linux/drivers/accel/ivpu/ivpu_gem.c
Linus Torvalds 3822a7c409 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X bit.
 
 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.
 
 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes
 
 - Johannes Weiner has a series ("mm: push down lock_page_memcg()") which
   does perform some memcg maintenance and cleanup work.
 
 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".  These filters provide users
   with finer-grained control over DAMOS's actions.  SeongJae has also done
   some DAMON cleanup work.
 
 - Kairui Song adds a series ("Clean up and fixes for swap").
 
 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".
 
 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series.  It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.
 
 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".
 
 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".
 
 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".
 
 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".
 
 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series "mm:
   support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap
   PTEs".
 
 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".
 
 - Sergey Senozhatsky has improved zsmalloc's memory utilization with his
   series "zsmalloc: make zspage chain size configurable".
 
 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.  The previous BPF-based approach had
   shortcomings.  See "mm: In-kernel support for memory-deny-write-execute
   (MDWE)".
 
 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
 
 - T.J.  Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".
 
 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a per-node
   basis.  See the series "Introduce per NUMA node memory error
   statistics".
 
 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage during
   compaction".
 
 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".
 
 - Christoph Hellwig has removed block_device_operations.rw_page() in ths
   series "remove ->rw_page".
 
 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".
 
 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier functions".
 
 - Some pagemap cleanup and generalization work in Mike Rapoport's series
   "mm, arch: add generic implementation of pfn_valid() for FLATMEM" and
   "fixups for generic implementation of pfn_valid()"
 
 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
 
 - Jason Gunthorpe rationalized the GUP system's interface to the rest of
   the kernel in the series "Simplify the external interface for GUP".
 
 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface.  To support this, we'll temporarily be
   printing warnings when people use the debugfs interface.  See the series
   "mm/damon: deprecate DAMON debugfs interface".
 
 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.
 
 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".
 
 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY/PoPQAKCRDdBJ7gKXxA
 jlvpAPsFECUBBl20qSue2zCYWnHC7Yk4q9ytTkPB/MMDrFEN9wD/SNKEm2UoK6/K
 DmxHkn0LAitGgJRS/W9w81yrgig9tAQ=
 =MlGs
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
   F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X
   bit.

 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.

 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes

 - Johannes Weiner has a series ("mm: push down lock_page_memcg()")
   which does perform some memcg maintenance and cleanup work.

 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".

   These filters provide users with finer-grained control over DAMOS's
   actions. SeongJae has also done some DAMON cleanup work.

 - Kairui Song adds a series ("Clean up and fixes for swap").

 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".

 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.

 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".

 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".

 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".

 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".

 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series
   "mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
   swap PTEs".

 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".

 - Sergey Senozhatsky has improved zsmalloc's memory utilization with
   his series "zsmalloc: make zspage chain size configurable".

 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.

   The previous BPF-based approach had shortcomings. See "mm: In-kernel
   support for memory-deny-write-execute (MDWE)".

 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".

 - T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".

 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a
   per-node basis. See the series "Introduce per NUMA node memory error
   statistics".

 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage
   during compaction".

 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".

 - Christoph Hellwig has removed block_device_operations.rw_page() in
   ths series "remove ->rw_page".

 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".

 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier
   functions".

 - Some pagemap cleanup and generalization work in Mike Rapoport's
   series "mm, arch: add generic implementation of pfn_valid() for
   FLATMEM" and "fixups for generic implementation of pfn_valid()"

 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".

 - Jason Gunthorpe rationalized the GUP system's interface to the rest
   of the kernel in the series "Simplify the external interface for
   GUP".

 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface. To support this, we'll temporarily be
   printing warnings when people use the debugfs interface. See the
   series "mm/damon: deprecate DAMON debugfs interface".

 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.

 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".

 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".

* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
  include/linux/migrate.h: remove unneeded externs
  mm/memory_hotplug: cleanup return value handing in do_migrate_range()
  mm/uffd: fix comment in handling pte markers
  mm: change to return bool for isolate_movable_page()
  mm: hugetlb: change to return bool for isolate_hugetlb()
  mm: change to return bool for isolate_lru_page()
  mm: change to return bool for folio_isolate_lru()
  objtool: add UACCESS exceptions for __tsan_volatile_read/write
  kmsan: disable ftrace in kmsan core code
  kasan: mark addr_has_metadata __always_inline
  mm: memcontrol: rename memcg_kmem_enabled()
  sh: initialize max_mapnr
  m68k/nommu: add missing definition of ARCH_PFN_OFFSET
  mm: percpu: fix incorrect size in pcpu_obj_full_size()
  maple_tree: reduce stack usage with gcc-9 and earlier
  mm: page_alloc: call panic() when memoryless node allocation fails
  mm: multi-gen LRU: avoid futile retries
  migrate_pages: move THP/hugetlb migration support check to simplify code
  migrate_pages: batch flushing TLB
  migrate_pages: share more code between _unmap and _move
  ...
2023-02-23 17:09:35 -08:00

750 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020-2023 Intel Corporation
*/
#include <linux/dma-buf.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/set_memory.h>
#include <linux/xarray.h>
#include <drm/drm_cache.h>
#include <drm/drm_debugfs.h>
#include <drm/drm_file.h>
#include <drm/drm_utils.h>
#include "ivpu_drv.h"
#include "ivpu_gem.h"
#include "ivpu_hw.h"
#include "ivpu_mmu.h"
#include "ivpu_mmu_context.h"
MODULE_IMPORT_NS(DMA_BUF);
static const struct drm_gem_object_funcs ivpu_gem_funcs;
static struct lock_class_key prime_bo_lock_class_key;
static int __must_check prime_alloc_pages_locked(struct ivpu_bo *bo)
{
/* Pages are managed by the underlying dma-buf */
return 0;
}
static void prime_free_pages_locked(struct ivpu_bo *bo)
{
/* Pages are managed by the underlying dma-buf */
}
static int prime_map_pages_locked(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
struct sg_table *sgt;
sgt = dma_buf_map_attachment_unlocked(bo->base.import_attach, DMA_BIDIRECTIONAL);
if (IS_ERR(sgt)) {
ivpu_err(vdev, "Failed to map attachment: %ld\n", PTR_ERR(sgt));
return PTR_ERR(sgt);
}
bo->sgt = sgt;
return 0;
}
static void prime_unmap_pages_locked(struct ivpu_bo *bo)
{
dma_buf_unmap_attachment_unlocked(bo->base.import_attach, bo->sgt, DMA_BIDIRECTIONAL);
bo->sgt = NULL;
}
static const struct ivpu_bo_ops prime_ops = {
.type = IVPU_BO_TYPE_PRIME,
.name = "prime",
.alloc_pages = prime_alloc_pages_locked,
.free_pages = prime_free_pages_locked,
.map_pages = prime_map_pages_locked,
.unmap_pages = prime_unmap_pages_locked,
};
static int __must_check shmem_alloc_pages_locked(struct ivpu_bo *bo)
{
int npages = bo->base.size >> PAGE_SHIFT;
struct page **pages;
pages = drm_gem_get_pages(&bo->base);
if (IS_ERR(pages))
return PTR_ERR(pages);
if (bo->flags & DRM_IVPU_BO_WC)
set_pages_array_wc(pages, npages);
else if (bo->flags & DRM_IVPU_BO_UNCACHED)
set_pages_array_uc(pages, npages);
bo->pages = pages;
return 0;
}
static void shmem_free_pages_locked(struct ivpu_bo *bo)
{
if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED)
set_pages_array_wb(bo->pages, bo->base.size >> PAGE_SHIFT);
drm_gem_put_pages(&bo->base, bo->pages, true, false);
bo->pages = NULL;
}
static int ivpu_bo_map_pages_locked(struct ivpu_bo *bo)
{
int npages = bo->base.size >> PAGE_SHIFT;
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
struct sg_table *sgt;
int ret;
sgt = drm_prime_pages_to_sg(&vdev->drm, bo->pages, npages);
if (IS_ERR(sgt)) {
ivpu_err(vdev, "Failed to allocate sgtable\n");
return PTR_ERR(sgt);
}
ret = dma_map_sgtable(vdev->drm.dev, sgt, DMA_BIDIRECTIONAL, 0);
if (ret) {
ivpu_err(vdev, "Failed to map BO in IOMMU: %d\n", ret);
goto err_free_sgt;
}
bo->sgt = sgt;
return 0;
err_free_sgt:
kfree(sgt);
return ret;
}
static void ivpu_bo_unmap_pages_locked(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
dma_unmap_sgtable(vdev->drm.dev, bo->sgt, DMA_BIDIRECTIONAL, 0);
sg_free_table(bo->sgt);
kfree(bo->sgt);
bo->sgt = NULL;
}
static const struct ivpu_bo_ops shmem_ops = {
.type = IVPU_BO_TYPE_SHMEM,
.name = "shmem",
.alloc_pages = shmem_alloc_pages_locked,
.free_pages = shmem_free_pages_locked,
.map_pages = ivpu_bo_map_pages_locked,
.unmap_pages = ivpu_bo_unmap_pages_locked,
};
static int __must_check internal_alloc_pages_locked(struct ivpu_bo *bo)
{
unsigned int i, npages = bo->base.size >> PAGE_SHIFT;
struct page **pages;
int ret;
pages = kvmalloc_array(npages, sizeof(*bo->pages), GFP_KERNEL);
if (!pages)
return -ENOMEM;
for (i = 0; i < npages; i++) {
pages[i] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
if (!pages[i]) {
ret = -ENOMEM;
goto err_free_pages;
}
cond_resched();
}
bo->pages = pages;
return 0;
err_free_pages:
while (i--)
put_page(pages[i]);
kvfree(pages);
return ret;
}
static void internal_free_pages_locked(struct ivpu_bo *bo)
{
unsigned int i, npages = bo->base.size >> PAGE_SHIFT;
for (i = 0; i < npages; i++)
put_page(bo->pages[i]);
kvfree(bo->pages);
bo->pages = NULL;
}
static const struct ivpu_bo_ops internal_ops = {
.type = IVPU_BO_TYPE_INTERNAL,
.name = "internal",
.alloc_pages = internal_alloc_pages_locked,
.free_pages = internal_free_pages_locked,
.map_pages = ivpu_bo_map_pages_locked,
.unmap_pages = ivpu_bo_unmap_pages_locked,
};
static int __must_check ivpu_bo_alloc_and_map_pages_locked(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
int ret;
lockdep_assert_held(&bo->lock);
drm_WARN_ON(&vdev->drm, bo->sgt);
ret = bo->ops->alloc_pages(bo);
if (ret) {
ivpu_err(vdev, "Failed to allocate pages for BO: %d", ret);
return ret;
}
ret = bo->ops->map_pages(bo);
if (ret) {
ivpu_err(vdev, "Failed to map pages for BO: %d", ret);
goto err_free_pages;
}
return ret;
err_free_pages:
bo->ops->free_pages(bo);
return ret;
}
static void ivpu_bo_unmap_and_free_pages(struct ivpu_bo *bo)
{
mutex_lock(&bo->lock);
WARN_ON(!bo->sgt);
bo->ops->unmap_pages(bo);
WARN_ON(bo->sgt);
bo->ops->free_pages(bo);
WARN_ON(bo->pages);
mutex_unlock(&bo->lock);
}
/*
* ivpu_bo_pin() - pin the backing physical pages and map them to VPU.
*
* This function pins physical memory pages, then maps the physical pages
* to IOMMU address space and finally updates the VPU MMU page tables
* to allow the VPU to translate VPU address to IOMMU address.
*/
int __must_check ivpu_bo_pin(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
int ret = 0;
mutex_lock(&bo->lock);
if (!bo->vpu_addr) {
ivpu_err(vdev, "vpu_addr not set for BO ctx_id: %d handle: %d\n",
bo->ctx->id, bo->handle);
ret = -EINVAL;
goto unlock;
}
if (!bo->sgt) {
ret = ivpu_bo_alloc_and_map_pages_locked(bo);
if (ret)
goto unlock;
}
if (!bo->mmu_mapped) {
ret = ivpu_mmu_context_map_sgt(vdev, bo->ctx, bo->vpu_addr, bo->sgt,
ivpu_bo_is_snooped(bo));
if (ret) {
ivpu_err(vdev, "Failed to map BO in MMU: %d\n", ret);
goto unlock;
}
bo->mmu_mapped = true;
}
unlock:
mutex_unlock(&bo->lock);
return ret;
}
static int
ivpu_bo_alloc_vpu_addr(struct ivpu_bo *bo, struct ivpu_mmu_context *ctx,
const struct ivpu_addr_range *range)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
int ret;
if (!range) {
if (bo->flags & DRM_IVPU_BO_HIGH_MEM)
range = &vdev->hw->ranges.user_high;
else
range = &vdev->hw->ranges.user_low;
}
mutex_lock(&ctx->lock);
ret = ivpu_mmu_context_insert_node_locked(ctx, range, bo->base.size, &bo->mm_node);
if (!ret) {
bo->ctx = ctx;
bo->vpu_addr = bo->mm_node.start;
list_add_tail(&bo->ctx_node, &ctx->bo_list);
}
mutex_unlock(&ctx->lock);
return ret;
}
static void ivpu_bo_free_vpu_addr(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
struct ivpu_mmu_context *ctx = bo->ctx;
ivpu_dbg(vdev, BO, "remove from ctx: ctx %d vpu_addr 0x%llx allocated %d mmu_mapped %d\n",
ctx->id, bo->vpu_addr, (bool)bo->sgt, bo->mmu_mapped);
mutex_lock(&bo->lock);
if (bo->mmu_mapped) {
drm_WARN_ON(&vdev->drm, !bo->sgt);
ivpu_mmu_context_unmap_sgt(vdev, ctx, bo->vpu_addr, bo->sgt);
bo->mmu_mapped = false;
}
mutex_lock(&ctx->lock);
list_del(&bo->ctx_node);
bo->vpu_addr = 0;
bo->ctx = NULL;
ivpu_mmu_context_remove_node_locked(ctx, &bo->mm_node);
mutex_unlock(&ctx->lock);
mutex_unlock(&bo->lock);
}
void ivpu_bo_remove_all_bos_from_context(struct ivpu_mmu_context *ctx)
{
struct ivpu_bo *bo, *tmp;
list_for_each_entry_safe(bo, tmp, &ctx->bo_list, ctx_node)
ivpu_bo_free_vpu_addr(bo);
}
static struct ivpu_bo *
ivpu_bo_alloc(struct ivpu_device *vdev, struct ivpu_mmu_context *mmu_context,
u64 size, u32 flags, const struct ivpu_bo_ops *ops,
const struct ivpu_addr_range *range, u64 user_ptr)
{
struct ivpu_bo *bo;
int ret = 0;
if (drm_WARN_ON(&vdev->drm, size == 0 || !PAGE_ALIGNED(size)))
return ERR_PTR(-EINVAL);
switch (flags & DRM_IVPU_BO_CACHE_MASK) {
case DRM_IVPU_BO_CACHED:
case DRM_IVPU_BO_UNCACHED:
case DRM_IVPU_BO_WC:
break;
default:
return ERR_PTR(-EINVAL);
}
bo = kzalloc(sizeof(*bo), GFP_KERNEL);
if (!bo)
return ERR_PTR(-ENOMEM);
mutex_init(&bo->lock);
bo->base.funcs = &ivpu_gem_funcs;
bo->flags = flags;
bo->ops = ops;
bo->user_ptr = user_ptr;
if (ops->type == IVPU_BO_TYPE_SHMEM)
ret = drm_gem_object_init(&vdev->drm, &bo->base, size);
else
drm_gem_private_object_init(&vdev->drm, &bo->base, size);
if (ret) {
ivpu_err(vdev, "Failed to initialize drm object\n");
goto err_free;
}
if (flags & DRM_IVPU_BO_MAPPABLE) {
ret = drm_gem_create_mmap_offset(&bo->base);
if (ret) {
ivpu_err(vdev, "Failed to allocate mmap offset\n");
goto err_release;
}
}
if (mmu_context) {
ret = ivpu_bo_alloc_vpu_addr(bo, mmu_context, range);
if (ret) {
ivpu_err(vdev, "Failed to add BO to context: %d\n", ret);
goto err_release;
}
}
return bo;
err_release:
drm_gem_object_release(&bo->base);
err_free:
kfree(bo);
return ERR_PTR(ret);
}
static void ivpu_bo_free(struct drm_gem_object *obj)
{
struct ivpu_bo *bo = to_ivpu_bo(obj);
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
if (bo->ctx)
ivpu_dbg(vdev, BO, "free: ctx %d vpu_addr 0x%llx allocated %d mmu_mapped %d\n",
bo->ctx->id, bo->vpu_addr, (bool)bo->sgt, bo->mmu_mapped);
else
ivpu_dbg(vdev, BO, "free: ctx (released) allocated %d mmu_mapped %d\n",
(bool)bo->sgt, bo->mmu_mapped);
drm_WARN_ON(&vdev->drm, !dma_resv_test_signaled(obj->resv, DMA_RESV_USAGE_READ));
vunmap(bo->kvaddr);
if (bo->ctx)
ivpu_bo_free_vpu_addr(bo);
if (bo->sgt)
ivpu_bo_unmap_and_free_pages(bo);
if (bo->base.import_attach)
drm_prime_gem_destroy(&bo->base, bo->sgt);
drm_gem_object_release(&bo->base);
mutex_destroy(&bo->lock);
kfree(bo);
}
static int ivpu_bo_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
{
struct ivpu_bo *bo = to_ivpu_bo(obj);
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
ivpu_dbg(vdev, BO, "mmap: ctx %u handle %u vpu_addr 0x%llx size %zu type %s",
bo->ctx->id, bo->handle, bo->vpu_addr, bo->base.size, bo->ops->name);
if (obj->import_attach) {
/* Drop the reference drm_gem_mmap_obj() acquired.*/
drm_gem_object_put(obj);
vma->vm_private_data = NULL;
return dma_buf_mmap(obj->dma_buf, vma, 0);
}
vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND);
vma->vm_page_prot = ivpu_bo_pgprot(bo, vm_get_page_prot(vma->vm_flags));
return 0;
}
static struct sg_table *ivpu_bo_get_sg_table(struct drm_gem_object *obj)
{
struct ivpu_bo *bo = to_ivpu_bo(obj);
loff_t npages = obj->size >> PAGE_SHIFT;
int ret = 0;
mutex_lock(&bo->lock);
if (!bo->sgt)
ret = ivpu_bo_alloc_and_map_pages_locked(bo);
mutex_unlock(&bo->lock);
if (ret)
return ERR_PTR(ret);
return drm_prime_pages_to_sg(obj->dev, bo->pages, npages);
}
static vm_fault_t ivpu_vm_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct drm_gem_object *obj = vma->vm_private_data;
struct ivpu_bo *bo = to_ivpu_bo(obj);
loff_t npages = obj->size >> PAGE_SHIFT;
pgoff_t page_offset;
struct page *page;
vm_fault_t ret;
int err;
mutex_lock(&bo->lock);
if (!bo->sgt) {
err = ivpu_bo_alloc_and_map_pages_locked(bo);
if (err) {
ret = vmf_error(err);
goto unlock;
}
}
/* We don't use vmf->pgoff since that has the fake offset */
page_offset = (vmf->address - vma->vm_start) >> PAGE_SHIFT;
if (page_offset >= npages) {
ret = VM_FAULT_SIGBUS;
} else {
page = bo->pages[page_offset];
ret = vmf_insert_pfn(vma, vmf->address, page_to_pfn(page));
}
unlock:
mutex_unlock(&bo->lock);
return ret;
}
static const struct vm_operations_struct ivpu_vm_ops = {
.fault = ivpu_vm_fault,
.open = drm_gem_vm_open,
.close = drm_gem_vm_close,
};
static const struct drm_gem_object_funcs ivpu_gem_funcs = {
.free = ivpu_bo_free,
.mmap = ivpu_bo_mmap,
.vm_ops = &ivpu_vm_ops,
.get_sg_table = ivpu_bo_get_sg_table,
};
int
ivpu_bo_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct ivpu_file_priv *file_priv = file->driver_priv;
struct ivpu_device *vdev = file_priv->vdev;
struct drm_ivpu_bo_create *args = data;
u64 size = PAGE_ALIGN(args->size);
struct ivpu_bo *bo;
int ret;
if (args->flags & ~DRM_IVPU_BO_FLAGS)
return -EINVAL;
if (size == 0)
return -EINVAL;
bo = ivpu_bo_alloc(vdev, &file_priv->ctx, size, args->flags, &shmem_ops, NULL, 0);
if (IS_ERR(bo)) {
ivpu_err(vdev, "Failed to create BO: %pe (ctx %u size %llu flags 0x%x)",
bo, file_priv->ctx.id, args->size, args->flags);
return PTR_ERR(bo);
}
ret = drm_gem_handle_create(file, &bo->base, &bo->handle);
if (!ret) {
args->vpu_addr = bo->vpu_addr;
args->handle = bo->handle;
}
drm_gem_object_put(&bo->base);
ivpu_dbg(vdev, BO, "alloc shmem: ctx %u vpu_addr 0x%llx size %zu flags 0x%x\n",
file_priv->ctx.id, bo->vpu_addr, bo->base.size, bo->flags);
return ret;
}
struct ivpu_bo *
ivpu_bo_alloc_internal(struct ivpu_device *vdev, u64 vpu_addr, u64 size, u32 flags)
{
const struct ivpu_addr_range *range;
struct ivpu_addr_range fixed_range;
struct ivpu_bo *bo;
pgprot_t prot;
int ret;
drm_WARN_ON(&vdev->drm, !PAGE_ALIGNED(vpu_addr));
drm_WARN_ON(&vdev->drm, !PAGE_ALIGNED(size));
if (vpu_addr) {
fixed_range.start = vpu_addr;
fixed_range.end = vpu_addr + size;
range = &fixed_range;
} else {
range = &vdev->hw->ranges.global_low;
}
bo = ivpu_bo_alloc(vdev, &vdev->gctx, size, flags, &internal_ops, range, 0);
if (IS_ERR(bo)) {
ivpu_err(vdev, "Failed to create BO: %pe (vpu_addr 0x%llx size %llu flags 0x%x)",
bo, vpu_addr, size, flags);
return NULL;
}
ret = ivpu_bo_pin(bo);
if (ret)
goto err_put;
if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED)
drm_clflush_pages(bo->pages, bo->base.size >> PAGE_SHIFT);
prot = ivpu_bo_pgprot(bo, PAGE_KERNEL);
bo->kvaddr = vmap(bo->pages, bo->base.size >> PAGE_SHIFT, VM_MAP, prot);
if (!bo->kvaddr) {
ivpu_err(vdev, "Failed to map BO into kernel virtual memory\n");
goto err_put;
}
ivpu_dbg(vdev, BO, "alloc internal: ctx 0 vpu_addr 0x%llx size %zu flags 0x%x\n",
bo->vpu_addr, bo->base.size, flags);
return bo;
err_put:
drm_gem_object_put(&bo->base);
return NULL;
}
void ivpu_bo_free_internal(struct ivpu_bo *bo)
{
drm_gem_object_put(&bo->base);
}
struct drm_gem_object *ivpu_gem_prime_import(struct drm_device *dev, struct dma_buf *buf)
{
struct ivpu_device *vdev = to_ivpu_device(dev);
struct dma_buf_attachment *attach;
struct ivpu_bo *bo;
attach = dma_buf_attach(buf, dev->dev);
if (IS_ERR(attach))
return ERR_CAST(attach);
get_dma_buf(buf);
bo = ivpu_bo_alloc(vdev, NULL, buf->size, DRM_IVPU_BO_MAPPABLE, &prime_ops, NULL, 0);
if (IS_ERR(bo)) {
ivpu_err(vdev, "Failed to import BO: %pe (size %lu)", bo, buf->size);
goto err_detach;
}
lockdep_set_class(&bo->lock, &prime_bo_lock_class_key);
bo->base.import_attach = attach;
return &bo->base;
err_detach:
dma_buf_detach(buf, attach);
dma_buf_put(buf);
return ERR_CAST(bo);
}
int ivpu_bo_info_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct ivpu_file_priv *file_priv = file->driver_priv;
struct ivpu_device *vdev = to_ivpu_device(dev);
struct drm_ivpu_bo_info *args = data;
struct drm_gem_object *obj;
struct ivpu_bo *bo;
int ret = 0;
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
bo = to_ivpu_bo(obj);
mutex_lock(&bo->lock);
if (!bo->ctx) {
ret = ivpu_bo_alloc_vpu_addr(bo, &file_priv->ctx, NULL);
if (ret) {
ivpu_err(vdev, "Failed to allocate vpu_addr: %d\n", ret);
goto unlock;
}
}
args->flags = bo->flags;
args->mmap_offset = drm_vma_node_offset_addr(&obj->vma_node);
args->vpu_addr = bo->vpu_addr;
args->size = obj->size;
unlock:
mutex_unlock(&bo->lock);
drm_gem_object_put(obj);
return ret;
}
int ivpu_bo_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct drm_ivpu_bo_wait *args = data;
struct drm_gem_object *obj;
unsigned long timeout;
long ret;
timeout = drm_timeout_abs_to_jiffies(args->timeout_ns);
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -EINVAL;
ret = dma_resv_wait_timeout(obj->resv, DMA_RESV_USAGE_READ, true, timeout);
if (ret == 0) {
ret = -ETIMEDOUT;
} else if (ret > 0) {
ret = 0;
args->job_status = to_ivpu_bo(obj)->job_status;
}
drm_gem_object_put(obj);
return ret;
}
static void ivpu_bo_print_info(struct ivpu_bo *bo, struct drm_printer *p)
{
unsigned long dma_refcount = 0;
if (bo->base.dma_buf && bo->base.dma_buf->file)
dma_refcount = atomic_long_read(&bo->base.dma_buf->file->f_count);
drm_printf(p, "%5u %6d %16llx %10lu %10u %12lu %14s\n",
bo->ctx->id, bo->handle, bo->vpu_addr, bo->base.size,
kref_read(&bo->base.refcount), dma_refcount, bo->ops->name);
}
void ivpu_bo_list(struct drm_device *dev, struct drm_printer *p)
{
struct ivpu_device *vdev = to_ivpu_device(dev);
struct ivpu_file_priv *file_priv;
unsigned long ctx_id;
struct ivpu_bo *bo;
drm_printf(p, "%5s %6s %16s %10s %10s %12s %14s\n",
"ctx", "handle", "vpu_addr", "size", "refcount", "dma_refcount", "type");
mutex_lock(&vdev->gctx.lock);
list_for_each_entry(bo, &vdev->gctx.bo_list, ctx_node)
ivpu_bo_print_info(bo, p);
mutex_unlock(&vdev->gctx.lock);
xa_for_each(&vdev->context_xa, ctx_id, file_priv) {
file_priv = ivpu_file_priv_get_by_ctx_id(vdev, ctx_id);
if (!file_priv)
continue;
mutex_lock(&file_priv->ctx.lock);
list_for_each_entry(bo, &file_priv->ctx.bo_list, ctx_node)
ivpu_bo_print_info(bo, p);
mutex_unlock(&file_priv->ctx.lock);
ivpu_file_priv_put(&file_priv);
}
}
void ivpu_bo_list_print(struct drm_device *dev)
{
struct drm_printer p = drm_info_printer(dev->dev);
ivpu_bo_list(dev, &p);
}