linux/kernel/rcu/rcuscale.c
Uladzislau Rezki (Sony) 686fe1bf6b rcuscale: Add kfree_rcu() single-argument scale test
The single-argument variant of kfree_rcu() is currently not
tested by any member of the rcutoture test suite.  This
commit therefore adds rcuscale code to test it.  This
testing is controlled by two new boolean module parameters,
kfree_rcu_test_single and kfree_rcu_test_double.  If one
is set and the other not, only the corresponding variant
is tested, otherwise both are tested, with the variant to
be tested determined randomly on each invocation.

Both of these module parameters are initialized to false,
so setting either to true will test only that variant.

Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-03-08 14:18:07 -08:00

900 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Read-Copy Update module-based scalability-test facility
*
* Copyright (C) IBM Corporation, 2015
*
* Authors: Paul E. McKenney <paulmck@linux.ibm.com>
*/
#define pr_fmt(fmt) fmt
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <uapi/linux/sched/types.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/freezer.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/stat.h>
#include <linux/srcu.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <linux/torture.h>
#include <linux/vmalloc.h>
#include <linux/rcupdate_trace.h>
#include "rcu.h"
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
#define SCALE_FLAG "-scale:"
#define SCALEOUT_STRING(s) \
pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s)
#define VERBOSE_SCALEOUT_STRING(s) \
do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0)
#define VERBOSE_SCALEOUT_ERRSTRING(s) \
do { if (verbose) pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s); } while (0)
/*
* The intended use cases for the nreaders and nwriters module parameters
* are as follows:
*
* 1. Specify only the nr_cpus kernel boot parameter. This will
* set both nreaders and nwriters to the value specified by
* nr_cpus for a mixed reader/writer test.
*
* 2. Specify the nr_cpus kernel boot parameter, but set
* rcuscale.nreaders to zero. This will set nwriters to the
* value specified by nr_cpus for an update-only test.
*
* 3. Specify the nr_cpus kernel boot parameter, but set
* rcuscale.nwriters to zero. This will set nreaders to the
* value specified by nr_cpus for a read-only test.
*
* Various other use cases may of course be specified.
*
* Note that this test's readers are intended only as a test load for
* the writers. The reader scalability statistics will be overly
* pessimistic due to the per-critical-section interrupt disabling,
* test-end checks, and the pair of calls through pointers.
*/
#ifdef MODULE
# define RCUSCALE_SHUTDOWN 0
#else
# define RCUSCALE_SHUTDOWN 1
#endif
torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives");
torture_param(int, gp_async_max, 1000, "Max # outstanding waits per reader");
torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
torture_param(int, holdoff, 10, "Holdoff time before test start (s)");
torture_param(int, nreaders, -1, "Number of RCU reader threads");
torture_param(int, nwriters, -1, "Number of RCU updater threads");
torture_param(bool, shutdown, RCUSCALE_SHUTDOWN,
"Shutdown at end of scalability tests.");
torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?");
torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate.");
static char *scale_type = "rcu";
module_param(scale_type, charp, 0444);
MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)");
static int nrealreaders;
static int nrealwriters;
static struct task_struct **writer_tasks;
static struct task_struct **reader_tasks;
static struct task_struct *shutdown_task;
static u64 **writer_durations;
static int *writer_n_durations;
static atomic_t n_rcu_scale_reader_started;
static atomic_t n_rcu_scale_writer_started;
static atomic_t n_rcu_scale_writer_finished;
static wait_queue_head_t shutdown_wq;
static u64 t_rcu_scale_writer_started;
static u64 t_rcu_scale_writer_finished;
static unsigned long b_rcu_gp_test_started;
static unsigned long b_rcu_gp_test_finished;
static DEFINE_PER_CPU(atomic_t, n_async_inflight);
#define MAX_MEAS 10000
#define MIN_MEAS 100
/*
* Operations vector for selecting different types of tests.
*/
struct rcu_scale_ops {
int ptype;
void (*init)(void);
void (*cleanup)(void);
int (*readlock)(void);
void (*readunlock)(int idx);
unsigned long (*get_gp_seq)(void);
unsigned long (*gp_diff)(unsigned long new, unsigned long old);
unsigned long (*exp_completed)(void);
void (*async)(struct rcu_head *head, rcu_callback_t func);
void (*gp_barrier)(void);
void (*sync)(void);
void (*exp_sync)(void);
const char *name;
};
static struct rcu_scale_ops *cur_ops;
/*
* Definitions for rcu scalability testing.
*/
static int rcu_scale_read_lock(void) __acquires(RCU)
{
rcu_read_lock();
return 0;
}
static void rcu_scale_read_unlock(int idx) __releases(RCU)
{
rcu_read_unlock();
}
static unsigned long __maybe_unused rcu_no_completed(void)
{
return 0;
}
static void rcu_sync_scale_init(void)
{
}
static struct rcu_scale_ops rcu_ops = {
.ptype = RCU_FLAVOR,
.init = rcu_sync_scale_init,
.readlock = rcu_scale_read_lock,
.readunlock = rcu_scale_read_unlock,
.get_gp_seq = rcu_get_gp_seq,
.gp_diff = rcu_seq_diff,
.exp_completed = rcu_exp_batches_completed,
.async = call_rcu,
.gp_barrier = rcu_barrier,
.sync = synchronize_rcu,
.exp_sync = synchronize_rcu_expedited,
.name = "rcu"
};
/*
* Definitions for srcu scalability testing.
*/
DEFINE_STATIC_SRCU(srcu_ctl_scale);
static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale;
static int srcu_scale_read_lock(void) __acquires(srcu_ctlp)
{
return srcu_read_lock(srcu_ctlp);
}
static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp)
{
srcu_read_unlock(srcu_ctlp, idx);
}
static unsigned long srcu_scale_completed(void)
{
return srcu_batches_completed(srcu_ctlp);
}
static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func)
{
call_srcu(srcu_ctlp, head, func);
}
static void srcu_rcu_barrier(void)
{
srcu_barrier(srcu_ctlp);
}
static void srcu_scale_synchronize(void)
{
synchronize_srcu(srcu_ctlp);
}
static void srcu_scale_synchronize_expedited(void)
{
synchronize_srcu_expedited(srcu_ctlp);
}
static struct rcu_scale_ops srcu_ops = {
.ptype = SRCU_FLAVOR,
.init = rcu_sync_scale_init,
.readlock = srcu_scale_read_lock,
.readunlock = srcu_scale_read_unlock,
.get_gp_seq = srcu_scale_completed,
.gp_diff = rcu_seq_diff,
.exp_completed = srcu_scale_completed,
.async = srcu_call_rcu,
.gp_barrier = srcu_rcu_barrier,
.sync = srcu_scale_synchronize,
.exp_sync = srcu_scale_synchronize_expedited,
.name = "srcu"
};
static struct srcu_struct srcud;
static void srcu_sync_scale_init(void)
{
srcu_ctlp = &srcud;
init_srcu_struct(srcu_ctlp);
}
static void srcu_sync_scale_cleanup(void)
{
cleanup_srcu_struct(srcu_ctlp);
}
static struct rcu_scale_ops srcud_ops = {
.ptype = SRCU_FLAVOR,
.init = srcu_sync_scale_init,
.cleanup = srcu_sync_scale_cleanup,
.readlock = srcu_scale_read_lock,
.readunlock = srcu_scale_read_unlock,
.get_gp_seq = srcu_scale_completed,
.gp_diff = rcu_seq_diff,
.exp_completed = srcu_scale_completed,
.async = srcu_call_rcu,
.gp_barrier = srcu_rcu_barrier,
.sync = srcu_scale_synchronize,
.exp_sync = srcu_scale_synchronize_expedited,
.name = "srcud"
};
/*
* Definitions for RCU-tasks scalability testing.
*/
static int tasks_scale_read_lock(void)
{
return 0;
}
static void tasks_scale_read_unlock(int idx)
{
}
static struct rcu_scale_ops tasks_ops = {
.ptype = RCU_TASKS_FLAVOR,
.init = rcu_sync_scale_init,
.readlock = tasks_scale_read_lock,
.readunlock = tasks_scale_read_unlock,
.get_gp_seq = rcu_no_completed,
.gp_diff = rcu_seq_diff,
.async = call_rcu_tasks,
.gp_barrier = rcu_barrier_tasks,
.sync = synchronize_rcu_tasks,
.exp_sync = synchronize_rcu_tasks,
.name = "tasks"
};
/*
* Definitions for RCU-tasks-trace scalability testing.
*/
static int tasks_trace_scale_read_lock(void)
{
rcu_read_lock_trace();
return 0;
}
static void tasks_trace_scale_read_unlock(int idx)
{
rcu_read_unlock_trace();
}
static struct rcu_scale_ops tasks_tracing_ops = {
.ptype = RCU_TASKS_FLAVOR,
.init = rcu_sync_scale_init,
.readlock = tasks_trace_scale_read_lock,
.readunlock = tasks_trace_scale_read_unlock,
.get_gp_seq = rcu_no_completed,
.gp_diff = rcu_seq_diff,
.async = call_rcu_tasks_trace,
.gp_barrier = rcu_barrier_tasks_trace,
.sync = synchronize_rcu_tasks_trace,
.exp_sync = synchronize_rcu_tasks_trace,
.name = "tasks-tracing"
};
static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old)
{
if (!cur_ops->gp_diff)
return new - old;
return cur_ops->gp_diff(new, old);
}
/*
* If scalability tests complete, wait for shutdown to commence.
*/
static void rcu_scale_wait_shutdown(void)
{
cond_resched_tasks_rcu_qs();
if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters)
return;
while (!torture_must_stop())
schedule_timeout_uninterruptible(1);
}
/*
* RCU scalability reader kthread. Repeatedly does empty RCU read-side
* critical section, minimizing update-side interference. However, the
* point of this test is not to evaluate reader scalability, but instead
* to serve as a test load for update-side scalability testing.
*/
static int
rcu_scale_reader(void *arg)
{
unsigned long flags;
int idx;
long me = (long)arg;
VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started");
set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
set_user_nice(current, MAX_NICE);
atomic_inc(&n_rcu_scale_reader_started);
do {
local_irq_save(flags);
idx = cur_ops->readlock();
cur_ops->readunlock(idx);
local_irq_restore(flags);
rcu_scale_wait_shutdown();
} while (!torture_must_stop());
torture_kthread_stopping("rcu_scale_reader");
return 0;
}
/*
* Callback function for asynchronous grace periods from rcu_scale_writer().
*/
static void rcu_scale_async_cb(struct rcu_head *rhp)
{
atomic_dec(this_cpu_ptr(&n_async_inflight));
kfree(rhp);
}
/*
* RCU scale writer kthread. Repeatedly does a grace period.
*/
static int
rcu_scale_writer(void *arg)
{
int i = 0;
int i_max;
long me = (long)arg;
struct rcu_head *rhp = NULL;
bool started = false, done = false, alldone = false;
u64 t;
u64 *wdp;
u64 *wdpp = writer_durations[me];
VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started");
WARN_ON(!wdpp);
set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
sched_set_fifo_low(current);
if (holdoff)
schedule_timeout_uninterruptible(holdoff * HZ);
/*
* Wait until rcu_end_inkernel_boot() is called for normal GP tests
* so that RCU is not always expedited for normal GP tests.
* The system_state test is approximate, but works well in practice.
*/
while (!gp_exp && system_state != SYSTEM_RUNNING)
schedule_timeout_uninterruptible(1);
t = ktime_get_mono_fast_ns();
if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) {
t_rcu_scale_writer_started = t;
if (gp_exp) {
b_rcu_gp_test_started =
cur_ops->exp_completed() / 2;
} else {
b_rcu_gp_test_started = cur_ops->get_gp_seq();
}
}
do {
if (writer_holdoff)
udelay(writer_holdoff);
wdp = &wdpp[i];
*wdp = ktime_get_mono_fast_ns();
if (gp_async) {
retry:
if (!rhp)
rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) {
atomic_inc(this_cpu_ptr(&n_async_inflight));
cur_ops->async(rhp, rcu_scale_async_cb);
rhp = NULL;
} else if (!kthread_should_stop()) {
cur_ops->gp_barrier();
goto retry;
} else {
kfree(rhp); /* Because we are stopping. */
}
} else if (gp_exp) {
cur_ops->exp_sync();
} else {
cur_ops->sync();
}
t = ktime_get_mono_fast_ns();
*wdp = t - *wdp;
i_max = i;
if (!started &&
atomic_read(&n_rcu_scale_writer_started) >= nrealwriters)
started = true;
if (!done && i >= MIN_MEAS) {
done = true;
sched_set_normal(current, 0);
pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n",
scale_type, SCALE_FLAG, me, MIN_MEAS);
if (atomic_inc_return(&n_rcu_scale_writer_finished) >=
nrealwriters) {
schedule_timeout_interruptible(10);
rcu_ftrace_dump(DUMP_ALL);
SCALEOUT_STRING("Test complete");
t_rcu_scale_writer_finished = t;
if (gp_exp) {
b_rcu_gp_test_finished =
cur_ops->exp_completed() / 2;
} else {
b_rcu_gp_test_finished =
cur_ops->get_gp_seq();
}
if (shutdown) {
smp_mb(); /* Assign before wake. */
wake_up(&shutdown_wq);
}
}
}
if (done && !alldone &&
atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters)
alldone = true;
if (started && !alldone && i < MAX_MEAS - 1)
i++;
rcu_scale_wait_shutdown();
} while (!torture_must_stop());
if (gp_async) {
cur_ops->gp_barrier();
}
writer_n_durations[me] = i_max;
torture_kthread_stopping("rcu_scale_writer");
return 0;
}
static void
rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag)
{
pr_alert("%s" SCALE_FLAG
"--- %s: nreaders=%d nwriters=%d verbose=%d shutdown=%d\n",
scale_type, tag, nrealreaders, nrealwriters, verbose, shutdown);
}
static void
rcu_scale_cleanup(void)
{
int i;
int j;
int ngps = 0;
u64 *wdp;
u64 *wdpp;
/*
* Would like warning at start, but everything is expedited
* during the mid-boot phase, so have to wait till the end.
*/
if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp)
VERBOSE_SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!");
if (rcu_gp_is_normal() && gp_exp)
VERBOSE_SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!");
if (gp_exp && gp_async)
VERBOSE_SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!");
if (torture_cleanup_begin())
return;
if (!cur_ops) {
torture_cleanup_end();
return;
}
if (reader_tasks) {
for (i = 0; i < nrealreaders; i++)
torture_stop_kthread(rcu_scale_reader,
reader_tasks[i]);
kfree(reader_tasks);
}
if (writer_tasks) {
for (i = 0; i < nrealwriters; i++) {
torture_stop_kthread(rcu_scale_writer,
writer_tasks[i]);
if (!writer_n_durations)
continue;
j = writer_n_durations[i];
pr_alert("%s%s writer %d gps: %d\n",
scale_type, SCALE_FLAG, i, j);
ngps += j;
}
pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n",
scale_type, SCALE_FLAG,
t_rcu_scale_writer_started, t_rcu_scale_writer_finished,
t_rcu_scale_writer_finished -
t_rcu_scale_writer_started,
ngps,
rcuscale_seq_diff(b_rcu_gp_test_finished,
b_rcu_gp_test_started));
for (i = 0; i < nrealwriters; i++) {
if (!writer_durations)
break;
if (!writer_n_durations)
continue;
wdpp = writer_durations[i];
if (!wdpp)
continue;
for (j = 0; j <= writer_n_durations[i]; j++) {
wdp = &wdpp[j];
pr_alert("%s%s %4d writer-duration: %5d %llu\n",
scale_type, SCALE_FLAG,
i, j, *wdp);
if (j % 100 == 0)
schedule_timeout_uninterruptible(1);
}
kfree(writer_durations[i]);
}
kfree(writer_tasks);
kfree(writer_durations);
kfree(writer_n_durations);
}
/* Do torture-type-specific cleanup operations. */
if (cur_ops->cleanup != NULL)
cur_ops->cleanup();
torture_cleanup_end();
}
/*
* Return the number if non-negative. If -1, the number of CPUs.
* If less than -1, that much less than the number of CPUs, but
* at least one.
*/
static int compute_real(int n)
{
int nr;
if (n >= 0) {
nr = n;
} else {
nr = num_online_cpus() + 1 + n;
if (nr <= 0)
nr = 1;
}
return nr;
}
/*
* RCU scalability shutdown kthread. Just waits to be awakened, then shuts
* down system.
*/
static int
rcu_scale_shutdown(void *arg)
{
wait_event(shutdown_wq,
atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters);
smp_mb(); /* Wake before output. */
rcu_scale_cleanup();
kernel_power_off();
return -EINVAL;
}
/*
* kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number
* of iterations and measure total time and number of GP for all iterations to complete.
*/
torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu().");
torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration.");
torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees.");
torture_param(bool, kfree_rcu_test_double, false, "Do we run a kfree_rcu() double-argument scale test?");
torture_param(bool, kfree_rcu_test_single, false, "Do we run a kfree_rcu() single-argument scale test?");
static struct task_struct **kfree_reader_tasks;
static int kfree_nrealthreads;
static atomic_t n_kfree_scale_thread_started;
static atomic_t n_kfree_scale_thread_ended;
struct kfree_obj {
char kfree_obj[8];
struct rcu_head rh;
};
static int
kfree_scale_thread(void *arg)
{
int i, loop = 0;
long me = (long)arg;
struct kfree_obj *alloc_ptr;
u64 start_time, end_time;
long long mem_begin, mem_during = 0;
bool kfree_rcu_test_both;
DEFINE_TORTURE_RANDOM(tr);
VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started");
set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
set_user_nice(current, MAX_NICE);
kfree_rcu_test_both = (kfree_rcu_test_single == kfree_rcu_test_double);
start_time = ktime_get_mono_fast_ns();
if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) {
if (gp_exp)
b_rcu_gp_test_started = cur_ops->exp_completed() / 2;
else
b_rcu_gp_test_started = cur_ops->get_gp_seq();
}
do {
if (!mem_during) {
mem_during = mem_begin = si_mem_available();
} else if (loop % (kfree_loops / 4) == 0) {
mem_during = (mem_during + si_mem_available()) / 2;
}
for (i = 0; i < kfree_alloc_num; i++) {
alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL);
if (!alloc_ptr)
return -ENOMEM;
// By default kfree_rcu_test_single and kfree_rcu_test_double are
// initialized to false. If both have the same value (false or true)
// both are randomly tested, otherwise only the one with value true
// is tested.
if ((kfree_rcu_test_single && !kfree_rcu_test_double) ||
(kfree_rcu_test_both && torture_random(&tr) & 0x800))
kfree_rcu(alloc_ptr);
else
kfree_rcu(alloc_ptr, rh);
}
cond_resched();
} while (!torture_must_stop() && ++loop < kfree_loops);
if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) {
end_time = ktime_get_mono_fast_ns();
if (gp_exp)
b_rcu_gp_test_finished = cur_ops->exp_completed() / 2;
else
b_rcu_gp_test_finished = cur_ops->get_gp_seq();
pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n",
(unsigned long long)(end_time - start_time), kfree_loops,
rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started),
(mem_begin - mem_during) >> (20 - PAGE_SHIFT));
if (shutdown) {
smp_mb(); /* Assign before wake. */
wake_up(&shutdown_wq);
}
}
torture_kthread_stopping("kfree_scale_thread");
return 0;
}
static void
kfree_scale_cleanup(void)
{
int i;
if (torture_cleanup_begin())
return;
if (kfree_reader_tasks) {
for (i = 0; i < kfree_nrealthreads; i++)
torture_stop_kthread(kfree_scale_thread,
kfree_reader_tasks[i]);
kfree(kfree_reader_tasks);
}
torture_cleanup_end();
}
/*
* shutdown kthread. Just waits to be awakened, then shuts down system.
*/
static int
kfree_scale_shutdown(void *arg)
{
wait_event(shutdown_wq,
atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads);
smp_mb(); /* Wake before output. */
kfree_scale_cleanup();
kernel_power_off();
return -EINVAL;
}
static int __init
kfree_scale_init(void)
{
long i;
int firsterr = 0;
kfree_nrealthreads = compute_real(kfree_nthreads);
/* Start up the kthreads. */
if (shutdown) {
init_waitqueue_head(&shutdown_wq);
firsterr = torture_create_kthread(kfree_scale_shutdown, NULL,
shutdown_task);
if (firsterr)
goto unwind;
schedule_timeout_uninterruptible(1);
}
pr_alert("kfree object size=%zu\n", kfree_mult * sizeof(struct kfree_obj));
kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
GFP_KERNEL);
if (kfree_reader_tasks == NULL) {
firsterr = -ENOMEM;
goto unwind;
}
for (i = 0; i < kfree_nrealthreads; i++) {
firsterr = torture_create_kthread(kfree_scale_thread, (void *)i,
kfree_reader_tasks[i]);
if (firsterr)
goto unwind;
}
while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads)
schedule_timeout_uninterruptible(1);
torture_init_end();
return 0;
unwind:
torture_init_end();
kfree_scale_cleanup();
return firsterr;
}
static int __init
rcu_scale_init(void)
{
long i;
int firsterr = 0;
static struct rcu_scale_ops *scale_ops[] = {
&rcu_ops, &srcu_ops, &srcud_ops, &tasks_ops, &tasks_tracing_ops
};
if (!torture_init_begin(scale_type, verbose))
return -EBUSY;
/* Process args and announce that the scalability'er is on the job. */
for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
cur_ops = scale_ops[i];
if (strcmp(scale_type, cur_ops->name) == 0)
break;
}
if (i == ARRAY_SIZE(scale_ops)) {
pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
pr_alert("rcu-scale types:");
for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
pr_cont(" %s", scale_ops[i]->name);
pr_cont("\n");
firsterr = -EINVAL;
cur_ops = NULL;
goto unwind;
}
if (cur_ops->init)
cur_ops->init();
if (kfree_rcu_test)
return kfree_scale_init();
nrealwriters = compute_real(nwriters);
nrealreaders = compute_real(nreaders);
atomic_set(&n_rcu_scale_reader_started, 0);
atomic_set(&n_rcu_scale_writer_started, 0);
atomic_set(&n_rcu_scale_writer_finished, 0);
rcu_scale_print_module_parms(cur_ops, "Start of test");
/* Start up the kthreads. */
if (shutdown) {
init_waitqueue_head(&shutdown_wq);
firsterr = torture_create_kthread(rcu_scale_shutdown, NULL,
shutdown_task);
if (firsterr)
goto unwind;
schedule_timeout_uninterruptible(1);
}
reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
GFP_KERNEL);
if (reader_tasks == NULL) {
VERBOSE_SCALEOUT_ERRSTRING("out of memory");
firsterr = -ENOMEM;
goto unwind;
}
for (i = 0; i < nrealreaders; i++) {
firsterr = torture_create_kthread(rcu_scale_reader, (void *)i,
reader_tasks[i]);
if (firsterr)
goto unwind;
}
while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders)
schedule_timeout_uninterruptible(1);
writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]),
GFP_KERNEL);
writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations),
GFP_KERNEL);
writer_n_durations =
kcalloc(nrealwriters, sizeof(*writer_n_durations),
GFP_KERNEL);
if (!writer_tasks || !writer_durations || !writer_n_durations) {
VERBOSE_SCALEOUT_ERRSTRING("out of memory");
firsterr = -ENOMEM;
goto unwind;
}
for (i = 0; i < nrealwriters; i++) {
writer_durations[i] =
kcalloc(MAX_MEAS, sizeof(*writer_durations[i]),
GFP_KERNEL);
if (!writer_durations[i]) {
firsterr = -ENOMEM;
goto unwind;
}
firsterr = torture_create_kthread(rcu_scale_writer, (void *)i,
writer_tasks[i]);
if (firsterr)
goto unwind;
}
torture_init_end();
return 0;
unwind:
torture_init_end();
rcu_scale_cleanup();
if (shutdown) {
WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
kernel_power_off();
}
return firsterr;
}
module_init(rcu_scale_init);
module_exit(rcu_scale_cleanup);