linux/arch/powerpc/kvm/book3s.c
Paul Mackerras efff191223 KVM: PPC: Store FP/VSX/VMX state in thread_fp/vr_state structures
This uses struct thread_fp_state and struct thread_vr_state to store
the floating-point, VMX/Altivec and VSX state, rather than flat arrays.
This makes transferring the state to/from the thread_struct simpler
and allows us to unify the get/set_one_reg implementations for the
VSX registers.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:00 +01:00

912 lines
22 KiB
C

/*
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
*
* Description:
* This file is derived from arch/powerpc/kvm/44x.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/page.h>
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include "book3s.h"
#include "trace.h"
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
/* #define EXIT_DEBUG */
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "exits", VCPU_STAT(sum_exits) },
{ "mmio", VCPU_STAT(mmio_exits) },
{ "sig", VCPU_STAT(signal_exits) },
{ "sysc", VCPU_STAT(syscall_exits) },
{ "inst_emu", VCPU_STAT(emulated_inst_exits) },
{ "dec", VCPU_STAT(dec_exits) },
{ "ext_intr", VCPU_STAT(ext_intr_exits) },
{ "queue_intr", VCPU_STAT(queue_intr) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "pf_storage", VCPU_STAT(pf_storage) },
{ "sp_storage", VCPU_STAT(sp_storage) },
{ "pf_instruc", VCPU_STAT(pf_instruc) },
{ "sp_instruc", VCPU_STAT(sp_instruc) },
{ "ld", VCPU_STAT(ld) },
{ "ld_slow", VCPU_STAT(ld_slow) },
{ "st", VCPU_STAT(st) },
{ "st_slow", VCPU_STAT(st_slow) },
{ NULL }
};
void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
{
}
static inline unsigned long kvmppc_interrupt_offset(struct kvm_vcpu *vcpu)
{
if (!is_kvmppc_hv_enabled(vcpu->kvm))
return to_book3s(vcpu)->hior;
return 0;
}
static inline void kvmppc_update_int_pending(struct kvm_vcpu *vcpu,
unsigned long pending_now, unsigned long old_pending)
{
if (is_kvmppc_hv_enabled(vcpu->kvm))
return;
if (pending_now)
vcpu->arch.shared->int_pending = 1;
else if (old_pending)
vcpu->arch.shared->int_pending = 0;
}
static inline bool kvmppc_critical_section(struct kvm_vcpu *vcpu)
{
ulong crit_raw;
ulong crit_r1;
bool crit;
if (is_kvmppc_hv_enabled(vcpu->kvm))
return false;
crit_raw = vcpu->arch.shared->critical;
crit_r1 = kvmppc_get_gpr(vcpu, 1);
/* Truncate crit indicators in 32 bit mode */
if (!(vcpu->arch.shared->msr & MSR_SF)) {
crit_raw &= 0xffffffff;
crit_r1 &= 0xffffffff;
}
/* Critical section when crit == r1 */
crit = (crit_raw == crit_r1);
/* ... and we're in supervisor mode */
crit = crit && !(vcpu->arch.shared->msr & MSR_PR);
return crit;
}
void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags)
{
vcpu->arch.shared->srr0 = kvmppc_get_pc(vcpu);
vcpu->arch.shared->srr1 = vcpu->arch.shared->msr | flags;
kvmppc_set_pc(vcpu, kvmppc_interrupt_offset(vcpu) + vec);
vcpu->arch.mmu.reset_msr(vcpu);
}
static int kvmppc_book3s_vec2irqprio(unsigned int vec)
{
unsigned int prio;
switch (vec) {
case 0x100: prio = BOOK3S_IRQPRIO_SYSTEM_RESET; break;
case 0x200: prio = BOOK3S_IRQPRIO_MACHINE_CHECK; break;
case 0x300: prio = BOOK3S_IRQPRIO_DATA_STORAGE; break;
case 0x380: prio = BOOK3S_IRQPRIO_DATA_SEGMENT; break;
case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE; break;
case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT; break;
case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL; break;
case 0x501: prio = BOOK3S_IRQPRIO_EXTERNAL_LEVEL; break;
case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT; break;
case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM; break;
case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL; break;
case 0x900: prio = BOOK3S_IRQPRIO_DECREMENTER; break;
case 0xc00: prio = BOOK3S_IRQPRIO_SYSCALL; break;
case 0xd00: prio = BOOK3S_IRQPRIO_DEBUG; break;
case 0xf20: prio = BOOK3S_IRQPRIO_ALTIVEC; break;
case 0xf40: prio = BOOK3S_IRQPRIO_VSX; break;
default: prio = BOOK3S_IRQPRIO_MAX; break;
}
return prio;
}
void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu,
unsigned int vec)
{
unsigned long old_pending = vcpu->arch.pending_exceptions;
clear_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
kvmppc_update_int_pending(vcpu, vcpu->arch.pending_exceptions,
old_pending);
}
void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec)
{
vcpu->stat.queue_intr++;
set_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
#ifdef EXIT_DEBUG
printk(KERN_INFO "Queueing interrupt %x\n", vec);
#endif
}
EXPORT_SYMBOL_GPL(kvmppc_book3s_queue_irqprio);
void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong flags)
{
/* might as well deliver this straight away */
kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_PROGRAM, flags);
}
EXPORT_SYMBOL_GPL(kvmppc_core_queue_program);
void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
EXPORT_SYMBOL_GPL(kvmppc_core_queue_dec);
int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
{
return test_bit(BOOK3S_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}
EXPORT_SYMBOL_GPL(kvmppc_core_pending_dec);
void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
EXPORT_SYMBOL_GPL(kvmppc_core_dequeue_dec);
void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
unsigned int vec = BOOK3S_INTERRUPT_EXTERNAL;
if (irq->irq == KVM_INTERRUPT_SET_LEVEL)
vec = BOOK3S_INTERRUPT_EXTERNAL_LEVEL;
kvmppc_book3s_queue_irqprio(vcpu, vec);
}
void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
}
int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority)
{
int deliver = 1;
int vec = 0;
bool crit = kvmppc_critical_section(vcpu);
switch (priority) {
case BOOK3S_IRQPRIO_DECREMENTER:
deliver = (vcpu->arch.shared->msr & MSR_EE) && !crit;
vec = BOOK3S_INTERRUPT_DECREMENTER;
break;
case BOOK3S_IRQPRIO_EXTERNAL:
case BOOK3S_IRQPRIO_EXTERNAL_LEVEL:
deliver = (vcpu->arch.shared->msr & MSR_EE) && !crit;
vec = BOOK3S_INTERRUPT_EXTERNAL;
break;
case BOOK3S_IRQPRIO_SYSTEM_RESET:
vec = BOOK3S_INTERRUPT_SYSTEM_RESET;
break;
case BOOK3S_IRQPRIO_MACHINE_CHECK:
vec = BOOK3S_INTERRUPT_MACHINE_CHECK;
break;
case BOOK3S_IRQPRIO_DATA_STORAGE:
vec = BOOK3S_INTERRUPT_DATA_STORAGE;
break;
case BOOK3S_IRQPRIO_INST_STORAGE:
vec = BOOK3S_INTERRUPT_INST_STORAGE;
break;
case BOOK3S_IRQPRIO_DATA_SEGMENT:
vec = BOOK3S_INTERRUPT_DATA_SEGMENT;
break;
case BOOK3S_IRQPRIO_INST_SEGMENT:
vec = BOOK3S_INTERRUPT_INST_SEGMENT;
break;
case BOOK3S_IRQPRIO_ALIGNMENT:
vec = BOOK3S_INTERRUPT_ALIGNMENT;
break;
case BOOK3S_IRQPRIO_PROGRAM:
vec = BOOK3S_INTERRUPT_PROGRAM;
break;
case BOOK3S_IRQPRIO_VSX:
vec = BOOK3S_INTERRUPT_VSX;
break;
case BOOK3S_IRQPRIO_ALTIVEC:
vec = BOOK3S_INTERRUPT_ALTIVEC;
break;
case BOOK3S_IRQPRIO_FP_UNAVAIL:
vec = BOOK3S_INTERRUPT_FP_UNAVAIL;
break;
case BOOK3S_IRQPRIO_SYSCALL:
vec = BOOK3S_INTERRUPT_SYSCALL;
break;
case BOOK3S_IRQPRIO_DEBUG:
vec = BOOK3S_INTERRUPT_TRACE;
break;
case BOOK3S_IRQPRIO_PERFORMANCE_MONITOR:
vec = BOOK3S_INTERRUPT_PERFMON;
break;
default:
deliver = 0;
printk(KERN_ERR "KVM: Unknown interrupt: 0x%x\n", priority);
break;
}
#if 0
printk(KERN_INFO "Deliver interrupt 0x%x? %x\n", vec, deliver);
#endif
if (deliver)
kvmppc_inject_interrupt(vcpu, vec, 0);
return deliver;
}
/*
* This function determines if an irqprio should be cleared once issued.
*/
static bool clear_irqprio(struct kvm_vcpu *vcpu, unsigned int priority)
{
switch (priority) {
case BOOK3S_IRQPRIO_DECREMENTER:
/* DEC interrupts get cleared by mtdec */
return false;
case BOOK3S_IRQPRIO_EXTERNAL_LEVEL:
/* External interrupts get cleared by userspace */
return false;
}
return true;
}
int kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu)
{
unsigned long *pending = &vcpu->arch.pending_exceptions;
unsigned long old_pending = vcpu->arch.pending_exceptions;
unsigned int priority;
#ifdef EXIT_DEBUG
if (vcpu->arch.pending_exceptions)
printk(KERN_EMERG "KVM: Check pending: %lx\n", vcpu->arch.pending_exceptions);
#endif
priority = __ffs(*pending);
while (priority < BOOK3S_IRQPRIO_MAX) {
if (kvmppc_book3s_irqprio_deliver(vcpu, priority) &&
clear_irqprio(vcpu, priority)) {
clear_bit(priority, &vcpu->arch.pending_exceptions);
break;
}
priority = find_next_bit(pending,
BITS_PER_BYTE * sizeof(*pending),
priority + 1);
}
/* Tell the guest about our interrupt status */
kvmppc_update_int_pending(vcpu, *pending, old_pending);
return 0;
}
EXPORT_SYMBOL_GPL(kvmppc_core_prepare_to_enter);
pfn_t kvmppc_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, bool writing,
bool *writable)
{
ulong mp_pa = vcpu->arch.magic_page_pa;
if (!(vcpu->arch.shared->msr & MSR_SF))
mp_pa = (uint32_t)mp_pa;
/* Magic page override */
if (unlikely(mp_pa) &&
unlikely(((gfn << PAGE_SHIFT) & KVM_PAM) ==
((mp_pa & PAGE_MASK) & KVM_PAM))) {
ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
pfn_t pfn;
pfn = (pfn_t)virt_to_phys((void*)shared_page) >> PAGE_SHIFT;
get_page(pfn_to_page(pfn));
if (writable)
*writable = true;
return pfn;
}
return gfn_to_pfn_prot(vcpu->kvm, gfn, writing, writable);
}
EXPORT_SYMBOL_GPL(kvmppc_gfn_to_pfn);
static int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, bool data,
bool iswrite, struct kvmppc_pte *pte)
{
int relocated = (vcpu->arch.shared->msr & (data ? MSR_DR : MSR_IR));
int r;
if (relocated) {
r = vcpu->arch.mmu.xlate(vcpu, eaddr, pte, data, iswrite);
} else {
pte->eaddr = eaddr;
pte->raddr = eaddr & KVM_PAM;
pte->vpage = VSID_REAL | eaddr >> 12;
pte->may_read = true;
pte->may_write = true;
pte->may_execute = true;
r = 0;
}
return r;
}
static hva_t kvmppc_bad_hva(void)
{
return PAGE_OFFSET;
}
static hva_t kvmppc_pte_to_hva(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte,
bool read)
{
hva_t hpage;
if (read && !pte->may_read)
goto err;
if (!read && !pte->may_write)
goto err;
hpage = gfn_to_hva(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (kvm_is_error_hva(hpage))
goto err;
return hpage | (pte->raddr & ~PAGE_MASK);
err:
return kvmppc_bad_hva();
}
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
struct kvmppc_pte pte;
vcpu->stat.st++;
if (kvmppc_xlate(vcpu, *eaddr, data, true, &pte))
return -ENOENT;
*eaddr = pte.raddr;
if (!pte.may_write)
return -EPERM;
if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
return EMULATE_DO_MMIO;
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_st);
int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
struct kvmppc_pte pte;
hva_t hva = *eaddr;
vcpu->stat.ld++;
if (kvmppc_xlate(vcpu, *eaddr, data, false, &pte))
goto nopte;
*eaddr = pte.raddr;
hva = kvmppc_pte_to_hva(vcpu, &pte, true);
if (kvm_is_error_hva(hva))
goto mmio;
if (copy_from_user(ptr, (void __user *)hva, size)) {
printk(KERN_INFO "kvmppc_ld at 0x%lx failed\n", hva);
goto mmio;
}
return EMULATE_DONE;
nopte:
return -ENOENT;
mmio:
return EMULATE_DO_MMIO;
}
EXPORT_SYMBOL_GPL(kvmppc_ld);
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
return 0;
}
int kvmppc_subarch_vcpu_init(struct kvm_vcpu *vcpu)
{
return 0;
}
void kvmppc_subarch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
return vcpu->kvm->arch.kvm_ops->get_sregs(vcpu, sregs);
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
return vcpu->kvm->arch.kvm_ops->set_sregs(vcpu, sregs);
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
regs->pc = kvmppc_get_pc(vcpu);
regs->cr = kvmppc_get_cr(vcpu);
regs->ctr = kvmppc_get_ctr(vcpu);
regs->lr = kvmppc_get_lr(vcpu);
regs->xer = kvmppc_get_xer(vcpu);
regs->msr = vcpu->arch.shared->msr;
regs->srr0 = vcpu->arch.shared->srr0;
regs->srr1 = vcpu->arch.shared->srr1;
regs->pid = vcpu->arch.pid;
regs->sprg0 = vcpu->arch.shared->sprg0;
regs->sprg1 = vcpu->arch.shared->sprg1;
regs->sprg2 = vcpu->arch.shared->sprg2;
regs->sprg3 = vcpu->arch.shared->sprg3;
regs->sprg4 = vcpu->arch.shared->sprg4;
regs->sprg5 = vcpu->arch.shared->sprg5;
regs->sprg6 = vcpu->arch.shared->sprg6;
regs->sprg7 = vcpu->arch.shared->sprg7;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
kvmppc_set_pc(vcpu, regs->pc);
kvmppc_set_cr(vcpu, regs->cr);
kvmppc_set_ctr(vcpu, regs->ctr);
kvmppc_set_lr(vcpu, regs->lr);
kvmppc_set_xer(vcpu, regs->xer);
kvmppc_set_msr(vcpu, regs->msr);
vcpu->arch.shared->srr0 = regs->srr0;
vcpu->arch.shared->srr1 = regs->srr1;
vcpu->arch.shared->sprg0 = regs->sprg0;
vcpu->arch.shared->sprg1 = regs->sprg1;
vcpu->arch.shared->sprg2 = regs->sprg2;
vcpu->arch.shared->sprg3 = regs->sprg3;
vcpu->arch.shared->sprg4 = regs->sprg4;
vcpu->arch.shared->sprg5 = regs->sprg5;
vcpu->arch.shared->sprg6 = regs->sprg6;
vcpu->arch.shared->sprg7 = regs->sprg7;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
int r;
union kvmppc_one_reg val;
int size;
long int i;
size = one_reg_size(reg->id);
if (size > sizeof(val))
return -EINVAL;
r = vcpu->kvm->arch.kvm_ops->get_one_reg(vcpu, reg->id, &val);
if (r == -EINVAL) {
r = 0;
switch (reg->id) {
case KVM_REG_PPC_DAR:
val = get_reg_val(reg->id, vcpu->arch.shared->dar);
break;
case KVM_REG_PPC_DSISR:
val = get_reg_val(reg->id, vcpu->arch.shared->dsisr);
break;
case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
i = reg->id - KVM_REG_PPC_FPR0;
val = get_reg_val(reg->id, VCPU_FPR(vcpu, i));
break;
case KVM_REG_PPC_FPSCR:
val = get_reg_val(reg->id, vcpu->arch.fp.fpscr);
break;
#ifdef CONFIG_ALTIVEC
case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
break;
case KVM_REG_PPC_VSCR:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
break;
case KVM_REG_PPC_VRSAVE:
val = get_reg_val(reg->id, vcpu->arch.vrsave);
break;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
if (cpu_has_feature(CPU_FTR_VSX)) {
long int i = reg->id - KVM_REG_PPC_VSR0;
val.vsxval[0] = vcpu->arch.fp.fpr[i][0];
val.vsxval[1] = vcpu->arch.fp.fpr[i][1];
} else {
r = -ENXIO;
}
break;
#endif /* CONFIG_VSX */
case KVM_REG_PPC_DEBUG_INST: {
u32 opcode = INS_TW;
r = copy_to_user((u32 __user *)(long)reg->addr,
&opcode, sizeof(u32));
break;
}
#ifdef CONFIG_KVM_XICS
case KVM_REG_PPC_ICP_STATE:
if (!vcpu->arch.icp) {
r = -ENXIO;
break;
}
val = get_reg_val(reg->id, kvmppc_xics_get_icp(vcpu));
break;
#endif /* CONFIG_KVM_XICS */
default:
r = -EINVAL;
break;
}
}
if (r)
return r;
if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
r = -EFAULT;
return r;
}
int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
int r;
union kvmppc_one_reg val;
int size;
long int i;
size = one_reg_size(reg->id);
if (size > sizeof(val))
return -EINVAL;
if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
return -EFAULT;
r = vcpu->kvm->arch.kvm_ops->set_one_reg(vcpu, reg->id, &val);
if (r == -EINVAL) {
r = 0;
switch (reg->id) {
case KVM_REG_PPC_DAR:
vcpu->arch.shared->dar = set_reg_val(reg->id, val);
break;
case KVM_REG_PPC_DSISR:
vcpu->arch.shared->dsisr = set_reg_val(reg->id, val);
break;
case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
i = reg->id - KVM_REG_PPC_FPR0;
VCPU_FPR(vcpu, i) = set_reg_val(reg->id, val);
break;
case KVM_REG_PPC_FPSCR:
vcpu->arch.fp.fpscr = set_reg_val(reg->id, val);
break;
#ifdef CONFIG_ALTIVEC
case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
break;
case KVM_REG_PPC_VSCR:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
break;
case KVM_REG_PPC_VRSAVE:
if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
r = -ENXIO;
break;
}
vcpu->arch.vrsave = set_reg_val(reg->id, val);
break;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
if (cpu_has_feature(CPU_FTR_VSX)) {
long int i = reg->id - KVM_REG_PPC_VSR0;
vcpu->arch.fp.fpr[i][0] = val.vsxval[0];
vcpu->arch.fp.fpr[i][1] = val.vsxval[1];
} else {
r = -ENXIO;
}
break;
#endif /* CONFIG_VSX */
#ifdef CONFIG_KVM_XICS
case KVM_REG_PPC_ICP_STATE:
if (!vcpu->arch.icp) {
r = -ENXIO;
break;
}
r = kvmppc_xics_set_icp(vcpu,
set_reg_val(reg->id, val));
break;
#endif /* CONFIG_KVM_XICS */
default:
r = -EINVAL;
break;
}
}
return r;
}
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_load(vcpu, cpu);
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_put(vcpu);
}
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
vcpu->kvm->arch.kvm_ops->set_msr(vcpu, msr);
}
EXPORT_SYMBOL_GPL(kvmppc_set_msr);
int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
return vcpu->kvm->arch.kvm_ops->vcpu_run(kvm_run, vcpu);
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
return 0;
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
return -EINVAL;
}
void kvmppc_decrementer_func(unsigned long data)
{
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
kvmppc_core_queue_dec(vcpu);
kvm_vcpu_kick(vcpu);
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
return kvm->arch.kvm_ops->vcpu_create(kvm, id);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_free(vcpu);
}
int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
{
return vcpu->kvm->arch.kvm_ops->check_requests(vcpu);
}
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
return kvm->arch.kvm_ops->get_dirty_log(kvm, log);
}
void kvmppc_core_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
kvm->arch.kvm_ops->free_memslot(free, dont);
}
int kvmppc_core_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
unsigned long npages)
{
return kvm->arch.kvm_ops->create_memslot(slot, npages);
}
void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
kvm->arch.kvm_ops->flush_memslot(kvm, memslot);
}
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
struct kvm_userspace_memory_region *mem)
{
return kvm->arch.kvm_ops->prepare_memory_region(kvm, memslot, mem);
}
void kvmppc_core_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
const struct kvm_memory_slot *old)
{
kvm->arch.kvm_ops->commit_memory_region(kvm, mem, old);
}
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
return kvm->arch.kvm_ops->unmap_hva(kvm, hva);
}
EXPORT_SYMBOL_GPL(kvm_unmap_hva);
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
return kvm->arch.kvm_ops->unmap_hva_range(kvm, start, end);
}
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
return kvm->arch.kvm_ops->age_hva(kvm, hva);
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
return kvm->arch.kvm_ops->test_age_hva(kvm, hva);
}
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
kvm->arch.kvm_ops->set_spte_hva(kvm, hva, pte);
}
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->mmu_destroy(vcpu);
}
int kvmppc_core_init_vm(struct kvm *kvm)
{
#ifdef CONFIG_PPC64
INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
#endif
return kvm->arch.kvm_ops->init_vm(kvm);
}
void kvmppc_core_destroy_vm(struct kvm *kvm)
{
kvm->arch.kvm_ops->destroy_vm(kvm);
#ifdef CONFIG_PPC64
kvmppc_rtas_tokens_free(kvm);
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
}
int kvmppc_core_check_processor_compat(void)
{
/*
* We always return 0 for book3s. We check
* for compatability while loading the HV
* or PR module
*/
return 0;
}
static int kvmppc_book3s_init(void)
{
int r;
r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
if (r)
return r;
#ifdef CONFIG_KVM_BOOK3S_32
r = kvmppc_book3s_init_pr();
#endif
return r;
}
static void kvmppc_book3s_exit(void)
{
#ifdef CONFIG_KVM_BOOK3S_32
kvmppc_book3s_exit_pr();
#endif
kvm_exit();
}
module_init(kvmppc_book3s_init);
module_exit(kvmppc_book3s_exit);
/* On 32bit this is our one and only kernel module */
#ifdef CONFIG_KVM_BOOK3S_32
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
#endif