linux/arch/arm64/mm/fault.c
Laura Abbott 9adeb8e72d arm64: Handle el1 synchronous instruction aborts cleanly
Executing from a non-executable area gives an ugly message:

lkdtm: Performing direct entry EXEC_RODATA
lkdtm: attempting ok execution at ffff0000084c0e08
lkdtm: attempting bad execution at ffff000008880700
Bad mode in Synchronous Abort handler detected on CPU2, code 0x8400000e -- IABT (current EL)
CPU: 2 PID: 998 Comm: sh Not tainted 4.7.0-rc2+ #13
Hardware name: linux,dummy-virt (DT)
task: ffff800077e35780 ti: ffff800077970000 task.ti: ffff800077970000
PC is at lkdtm_rodata_do_nothing+0x0/0x8
LR is at execute_location+0x74/0x88

The 'IABT (current EL)' indicates the error but it's a bit cryptic
without knowledge of the ARM ARM. There is also no indication of the
specific address which triggered the fault. The increase in kernel
page permissions makes hitting this case more likely as well.
Handling the case in the vectors gives a much more familiar looking
error message:

lkdtm: Performing direct entry EXEC_RODATA
lkdtm: attempting ok execution at ffff0000084c0840
lkdtm: attempting bad execution at ffff000008880680
Unable to handle kernel paging request at virtual address ffff000008880680
pgd = ffff8000089b2000
[ffff000008880680] *pgd=00000000489b4003, *pud=0000000048904003, *pmd=0000000000000000
Internal error: Oops: 8400000e [#1] PREEMPT SMP
Modules linked in:
CPU: 1 PID: 997 Comm: sh Not tainted 4.7.0-rc1+ #24
Hardware name: linux,dummy-virt (DT)
task: ffff800077f9f080 ti: ffff800008a1c000 task.ti: ffff800008a1c000
PC is at lkdtm_rodata_do_nothing+0x0/0x8
LR is at execute_location+0x74/0x88

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-08-12 17:58:48 +01:00

692 lines
20 KiB
C

/*
* Based on arch/arm/mm/fault.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1995-2004 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/perf_event.h>
#include <asm/cpufeature.h>
#include <asm/exception.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/sysreg.h>
#include <asm/system_misc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
static const char *fault_name(unsigned int esr);
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
int ret = 0;
/* kprobe_running() needs smp_processor_id() */
if (!user_mode(regs)) {
preempt_disable();
if (kprobe_running() && kprobe_fault_handler(regs, esr))
ret = 1;
preempt_enable();
}
return ret;
}
#else
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
return 0;
}
#endif
/*
* Dump out the page tables associated with 'addr' in mm 'mm'.
*/
void show_pte(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
if (!mm)
mm = &init_mm;
pr_alert("pgd = %p\n", mm->pgd);
pgd = pgd_offset(mm, addr);
pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
do {
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (pgd_none(*pgd) || pgd_bad(*pgd))
break;
pud = pud_offset(pgd, addr);
printk(", *pud=%016llx", pud_val(*pud));
if (pud_none(*pud) || pud_bad(*pud))
break;
pmd = pmd_offset(pud, addr);
printk(", *pmd=%016llx", pmd_val(*pmd));
if (pmd_none(*pmd) || pmd_bad(*pmd))
break;
pte = pte_offset_map(pmd, addr);
printk(", *pte=%016llx", pte_val(*pte));
pte_unmap(pte);
} while(0);
printk("\n");
}
#ifdef CONFIG_ARM64_HW_AFDBM
/*
* This function sets the access flags (dirty, accessed), as well as write
* permission, and only to a more permissive setting.
*
* It needs to cope with hardware update of the accessed/dirty state by other
* agents in the system and can safely skip the __sync_icache_dcache() call as,
* like set_pte_at(), the PTE is never changed from no-exec to exec here.
*
* Returns whether or not the PTE actually changed.
*/
int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty)
{
pteval_t old_pteval;
unsigned int tmp;
if (pte_same(*ptep, entry))
return 0;
/* only preserve the access flags and write permission */
pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;
/*
* PTE_RDONLY is cleared by default in the asm below, so set it in
* back if necessary (read-only or clean PTE).
*/
if (!pte_write(entry) || !pte_sw_dirty(entry))
pte_val(entry) |= PTE_RDONLY;
/*
* Setting the flags must be done atomically to avoid racing with the
* hardware update of the access/dirty state.
*/
asm volatile("// ptep_set_access_flags\n"
" prfm pstl1strm, %2\n"
"1: ldxr %0, %2\n"
" and %0, %0, %3 // clear PTE_RDONLY\n"
" orr %0, %0, %4 // set flags\n"
" stxr %w1, %0, %2\n"
" cbnz %w1, 1b\n"
: "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
: "L" (~PTE_RDONLY), "r" (pte_val(entry)));
flush_tlb_fix_spurious_fault(vma, address);
return 1;
}
#endif
static bool is_el1_instruction_abort(unsigned int esr)
{
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}
/*
* The kernel tried to access some page that wasn't present.
*/
static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
unsigned int esr, struct pt_regs *regs)
{
/*
* Are we prepared to handle this kernel fault?
* We are almost certainly not prepared to handle instruction faults.
*/
if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
return;
/*
* No handler, we'll have to terminate things with extreme prejudice.
*/
bust_spinlocks(1);
pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
(addr < PAGE_SIZE) ? "NULL pointer dereference" :
"paging request", addr);
show_pte(mm, addr);
die("Oops", regs, esr);
bust_spinlocks(0);
do_exit(SIGKILL);
}
/*
* Something tried to access memory that isn't in our memory map. User mode
* accesses just cause a SIGSEGV
*/
static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
unsigned int esr, unsigned int sig, int code,
struct pt_regs *regs)
{
struct siginfo si;
if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n",
tsk->comm, task_pid_nr(tsk), fault_name(esr), sig,
addr, esr);
show_pte(tsk->mm, addr);
show_regs(regs);
}
tsk->thread.fault_address = addr;
tsk->thread.fault_code = esr;
si.si_signo = sig;
si.si_errno = 0;
si.si_code = code;
si.si_addr = (void __user *)addr;
force_sig_info(sig, &si, tsk);
}
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->active_mm;
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
*/
if (user_mode(regs))
__do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
else
__do_kernel_fault(mm, addr, esr, regs);
}
#define VM_FAULT_BADMAP 0x010000
#define VM_FAULT_BADACCESS 0x020000
static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
unsigned int mm_flags, unsigned long vm_flags,
struct task_struct *tsk)
{
struct vm_area_struct *vma;
int fault;
vma = find_vma(mm, addr);
fault = VM_FAULT_BADMAP;
if (unlikely(!vma))
goto out;
if (unlikely(vma->vm_start > addr))
goto check_stack;
/*
* Ok, we have a good vm_area for this memory access, so we can handle
* it.
*/
good_area:
/*
* Check that the permissions on the VMA allow for the fault which
* occurred. If we encountered a write or exec fault, we must have
* appropriate permissions, otherwise we allow any permission.
*/
if (!(vma->vm_flags & vm_flags)) {
fault = VM_FAULT_BADACCESS;
goto out;
}
return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
check_stack:
if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
goto good_area;
out:
return fault;
}
static inline bool is_permission_fault(unsigned int esr)
{
unsigned int ec = ESR_ELx_EC(esr);
unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
return (ec == ESR_ELx_EC_DABT_CUR && fsc_type == ESR_ELx_FSC_PERM) ||
(ec == ESR_ELx_EC_IABT_CUR && fsc_type == ESR_ELx_FSC_PERM);
}
static bool is_el0_instruction_abort(unsigned int esr)
{
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
struct task_struct *tsk;
struct mm_struct *mm;
int fault, sig, code;
unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
if (notify_page_fault(regs, esr))
return 0;
tsk = current;
mm = tsk->mm;
/*
* If we're in an interrupt or have no user context, we must not take
* the fault.
*/
if (faulthandler_disabled() || !mm)
goto no_context;
if (user_mode(regs))
mm_flags |= FAULT_FLAG_USER;
if (is_el0_instruction_abort(esr)) {
vm_flags = VM_EXEC;
} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
vm_flags = VM_WRITE;
mm_flags |= FAULT_FLAG_WRITE;
}
if (is_permission_fault(esr) && (addr < USER_DS)) {
/* regs->orig_addr_limit may be 0 if we entered from EL0 */
if (regs->orig_addr_limit == KERNEL_DS)
die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
if (is_el1_instruction_abort(esr))
die("Attempting to execute userspace memory", regs, esr);
if (!search_exception_tables(regs->pc))
die("Accessing user space memory outside uaccess.h routines", regs, esr);
}
/*
* As per x86, we may deadlock here. However, since the kernel only
* validly references user space from well defined areas of the code,
* we can bug out early if this is from code which shouldn't.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if (!user_mode(regs) && !search_exception_tables(regs->pc))
goto no_context;
retry:
down_read(&mm->mmap_sem);
} else {
/*
* The above down_read_trylock() might have succeeded in which
* case, we'll have missed the might_sleep() from down_read().
*/
might_sleep();
#ifdef CONFIG_DEBUG_VM
if (!user_mode(regs) && !search_exception_tables(regs->pc))
goto no_context;
#endif
}
fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
/*
* If we need to retry but a fatal signal is pending, handle the
* signal first. We do not need to release the mmap_sem because it
* would already be released in __lock_page_or_retry in mm/filemap.c.
*/
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
return 0;
/*
* Major/minor page fault accounting is only done on the initial
* attempt. If we go through a retry, it is extremely likely that the
* page will be found in page cache at that point.
*/
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
if (fault & VM_FAULT_MAJOR) {
tsk->maj_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
addr);
} else {
tsk->min_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
addr);
}
if (fault & VM_FAULT_RETRY) {
/*
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
* starvation.
*/
mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
mm_flags |= FAULT_FLAG_TRIED;
goto retry;
}
}
up_read(&mm->mmap_sem);
/*
* Handle the "normal" case first - VM_FAULT_MAJOR
*/
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
VM_FAULT_BADACCESS))))
return 0;
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
*/
if (!user_mode(regs))
goto no_context;
if (fault & VM_FAULT_OOM) {
/*
* We ran out of memory, call the OOM killer, and return to
* userspace (which will retry the fault, or kill us if we got
* oom-killed).
*/
pagefault_out_of_memory();
return 0;
}
if (fault & VM_FAULT_SIGBUS) {
/*
* We had some memory, but were unable to successfully fix up
* this page fault.
*/
sig = SIGBUS;
code = BUS_ADRERR;
} else {
/*
* Something tried to access memory that isn't in our memory
* map.
*/
sig = SIGSEGV;
code = fault == VM_FAULT_BADACCESS ?
SEGV_ACCERR : SEGV_MAPERR;
}
__do_user_fault(tsk, addr, esr, sig, code, regs);
return 0;
no_context:
__do_kernel_fault(mm, addr, esr, regs);
return 0;
}
/*
* First Level Translation Fault Handler
*
* We enter here because the first level page table doesn't contain a valid
* entry for the address.
*
* If the address is in kernel space (>= TASK_SIZE), then we are probably
* faulting in the vmalloc() area.
*
* If the init_task's first level page tables contains the relevant entry, we
* copy the it to this task. If not, we send the process a signal, fixup the
* exception, or oops the kernel.
*
* NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
* or a critical region, and should only copy the information from the master
* page table, nothing more.
*/
static int __kprobes do_translation_fault(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
if (addr < TASK_SIZE)
return do_page_fault(addr, esr, regs);
do_bad_area(addr, esr, regs);
return 0;
}
static int do_alignment_fault(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
do_bad_area(addr, esr, regs);
return 0;
}
/*
* This abort handler always returns "fault".
*/
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
return 1;
}
static const struct fault_info {
int (*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
int sig;
int code;
const char *name;
} fault_info[] = {
{ do_bad, SIGBUS, 0, "ttbr address size fault" },
{ do_bad, SIGBUS, 0, "level 1 address size fault" },
{ do_bad, SIGBUS, 0, "level 2 address size fault" },
{ do_bad, SIGBUS, 0, "level 3 address size fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
{ do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
{ do_bad, SIGBUS, 0, "unknown 8" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
{ do_bad, SIGBUS, 0, "unknown 12" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
{ do_bad, SIGBUS, 0, "synchronous external abort" },
{ do_bad, SIGBUS, 0, "unknown 17" },
{ do_bad, SIGBUS, 0, "unknown 18" },
{ do_bad, SIGBUS, 0, "unknown 19" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous parity error" },
{ do_bad, SIGBUS, 0, "unknown 25" },
{ do_bad, SIGBUS, 0, "unknown 26" },
{ do_bad, SIGBUS, 0, "unknown 27" },
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
{ do_bad, SIGBUS, 0, "unknown 32" },
{ do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
{ do_bad, SIGBUS, 0, "unknown 34" },
{ do_bad, SIGBUS, 0, "unknown 35" },
{ do_bad, SIGBUS, 0, "unknown 36" },
{ do_bad, SIGBUS, 0, "unknown 37" },
{ do_bad, SIGBUS, 0, "unknown 38" },
{ do_bad, SIGBUS, 0, "unknown 39" },
{ do_bad, SIGBUS, 0, "unknown 40" },
{ do_bad, SIGBUS, 0, "unknown 41" },
{ do_bad, SIGBUS, 0, "unknown 42" },
{ do_bad, SIGBUS, 0, "unknown 43" },
{ do_bad, SIGBUS, 0, "unknown 44" },
{ do_bad, SIGBUS, 0, "unknown 45" },
{ do_bad, SIGBUS, 0, "unknown 46" },
{ do_bad, SIGBUS, 0, "unknown 47" },
{ do_bad, SIGBUS, 0, "TLB conflict abort" },
{ do_bad, SIGBUS, 0, "unknown 49" },
{ do_bad, SIGBUS, 0, "unknown 50" },
{ do_bad, SIGBUS, 0, "unknown 51" },
{ do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
{ do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" },
{ do_bad, SIGBUS, 0, "unknown 54" },
{ do_bad, SIGBUS, 0, "unknown 55" },
{ do_bad, SIGBUS, 0, "unknown 56" },
{ do_bad, SIGBUS, 0, "unknown 57" },
{ do_bad, SIGBUS, 0, "unknown 58" },
{ do_bad, SIGBUS, 0, "unknown 59" },
{ do_bad, SIGBUS, 0, "unknown 60" },
{ do_bad, SIGBUS, 0, "section domain fault" },
{ do_bad, SIGBUS, 0, "page domain fault" },
{ do_bad, SIGBUS, 0, "unknown 63" },
};
static const char *fault_name(unsigned int esr)
{
const struct fault_info *inf = fault_info + (esr & 63);
return inf->name;
}
/*
* Dispatch a data abort to the relevant handler.
*/
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
const struct fault_info *inf = fault_info + (esr & 63);
struct siginfo info;
if (!inf->fn(addr, esr, regs))
return;
pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
inf->name, esr, addr);
info.si_signo = inf->sig;
info.si_errno = 0;
info.si_code = inf->code;
info.si_addr = (void __user *)addr;
arm64_notify_die("", regs, &info, esr);
}
/*
* Handle stack alignment exceptions.
*/
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
struct siginfo info;
struct task_struct *tsk = current;
if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
tsk->comm, task_pid_nr(tsk),
esr_get_class_string(esr), (void *)regs->pc,
(void *)regs->sp);
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRALN;
info.si_addr = (void __user *)addr;
arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
}
int __init early_brk64(unsigned long addr, unsigned int esr,
struct pt_regs *regs);
/*
* __refdata because early_brk64 is __init, but the reference to it is
* clobbered at arch_initcall time.
* See traps.c and debug-monitors.c:debug_traps_init().
*/
static struct fault_info __refdata debug_fault_info[] = {
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
{ do_bad, SIGBUS, 0, "unknown 3" },
{ do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
{ do_bad, SIGTRAP, 0, "aarch32 vector catch" },
{ early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
{ do_bad, SIGBUS, 0, "unknown 7" },
};
void __init hook_debug_fault_code(int nr,
int (*fn)(unsigned long, unsigned int, struct pt_regs *),
int sig, int code, const char *name)
{
BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
debug_fault_info[nr].fn = fn;
debug_fault_info[nr].sig = sig;
debug_fault_info[nr].code = code;
debug_fault_info[nr].name = name;
}
asmlinkage int __exception do_debug_exception(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
struct siginfo info;
int rv;
/*
* Tell lockdep we disabled irqs in entry.S. Do nothing if they were
* already disabled to preserve the last enabled/disabled addresses.
*/
if (interrupts_enabled(regs))
trace_hardirqs_off();
if (!inf->fn(addr, esr, regs)) {
rv = 1;
} else {
pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
inf->name, esr, addr);
info.si_signo = inf->sig;
info.si_errno = 0;
info.si_code = inf->code;
info.si_addr = (void __user *)addr;
arm64_notify_die("", regs, &info, 0);
rv = 0;
}
if (interrupts_enabled(regs))
trace_hardirqs_on();
return rv;
}
NOKPROBE_SYMBOL(do_debug_exception);
#ifdef CONFIG_ARM64_PAN
void cpu_enable_pan(void *__unused)
{
config_sctlr_el1(SCTLR_EL1_SPAN, 0);
}
#endif /* CONFIG_ARM64_PAN */
#ifdef CONFIG_ARM64_UAO
/*
* Kernel threads have fs=KERNEL_DS by default, and don't need to call
* set_fs(), devtmpfs in particular relies on this behaviour.
* We need to enable the feature at runtime (instead of adding it to
* PSR_MODE_EL1h) as the feature may not be implemented by the cpu.
*/
void cpu_enable_uao(void *__unused)
{
asm(SET_PSTATE_UAO(1));
}
#endif /* CONFIG_ARM64_UAO */