linux/arch/sparc/kernel/traps_64.c
Jane Chu 9d53caec84 sparc64: Measure receiver forward progress to avoid send mondo timeout
A large sun4v SPARC system may have moments of intensive xcall activities,
usually caused by unmapping many pages on many CPUs concurrently. This can
flood receivers with CPU mondo interrupts for an extended period, causing
some unlucky senders to hit send-mondo timeout. This problem gets worse
as cpu count increases because sometimes mappings must be invalidated on
all CPUs, and sometimes all CPUs may gang up on a single CPU.

But a busy system is not a broken system. In the above scenario, as long
as the receiver is making forward progress processing mondo interrupts,
the sender should continue to retry.

This patch implements the receiver's forward progress meter by introducing
a per cpu counter 'cpu_mondo_counter[cpu]' where 'cpu' is in the range
of 0..NR_CPUS. The receiver increments its counter as soon as it receives
a mondo and the sender tracks the receiver's counter. If the receiver has
stopped making forward progress when the retry limit is reached, the sender
declares send-mondo-timeout and panic; otherwise, the receiver is allowed
to keep making forward progress.

In addition, it's been observed that PCIe hotplug events generate Correctable
Errors that are handled by hypervisor and then OS. Hypervisor 'borrows'
a guest cpu strand briefly to provide the service. If the cpu strand is
simultaneously the only cpu targeted by a mondo, it may not be available
for the mondo in 20msec, causing SUN4V mondo timeout. It appears that 1 second
is the agreed wait time between hypervisor and guest OS, this patch makes
the adjustment.

Orabug: 25476541
Orabug: 26417466

Signed-off-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: Steve Sistare <steven.sistare@oracle.com>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Reviewed-by: Rob Gardner <rob.gardner@oracle.com>
Reviewed-by: Thomas Tai <thomas.tai@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-14 11:18:02 -07:00

2845 lines
80 KiB
C

/* arch/sparc64/kernel/traps.c
*
* Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
* Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
*/
/*
* I like traps on v9, :))))
*/
#include <linux/extable.h>
#include <linux/sched/mm.h>
#include <linux/sched/debug.h>
#include <linux/linkage.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/smp.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/kdebug.h>
#include <linux/ftrace.h>
#include <linux/reboot.h>
#include <linux/gfp.h>
#include <linux/context_tracking.h>
#include <asm/smp.h>
#include <asm/delay.h>
#include <asm/ptrace.h>
#include <asm/oplib.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/unistd.h>
#include <linux/uaccess.h>
#include <asm/fpumacro.h>
#include <asm/lsu.h>
#include <asm/dcu.h>
#include <asm/estate.h>
#include <asm/chafsr.h>
#include <asm/sfafsr.h>
#include <asm/psrcompat.h>
#include <asm/processor.h>
#include <asm/timer.h>
#include <asm/head.h>
#include <asm/prom.h>
#include <asm/memctrl.h>
#include <asm/cacheflush.h>
#include <asm/setup.h>
#include "entry.h"
#include "kernel.h"
#include "kstack.h"
/* When an irrecoverable trap occurs at tl > 0, the trap entry
* code logs the trap state registers at every level in the trap
* stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout
* is as follows:
*/
struct tl1_traplog {
struct {
unsigned long tstate;
unsigned long tpc;
unsigned long tnpc;
unsigned long tt;
} trapstack[4];
unsigned long tl;
};
static void dump_tl1_traplog(struct tl1_traplog *p)
{
int i, limit;
printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
"dumping track stack.\n", p->tl);
limit = (tlb_type == hypervisor) ? 2 : 4;
for (i = 0; i < limit; i++) {
printk(KERN_EMERG
"TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
"TNPC[%016lx] TT[%lx]\n",
i + 1,
p->trapstack[i].tstate, p->trapstack[i].tpc,
p->trapstack[i].tnpc, p->trapstack[i].tt);
printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
}
}
void bad_trap(struct pt_regs *regs, long lvl)
{
char buffer[36];
siginfo_t info;
if (notify_die(DIE_TRAP, "bad trap", regs,
0, lvl, SIGTRAP) == NOTIFY_STOP)
return;
if (lvl < 0x100) {
sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
die_if_kernel(buffer, regs);
}
lvl -= 0x100;
if (regs->tstate & TSTATE_PRIV) {
sprintf(buffer, "Kernel bad sw trap %lx", lvl);
die_if_kernel(buffer, regs);
}
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = ILL_ILLTRP;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = lvl;
force_sig_info(SIGILL, &info, current);
}
void bad_trap_tl1(struct pt_regs *regs, long lvl)
{
char buffer[36];
if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
0, lvl, SIGTRAP) == NOTIFY_STOP)
return;
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
sprintf (buffer, "Bad trap %lx at tl>0", lvl);
die_if_kernel (buffer, regs);
}
#ifdef CONFIG_DEBUG_BUGVERBOSE
void do_BUG(const char *file, int line)
{
bust_spinlocks(1);
printk("kernel BUG at %s:%d!\n", file, line);
}
EXPORT_SYMBOL(do_BUG);
#endif
static DEFINE_SPINLOCK(dimm_handler_lock);
static dimm_printer_t dimm_handler;
static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
{
unsigned long flags;
int ret = -ENODEV;
spin_lock_irqsave(&dimm_handler_lock, flags);
if (dimm_handler) {
ret = dimm_handler(synd_code, paddr, buf, buflen);
} else if (tlb_type == spitfire) {
if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
ret = -EINVAL;
else
ret = 0;
} else
ret = -ENODEV;
spin_unlock_irqrestore(&dimm_handler_lock, flags);
return ret;
}
int register_dimm_printer(dimm_printer_t func)
{
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&dimm_handler_lock, flags);
if (!dimm_handler)
dimm_handler = func;
else
ret = -EEXIST;
spin_unlock_irqrestore(&dimm_handler_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(register_dimm_printer);
void unregister_dimm_printer(dimm_printer_t func)
{
unsigned long flags;
spin_lock_irqsave(&dimm_handler_lock, flags);
if (dimm_handler == func)
dimm_handler = NULL;
spin_unlock_irqrestore(&dimm_handler_lock, flags);
}
EXPORT_SYMBOL_GPL(unregister_dimm_printer);
void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
enum ctx_state prev_state = exception_enter();
siginfo_t info;
if (notify_die(DIE_TRAP, "instruction access exception", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
goto out;
if (regs->tstate & TSTATE_PRIV) {
printk("spitfire_insn_access_exception: SFSR[%016lx] "
"SFAR[%016lx], going.\n", sfsr, sfar);
die_if_kernel("Iax", regs);
}
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_MAPERR;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = 0;
force_sig_info(SIGSEGV, &info, current);
out:
exception_exit(prev_state);
}
void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
return;
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
spitfire_insn_access_exception(regs, sfsr, sfar);
}
void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
unsigned short type = (type_ctx >> 16);
unsigned short ctx = (type_ctx & 0xffff);
siginfo_t info;
if (notify_die(DIE_TRAP, "instruction access exception", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
return;
if (regs->tstate & TSTATE_PRIV) {
printk("sun4v_insn_access_exception: ADDR[%016lx] "
"CTX[%04x] TYPE[%04x], going.\n",
addr, ctx, type);
die_if_kernel("Iax", regs);
}
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_MAPERR;
info.si_addr = (void __user *) addr;
info.si_trapno = 0;
force_sig_info(SIGSEGV, &info, current);
}
void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
return;
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
sun4v_insn_access_exception(regs, addr, type_ctx);
}
void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
enum ctx_state prev_state = exception_enter();
siginfo_t info;
if (notify_die(DIE_TRAP, "data access exception", regs,
0, 0x30, SIGTRAP) == NOTIFY_STOP)
goto out;
if (regs->tstate & TSTATE_PRIV) {
/* Test if this comes from uaccess places. */
const struct exception_table_entry *entry;
entry = search_exception_tables(regs->tpc);
if (entry) {
/* Ouch, somebody is trying VM hole tricks on us... */
#ifdef DEBUG_EXCEPTIONS
printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
regs->tpc, entry->fixup);
#endif
regs->tpc = entry->fixup;
regs->tnpc = regs->tpc + 4;
goto out;
}
/* Shit... */
printk("spitfire_data_access_exception: SFSR[%016lx] "
"SFAR[%016lx], going.\n", sfsr, sfar);
die_if_kernel("Dax", regs);
}
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_MAPERR;
info.si_addr = (void __user *)sfar;
info.si_trapno = 0;
force_sig_info(SIGSEGV, &info, current);
out:
exception_exit(prev_state);
}
void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
0, 0x30, SIGTRAP) == NOTIFY_STOP)
return;
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
spitfire_data_access_exception(regs, sfsr, sfar);
}
void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
unsigned short type = (type_ctx >> 16);
unsigned short ctx = (type_ctx & 0xffff);
siginfo_t info;
if (notify_die(DIE_TRAP, "data access exception", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
return;
if (regs->tstate & TSTATE_PRIV) {
/* Test if this comes from uaccess places. */
const struct exception_table_entry *entry;
entry = search_exception_tables(regs->tpc);
if (entry) {
/* Ouch, somebody is trying VM hole tricks on us... */
#ifdef DEBUG_EXCEPTIONS
printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
regs->tpc, entry->fixup);
#endif
regs->tpc = entry->fixup;
regs->tnpc = regs->tpc + 4;
return;
}
printk("sun4v_data_access_exception: ADDR[%016lx] "
"CTX[%04x] TYPE[%04x], going.\n",
addr, ctx, type);
die_if_kernel("Dax", regs);
}
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_MAPERR;
info.si_addr = (void __user *) addr;
info.si_trapno = 0;
force_sig_info(SIGSEGV, &info, current);
}
void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
0, 0x8, SIGTRAP) == NOTIFY_STOP)
return;
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
sun4v_data_access_exception(regs, addr, type_ctx);
}
#ifdef CONFIG_PCI
#include "pci_impl.h"
#endif
/* When access exceptions happen, we must do this. */
static void spitfire_clean_and_reenable_l1_caches(void)
{
unsigned long va;
if (tlb_type != spitfire)
BUG();
/* Clean 'em. */
for (va = 0; va < (PAGE_SIZE << 1); va += 32) {
spitfire_put_icache_tag(va, 0x0);
spitfire_put_dcache_tag(va, 0x0);
}
/* Re-enable in LSU. */
__asm__ __volatile__("flush %%g6\n\t"
"membar #Sync\n\t"
"stxa %0, [%%g0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
LSU_CONTROL_IM | LSU_CONTROL_DM),
"i" (ASI_LSU_CONTROL)
: "memory");
}
static void spitfire_enable_estate_errors(void)
{
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (ESTATE_ERR_ALL),
"i" (ASI_ESTATE_ERROR_EN));
}
static char ecc_syndrome_table[] = {
0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
};
static char *syndrome_unknown = "<Unknown>";
static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
{
unsigned short scode;
char memmod_str[64], *p;
if (udbl & bit) {
scode = ecc_syndrome_table[udbl & 0xff];
if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
p = syndrome_unknown;
else
p = memmod_str;
printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
"Memory Module \"%s\"\n",
smp_processor_id(), scode, p);
}
if (udbh & bit) {
scode = ecc_syndrome_table[udbh & 0xff];
if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
p = syndrome_unknown;
else
p = memmod_str;
printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
"Memory Module \"%s\"\n",
smp_processor_id(), scode, p);
}
}
static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
{
printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
"AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
smp_processor_id(), afsr, afar, udbl, udbh, tl1);
spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
/* We always log it, even if someone is listening for this
* trap.
*/
notify_die(DIE_TRAP, "Correctable ECC Error", regs,
0, TRAP_TYPE_CEE, SIGTRAP);
/* The Correctable ECC Error trap does not disable I/D caches. So
* we only have to restore the ESTATE Error Enable register.
*/
spitfire_enable_estate_errors();
}
static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
{
siginfo_t info;
printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
"AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
/* XXX add more human friendly logging of the error status
* XXX as is implemented for cheetah
*/
spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
/* We always log it, even if someone is listening for this
* trap.
*/
notify_die(DIE_TRAP, "Uncorrectable Error", regs,
0, tt, SIGTRAP);
if (regs->tstate & TSTATE_PRIV) {
if (tl1)
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("UE", regs);
}
/* XXX need more intelligent processing here, such as is implemented
* XXX for cheetah errors, in fact if the E-cache still holds the
* XXX line with bad parity this will loop
*/
spitfire_clean_and_reenable_l1_caches();
spitfire_enable_estate_errors();
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_OBJERR;
info.si_addr = (void *)0;
info.si_trapno = 0;
force_sig_info(SIGBUS, &info, current);
}
void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
{
unsigned long afsr, tt, udbh, udbl;
int tl1;
afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
#ifdef CONFIG_PCI
if (tt == TRAP_TYPE_DAE &&
pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
spitfire_clean_and_reenable_l1_caches();
spitfire_enable_estate_errors();
pci_poke_faulted = 1;
regs->tnpc = regs->tpc + 4;
return;
}
#endif
if (afsr & SFAFSR_UE)
spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
if (tt == TRAP_TYPE_CEE) {
/* Handle the case where we took a CEE trap, but ACK'd
* only the UE state in the UDB error registers.
*/
if (afsr & SFAFSR_UE) {
if (udbh & UDBE_CE) {
__asm__ __volatile__(
"stxa %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (udbh & UDBE_CE),
"r" (0x0), "i" (ASI_UDB_ERROR_W));
}
if (udbl & UDBE_CE) {
__asm__ __volatile__(
"stxa %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (udbl & UDBE_CE),
"r" (0x18), "i" (ASI_UDB_ERROR_W));
}
}
spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
}
}
int cheetah_pcache_forced_on;
void cheetah_enable_pcache(void)
{
unsigned long dcr;
printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
smp_processor_id());
__asm__ __volatile__("ldxa [%%g0] %1, %0"
: "=r" (dcr)
: "i" (ASI_DCU_CONTROL_REG));
dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
}
/* Cheetah error trap handling. */
static unsigned long ecache_flush_physbase;
static unsigned long ecache_flush_linesize;
static unsigned long ecache_flush_size;
/* This table is ordered in priority of errors and matches the
* AFAR overwrite policy as well.
*/
struct afsr_error_table {
unsigned long mask;
const char *name;
};
static const char CHAFSR_PERR_msg[] =
"System interface protocol error";
static const char CHAFSR_IERR_msg[] =
"Internal processor error";
static const char CHAFSR_ISAP_msg[] =
"System request parity error on incoming address";
static const char CHAFSR_UCU_msg[] =
"Uncorrectable E-cache ECC error for ifetch/data";
static const char CHAFSR_UCC_msg[] =
"SW Correctable E-cache ECC error for ifetch/data";
static const char CHAFSR_UE_msg[] =
"Uncorrectable system bus data ECC error for read";
static const char CHAFSR_EDU_msg[] =
"Uncorrectable E-cache ECC error for stmerge/blkld";
static const char CHAFSR_EMU_msg[] =
"Uncorrectable system bus MTAG error";
static const char CHAFSR_WDU_msg[] =
"Uncorrectable E-cache ECC error for writeback";
static const char CHAFSR_CPU_msg[] =
"Uncorrectable ECC error for copyout";
static const char CHAFSR_CE_msg[] =
"HW corrected system bus data ECC error for read";
static const char CHAFSR_EDC_msg[] =
"HW corrected E-cache ECC error for stmerge/blkld";
static const char CHAFSR_EMC_msg[] =
"HW corrected system bus MTAG ECC error";
static const char CHAFSR_WDC_msg[] =
"HW corrected E-cache ECC error for writeback";
static const char CHAFSR_CPC_msg[] =
"HW corrected ECC error for copyout";
static const char CHAFSR_TO_msg[] =
"Unmapped error from system bus";
static const char CHAFSR_BERR_msg[] =
"Bus error response from system bus";
static const char CHAFSR_IVC_msg[] =
"HW corrected system bus data ECC error for ivec read";
static const char CHAFSR_IVU_msg[] =
"Uncorrectable system bus data ECC error for ivec read";
static struct afsr_error_table __cheetah_error_table[] = {
{ CHAFSR_PERR, CHAFSR_PERR_msg },
{ CHAFSR_IERR, CHAFSR_IERR_msg },
{ CHAFSR_ISAP, CHAFSR_ISAP_msg },
{ CHAFSR_UCU, CHAFSR_UCU_msg },
{ CHAFSR_UCC, CHAFSR_UCC_msg },
{ CHAFSR_UE, CHAFSR_UE_msg },
{ CHAFSR_EDU, CHAFSR_EDU_msg },
{ CHAFSR_EMU, CHAFSR_EMU_msg },
{ CHAFSR_WDU, CHAFSR_WDU_msg },
{ CHAFSR_CPU, CHAFSR_CPU_msg },
{ CHAFSR_CE, CHAFSR_CE_msg },
{ CHAFSR_EDC, CHAFSR_EDC_msg },
{ CHAFSR_EMC, CHAFSR_EMC_msg },
{ CHAFSR_WDC, CHAFSR_WDC_msg },
{ CHAFSR_CPC, CHAFSR_CPC_msg },
{ CHAFSR_TO, CHAFSR_TO_msg },
{ CHAFSR_BERR, CHAFSR_BERR_msg },
/* These two do not update the AFAR. */
{ CHAFSR_IVC, CHAFSR_IVC_msg },
{ CHAFSR_IVU, CHAFSR_IVU_msg },
{ 0, NULL },
};
static const char CHPAFSR_DTO_msg[] =
"System bus unmapped error for prefetch/storequeue-read";
static const char CHPAFSR_DBERR_msg[] =
"System bus error for prefetch/storequeue-read";
static const char CHPAFSR_THCE_msg[] =
"Hardware corrected E-cache Tag ECC error";
static const char CHPAFSR_TSCE_msg[] =
"SW handled correctable E-cache Tag ECC error";
static const char CHPAFSR_TUE_msg[] =
"Uncorrectable E-cache Tag ECC error";
static const char CHPAFSR_DUE_msg[] =
"System bus uncorrectable data ECC error due to prefetch/store-fill";
static struct afsr_error_table __cheetah_plus_error_table[] = {
{ CHAFSR_PERR, CHAFSR_PERR_msg },
{ CHAFSR_IERR, CHAFSR_IERR_msg },
{ CHAFSR_ISAP, CHAFSR_ISAP_msg },
{ CHAFSR_UCU, CHAFSR_UCU_msg },
{ CHAFSR_UCC, CHAFSR_UCC_msg },
{ CHAFSR_UE, CHAFSR_UE_msg },
{ CHAFSR_EDU, CHAFSR_EDU_msg },
{ CHAFSR_EMU, CHAFSR_EMU_msg },
{ CHAFSR_WDU, CHAFSR_WDU_msg },
{ CHAFSR_CPU, CHAFSR_CPU_msg },
{ CHAFSR_CE, CHAFSR_CE_msg },
{ CHAFSR_EDC, CHAFSR_EDC_msg },
{ CHAFSR_EMC, CHAFSR_EMC_msg },
{ CHAFSR_WDC, CHAFSR_WDC_msg },
{ CHAFSR_CPC, CHAFSR_CPC_msg },
{ CHAFSR_TO, CHAFSR_TO_msg },
{ CHAFSR_BERR, CHAFSR_BERR_msg },
{ CHPAFSR_DTO, CHPAFSR_DTO_msg },
{ CHPAFSR_DBERR, CHPAFSR_DBERR_msg },
{ CHPAFSR_THCE, CHPAFSR_THCE_msg },
{ CHPAFSR_TSCE, CHPAFSR_TSCE_msg },
{ CHPAFSR_TUE, CHPAFSR_TUE_msg },
{ CHPAFSR_DUE, CHPAFSR_DUE_msg },
/* These two do not update the AFAR. */
{ CHAFSR_IVC, CHAFSR_IVC_msg },
{ CHAFSR_IVU, CHAFSR_IVU_msg },
{ 0, NULL },
};
static const char JPAFSR_JETO_msg[] =
"System interface protocol error, hw timeout caused";
static const char JPAFSR_SCE_msg[] =
"Parity error on system snoop results";
static const char JPAFSR_JEIC_msg[] =
"System interface protocol error, illegal command detected";
static const char JPAFSR_JEIT_msg[] =
"System interface protocol error, illegal ADTYPE detected";
static const char JPAFSR_OM_msg[] =
"Out of range memory error has occurred";
static const char JPAFSR_ETP_msg[] =
"Parity error on L2 cache tag SRAM";
static const char JPAFSR_UMS_msg[] =
"Error due to unsupported store";
static const char JPAFSR_RUE_msg[] =
"Uncorrectable ECC error from remote cache/memory";
static const char JPAFSR_RCE_msg[] =
"Correctable ECC error from remote cache/memory";
static const char JPAFSR_BP_msg[] =
"JBUS parity error on returned read data";
static const char JPAFSR_WBP_msg[] =
"JBUS parity error on data for writeback or block store";
static const char JPAFSR_FRC_msg[] =
"Foreign read to DRAM incurring correctable ECC error";
static const char JPAFSR_FRU_msg[] =
"Foreign read to DRAM incurring uncorrectable ECC error";
static struct afsr_error_table __jalapeno_error_table[] = {
{ JPAFSR_JETO, JPAFSR_JETO_msg },
{ JPAFSR_SCE, JPAFSR_SCE_msg },
{ JPAFSR_JEIC, JPAFSR_JEIC_msg },
{ JPAFSR_JEIT, JPAFSR_JEIT_msg },
{ CHAFSR_PERR, CHAFSR_PERR_msg },
{ CHAFSR_IERR, CHAFSR_IERR_msg },
{ CHAFSR_ISAP, CHAFSR_ISAP_msg },
{ CHAFSR_UCU, CHAFSR_UCU_msg },
{ CHAFSR_UCC, CHAFSR_UCC_msg },
{ CHAFSR_UE, CHAFSR_UE_msg },
{ CHAFSR_EDU, CHAFSR_EDU_msg },
{ JPAFSR_OM, JPAFSR_OM_msg },
{ CHAFSR_WDU, CHAFSR_WDU_msg },
{ CHAFSR_CPU, CHAFSR_CPU_msg },
{ CHAFSR_CE, CHAFSR_CE_msg },
{ CHAFSR_EDC, CHAFSR_EDC_msg },
{ JPAFSR_ETP, JPAFSR_ETP_msg },
{ CHAFSR_WDC, CHAFSR_WDC_msg },
{ CHAFSR_CPC, CHAFSR_CPC_msg },
{ CHAFSR_TO, CHAFSR_TO_msg },
{ CHAFSR_BERR, CHAFSR_BERR_msg },
{ JPAFSR_UMS, JPAFSR_UMS_msg },
{ JPAFSR_RUE, JPAFSR_RUE_msg },
{ JPAFSR_RCE, JPAFSR_RCE_msg },
{ JPAFSR_BP, JPAFSR_BP_msg },
{ JPAFSR_WBP, JPAFSR_WBP_msg },
{ JPAFSR_FRC, JPAFSR_FRC_msg },
{ JPAFSR_FRU, JPAFSR_FRU_msg },
/* These two do not update the AFAR. */
{ CHAFSR_IVU, CHAFSR_IVU_msg },
{ 0, NULL },
};
static struct afsr_error_table *cheetah_error_table;
static unsigned long cheetah_afsr_errors;
struct cheetah_err_info *cheetah_error_log;
static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
{
struct cheetah_err_info *p;
int cpu = smp_processor_id();
if (!cheetah_error_log)
return NULL;
p = cheetah_error_log + (cpu * 2);
if ((afsr & CHAFSR_TL1) != 0UL)
p++;
return p;
}
extern unsigned int tl0_icpe[], tl1_icpe[];
extern unsigned int tl0_dcpe[], tl1_dcpe[];
extern unsigned int tl0_fecc[], tl1_fecc[];
extern unsigned int tl0_cee[], tl1_cee[];
extern unsigned int tl0_iae[], tl1_iae[];
extern unsigned int tl0_dae[], tl1_dae[];
extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
void __init cheetah_ecache_flush_init(void)
{
unsigned long largest_size, smallest_linesize, order, ver;
int i, sz;
/* Scan all cpu device tree nodes, note two values:
* 1) largest E-cache size
* 2) smallest E-cache line size
*/
largest_size = 0UL;
smallest_linesize = ~0UL;
for (i = 0; i < NR_CPUS; i++) {
unsigned long val;
val = cpu_data(i).ecache_size;
if (!val)
continue;
if (val > largest_size)
largest_size = val;
val = cpu_data(i).ecache_line_size;
if (val < smallest_linesize)
smallest_linesize = val;
}
if (largest_size == 0UL || smallest_linesize == ~0UL) {
prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
"parameters.\n");
prom_halt();
}
ecache_flush_size = (2 * largest_size);
ecache_flush_linesize = smallest_linesize;
ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
if (ecache_flush_physbase == ~0UL) {
prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
"contiguous physical memory.\n",
ecache_flush_size);
prom_halt();
}
/* Now allocate error trap reporting scoreboard. */
sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
for (order = 0; order < MAX_ORDER; order++) {
if ((PAGE_SIZE << order) >= sz)
break;
}
cheetah_error_log = (struct cheetah_err_info *)
__get_free_pages(GFP_KERNEL, order);
if (!cheetah_error_log) {
prom_printf("cheetah_ecache_flush_init: Failed to allocate "
"error logging scoreboard (%d bytes).\n", sz);
prom_halt();
}
memset(cheetah_error_log, 0, PAGE_SIZE << order);
/* Mark all AFSRs as invalid so that the trap handler will
* log new new information there.
*/
for (i = 0; i < 2 * NR_CPUS; i++)
cheetah_error_log[i].afsr = CHAFSR_INVALID;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32) == __JALAPENO_ID ||
(ver >> 32) == __SERRANO_ID) {
cheetah_error_table = &__jalapeno_error_table[0];
cheetah_afsr_errors = JPAFSR_ERRORS;
} else if ((ver >> 32) == 0x003e0015) {
cheetah_error_table = &__cheetah_plus_error_table[0];
cheetah_afsr_errors = CHPAFSR_ERRORS;
} else {
cheetah_error_table = &__cheetah_error_table[0];
cheetah_afsr_errors = CHAFSR_ERRORS;
}
/* Now patch trap tables. */
memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
if (tlb_type == cheetah_plus) {
memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
}
flushi(PAGE_OFFSET);
}
static void cheetah_flush_ecache(void)
{
unsigned long flush_base = ecache_flush_physbase;
unsigned long flush_linesize = ecache_flush_linesize;
unsigned long flush_size = ecache_flush_size;
__asm__ __volatile__("1: subcc %0, %4, %0\n\t"
" bne,pt %%xcc, 1b\n\t"
" ldxa [%2 + %0] %3, %%g0\n\t"
: "=&r" (flush_size)
: "0" (flush_size), "r" (flush_base),
"i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
}
static void cheetah_flush_ecache_line(unsigned long physaddr)
{
unsigned long alias;
physaddr &= ~(8UL - 1UL);
physaddr = (ecache_flush_physbase +
(physaddr & ((ecache_flush_size>>1UL) - 1UL)));
alias = physaddr + (ecache_flush_size >> 1UL);
__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
"ldxa [%1] %2, %%g0\n\t"
"membar #Sync"
: /* no outputs */
: "r" (physaddr), "r" (alias),
"i" (ASI_PHYS_USE_EC));
}
/* Unfortunately, the diagnostic access to the I-cache tags we need to
* use to clear the thing interferes with I-cache coherency transactions.
*
* So we must only flush the I-cache when it is disabled.
*/
static void __cheetah_flush_icache(void)
{
unsigned int icache_size, icache_line_size;
unsigned long addr;
icache_size = local_cpu_data().icache_size;
icache_line_size = local_cpu_data().icache_line_size;
/* Clear the valid bits in all the tags. */
for (addr = 0; addr < icache_size; addr += icache_line_size) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (addr | (2 << 3)),
"i" (ASI_IC_TAG));
}
}
static void cheetah_flush_icache(void)
{
unsigned long dcu_save;
/* Save current DCU, disable I-cache. */
__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
"or %0, %2, %%g1\n\t"
"stxa %%g1, [%%g0] %1\n\t"
"membar #Sync"
: "=r" (dcu_save)
: "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
: "g1");
__cheetah_flush_icache();
/* Restore DCU register */
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
}
static void cheetah_flush_dcache(void)
{
unsigned int dcache_size, dcache_line_size;
unsigned long addr;
dcache_size = local_cpu_data().dcache_size;
dcache_line_size = local_cpu_data().dcache_line_size;
for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (addr), "i" (ASI_DCACHE_TAG));
}
}
/* In order to make the even parity correct we must do two things.
* First, we clear DC_data_parity and set DC_utag to an appropriate value.
* Next, we clear out all 32-bytes of data for that line. Data of
* all-zero + tag parity value of zero == correct parity.
*/
static void cheetah_plus_zap_dcache_parity(void)
{
unsigned int dcache_size, dcache_line_size;
unsigned long addr;
dcache_size = local_cpu_data().dcache_size;
dcache_line_size = local_cpu_data().dcache_line_size;
for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
unsigned long tag = (addr >> 14);
unsigned long line;
__asm__ __volatile__("membar #Sync\n\t"
"stxa %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (tag), "r" (addr),
"i" (ASI_DCACHE_UTAG));
for (line = addr; line < addr + dcache_line_size; line += 8)
__asm__ __volatile__("membar #Sync\n\t"
"stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (line),
"i" (ASI_DCACHE_DATA));
}
}
/* Conversion tables used to frob Cheetah AFSR syndrome values into
* something palatable to the memory controller driver get_unumber
* routine.
*/
#define MT0 137
#define MT1 138
#define MT2 139
#define NONE 254
#define MTC0 140
#define MTC1 141
#define MTC2 142
#define MTC3 143
#define C0 128
#define C1 129
#define C2 130
#define C3 131
#define C4 132
#define C5 133
#define C6 134
#define C7 135
#define C8 136
#define M2 144
#define M3 145
#define M4 146
#define M 147
static unsigned char cheetah_ecc_syntab[] = {
/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
};
static unsigned char cheetah_mtag_syntab[] = {
NONE, MTC0,
MTC1, NONE,
MTC2, NONE,
NONE, MT0,
MTC3, NONE,
NONE, MT1,
NONE, MT2,
NONE, NONE
};
/* Return the highest priority error conditon mentioned. */
static inline unsigned long cheetah_get_hipri(unsigned long afsr)
{
unsigned long tmp = 0;
int i;
for (i = 0; cheetah_error_table[i].mask; i++) {
if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
return tmp;
}
return tmp;
}
static const char *cheetah_get_string(unsigned long bit)
{
int i;
for (i = 0; cheetah_error_table[i].mask; i++) {
if ((bit & cheetah_error_table[i].mask) != 0UL)
return cheetah_error_table[i].name;
}
return "???";
}
static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
unsigned long afsr, unsigned long afar, int recoverable)
{
unsigned long hipri;
char unum[256];
printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
afsr, afar,
(afsr & CHAFSR_TL1) ? 1 : 0);
printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
printk("%s" "ERROR(%d): ",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
printk("TPC<%pS>\n", (void *) regs->tpc);
printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
(afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
(afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
(afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
(afsr & CHAFSR_PRIV) ? ", Privileged" : "");
hipri = cheetah_get_hipri(afsr);
printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
hipri, cheetah_get_string(hipri));
/* Try to get unumber if relevant. */
#define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \
CHAFSR_CPC | CHAFSR_CPU | \
CHAFSR_UE | CHAFSR_CE | \
CHAFSR_EDC | CHAFSR_EDU | \
CHAFSR_UCC | CHAFSR_UCU | \
CHAFSR_WDU | CHAFSR_WDC)
#define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU)
if (afsr & ESYND_ERRORS) {
int syndrome;
int ret;
syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
syndrome = cheetah_ecc_syntab[syndrome];
ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
if (ret != -1)
printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
(recoverable ? KERN_WARNING : KERN_CRIT),
smp_processor_id(), unum);
} else if (afsr & MSYND_ERRORS) {
int syndrome;
int ret;
syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
syndrome = cheetah_mtag_syntab[syndrome];
ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
if (ret != -1)
printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
(recoverable ? KERN_WARNING : KERN_CRIT),
smp_processor_id(), unum);
}
/* Now dump the cache snapshots. */
printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
(int) info->dcache_index,
info->dcache_tag,
info->dcache_utag,
info->dcache_stag);
printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
info->dcache_data[0],
info->dcache_data[1],
info->dcache_data[2],
info->dcache_data[3]);
printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
"u[%016llx] l[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
(int) info->icache_index,
info->icache_tag,
info->icache_utag,
info->icache_stag,
info->icache_upper,
info->icache_lower);
printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
info->icache_data[0],
info->icache_data[1],
info->icache_data[2],
info->icache_data[3]);
printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
info->icache_data[4],
info->icache_data[5],
info->icache_data[6],
info->icache_data[7]);
printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
(int) info->ecache_index, info->ecache_tag);
printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
(recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
info->ecache_data[0],
info->ecache_data[1],
info->ecache_data[2],
info->ecache_data[3]);
afsr = (afsr & ~hipri) & cheetah_afsr_errors;
while (afsr != 0UL) {
unsigned long bit = cheetah_get_hipri(afsr);
printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
(recoverable ? KERN_WARNING : KERN_CRIT),
bit, cheetah_get_string(bit));
afsr &= ~bit;
}
if (!recoverable)
printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
}
static int cheetah_recheck_errors(struct cheetah_err_info *logp)
{
unsigned long afsr, afar;
int ret = 0;
__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
: "=r" (afsr)
: "i" (ASI_AFSR));
if ((afsr & cheetah_afsr_errors) != 0) {
if (logp != NULL) {
__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
: "=r" (afar)
: "i" (ASI_AFAR));
logp->afsr = afsr;
logp->afar = afar;
}
ret = 1;
}
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
"membar #Sync\n\t"
: : "r" (afsr), "i" (ASI_AFSR));
return ret;
}
void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
struct cheetah_err_info local_snapshot, *p;
int recoverable;
/* Flush E-cache */
cheetah_flush_ecache();
p = cheetah_get_error_log(afsr);
if (!p) {
prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
afsr, afar);
prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
prom_halt();
}
/* Grab snapshot of logged error. */
memcpy(&local_snapshot, p, sizeof(local_snapshot));
/* If the current trap snapshot does not match what the
* trap handler passed along into our args, big trouble.
* In such a case, mark the local copy as invalid.
*
* Else, it matches and we mark the afsr in the non-local
* copy as invalid so we may log new error traps there.
*/
if (p->afsr != afsr || p->afar != afar)
local_snapshot.afsr = CHAFSR_INVALID;
else
p->afsr = CHAFSR_INVALID;
cheetah_flush_icache();
cheetah_flush_dcache();
/* Re-enable I-cache/D-cache */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_DCU_CONTROL_REG),
"i" (DCU_DC | DCU_IC)
: "g1");
/* Re-enable error reporting */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_ESTATE_ERROR_EN),
"i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
: "g1");
/* Decide if we can continue after handling this trap and
* logging the error.
*/
recoverable = 1;
if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
recoverable = 0;
/* Re-check AFSR/AFAR. What we are looking for here is whether a new
* error was logged while we had error reporting traps disabled.
*/
if (cheetah_recheck_errors(&local_snapshot)) {
unsigned long new_afsr = local_snapshot.afsr;
/* If we got a new asynchronous error, die... */
if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
CHAFSR_WDU | CHAFSR_CPU |
CHAFSR_IVU | CHAFSR_UE |
CHAFSR_BERR | CHAFSR_TO))
recoverable = 0;
}
/* Log errors. */
cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
if (!recoverable)
panic("Irrecoverable Fast-ECC error trap.\n");
/* Flush E-cache to kick the error trap handlers out. */
cheetah_flush_ecache();
}
/* Try to fix a correctable error by pushing the line out from
* the E-cache. Recheck error reporting registers to see if the
* problem is intermittent.
*/
static int cheetah_fix_ce(unsigned long physaddr)
{
unsigned long orig_estate;
unsigned long alias1, alias2;
int ret;
/* Make sure correctable error traps are disabled. */
__asm__ __volatile__("ldxa [%%g0] %2, %0\n\t"
"andn %0, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %2\n\t"
"membar #Sync"
: "=&r" (orig_estate)
: "i" (ESTATE_ERROR_CEEN),
"i" (ASI_ESTATE_ERROR_EN)
: "g1");
/* We calculate alias addresses that will force the
* cache line in question out of the E-cache. Then
* we bring it back in with an atomic instruction so
* that we get it in some modified/exclusive state,
* then we displace it again to try and get proper ECC
* pushed back into the system.
*/
physaddr &= ~(8UL - 1UL);
alias1 = (ecache_flush_physbase +
(physaddr & ((ecache_flush_size >> 1) - 1)));
alias2 = alias1 + (ecache_flush_size >> 1);
__asm__ __volatile__("ldxa [%0] %3, %%g0\n\t"
"ldxa [%1] %3, %%g0\n\t"
"casxa [%2] %3, %%g0, %%g0\n\t"
"ldxa [%0] %3, %%g0\n\t"
"ldxa [%1] %3, %%g0\n\t"
"membar #Sync"
: /* no outputs */
: "r" (alias1), "r" (alias2),
"r" (physaddr), "i" (ASI_PHYS_USE_EC));
/* Did that trigger another error? */
if (cheetah_recheck_errors(NULL)) {
/* Try one more time. */
__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
"membar #Sync"
: : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
if (cheetah_recheck_errors(NULL))
ret = 2;
else
ret = 1;
} else {
/* No new error, intermittent problem. */
ret = 0;
}
/* Restore error enables. */
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
"membar #Sync"
: : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
return ret;
}
/* Return non-zero if PADDR is a valid physical memory address. */
static int cheetah_check_main_memory(unsigned long paddr)
{
unsigned long vaddr = PAGE_OFFSET + paddr;
if (vaddr > (unsigned long) high_memory)
return 0;
return kern_addr_valid(vaddr);
}
void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
struct cheetah_err_info local_snapshot, *p;
int recoverable, is_memory;
p = cheetah_get_error_log(afsr);
if (!p) {
prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
afsr, afar);
prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
prom_halt();
}
/* Grab snapshot of logged error. */
memcpy(&local_snapshot, p, sizeof(local_snapshot));
/* If the current trap snapshot does not match what the
* trap handler passed along into our args, big trouble.
* In such a case, mark the local copy as invalid.
*
* Else, it matches and we mark the afsr in the non-local
* copy as invalid so we may log new error traps there.
*/
if (p->afsr != afsr || p->afar != afar)
local_snapshot.afsr = CHAFSR_INVALID;
else
p->afsr = CHAFSR_INVALID;
is_memory = cheetah_check_main_memory(afar);
if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
/* XXX Might want to log the results of this operation
* XXX somewhere... -DaveM
*/
cheetah_fix_ce(afar);
}
{
int flush_all, flush_line;
flush_all = flush_line = 0;
if ((afsr & CHAFSR_EDC) != 0UL) {
if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
flush_line = 1;
else
flush_all = 1;
} else if ((afsr & CHAFSR_CPC) != 0UL) {
if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
flush_line = 1;
else
flush_all = 1;
}
/* Trap handler only disabled I-cache, flush it. */
cheetah_flush_icache();
/* Re-enable I-cache */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_DCU_CONTROL_REG),
"i" (DCU_IC)
: "g1");
if (flush_all)
cheetah_flush_ecache();
else if (flush_line)
cheetah_flush_ecache_line(afar);
}
/* Re-enable error reporting */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_ESTATE_ERROR_EN),
"i" (ESTATE_ERROR_CEEN)
: "g1");
/* Decide if we can continue after handling this trap and
* logging the error.
*/
recoverable = 1;
if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
recoverable = 0;
/* Re-check AFSR/AFAR */
(void) cheetah_recheck_errors(&local_snapshot);
/* Log errors. */
cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
if (!recoverable)
panic("Irrecoverable Correctable-ECC error trap.\n");
}
void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
struct cheetah_err_info local_snapshot, *p;
int recoverable, is_memory;
#ifdef CONFIG_PCI
/* Check for the special PCI poke sequence. */
if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
cheetah_flush_icache();
cheetah_flush_dcache();
/* Re-enable I-cache/D-cache */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_DCU_CONTROL_REG),
"i" (DCU_DC | DCU_IC)
: "g1");
/* Re-enable error reporting */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_ESTATE_ERROR_EN),
"i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
: "g1");
(void) cheetah_recheck_errors(NULL);
pci_poke_faulted = 1;
regs->tpc += 4;
regs->tnpc = regs->tpc + 4;
return;
}
#endif
p = cheetah_get_error_log(afsr);
if (!p) {
prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
afsr, afar);
prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
prom_halt();
}
/* Grab snapshot of logged error. */
memcpy(&local_snapshot, p, sizeof(local_snapshot));
/* If the current trap snapshot does not match what the
* trap handler passed along into our args, big trouble.
* In such a case, mark the local copy as invalid.
*
* Else, it matches and we mark the afsr in the non-local
* copy as invalid so we may log new error traps there.
*/
if (p->afsr != afsr || p->afar != afar)
local_snapshot.afsr = CHAFSR_INVALID;
else
p->afsr = CHAFSR_INVALID;
is_memory = cheetah_check_main_memory(afar);
{
int flush_all, flush_line;
flush_all = flush_line = 0;
if ((afsr & CHAFSR_EDU) != 0UL) {
if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
flush_line = 1;
else
flush_all = 1;
} else if ((afsr & CHAFSR_BERR) != 0UL) {
if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
flush_line = 1;
else
flush_all = 1;
}
cheetah_flush_icache();
cheetah_flush_dcache();
/* Re-enable I/D caches */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_DCU_CONTROL_REG),
"i" (DCU_IC | DCU_DC)
: "g1");
if (flush_all)
cheetah_flush_ecache();
else if (flush_line)
cheetah_flush_ecache_line(afar);
}
/* Re-enable error reporting */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_ESTATE_ERROR_EN),
"i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
: "g1");
/* Decide if we can continue after handling this trap and
* logging the error.
*/
recoverable = 1;
if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
recoverable = 0;
/* Re-check AFSR/AFAR. What we are looking for here is whether a new
* error was logged while we had error reporting traps disabled.
*/
if (cheetah_recheck_errors(&local_snapshot)) {
unsigned long new_afsr = local_snapshot.afsr;
/* If we got a new asynchronous error, die... */
if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
CHAFSR_WDU | CHAFSR_CPU |
CHAFSR_IVU | CHAFSR_UE |
CHAFSR_BERR | CHAFSR_TO))
recoverable = 0;
}
/* Log errors. */
cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
/* "Recoverable" here means we try to yank the page from ever
* being newly used again. This depends upon a few things:
* 1) Must be main memory, and AFAR must be valid.
* 2) If we trapped from user, OK.
* 3) Else, if we trapped from kernel we must find exception
* table entry (ie. we have to have been accessing user
* space).
*
* If AFAR is not in main memory, or we trapped from kernel
* and cannot find an exception table entry, it is unacceptable
* to try and continue.
*/
if (recoverable && is_memory) {
if ((regs->tstate & TSTATE_PRIV) == 0UL) {
/* OK, usermode access. */
recoverable = 1;
} else {
const struct exception_table_entry *entry;
entry = search_exception_tables(regs->tpc);
if (entry) {
/* OK, kernel access to userspace. */
recoverable = 1;
} else {
/* BAD, privileged state is corrupted. */
recoverable = 0;
}
if (recoverable) {
if (pfn_valid(afar >> PAGE_SHIFT))
get_page(pfn_to_page(afar >> PAGE_SHIFT));
else
recoverable = 0;
/* Only perform fixup if we still have a
* recoverable condition.
*/
if (recoverable) {
regs->tpc = entry->fixup;
regs->tnpc = regs->tpc + 4;
}
}
}
} else {
recoverable = 0;
}
if (!recoverable)
panic("Irrecoverable deferred error trap.\n");
}
/* Handle a D/I cache parity error trap. TYPE is encoded as:
*
* Bit0: 0=dcache,1=icache
* Bit1: 0=recoverable,1=unrecoverable
*
* The hardware has disabled both the I-cache and D-cache in
* the %dcr register.
*/
void cheetah_plus_parity_error(int type, struct pt_regs *regs)
{
if (type & 0x1)
__cheetah_flush_icache();
else
cheetah_plus_zap_dcache_parity();
cheetah_flush_dcache();
/* Re-enable I-cache/D-cache */
__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
"or %%g1, %1, %%g1\n\t"
"stxa %%g1, [%%g0] %0\n\t"
"membar #Sync"
: /* no outputs */
: "i" (ASI_DCU_CONTROL_REG),
"i" (DCU_DC | DCU_IC)
: "g1");
if (type & 0x2) {
printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
smp_processor_id(),
(type & 0x1) ? 'I' : 'D',
regs->tpc);
printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
panic("Irrecoverable Cheetah+ parity error.");
}
printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
smp_processor_id(),
(type & 0x1) ? 'I' : 'D',
regs->tpc);
printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
}
struct sun4v_error_entry {
/* Unique error handle */
/*0x00*/u64 err_handle;
/* %stick value at the time of the error */
/*0x08*/u64 err_stick;
/*0x10*/u8 reserved_1[3];
/* Error type */
/*0x13*/u8 err_type;
#define SUN4V_ERR_TYPE_UNDEFINED 0
#define SUN4V_ERR_TYPE_UNCORRECTED_RES 1
#define SUN4V_ERR_TYPE_PRECISE_NONRES 2
#define SUN4V_ERR_TYPE_DEFERRED_NONRES 3
#define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4
#define SUN4V_ERR_TYPE_DUMP_CORE 5
#define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6
#define SUN4V_ERR_TYPE_NUM 7
/* Error attributes */
/*0x14*/u32 err_attrs;
#define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001
#define SUN4V_ERR_ATTRS_MEMORY 0x00000002
#define SUN4V_ERR_ATTRS_PIO 0x00000004
#define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008
#define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010
#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020
#define SUN4V_ERR_ATTRS_ASR 0x00000040
#define SUN4V_ERR_ATTRS_ASI 0x00000080
#define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100
#define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600
#define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9
#define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000
#define SUN4V_ERR_ATTRS_MODE_SHFT 24
#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000
#define SUN4V_ERR_SPSTATE_FAULTED 0
#define SUN4V_ERR_SPSTATE_AVAILABLE 1
#define SUN4V_ERR_SPSTATE_NOT_PRESENT 2
#define SUN4V_ERR_MODE_USER 1
#define SUN4V_ERR_MODE_PRIV 2
/* Real address of the memory region or PIO transaction */
/*0x18*/u64 err_raddr;
/* Size of the operation triggering the error, in bytes */
/*0x20*/u32 err_size;
/* ID of the CPU */
/*0x24*/u16 err_cpu;
/* Grace periof for shutdown, in seconds */
/*0x26*/u16 err_secs;
/* Value of the %asi register */
/*0x28*/u8 err_asi;
/*0x29*/u8 reserved_2;
/* Value of the ASR register number */
/*0x2a*/u16 err_asr;
#define SUN4V_ERR_ASR_VALID 0x8000
/*0x2c*/u32 reserved_3;
/*0x30*/u64 reserved_4;
/*0x38*/u64 reserved_5;
};
static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
static const char *sun4v_err_type_to_str(u8 type)
{
static const char *types[SUN4V_ERR_TYPE_NUM] = {
"undefined",
"uncorrected resumable",
"precise nonresumable",
"deferred nonresumable",
"shutdown request",
"dump core",
"SP state change",
};
if (type < SUN4V_ERR_TYPE_NUM)
return types[type];
return "unknown";
}
static void sun4v_emit_err_attr_strings(u32 attrs)
{
static const char *attr_names[] = {
"processor",
"memory",
"PIO",
"int-registers",
"fpu-registers",
"shutdown-request",
"ASR",
"ASI",
"priv-reg",
};
static const char *sp_states[] = {
"sp-faulted",
"sp-available",
"sp-not-present",
"sp-state-reserved",
};
static const char *modes[] = {
"mode-reserved0",
"user",
"priv",
"mode-reserved1",
};
u32 sp_state, mode;
int i;
for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
if (attrs & (1U << i)) {
const char *s = attr_names[i];
pr_cont("%s ", s);
}
}
sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
SUN4V_ERR_ATTRS_SPSTATE_SHFT);
pr_cont("%s ", sp_states[sp_state]);
mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
SUN4V_ERR_ATTRS_MODE_SHFT);
pr_cont("%s ", modes[mode]);
if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
pr_cont("res-queue-full ");
}
/* When the report contains a real-address of "-1" it means that the
* hardware did not provide the address. So we compute the effective
* address of the load or store instruction at regs->tpc and report
* that. Usually when this happens it's a PIO and in such a case we
* are using physical addresses with bypass ASIs anyways, so what we
* report here is exactly what we want.
*/
static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
{
unsigned int insn;
u64 addr;
if (!(regs->tstate & TSTATE_PRIV))
return;
insn = *(unsigned int *) regs->tpc;
addr = compute_effective_address(regs, insn, 0);
printk("%s: insn effective address [0x%016llx]\n",
pfx, addr);
}
static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
int cpu, const char *pfx, atomic_t *ocnt)
{
u64 *raw_ptr = (u64 *) ent;
u32 attrs;
int cnt;
printk("%s: Reporting on cpu %d\n", pfx, cpu);
printk("%s: TPC [0x%016lx] <%pS>\n",
pfx, regs->tpc, (void *) regs->tpc);
printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
printk("%s: %016llx:%016llx:%016llx:%016llx]\n",
pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
pfx, ent->err_handle, ent->err_stick);
printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
attrs = ent->err_attrs;
printk("%s: attrs [0x%08x] < ", pfx, attrs);
sun4v_emit_err_attr_strings(attrs);
pr_cont(">\n");
/* Various fields in the error report are only valid if
* certain attribute bits are set.
*/
if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
SUN4V_ERR_ATTRS_PIO |
SUN4V_ERR_ATTRS_ASI)) {
printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
if (ent->err_raddr == ~(u64)0)
sun4v_report_real_raddr(pfx, regs);
}
if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
printk("%s: size [0x%x]\n", pfx, ent->err_size);
if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
SUN4V_ERR_ATTRS_INT_REGISTERS |
SUN4V_ERR_ATTRS_FPU_REGISTERS |
SUN4V_ERR_ATTRS_PRIV_REG))
printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
if (attrs & SUN4V_ERR_ATTRS_ASI)
printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
SUN4V_ERR_ATTRS_FPU_REGISTERS |
SUN4V_ERR_ATTRS_PRIV_REG)) &&
(ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
printk("%s: reg [0x%04x]\n",
pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
show_regs(regs);
if ((cnt = atomic_read(ocnt)) != 0) {
atomic_set(ocnt, 0);
wmb();
printk("%s: Queue overflowed %d times.\n",
pfx, cnt);
}
}
/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
* Log the event and clear the first word of the entry.
*/
void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
{
enum ctx_state prev_state = exception_enter();
struct sun4v_error_entry *ent, local_copy;
struct trap_per_cpu *tb;
unsigned long paddr;
int cpu;
cpu = get_cpu();
tb = &trap_block[cpu];
paddr = tb->resum_kernel_buf_pa + offset;
ent = __va(paddr);
memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
/* We have a local copy now, so release the entry. */
ent->err_handle = 0;
wmb();
put_cpu();
if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
/* We should really take the seconds field of
* the error report and use it for the shutdown
* invocation, but for now do the same thing we
* do for a DS shutdown request.
*/
pr_info("Shutdown request, %u seconds...\n",
local_copy.err_secs);
orderly_poweroff(true);
goto out;
}
sun4v_log_error(regs, &local_copy, cpu,
KERN_ERR "RESUMABLE ERROR",
&sun4v_resum_oflow_cnt);
out:
exception_exit(prev_state);
}
/* If we try to printk() we'll probably make matters worse, by trying
* to retake locks this cpu already holds or causing more errors. So
* just bump a counter, and we'll report these counter bumps above.
*/
void sun4v_resum_overflow(struct pt_regs *regs)
{
atomic_inc(&sun4v_resum_oflow_cnt);
}
/* Given a set of registers, get the virtual addressi that was being accessed
* by the faulting instructions at tpc.
*/
static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
{
unsigned int insn;
if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
return compute_effective_address(regs, insn,
(insn >> 25) & 0x1f);
}
return 0;
}
/* Attempt to handle non-resumable errors generated from userspace.
* Returns true if the signal was handled, false otherwise.
*/
bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
struct sun4v_error_entry *ent) {
unsigned int attrs = ent->err_attrs;
if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
unsigned long addr = ent->err_raddr;
siginfo_t info;
if (addr == ~(u64)0) {
/* This seems highly unlikely to ever occur */
pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
} else {
unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
PAGE_SIZE);
/* Break the unfortunate news. */
pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
addr);
pr_emerg("SUN4V NON-RECOVERABLE ERROR: Claiming %lu ages.\n",
page_cnt);
while (page_cnt-- > 0) {
if (pfn_valid(addr >> PAGE_SHIFT))
get_page(pfn_to_page(addr >> PAGE_SHIFT));
addr += PAGE_SIZE;
}
}
info.si_signo = SIGKILL;
info.si_errno = 0;
info.si_trapno = 0;
force_sig_info(info.si_signo, &info, current);
return true;
}
if (attrs & SUN4V_ERR_ATTRS_PIO) {
siginfo_t info;
info.si_signo = SIGBUS;
info.si_code = BUS_ADRERR;
info.si_addr = (void __user *)sun4v_get_vaddr(regs);
force_sig_info(info.si_signo, &info, current);
return true;
}
/* Default to doing nothing */
return false;
}
/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
* Log the event, clear the first word of the entry, and die.
*/
void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
{
struct sun4v_error_entry *ent, local_copy;
struct trap_per_cpu *tb;
unsigned long paddr;
int cpu;
cpu = get_cpu();
tb = &trap_block[cpu];
paddr = tb->nonresum_kernel_buf_pa + offset;
ent = __va(paddr);
memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
/* We have a local copy now, so release the entry. */
ent->err_handle = 0;
wmb();
put_cpu();
if (!(regs->tstate & TSTATE_PRIV) &&
sun4v_nonresum_error_user_handled(regs, &local_copy)) {
/* DON'T PANIC: This userspace error was handled. */
return;
}
#ifdef CONFIG_PCI
/* Check for the special PCI poke sequence. */
if (pci_poke_in_progress && pci_poke_cpu == cpu) {
pci_poke_faulted = 1;
regs->tpc += 4;
regs->tnpc = regs->tpc + 4;
return;
}
#endif
sun4v_log_error(regs, &local_copy, cpu,
KERN_EMERG "NON-RESUMABLE ERROR",
&sun4v_nonresum_oflow_cnt);
panic("Non-resumable error.");
}
/* If we try to printk() we'll probably make matters worse, by trying
* to retake locks this cpu already holds or causing more errors. So
* just bump a counter, and we'll report these counter bumps above.
*/
void sun4v_nonresum_overflow(struct pt_regs *regs)
{
/* XXX Actually even this can make not that much sense. Perhaps
* XXX we should just pull the plug and panic directly from here?
*/
atomic_inc(&sun4v_nonresum_oflow_cnt);
}
static void sun4v_tlb_error(struct pt_regs *regs)
{
die_if_kernel("TLB/TSB error", regs);
}
unsigned long sun4v_err_itlb_vaddr;
unsigned long sun4v_err_itlb_ctx;
unsigned long sun4v_err_itlb_pte;
unsigned long sun4v_err_itlb_error;
void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
regs->tpc, tl);
printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
(void *) regs->u_regs[UREG_I7]);
printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
"pte[%lx] error[%lx]\n",
sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
sun4v_err_itlb_pte, sun4v_err_itlb_error);
sun4v_tlb_error(regs);
}
unsigned long sun4v_err_dtlb_vaddr;
unsigned long sun4v_err_dtlb_ctx;
unsigned long sun4v_err_dtlb_pte;
unsigned long sun4v_err_dtlb_error;
void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
{
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
regs->tpc, tl);
printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
(void *) regs->u_regs[UREG_I7]);
printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
"pte[%lx] error[%lx]\n",
sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
sun4v_tlb_error(regs);
}
void hypervisor_tlbop_error(unsigned long err, unsigned long op)
{
printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
err, op);
}
void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
{
printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
err, op);
}
static void do_fpe_common(struct pt_regs *regs)
{
if (regs->tstate & TSTATE_PRIV) {
regs->tpc = regs->tnpc;
regs->tnpc += 4;
} else {
unsigned long fsr = current_thread_info()->xfsr[0];
siginfo_t info;
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = 0;
info.si_code = __SI_FAULT;
if ((fsr & 0x1c000) == (1 << 14)) {
if (fsr & 0x10)
info.si_code = FPE_FLTINV;
else if (fsr & 0x08)
info.si_code = FPE_FLTOVF;
else if (fsr & 0x04)
info.si_code = FPE_FLTUND;
else if (fsr & 0x02)
info.si_code = FPE_FLTDIV;
else if (fsr & 0x01)
info.si_code = FPE_FLTRES;
}
force_sig_info(SIGFPE, &info, current);
}
}
void do_fpieee(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
0, 0x24, SIGFPE) == NOTIFY_STOP)
goto out;
do_fpe_common(regs);
out:
exception_exit(prev_state);
}
void do_fpother(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
struct fpustate *f = FPUSTATE;
int ret = 0;
if (notify_die(DIE_TRAP, "fpu exception other", regs,
0, 0x25, SIGFPE) == NOTIFY_STOP)
goto out;
switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
case (2 << 14): /* unfinished_FPop */
case (3 << 14): /* unimplemented_FPop */
ret = do_mathemu(regs, f, false);
break;
}
if (ret)
goto out;
do_fpe_common(regs);
out:
exception_exit(prev_state);
}
void do_tof(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
siginfo_t info;
if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
0, 0x26, SIGEMT) == NOTIFY_STOP)
goto out;
if (regs->tstate & TSTATE_PRIV)
die_if_kernel("Penguin overflow trap from kernel mode", regs);
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGEMT;
info.si_errno = 0;
info.si_code = EMT_TAGOVF;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = 0;
force_sig_info(SIGEMT, &info, current);
out:
exception_exit(prev_state);
}
void do_div0(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
siginfo_t info;
if (notify_die(DIE_TRAP, "integer division by zero", regs,
0, 0x28, SIGFPE) == NOTIFY_STOP)
goto out;
if (regs->tstate & TSTATE_PRIV)
die_if_kernel("TL0: Kernel divide by zero.", regs);
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = FPE_INTDIV;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = 0;
force_sig_info(SIGFPE, &info, current);
out:
exception_exit(prev_state);
}
static void instruction_dump(unsigned int *pc)
{
int i;
if ((((unsigned long) pc) & 3))
return;
printk("Instruction DUMP:");
for (i = -3; i < 6; i++)
printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
printk("\n");
}
static void user_instruction_dump(unsigned int __user *pc)
{
int i;
unsigned int buf[9];
if ((((unsigned long) pc) & 3))
return;
if (copy_from_user(buf, pc - 3, sizeof(buf)))
return;
printk("Instruction DUMP:");
for (i = 0; i < 9; i++)
printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
printk("\n");
}
void show_stack(struct task_struct *tsk, unsigned long *_ksp)
{
unsigned long fp, ksp;
struct thread_info *tp;
int count = 0;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
int graph = 0;
#endif
ksp = (unsigned long) _ksp;
if (!tsk)
tsk = current;
tp = task_thread_info(tsk);
if (ksp == 0UL) {
if (tsk == current)
asm("mov %%fp, %0" : "=r" (ksp));
else
ksp = tp->ksp;
}
if (tp == current_thread_info())
flushw_all();
fp = ksp + STACK_BIAS;
printk("Call Trace:\n");
do {
struct sparc_stackf *sf;
struct pt_regs *regs;
unsigned long pc;
if (!kstack_valid(tp, fp))
break;
sf = (struct sparc_stackf *) fp;
regs = (struct pt_regs *) (sf + 1);
if (kstack_is_trap_frame(tp, regs)) {
if (!(regs->tstate & TSTATE_PRIV))
break;
pc = regs->tpc;
fp = regs->u_regs[UREG_I6] + STACK_BIAS;
} else {
pc = sf->callers_pc;
fp = (unsigned long)sf->fp + STACK_BIAS;
}
printk(" [%016lx] %pS\n", pc, (void *) pc);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
if ((pc + 8UL) == (unsigned long) &return_to_handler) {
int index = tsk->curr_ret_stack;
if (tsk->ret_stack && index >= graph) {
pc = tsk->ret_stack[index - graph].ret;
printk(" [%016lx] %pS\n", pc, (void *) pc);
graph++;
}
}
#endif
} while (++count < 16);
}
static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
{
unsigned long fp = rw->ins[6];
if (!fp)
return NULL;
return (struct reg_window *) (fp + STACK_BIAS);
}
void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
{
static int die_counter;
int count = 0;
/* Amuse the user. */
printk(
" \\|/ ____ \\|/\n"
" \"@'/ .. \\`@\"\n"
" /_| \\__/ |_\\\n"
" \\__U_/\n");
printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
__asm__ __volatile__("flushw");
show_regs(regs);
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
if (regs->tstate & TSTATE_PRIV) {
struct thread_info *tp = current_thread_info();
struct reg_window *rw = (struct reg_window *)
(regs->u_regs[UREG_FP] + STACK_BIAS);
/* Stop the back trace when we hit userland or we
* find some badly aligned kernel stack.
*/
while (rw &&
count++ < 30 &&
kstack_valid(tp, (unsigned long) rw)) {
printk("Caller[%016lx]: %pS\n", rw->ins[7],
(void *) rw->ins[7]);
rw = kernel_stack_up(rw);
}
instruction_dump ((unsigned int *) regs->tpc);
} else {
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
user_instruction_dump ((unsigned int __user *) regs->tpc);
}
if (panic_on_oops)
panic("Fatal exception");
if (regs->tstate & TSTATE_PRIV)
do_exit(SIGKILL);
do_exit(SIGSEGV);
}
EXPORT_SYMBOL(die_if_kernel);
#define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
#define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19))
void do_illegal_instruction(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
unsigned long pc = regs->tpc;
unsigned long tstate = regs->tstate;
u32 insn;
siginfo_t info;
if (notify_die(DIE_TRAP, "illegal instruction", regs,
0, 0x10, SIGILL) == NOTIFY_STOP)
goto out;
if (tstate & TSTATE_PRIV)
die_if_kernel("Kernel illegal instruction", regs);
if (test_thread_flag(TIF_32BIT))
pc = (u32)pc;
if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
if (handle_popc(insn, regs))
goto out;
} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
if (handle_ldf_stq(insn, regs))
goto out;
} else if (tlb_type == hypervisor) {
if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
if (!vis_emul(regs, insn))
goto out;
} else {
struct fpustate *f = FPUSTATE;
/* On UltraSPARC T2 and later, FPU insns which
* are not implemented in HW signal an illegal
* instruction trap and do not set the FP Trap
* Trap in the %fsr to unimplemented_FPop.
*/
if (do_mathemu(regs, f, true))
goto out;
}
}
}
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = ILL_ILLOPC;
info.si_addr = (void __user *)pc;
info.si_trapno = 0;
force_sig_info(SIGILL, &info, current);
out:
exception_exit(prev_state);
}
void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
{
enum ctx_state prev_state = exception_enter();
siginfo_t info;
if (notify_die(DIE_TRAP, "memory address unaligned", regs,
0, 0x34, SIGSEGV) == NOTIFY_STOP)
goto out;
if (regs->tstate & TSTATE_PRIV) {
kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
goto out;
}
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRALN;
info.si_addr = (void __user *)sfar;
info.si_trapno = 0;
force_sig_info(SIGBUS, &info, current);
out:
exception_exit(prev_state);
}
void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
siginfo_t info;
if (notify_die(DIE_TRAP, "memory address unaligned", regs,
0, 0x34, SIGSEGV) == NOTIFY_STOP)
return;
if (regs->tstate & TSTATE_PRIV) {
kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
return;
}
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRALN;
info.si_addr = (void __user *) addr;
info.si_trapno = 0;
force_sig_info(SIGBUS, &info, current);
}
void do_privop(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
siginfo_t info;
if (notify_die(DIE_TRAP, "privileged operation", regs,
0, 0x11, SIGILL) == NOTIFY_STOP)
goto out;
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = ILL_PRVOPC;
info.si_addr = (void __user *)regs->tpc;
info.si_trapno = 0;
force_sig_info(SIGILL, &info, current);
out:
exception_exit(prev_state);
}
void do_privact(struct pt_regs *regs)
{
do_privop(regs);
}
/* Trap level 1 stuff or other traps we should never see... */
void do_cee(struct pt_regs *regs)
{
exception_enter();
die_if_kernel("TL0: Cache Error Exception", regs);
}
void do_div0_tl1(struct pt_regs *regs)
{
exception_enter();
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: DIV0 Exception", regs);
}
void do_fpieee_tl1(struct pt_regs *regs)
{
exception_enter();
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: FPU IEEE Exception", regs);
}
void do_fpother_tl1(struct pt_regs *regs)
{
exception_enter();
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: FPU Other Exception", regs);
}
void do_ill_tl1(struct pt_regs *regs)
{
exception_enter();
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: Illegal Instruction Exception", regs);
}
void do_irq_tl1(struct pt_regs *regs)
{
exception_enter();
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: IRQ Exception", regs);
}
void do_lddfmna_tl1(struct pt_regs *regs)
{
exception_enter();
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: LDDF Exception", regs);
}
void do_stdfmna_tl1(struct pt_regs *regs)
{
exception_enter();
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: STDF Exception", regs);
}
void do_paw(struct pt_regs *regs)
{
exception_enter();
die_if_kernel("TL0: Phys Watchpoint Exception", regs);
}
void do_paw_tl1(struct pt_regs *regs)
{
exception_enter();
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: Phys Watchpoint Exception", regs);
}
void do_vaw(struct pt_regs *regs)
{
exception_enter();
die_if_kernel("TL0: Virt Watchpoint Exception", regs);
}
void do_vaw_tl1(struct pt_regs *regs)
{
exception_enter();
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: Virt Watchpoint Exception", regs);
}
void do_tof_tl1(struct pt_regs *regs)
{
exception_enter();
dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
die_if_kernel("TL1: Tag Overflow Exception", regs);
}
void do_getpsr(struct pt_regs *regs)
{
regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
regs->tpc = regs->tnpc;
regs->tnpc += 4;
if (test_thread_flag(TIF_32BIT)) {
regs->tpc &= 0xffffffff;
regs->tnpc &= 0xffffffff;
}
}
u64 cpu_mondo_counter[NR_CPUS] = {0};
struct trap_per_cpu trap_block[NR_CPUS];
EXPORT_SYMBOL(trap_block);
/* This can get invoked before sched_init() so play it super safe
* and use hard_smp_processor_id().
*/
void notrace init_cur_cpu_trap(struct thread_info *t)
{
int cpu = hard_smp_processor_id();
struct trap_per_cpu *p = &trap_block[cpu];
p->thread = t;
p->pgd_paddr = 0;
}
extern void thread_info_offsets_are_bolixed_dave(void);
extern void trap_per_cpu_offsets_are_bolixed_dave(void);
extern void tsb_config_offsets_are_bolixed_dave(void);
/* Only invoked on boot processor. */
void __init trap_init(void)
{
/* Compile time sanity check. */
BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
TI_FLAGS != offsetof(struct thread_info, flags) ||
TI_CPU != offsetof(struct thread_info, cpu) ||
TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
TI_KSP != offsetof(struct thread_info, ksp) ||
TI_FAULT_ADDR != offsetof(struct thread_info,
fault_address) ||
TI_KREGS != offsetof(struct thread_info, kregs) ||
TI_UTRAPS != offsetof(struct thread_info, utraps) ||
TI_REG_WINDOW != offsetof(struct thread_info,
reg_window) ||
TI_RWIN_SPTRS != offsetof(struct thread_info,
rwbuf_stkptrs) ||
TI_GSR != offsetof(struct thread_info, gsr) ||
TI_XFSR != offsetof(struct thread_info, xfsr) ||
TI_PRE_COUNT != offsetof(struct thread_info,
preempt_count) ||
TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
TI_CURRENT_DS != offsetof(struct thread_info,
current_ds) ||
TI_KUNA_REGS != offsetof(struct thread_info,
kern_una_regs) ||
TI_KUNA_INSN != offsetof(struct thread_info,
kern_una_insn) ||
TI_FPREGS != offsetof(struct thread_info, fpregs) ||
(TI_FPREGS & (64 - 1)));
BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
thread) ||
(TRAP_PER_CPU_PGD_PADDR !=
offsetof(struct trap_per_cpu, pgd_paddr)) ||
(TRAP_PER_CPU_CPU_MONDO_PA !=
offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
(TRAP_PER_CPU_DEV_MONDO_PA !=
offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
(TRAP_PER_CPU_RESUM_MONDO_PA !=
offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
(TRAP_PER_CPU_RESUM_KBUF_PA !=
offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
(TRAP_PER_CPU_NONRESUM_MONDO_PA !=
offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
(TRAP_PER_CPU_NONRESUM_KBUF_PA !=
offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
(TRAP_PER_CPU_FAULT_INFO !=
offsetof(struct trap_per_cpu, fault_info)) ||
(TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
(TRAP_PER_CPU_CPU_LIST_PA !=
offsetof(struct trap_per_cpu, cpu_list_pa)) ||
(TRAP_PER_CPU_TSB_HUGE !=
offsetof(struct trap_per_cpu, tsb_huge)) ||
(TRAP_PER_CPU_TSB_HUGE_TEMP !=
offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
(TRAP_PER_CPU_IRQ_WORKLIST_PA !=
offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
(TRAP_PER_CPU_CPU_MONDO_QMASK !=
offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
(TRAP_PER_CPU_DEV_MONDO_QMASK !=
offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
(TRAP_PER_CPU_RESUM_QMASK !=
offsetof(struct trap_per_cpu, resum_qmask)) ||
(TRAP_PER_CPU_NONRESUM_QMASK !=
offsetof(struct trap_per_cpu, nonresum_qmask)) ||
(TRAP_PER_CPU_PER_CPU_BASE !=
offsetof(struct trap_per_cpu, __per_cpu_base)));
BUILD_BUG_ON((TSB_CONFIG_TSB !=
offsetof(struct tsb_config, tsb)) ||
(TSB_CONFIG_RSS_LIMIT !=
offsetof(struct tsb_config, tsb_rss_limit)) ||
(TSB_CONFIG_NENTRIES !=
offsetof(struct tsb_config, tsb_nentries)) ||
(TSB_CONFIG_REG_VAL !=
offsetof(struct tsb_config, tsb_reg_val)) ||
(TSB_CONFIG_MAP_VADDR !=
offsetof(struct tsb_config, tsb_map_vaddr)) ||
(TSB_CONFIG_MAP_PTE !=
offsetof(struct tsb_config, tsb_map_pte)));
/* Attach to the address space of init_task. On SMP we
* do this in smp.c:smp_callin for other cpus.
*/
mmgrab(&init_mm);
current->active_mm = &init_mm;
}