci_release_generic_ctl(i5000_pci);
|
|
|
|
if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
|
|
return;
|
|
|
|
/* retrieve references to resources, and free those resources */
|
|
i5000_put_devices(mci);
|
|
|
|
edac_mc_free(mci);
|
|
}
|
|
|
|
/*
|
|
* pci_device_id table for which devices we are looking for
|
|
*
|
|
* The "E500P" device is the first device supported.
|
|
*/
|
|
static const struct pci_device_id i5000_pci_tbl[] __devinitdata = {
|
|
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
|
|
.driver_data = I5000P},
|
|
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
|
|
|
|
/*
|
|
* i5000_driver pci_driver structure for this module
|
|
*
|
|
*/
|
|
static struct pci_driver i5000_driver = {
|
|
.name = KBUILD_BASENAME,
|
|
.probe = i5000_init_one,
|
|
.remove = __devexit_p(i5000_remove_one),
|
|
.id_table = i5000_pci_tbl,
|
|
};
|
|
|
|
/*
|
|
* i5000_init Module entry function
|
|
* Try to initialize this module for its devices
|
|
*/
|
|
static int __init i5000_init(void)
|
|
{
|
|
int pci_rc;
|
|
|
|
debugf2("MC: " __FILE__ ": %s()\n", __func__);
|
|
|
|
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
|
opstate_init();
|
|
|
|
pci_rc = pci_register_driver(&i5000_driver);
|
|
|
|
return (pci_rc < 0) ? pci_rc : 0;
|
|
}
|
|
|
|
/*
|
|
* i5000_exit() Module exit function
|
|
* Unregister the driver
|
|
*/
|
|
static void __exit i5000_exit(void)
|
|
{
|
|
debugf2("MC: " __FILE__ ": %s()\n", __func__);
|
|
pci_unregister_driver(&i5000_driver);
|
|
}
|
|
|
|
module_init(i5000_init);
|
|
module_exit(i5000_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR
|
|
("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
|
|
MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
|
|
I5000_REVISION);
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|