linux/drivers/pwm/pwm-xilinx.c
Uwe Kleine-König 14b9dc66e9 pwm: xilinx: Simplify using devm_ functions
There are devm variants for clk_prepare_enable() and pwmchip_add(); and
clk_prepare_enable() can be done together with devm_clk_get(). This
allows to simplify the error paths in .probe() and drop .remove()
completely.

With the remove callback gone, the last user of platform_get_drvdata()
is gone and so the call to platform_set_drvdata() can be dropped, too.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Reviewed-by: Sean Anderson <sean.anderson@seco.com>
Link: https://lore.kernel.org/r/20240628063524.92907-2-u.kleine-koenig@baylibre.com
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
2024-07-10 17:53:52 +02:00

301 lines
9.1 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2021 Sean Anderson <sean.anderson@seco.com>
*
* Limitations:
* - When changing both duty cycle and period, we may end up with one cycle
* with the old duty cycle and the new period. This is because the counters
* may only be reloaded by first stopping them, or by letting them be
* automatically reloaded at the end of a cycle. If this automatic reload
* happens after we set TLR0 but before we set TLR1 then we will have a
* bad cycle. This could probably be fixed by reading TCR0 just before
* reprogramming, but I think it would add complexity for little gain.
* - Cannot produce 100% duty cycle by configuring the TLRs. This might be
* possible by stopping the counters at an appropriate point in the cycle,
* but this is not (yet) implemented.
* - Only produces "normal" output.
* - Always produces low output if disabled.
*/
#include <clocksource/timer-xilinx.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/regmap.h>
/*
* The following functions are "common" to drivers for this device, and may be
* exported at a future date.
*/
u32 xilinx_timer_tlr_cycles(struct xilinx_timer_priv *priv, u32 tcsr,
u64 cycles)
{
WARN_ON(cycles < 2 || cycles - 2 > priv->max);
if (tcsr & TCSR_UDT)
return cycles - 2;
return priv->max - cycles + 2;
}
unsigned int xilinx_timer_get_period(struct xilinx_timer_priv *priv,
u32 tlr, u32 tcsr)
{
u64 cycles;
if (tcsr & TCSR_UDT)
cycles = tlr + 2;
else
cycles = (u64)priv->max - tlr + 2;
/* cycles has a max of 2^32 + 2, so we can't overflow */
return DIV64_U64_ROUND_UP(cycles * NSEC_PER_SEC,
clk_get_rate(priv->clk));
}
/*
* The idea here is to capture whether the PWM is actually running (e.g.
* because we or the bootloader set it up) and we need to be careful to ensure
* we don't cause a glitch. According to the data sheet, to enable the PWM we
* need to
*
* - Set both timers to generate mode (MDT=1)
* - Set both timers to PWM mode (PWMA=1)
* - Enable the generate out signals (GENT=1)
*
* In addition,
*
* - The timer must be running (ENT=1)
* - The timer must auto-reload TLR into TCR (ARHT=1)
* - We must not be in the process of loading TLR into TCR (LOAD=0)
* - Cascade mode must be disabled (CASC=0)
*
* If any of these differ from usual, then the PWM is either disabled, or is
* running in a mode that this driver does not support.
*/
#define TCSR_PWM_SET (TCSR_GENT | TCSR_ARHT | TCSR_ENT | TCSR_PWMA)
#define TCSR_PWM_CLEAR (TCSR_MDT | TCSR_LOAD)
#define TCSR_PWM_MASK (TCSR_PWM_SET | TCSR_PWM_CLEAR)
static inline struct xilinx_timer_priv
*xilinx_pwm_chip_to_priv(struct pwm_chip *chip)
{
return pwmchip_get_drvdata(chip);
}
static bool xilinx_timer_pwm_enabled(u32 tcsr0, u32 tcsr1)
{
return ((TCSR_PWM_MASK | TCSR_CASC) & tcsr0) == TCSR_PWM_SET &&
(TCSR_PWM_MASK & tcsr1) == TCSR_PWM_SET;
}
static int xilinx_pwm_apply(struct pwm_chip *chip, struct pwm_device *unused,
const struct pwm_state *state)
{
struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
u32 tlr0, tlr1, tcsr0, tcsr1;
u64 period_cycles, duty_cycles;
unsigned long rate;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
/*
* To be representable by TLR, cycles must be between 2 and
* priv->max + 2. To enforce this we can reduce the cycles, but we may
* not increase them. Caveat emptor: while this does result in more
* predictable rounding, it may also result in a completely different
* duty cycle (% high time) than what was requested.
*/
rate = clk_get_rate(priv->clk);
/* Avoid overflow */
period_cycles = min_t(u64, state->period, U32_MAX * NSEC_PER_SEC);
period_cycles = mul_u64_u32_div(period_cycles, rate, NSEC_PER_SEC);
period_cycles = min_t(u64, period_cycles, priv->max + 2);
if (period_cycles < 2)
return -ERANGE;
/* Same thing for duty cycles */
duty_cycles = min_t(u64, state->duty_cycle, U32_MAX * NSEC_PER_SEC);
duty_cycles = mul_u64_u32_div(duty_cycles, rate, NSEC_PER_SEC);
duty_cycles = min_t(u64, duty_cycles, priv->max + 2);
/*
* If we specify 100% duty cycle, we will get 0% instead, so decrease
* the duty cycle count by one.
*/
if (duty_cycles >= period_cycles)
duty_cycles = period_cycles - 1;
/* Round down to 0% duty cycle for unrepresentable duty cycles */
if (duty_cycles < 2)
duty_cycles = period_cycles;
regmap_read(priv->map, TCSR0, &tcsr0);
regmap_read(priv->map, TCSR1, &tcsr1);
tlr0 = xilinx_timer_tlr_cycles(priv, tcsr0, period_cycles);
tlr1 = xilinx_timer_tlr_cycles(priv, tcsr1, duty_cycles);
regmap_write(priv->map, TLR0, tlr0);
regmap_write(priv->map, TLR1, tlr1);
if (state->enabled) {
/*
* If the PWM is already running, then the counters will be
* reloaded at the end of the current cycle.
*/
if (!xilinx_timer_pwm_enabled(tcsr0, tcsr1)) {
/* Load TLR into TCR */
regmap_write(priv->map, TCSR0, tcsr0 | TCSR_LOAD);
regmap_write(priv->map, TCSR1, tcsr1 | TCSR_LOAD);
/* Enable timers all at once with ENALL */
tcsr0 = (TCSR_PWM_SET & ~TCSR_ENT) | (tcsr0 & TCSR_UDT);
tcsr1 = TCSR_PWM_SET | TCSR_ENALL | (tcsr1 & TCSR_UDT);
regmap_write(priv->map, TCSR0, tcsr0);
regmap_write(priv->map, TCSR1, tcsr1);
}
} else {
regmap_write(priv->map, TCSR0, 0);
regmap_write(priv->map, TCSR1, 0);
}
return 0;
}
static int xilinx_pwm_get_state(struct pwm_chip *chip,
struct pwm_device *unused,
struct pwm_state *state)
{
struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
u32 tlr0, tlr1, tcsr0, tcsr1;
regmap_read(priv->map, TLR0, &tlr0);
regmap_read(priv->map, TLR1, &tlr1);
regmap_read(priv->map, TCSR0, &tcsr0);
regmap_read(priv->map, TCSR1, &tcsr1);
state->period = xilinx_timer_get_period(priv, tlr0, tcsr0);
state->duty_cycle = xilinx_timer_get_period(priv, tlr1, tcsr1);
state->enabled = xilinx_timer_pwm_enabled(tcsr0, tcsr1);
state->polarity = PWM_POLARITY_NORMAL;
/*
* 100% duty cycle results in constant low output. This may be (very)
* wrong if rate > 1 GHz, so fix this if you have such hardware :)
*/
if (state->period == state->duty_cycle)
state->duty_cycle = 0;
return 0;
}
static const struct pwm_ops xilinx_pwm_ops = {
.apply = xilinx_pwm_apply,
.get_state = xilinx_pwm_get_state,
};
static const struct regmap_config xilinx_pwm_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
.max_register = TCR1,
};
static int xilinx_pwm_probe(struct platform_device *pdev)
{
int ret;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct xilinx_timer_priv *priv;
struct pwm_chip *chip;
u32 pwm_cells, one_timer, width;
void __iomem *regs;
/* If there are no PWM cells, this binding is for a timer */
ret = of_property_read_u32(np, "#pwm-cells", &pwm_cells);
if (ret == -EINVAL)
return -ENODEV;
if (ret)
return dev_err_probe(dev, ret, "could not read #pwm-cells\n");
chip = devm_pwmchip_alloc(dev, 1, sizeof(*priv));
if (IS_ERR(chip))
return PTR_ERR(chip);
priv = xilinx_pwm_chip_to_priv(chip);
regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(regs))
return PTR_ERR(regs);
priv->map = devm_regmap_init_mmio(dev, regs,
&xilinx_pwm_regmap_config);
if (IS_ERR(priv->map))
return dev_err_probe(dev, PTR_ERR(priv->map),
"Could not create regmap\n");
ret = of_property_read_u32(np, "xlnx,one-timer-only", &one_timer);
if (ret)
return dev_err_probe(dev, ret,
"Could not read xlnx,one-timer-only\n");
if (one_timer)
return dev_err_probe(dev, -EINVAL,
"Two timers required for PWM mode\n");
ret = of_property_read_u32(np, "xlnx,count-width", &width);
if (ret == -EINVAL)
width = 32;
else if (ret)
return dev_err_probe(dev, ret,
"Could not read xlnx,count-width\n");
if (width != 8 && width != 16 && width != 32)
return dev_err_probe(dev, -EINVAL,
"Invalid counter width %d\n", width);
priv->max = BIT_ULL(width) - 1;
/*
* The polarity of the Generate Out signals must be active high for PWM
* mode to work. We could determine this from the device tree, but
* alas, such properties are not allowed to be used.
*/
priv->clk = devm_clk_get_enabled(dev, "s_axi_aclk");
if (IS_ERR(priv->clk))
return dev_err_probe(dev, PTR_ERR(priv->clk),
"Could not get clock\n");
ret = devm_clk_rate_exclusive_get(dev, priv->clk);
if (ret)
return dev_err_probe(dev, ret,
"Failed to lock clock rate\n");
chip->ops = &xilinx_pwm_ops;
ret = devm_pwmchip_add(dev, chip);
if (ret)
return dev_err_probe(dev, ret, "Could not register PWM chip\n");
return 0;
}
static const struct of_device_id xilinx_pwm_of_match[] = {
{ .compatible = "xlnx,xps-timer-1.00.a", },
{},
};
MODULE_DEVICE_TABLE(of, xilinx_pwm_of_match);
static struct platform_driver xilinx_pwm_driver = {
.probe = xilinx_pwm_probe,
.driver = {
.name = "xilinx-pwm",
.of_match_table = of_match_ptr(xilinx_pwm_of_match),
},
};
module_platform_driver(xilinx_pwm_driver);
MODULE_ALIAS("platform:xilinx-pwm");
MODULE_DESCRIPTION("PWM driver for Xilinx LogiCORE IP AXI Timer");
MODULE_LICENSE("GPL");