linux/drivers/clocksource/exynos_mct.c
Doug Anderson 3252a646aa clocksource: exynos_mct: Only use 32-bits where possible
The MCT has a nice 64-bit counter.  That means that we _can_ register
as a 64-bit clocksource and sched_clock.  ...but that doesn't mean we
should.

The 64-bit counter is read by reading two 32-bit registers.  That
means reading needs to be something like:
- Read upper half
- Read lower half
- Read upper half and confirm that it hasn't changed.

That wouldn't be terrible, but:
- THe MCT isn't very fast to access (hundreds of nanoseconds).
- The clocksource is queried _all the time_.

In total system profiles of real workloads on ChromeOS, we've seen
exynos_frc_read() taking 2% or more of CPU time even after optimizing
the 3 reads above to 2 (see below).

The MCT is clocked at ~24MHz on all known systems.  That means that
the 32-bit half of the counter rolls over every ~178 seconds.  This
inspired an optimization in ChromeOS to cache the upper half between
calls, moving 3 reads to 2.  ...but we can do better!  Having a 32-bit
timer that flips every 178 seconds is more than sufficient for Linux.
Let's just use the lower half of the MCT.

Times on 5420 to do 1000000 gettimeofday() calls from userspace:
* Original code:                      1323852 us
* ChromeOS cache upper half:          1173084 us
* ChromeOS + ldmia to optimize:       1045674 us
* Use lower 32-bit only (this code):  1014429 us

As you can see, the time used doesn't increase linearly with the
number of reads and we can make 64-bit work almost as fast as 32-bit
with a bit of assembly code.  But since there's no real gain for
64-bit, let's go with the simplest and fastest implementation.

Note: with this change roughly half the time for gettimeofday() is
spent in exynos_frc_read().  The rest is timer / system call overhead.

Also note: this patch disables the use of the MCT on ARM64 systems
until we've sorted out how to make "cycles_t" always 32-bit.  Really
ARM64 systems should be using arch timers anyway.

Signed-off-by: Doug Anderson <dianders@chromium.org>
Acked-by Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2014-07-23 12:02:41 +02:00

618 lines
16 KiB
C

/* linux/arch/arm/mach-exynos4/mct.c
*
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* EXYNOS4 MCT(Multi-Core Timer) support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/percpu.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/clocksource.h>
#include <linux/sched_clock.h>
#define EXYNOS4_MCTREG(x) (x)
#define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
#define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
#define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
#define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
#define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
#define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
#define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
#define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
#define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
#define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
#define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
#define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
#define EXYNOS4_MCT_L_MASK (0xffffff00)
#define MCT_L_TCNTB_OFFSET (0x00)
#define MCT_L_ICNTB_OFFSET (0x08)
#define MCT_L_TCON_OFFSET (0x20)
#define MCT_L_INT_CSTAT_OFFSET (0x30)
#define MCT_L_INT_ENB_OFFSET (0x34)
#define MCT_L_WSTAT_OFFSET (0x40)
#define MCT_G_TCON_START (1 << 8)
#define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
#define MCT_G_TCON_COMP0_ENABLE (1 << 0)
#define MCT_L_TCON_INTERVAL_MODE (1 << 2)
#define MCT_L_TCON_INT_START (1 << 1)
#define MCT_L_TCON_TIMER_START (1 << 0)
#define TICK_BASE_CNT 1
enum {
MCT_INT_SPI,
MCT_INT_PPI
};
enum {
MCT_G0_IRQ,
MCT_G1_IRQ,
MCT_G2_IRQ,
MCT_G3_IRQ,
MCT_L0_IRQ,
MCT_L1_IRQ,
MCT_L2_IRQ,
MCT_L3_IRQ,
MCT_L4_IRQ,
MCT_L5_IRQ,
MCT_L6_IRQ,
MCT_L7_IRQ,
MCT_NR_IRQS,
};
static void __iomem *reg_base;
static unsigned long clk_rate;
static unsigned int mct_int_type;
static int mct_irqs[MCT_NR_IRQS];
struct mct_clock_event_device {
struct clock_event_device evt;
unsigned long base;
char name[10];
};
static void exynos4_mct_write(unsigned int value, unsigned long offset)
{
unsigned long stat_addr;
u32 mask;
u32 i;
writel_relaxed(value, reg_base + offset);
if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
switch (offset & EXYNOS4_MCT_L_MASK) {
case MCT_L_TCON_OFFSET:
mask = 1 << 3; /* L_TCON write status */
break;
case MCT_L_ICNTB_OFFSET:
mask = 1 << 1; /* L_ICNTB write status */
break;
case MCT_L_TCNTB_OFFSET:
mask = 1 << 0; /* L_TCNTB write status */
break;
default:
return;
}
} else {
switch (offset) {
case EXYNOS4_MCT_G_TCON:
stat_addr = EXYNOS4_MCT_G_WSTAT;
mask = 1 << 16; /* G_TCON write status */
break;
case EXYNOS4_MCT_G_COMP0_L:
stat_addr = EXYNOS4_MCT_G_WSTAT;
mask = 1 << 0; /* G_COMP0_L write status */
break;
case EXYNOS4_MCT_G_COMP0_U:
stat_addr = EXYNOS4_MCT_G_WSTAT;
mask = 1 << 1; /* G_COMP0_U write status */
break;
case EXYNOS4_MCT_G_COMP0_ADD_INCR:
stat_addr = EXYNOS4_MCT_G_WSTAT;
mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
break;
case EXYNOS4_MCT_G_CNT_L:
stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
mask = 1 << 0; /* G_CNT_L write status */
break;
case EXYNOS4_MCT_G_CNT_U:
stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
mask = 1 << 1; /* G_CNT_U write status */
break;
default:
return;
}
}
/* Wait maximum 1 ms until written values are applied */
for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
if (readl_relaxed(reg_base + stat_addr) & mask) {
writel_relaxed(mask, reg_base + stat_addr);
return;
}
panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
}
/* Clocksource handling */
static void exynos4_mct_frc_start(void)
{
u32 reg;
reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
reg |= MCT_G_TCON_START;
exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
}
/**
* exynos4_read_count_64 - Read all 64-bits of the global counter
*
* This will read all 64-bits of the global counter taking care to make sure
* that the upper and lower half match. Note that reading the MCT can be quite
* slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
* only) version when possible.
*
* Returns the number of cycles in the global counter.
*/
static u64 exynos4_read_count_64(void)
{
unsigned int lo, hi;
u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
do {
hi = hi2;
lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
} while (hi != hi2);
return ((cycle_t)hi << 32) | lo;
}
/**
* exynos4_read_count_32 - Read the lower 32-bits of the global counter
*
* This will read just the lower 32-bits of the global counter. This is marked
* as notrace so it can be used by the scheduler clock.
*
* Returns the number of cycles in the global counter (lower 32 bits).
*/
static u32 notrace exynos4_read_count_32(void)
{
return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
}
static cycle_t exynos4_frc_read(struct clocksource *cs)
{
return exynos4_read_count_32();
}
static void exynos4_frc_resume(struct clocksource *cs)
{
exynos4_mct_frc_start();
}
struct clocksource mct_frc = {
.name = "mct-frc",
.rating = 400,
.read = exynos4_frc_read,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.resume = exynos4_frc_resume,
};
static u64 notrace exynos4_read_sched_clock(void)
{
return exynos4_read_count_32();
}
static struct delay_timer exynos4_delay_timer;
static cycles_t exynos4_read_current_timer(void)
{
BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
"cycles_t needs to move to 32-bit for ARM64 usage");
return exynos4_read_count_32();
}
static void __init exynos4_clocksource_init(void)
{
exynos4_mct_frc_start();
exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
exynos4_delay_timer.freq = clk_rate;
register_current_timer_delay(&exynos4_delay_timer);
if (clocksource_register_hz(&mct_frc, clk_rate))
panic("%s: can't register clocksource\n", mct_frc.name);
sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
}
static void exynos4_mct_comp0_stop(void)
{
unsigned int tcon;
tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
}
static void exynos4_mct_comp0_start(enum clock_event_mode mode,
unsigned long cycles)
{
unsigned int tcon;
cycle_t comp_cycle;
tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
if (mode == CLOCK_EVT_MODE_PERIODIC) {
tcon |= MCT_G_TCON_COMP0_AUTO_INC;
exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
}
comp_cycle = exynos4_read_count_64() + cycles;
exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
tcon |= MCT_G_TCON_COMP0_ENABLE;
exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
}
static int exynos4_comp_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
exynos4_mct_comp0_start(evt->mode, cycles);
return 0;
}
static void exynos4_comp_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
unsigned long cycles_per_jiffy;
exynos4_mct_comp0_stop();
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
cycles_per_jiffy =
(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
exynos4_mct_comp0_start(mode, cycles_per_jiffy);
break;
case CLOCK_EVT_MODE_ONESHOT:
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
case CLOCK_EVT_MODE_RESUME:
break;
}
}
static struct clock_event_device mct_comp_device = {
.name = "mct-comp",
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.rating = 250,
.set_next_event = exynos4_comp_set_next_event,
.set_mode = exynos4_comp_set_mode,
};
static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
evt->event_handler(evt);
return IRQ_HANDLED;
}
static struct irqaction mct_comp_event_irq = {
.name = "mct_comp_irq",
.flags = IRQF_TIMER | IRQF_IRQPOLL,
.handler = exynos4_mct_comp_isr,
.dev_id = &mct_comp_device,
};
static void exynos4_clockevent_init(void)
{
mct_comp_device.cpumask = cpumask_of(0);
clockevents_config_and_register(&mct_comp_device, clk_rate,
0xf, 0xffffffff);
setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
}
static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
/* Clock event handling */
static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
{
unsigned long tmp;
unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
tmp = readl_relaxed(reg_base + offset);
if (tmp & mask) {
tmp &= ~mask;
exynos4_mct_write(tmp, offset);
}
}
static void exynos4_mct_tick_start(unsigned long cycles,
struct mct_clock_event_device *mevt)
{
unsigned long tmp;
exynos4_mct_tick_stop(mevt);
tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
/* update interrupt count buffer */
exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
/* enable MCT tick interrupt */
exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
MCT_L_TCON_INTERVAL_MODE;
exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
}
static int exynos4_tick_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
exynos4_mct_tick_start(cycles, mevt);
return 0;
}
static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
unsigned long cycles_per_jiffy;
exynos4_mct_tick_stop(mevt);
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
cycles_per_jiffy =
(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
exynos4_mct_tick_start(cycles_per_jiffy, mevt);
break;
case CLOCK_EVT_MODE_ONESHOT:
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
case CLOCK_EVT_MODE_RESUME:
break;
}
}
static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
{
struct clock_event_device *evt = &mevt->evt;
/*
* This is for supporting oneshot mode.
* Mct would generate interrupt periodically
* without explicit stopping.
*/
if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
exynos4_mct_tick_stop(mevt);
/* Clear the MCT tick interrupt */
if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
return 1;
} else {
return 0;
}
}
static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
{
struct mct_clock_event_device *mevt = dev_id;
struct clock_event_device *evt = &mevt->evt;
exynos4_mct_tick_clear(mevt);
evt->event_handler(evt);
return IRQ_HANDLED;
}
static int exynos4_local_timer_setup(struct clock_event_device *evt)
{
struct mct_clock_event_device *mevt;
unsigned int cpu = smp_processor_id();
mevt = container_of(evt, struct mct_clock_event_device, evt);
mevt->base = EXYNOS4_MCT_L_BASE(cpu);
snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
evt->name = mevt->name;
evt->cpumask = cpumask_of(cpu);
evt->set_next_event = exynos4_tick_set_next_event;
evt->set_mode = exynos4_tick_set_mode;
evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
evt->rating = 450;
exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
if (mct_int_type == MCT_INT_SPI) {
evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
if (request_irq(evt->irq, exynos4_mct_tick_isr,
IRQF_TIMER | IRQF_NOBALANCING,
evt->name, mevt)) {
pr_err("exynos-mct: cannot register IRQ %d\n",
evt->irq);
return -EIO;
}
irq_force_affinity(mct_irqs[MCT_L0_IRQ + cpu], cpumask_of(cpu));
} else {
enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
}
clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
0xf, 0x7fffffff);
return 0;
}
static void exynos4_local_timer_stop(struct clock_event_device *evt)
{
evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
if (mct_int_type == MCT_INT_SPI)
free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
else
disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
}
static int exynos4_mct_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
struct mct_clock_event_device *mevt;
/*
* Grab cpu pointer in each case to avoid spurious
* preemptible warnings
*/
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_STARTING:
mevt = this_cpu_ptr(&percpu_mct_tick);
exynos4_local_timer_setup(&mevt->evt);
break;
case CPU_DYING:
mevt = this_cpu_ptr(&percpu_mct_tick);
exynos4_local_timer_stop(&mevt->evt);
break;
}
return NOTIFY_OK;
}
static struct notifier_block exynos4_mct_cpu_nb = {
.notifier_call = exynos4_mct_cpu_notify,
};
static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
{
int err;
struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
struct clk *mct_clk, *tick_clk;
tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
clk_get(NULL, "fin_pll");
if (IS_ERR(tick_clk))
panic("%s: unable to determine tick clock rate\n", __func__);
clk_rate = clk_get_rate(tick_clk);
mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
if (IS_ERR(mct_clk))
panic("%s: unable to retrieve mct clock instance\n", __func__);
clk_prepare_enable(mct_clk);
reg_base = base;
if (!reg_base)
panic("%s: unable to ioremap mct address space\n", __func__);
if (mct_int_type == MCT_INT_PPI) {
err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
exynos4_mct_tick_isr, "MCT",
&percpu_mct_tick);
WARN(err, "MCT: can't request IRQ %d (%d)\n",
mct_irqs[MCT_L0_IRQ], err);
} else {
irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
}
err = register_cpu_notifier(&exynos4_mct_cpu_nb);
if (err)
goto out_irq;
/* Immediately configure the timer on the boot CPU */
exynos4_local_timer_setup(&mevt->evt);
return;
out_irq:
free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
}
void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
{
mct_irqs[MCT_G0_IRQ] = irq_g0;
mct_irqs[MCT_L0_IRQ] = irq_l0;
mct_irqs[MCT_L1_IRQ] = irq_l1;
mct_int_type = MCT_INT_SPI;
exynos4_timer_resources(NULL, base);
exynos4_clocksource_init();
exynos4_clockevent_init();
}
static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
{
u32 nr_irqs, i;
mct_int_type = int_type;
/* This driver uses only one global timer interrupt */
mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
/*
* Find out the number of local irqs specified. The local
* timer irqs are specified after the four global timer
* irqs are specified.
*/
#ifdef CONFIG_OF
nr_irqs = of_irq_count(np);
#else
nr_irqs = 0;
#endif
for (i = MCT_L0_IRQ; i < nr_irqs; i++)
mct_irqs[i] = irq_of_parse_and_map(np, i);
exynos4_timer_resources(np, of_iomap(np, 0));
exynos4_clocksource_init();
exynos4_clockevent_init();
}
static void __init mct_init_spi(struct device_node *np)
{
return mct_init_dt(np, MCT_INT_SPI);
}
static void __init mct_init_ppi(struct device_node *np)
{
return mct_init_dt(np, MCT_INT_PPI);
}
CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);