mirror of
https://github.com/torvalds/linux.git
synced 2024-11-15 00:21:59 +00:00
f50246e2e2
Moving event parsing specific tests into separated file: util/parse-events-test.c Also changing the code a bit to ease running separate tests. Signed-off-by: Jiri Olsa <jolsa@redhat.com> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1337584373-2741-2-git-send-email-jolsa@redhat.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
1234 lines
29 KiB
C
1234 lines
29 KiB
C
/*
|
|
* builtin-test.c
|
|
*
|
|
* Builtin regression testing command: ever growing number of sanity tests
|
|
*/
|
|
#include "builtin.h"
|
|
|
|
#include "util/cache.h"
|
|
#include "util/debug.h"
|
|
#include "util/debugfs.h"
|
|
#include "util/evlist.h"
|
|
#include "util/parse-options.h"
|
|
#include "util/parse-events.h"
|
|
#include "util/symbol.h"
|
|
#include "util/thread_map.h"
|
|
#include "util/pmu.h"
|
|
#include "../../include/linux/hw_breakpoint.h"
|
|
|
|
#include <sys/mman.h>
|
|
|
|
static int vmlinux_matches_kallsyms_filter(struct map *map __used, struct symbol *sym)
|
|
{
|
|
bool *visited = symbol__priv(sym);
|
|
*visited = true;
|
|
return 0;
|
|
}
|
|
|
|
static int test__vmlinux_matches_kallsyms(void)
|
|
{
|
|
int err = -1;
|
|
struct rb_node *nd;
|
|
struct symbol *sym;
|
|
struct map *kallsyms_map, *vmlinux_map;
|
|
struct machine kallsyms, vmlinux;
|
|
enum map_type type = MAP__FUNCTION;
|
|
long page_size = sysconf(_SC_PAGE_SIZE);
|
|
struct ref_reloc_sym ref_reloc_sym = { .name = "_stext", };
|
|
|
|
/*
|
|
* Step 1:
|
|
*
|
|
* Init the machines that will hold kernel, modules obtained from
|
|
* both vmlinux + .ko files and from /proc/kallsyms split by modules.
|
|
*/
|
|
machine__init(&kallsyms, "", HOST_KERNEL_ID);
|
|
machine__init(&vmlinux, "", HOST_KERNEL_ID);
|
|
|
|
/*
|
|
* Step 2:
|
|
*
|
|
* Create the kernel maps for kallsyms and the DSO where we will then
|
|
* load /proc/kallsyms. Also create the modules maps from /proc/modules
|
|
* and find the .ko files that match them in /lib/modules/`uname -r`/.
|
|
*/
|
|
if (machine__create_kernel_maps(&kallsyms) < 0) {
|
|
pr_debug("machine__create_kernel_maps ");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Step 3:
|
|
*
|
|
* Load and split /proc/kallsyms into multiple maps, one per module.
|
|
*/
|
|
if (machine__load_kallsyms(&kallsyms, "/proc/kallsyms", type, NULL) <= 0) {
|
|
pr_debug("dso__load_kallsyms ");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Step 4:
|
|
*
|
|
* kallsyms will be internally on demand sorted by name so that we can
|
|
* find the reference relocation * symbol, i.e. the symbol we will use
|
|
* to see if the running kernel was relocated by checking if it has the
|
|
* same value in the vmlinux file we load.
|
|
*/
|
|
kallsyms_map = machine__kernel_map(&kallsyms, type);
|
|
|
|
sym = map__find_symbol_by_name(kallsyms_map, ref_reloc_sym.name, NULL);
|
|
if (sym == NULL) {
|
|
pr_debug("dso__find_symbol_by_name ");
|
|
goto out;
|
|
}
|
|
|
|
ref_reloc_sym.addr = sym->start;
|
|
|
|
/*
|
|
* Step 5:
|
|
*
|
|
* Now repeat step 2, this time for the vmlinux file we'll auto-locate.
|
|
*/
|
|
if (machine__create_kernel_maps(&vmlinux) < 0) {
|
|
pr_debug("machine__create_kernel_maps ");
|
|
goto out;
|
|
}
|
|
|
|
vmlinux_map = machine__kernel_map(&vmlinux, type);
|
|
map__kmap(vmlinux_map)->ref_reloc_sym = &ref_reloc_sym;
|
|
|
|
/*
|
|
* Step 6:
|
|
*
|
|
* Locate a vmlinux file in the vmlinux path that has a buildid that
|
|
* matches the one of the running kernel.
|
|
*
|
|
* While doing that look if we find the ref reloc symbol, if we find it
|
|
* we'll have its ref_reloc_symbol.unrelocated_addr and then
|
|
* maps__reloc_vmlinux will notice and set proper ->[un]map_ip routines
|
|
* to fixup the symbols.
|
|
*/
|
|
if (machine__load_vmlinux_path(&vmlinux, type,
|
|
vmlinux_matches_kallsyms_filter) <= 0) {
|
|
pr_debug("machine__load_vmlinux_path ");
|
|
goto out;
|
|
}
|
|
|
|
err = 0;
|
|
/*
|
|
* Step 7:
|
|
*
|
|
* Now look at the symbols in the vmlinux DSO and check if we find all of them
|
|
* in the kallsyms dso. For the ones that are in both, check its names and
|
|
* end addresses too.
|
|
*/
|
|
for (nd = rb_first(&vmlinux_map->dso->symbols[type]); nd; nd = rb_next(nd)) {
|
|
struct symbol *pair, *first_pair;
|
|
bool backwards = true;
|
|
|
|
sym = rb_entry(nd, struct symbol, rb_node);
|
|
|
|
if (sym->start == sym->end)
|
|
continue;
|
|
|
|
first_pair = machine__find_kernel_symbol(&kallsyms, type, sym->start, NULL, NULL);
|
|
pair = first_pair;
|
|
|
|
if (pair && pair->start == sym->start) {
|
|
next_pair:
|
|
if (strcmp(sym->name, pair->name) == 0) {
|
|
/*
|
|
* kallsyms don't have the symbol end, so we
|
|
* set that by using the next symbol start - 1,
|
|
* in some cases we get this up to a page
|
|
* wrong, trace_kmalloc when I was developing
|
|
* this code was one such example, 2106 bytes
|
|
* off the real size. More than that and we
|
|
* _really_ have a problem.
|
|
*/
|
|
s64 skew = sym->end - pair->end;
|
|
if (llabs(skew) < page_size)
|
|
continue;
|
|
|
|
pr_debug("%#" PRIx64 ": diff end addr for %s v: %#" PRIx64 " k: %#" PRIx64 "\n",
|
|
sym->start, sym->name, sym->end, pair->end);
|
|
} else {
|
|
struct rb_node *nnd;
|
|
detour:
|
|
nnd = backwards ? rb_prev(&pair->rb_node) :
|
|
rb_next(&pair->rb_node);
|
|
if (nnd) {
|
|
struct symbol *next = rb_entry(nnd, struct symbol, rb_node);
|
|
|
|
if (next->start == sym->start) {
|
|
pair = next;
|
|
goto next_pair;
|
|
}
|
|
}
|
|
|
|
if (backwards) {
|
|
backwards = false;
|
|
pair = first_pair;
|
|
goto detour;
|
|
}
|
|
|
|
pr_debug("%#" PRIx64 ": diff name v: %s k: %s\n",
|
|
sym->start, sym->name, pair->name);
|
|
}
|
|
} else
|
|
pr_debug("%#" PRIx64 ": %s not on kallsyms\n", sym->start, sym->name);
|
|
|
|
err = -1;
|
|
}
|
|
|
|
if (!verbose)
|
|
goto out;
|
|
|
|
pr_info("Maps only in vmlinux:\n");
|
|
|
|
for (nd = rb_first(&vmlinux.kmaps.maps[type]); nd; nd = rb_next(nd)) {
|
|
struct map *pos = rb_entry(nd, struct map, rb_node), *pair;
|
|
/*
|
|
* If it is the kernel, kallsyms is always "[kernel.kallsyms]", while
|
|
* the kernel will have the path for the vmlinux file being used,
|
|
* so use the short name, less descriptive but the same ("[kernel]" in
|
|
* both cases.
|
|
*/
|
|
pair = map_groups__find_by_name(&kallsyms.kmaps, type,
|
|
(pos->dso->kernel ?
|
|
pos->dso->short_name :
|
|
pos->dso->name));
|
|
if (pair)
|
|
pair->priv = 1;
|
|
else
|
|
map__fprintf(pos, stderr);
|
|
}
|
|
|
|
pr_info("Maps in vmlinux with a different name in kallsyms:\n");
|
|
|
|
for (nd = rb_first(&vmlinux.kmaps.maps[type]); nd; nd = rb_next(nd)) {
|
|
struct map *pos = rb_entry(nd, struct map, rb_node), *pair;
|
|
|
|
pair = map_groups__find(&kallsyms.kmaps, type, pos->start);
|
|
if (pair == NULL || pair->priv)
|
|
continue;
|
|
|
|
if (pair->start == pos->start) {
|
|
pair->priv = 1;
|
|
pr_info(" %" PRIx64 "-%" PRIx64 " %" PRIx64 " %s in kallsyms as",
|
|
pos->start, pos->end, pos->pgoff, pos->dso->name);
|
|
if (pos->pgoff != pair->pgoff || pos->end != pair->end)
|
|
pr_info(": \n*%" PRIx64 "-%" PRIx64 " %" PRIx64 "",
|
|
pair->start, pair->end, pair->pgoff);
|
|
pr_info(" %s\n", pair->dso->name);
|
|
pair->priv = 1;
|
|
}
|
|
}
|
|
|
|
pr_info("Maps only in kallsyms:\n");
|
|
|
|
for (nd = rb_first(&kallsyms.kmaps.maps[type]);
|
|
nd; nd = rb_next(nd)) {
|
|
struct map *pos = rb_entry(nd, struct map, rb_node);
|
|
|
|
if (!pos->priv)
|
|
map__fprintf(pos, stderr);
|
|
}
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
#include "util/cpumap.h"
|
|
#include "util/evsel.h"
|
|
#include <sys/types.h>
|
|
|
|
static int trace_event__id(const char *evname)
|
|
{
|
|
char *filename;
|
|
int err = -1, fd;
|
|
|
|
if (asprintf(&filename,
|
|
"%s/syscalls/%s/id",
|
|
tracing_events_path, evname) < 0)
|
|
return -1;
|
|
|
|
fd = open(filename, O_RDONLY);
|
|
if (fd >= 0) {
|
|
char id[16];
|
|
if (read(fd, id, sizeof(id)) > 0)
|
|
err = atoi(id);
|
|
close(fd);
|
|
}
|
|
|
|
free(filename);
|
|
return err;
|
|
}
|
|
|
|
static int test__open_syscall_event(void)
|
|
{
|
|
int err = -1, fd;
|
|
struct thread_map *threads;
|
|
struct perf_evsel *evsel;
|
|
struct perf_event_attr attr;
|
|
unsigned int nr_open_calls = 111, i;
|
|
int id = trace_event__id("sys_enter_open");
|
|
|
|
if (id < 0) {
|
|
pr_debug("is debugfs mounted on /sys/kernel/debug?\n");
|
|
return -1;
|
|
}
|
|
|
|
threads = thread_map__new(-1, getpid(), UINT_MAX);
|
|
if (threads == NULL) {
|
|
pr_debug("thread_map__new\n");
|
|
return -1;
|
|
}
|
|
|
|
memset(&attr, 0, sizeof(attr));
|
|
attr.type = PERF_TYPE_TRACEPOINT;
|
|
attr.config = id;
|
|
evsel = perf_evsel__new(&attr, 0);
|
|
if (evsel == NULL) {
|
|
pr_debug("perf_evsel__new\n");
|
|
goto out_thread_map_delete;
|
|
}
|
|
|
|
if (perf_evsel__open_per_thread(evsel, threads, false, NULL) < 0) {
|
|
pr_debug("failed to open counter: %s, "
|
|
"tweak /proc/sys/kernel/perf_event_paranoid?\n",
|
|
strerror(errno));
|
|
goto out_evsel_delete;
|
|
}
|
|
|
|
for (i = 0; i < nr_open_calls; ++i) {
|
|
fd = open("/etc/passwd", O_RDONLY);
|
|
close(fd);
|
|
}
|
|
|
|
if (perf_evsel__read_on_cpu(evsel, 0, 0) < 0) {
|
|
pr_debug("perf_evsel__read_on_cpu\n");
|
|
goto out_close_fd;
|
|
}
|
|
|
|
if (evsel->counts->cpu[0].val != nr_open_calls) {
|
|
pr_debug("perf_evsel__read_on_cpu: expected to intercept %d calls, got %" PRIu64 "\n",
|
|
nr_open_calls, evsel->counts->cpu[0].val);
|
|
goto out_close_fd;
|
|
}
|
|
|
|
err = 0;
|
|
out_close_fd:
|
|
perf_evsel__close_fd(evsel, 1, threads->nr);
|
|
out_evsel_delete:
|
|
perf_evsel__delete(evsel);
|
|
out_thread_map_delete:
|
|
thread_map__delete(threads);
|
|
return err;
|
|
}
|
|
|
|
#include <sched.h>
|
|
|
|
static int test__open_syscall_event_on_all_cpus(void)
|
|
{
|
|
int err = -1, fd, cpu;
|
|
struct thread_map *threads;
|
|
struct cpu_map *cpus;
|
|
struct perf_evsel *evsel;
|
|
struct perf_event_attr attr;
|
|
unsigned int nr_open_calls = 111, i;
|
|
cpu_set_t cpu_set;
|
|
int id = trace_event__id("sys_enter_open");
|
|
|
|
if (id < 0) {
|
|
pr_debug("is debugfs mounted on /sys/kernel/debug?\n");
|
|
return -1;
|
|
}
|
|
|
|
threads = thread_map__new(-1, getpid(), UINT_MAX);
|
|
if (threads == NULL) {
|
|
pr_debug("thread_map__new\n");
|
|
return -1;
|
|
}
|
|
|
|
cpus = cpu_map__new(NULL);
|
|
if (cpus == NULL) {
|
|
pr_debug("cpu_map__new\n");
|
|
goto out_thread_map_delete;
|
|
}
|
|
|
|
|
|
CPU_ZERO(&cpu_set);
|
|
|
|
memset(&attr, 0, sizeof(attr));
|
|
attr.type = PERF_TYPE_TRACEPOINT;
|
|
attr.config = id;
|
|
evsel = perf_evsel__new(&attr, 0);
|
|
if (evsel == NULL) {
|
|
pr_debug("perf_evsel__new\n");
|
|
goto out_thread_map_delete;
|
|
}
|
|
|
|
if (perf_evsel__open(evsel, cpus, threads, false, NULL) < 0) {
|
|
pr_debug("failed to open counter: %s, "
|
|
"tweak /proc/sys/kernel/perf_event_paranoid?\n",
|
|
strerror(errno));
|
|
goto out_evsel_delete;
|
|
}
|
|
|
|
for (cpu = 0; cpu < cpus->nr; ++cpu) {
|
|
unsigned int ncalls = nr_open_calls + cpu;
|
|
/*
|
|
* XXX eventually lift this restriction in a way that
|
|
* keeps perf building on older glibc installations
|
|
* without CPU_ALLOC. 1024 cpus in 2010 still seems
|
|
* a reasonable upper limit tho :-)
|
|
*/
|
|
if (cpus->map[cpu] >= CPU_SETSIZE) {
|
|
pr_debug("Ignoring CPU %d\n", cpus->map[cpu]);
|
|
continue;
|
|
}
|
|
|
|
CPU_SET(cpus->map[cpu], &cpu_set);
|
|
if (sched_setaffinity(0, sizeof(cpu_set), &cpu_set) < 0) {
|
|
pr_debug("sched_setaffinity() failed on CPU %d: %s ",
|
|
cpus->map[cpu],
|
|
strerror(errno));
|
|
goto out_close_fd;
|
|
}
|
|
for (i = 0; i < ncalls; ++i) {
|
|
fd = open("/etc/passwd", O_RDONLY);
|
|
close(fd);
|
|
}
|
|
CPU_CLR(cpus->map[cpu], &cpu_set);
|
|
}
|
|
|
|
/*
|
|
* Here we need to explicitely preallocate the counts, as if
|
|
* we use the auto allocation it will allocate just for 1 cpu,
|
|
* as we start by cpu 0.
|
|
*/
|
|
if (perf_evsel__alloc_counts(evsel, cpus->nr) < 0) {
|
|
pr_debug("perf_evsel__alloc_counts(ncpus=%d)\n", cpus->nr);
|
|
goto out_close_fd;
|
|
}
|
|
|
|
err = 0;
|
|
|
|
for (cpu = 0; cpu < cpus->nr; ++cpu) {
|
|
unsigned int expected;
|
|
|
|
if (cpus->map[cpu] >= CPU_SETSIZE)
|
|
continue;
|
|
|
|
if (perf_evsel__read_on_cpu(evsel, cpu, 0) < 0) {
|
|
pr_debug("perf_evsel__read_on_cpu\n");
|
|
err = -1;
|
|
break;
|
|
}
|
|
|
|
expected = nr_open_calls + cpu;
|
|
if (evsel->counts->cpu[cpu].val != expected) {
|
|
pr_debug("perf_evsel__read_on_cpu: expected to intercept %d calls on cpu %d, got %" PRIu64 "\n",
|
|
expected, cpus->map[cpu], evsel->counts->cpu[cpu].val);
|
|
err = -1;
|
|
}
|
|
}
|
|
|
|
out_close_fd:
|
|
perf_evsel__close_fd(evsel, 1, threads->nr);
|
|
out_evsel_delete:
|
|
perf_evsel__delete(evsel);
|
|
out_thread_map_delete:
|
|
thread_map__delete(threads);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* This test will generate random numbers of calls to some getpid syscalls,
|
|
* then establish an mmap for a group of events that are created to monitor
|
|
* the syscalls.
|
|
*
|
|
* It will receive the events, using mmap, use its PERF_SAMPLE_ID generated
|
|
* sample.id field to map back to its respective perf_evsel instance.
|
|
*
|
|
* Then it checks if the number of syscalls reported as perf events by
|
|
* the kernel corresponds to the number of syscalls made.
|
|
*/
|
|
static int test__basic_mmap(void)
|
|
{
|
|
int err = -1;
|
|
union perf_event *event;
|
|
struct thread_map *threads;
|
|
struct cpu_map *cpus;
|
|
struct perf_evlist *evlist;
|
|
struct perf_event_attr attr = {
|
|
.type = PERF_TYPE_TRACEPOINT,
|
|
.read_format = PERF_FORMAT_ID,
|
|
.sample_type = PERF_SAMPLE_ID,
|
|
.watermark = 0,
|
|
};
|
|
cpu_set_t cpu_set;
|
|
const char *syscall_names[] = { "getsid", "getppid", "getpgrp",
|
|
"getpgid", };
|
|
pid_t (*syscalls[])(void) = { (void *)getsid, getppid, getpgrp,
|
|
(void*)getpgid };
|
|
#define nsyscalls ARRAY_SIZE(syscall_names)
|
|
int ids[nsyscalls];
|
|
unsigned int nr_events[nsyscalls],
|
|
expected_nr_events[nsyscalls], i, j;
|
|
struct perf_evsel *evsels[nsyscalls], *evsel;
|
|
int sample_size = __perf_evsel__sample_size(attr.sample_type);
|
|
|
|
for (i = 0; i < nsyscalls; ++i) {
|
|
char name[64];
|
|
|
|
snprintf(name, sizeof(name), "sys_enter_%s", syscall_names[i]);
|
|
ids[i] = trace_event__id(name);
|
|
if (ids[i] < 0) {
|
|
pr_debug("Is debugfs mounted on /sys/kernel/debug?\n");
|
|
return -1;
|
|
}
|
|
nr_events[i] = 0;
|
|
expected_nr_events[i] = random() % 257;
|
|
}
|
|
|
|
threads = thread_map__new(-1, getpid(), UINT_MAX);
|
|
if (threads == NULL) {
|
|
pr_debug("thread_map__new\n");
|
|
return -1;
|
|
}
|
|
|
|
cpus = cpu_map__new(NULL);
|
|
if (cpus == NULL) {
|
|
pr_debug("cpu_map__new\n");
|
|
goto out_free_threads;
|
|
}
|
|
|
|
CPU_ZERO(&cpu_set);
|
|
CPU_SET(cpus->map[0], &cpu_set);
|
|
sched_setaffinity(0, sizeof(cpu_set), &cpu_set);
|
|
if (sched_setaffinity(0, sizeof(cpu_set), &cpu_set) < 0) {
|
|
pr_debug("sched_setaffinity() failed on CPU %d: %s ",
|
|
cpus->map[0], strerror(errno));
|
|
goto out_free_cpus;
|
|
}
|
|
|
|
evlist = perf_evlist__new(cpus, threads);
|
|
if (evlist == NULL) {
|
|
pr_debug("perf_evlist__new\n");
|
|
goto out_free_cpus;
|
|
}
|
|
|
|
/* anonymous union fields, can't be initialized above */
|
|
attr.wakeup_events = 1;
|
|
attr.sample_period = 1;
|
|
|
|
for (i = 0; i < nsyscalls; ++i) {
|
|
attr.config = ids[i];
|
|
evsels[i] = perf_evsel__new(&attr, i);
|
|
if (evsels[i] == NULL) {
|
|
pr_debug("perf_evsel__new\n");
|
|
goto out_free_evlist;
|
|
}
|
|
|
|
perf_evlist__add(evlist, evsels[i]);
|
|
|
|
if (perf_evsel__open(evsels[i], cpus, threads, false, NULL) < 0) {
|
|
pr_debug("failed to open counter: %s, "
|
|
"tweak /proc/sys/kernel/perf_event_paranoid?\n",
|
|
strerror(errno));
|
|
goto out_close_fd;
|
|
}
|
|
}
|
|
|
|
if (perf_evlist__mmap(evlist, 128, true) < 0) {
|
|
pr_debug("failed to mmap events: %d (%s)\n", errno,
|
|
strerror(errno));
|
|
goto out_close_fd;
|
|
}
|
|
|
|
for (i = 0; i < nsyscalls; ++i)
|
|
for (j = 0; j < expected_nr_events[i]; ++j) {
|
|
int foo = syscalls[i]();
|
|
++foo;
|
|
}
|
|
|
|
while ((event = perf_evlist__mmap_read(evlist, 0)) != NULL) {
|
|
struct perf_sample sample;
|
|
|
|
if (event->header.type != PERF_RECORD_SAMPLE) {
|
|
pr_debug("unexpected %s event\n",
|
|
perf_event__name(event->header.type));
|
|
goto out_munmap;
|
|
}
|
|
|
|
err = perf_event__parse_sample(event, attr.sample_type, sample_size,
|
|
false, &sample, false);
|
|
if (err) {
|
|
pr_err("Can't parse sample, err = %d\n", err);
|
|
goto out_munmap;
|
|
}
|
|
|
|
evsel = perf_evlist__id2evsel(evlist, sample.id);
|
|
if (evsel == NULL) {
|
|
pr_debug("event with id %" PRIu64
|
|
" doesn't map to an evsel\n", sample.id);
|
|
goto out_munmap;
|
|
}
|
|
nr_events[evsel->idx]++;
|
|
}
|
|
|
|
list_for_each_entry(evsel, &evlist->entries, node) {
|
|
if (nr_events[evsel->idx] != expected_nr_events[evsel->idx]) {
|
|
pr_debug("expected %d %s events, got %d\n",
|
|
expected_nr_events[evsel->idx],
|
|
event_name(evsel), nr_events[evsel->idx]);
|
|
goto out_munmap;
|
|
}
|
|
}
|
|
|
|
err = 0;
|
|
out_munmap:
|
|
perf_evlist__munmap(evlist);
|
|
out_close_fd:
|
|
for (i = 0; i < nsyscalls; ++i)
|
|
perf_evsel__close_fd(evsels[i], 1, threads->nr);
|
|
out_free_evlist:
|
|
perf_evlist__delete(evlist);
|
|
out_free_cpus:
|
|
cpu_map__delete(cpus);
|
|
out_free_threads:
|
|
thread_map__delete(threads);
|
|
return err;
|
|
#undef nsyscalls
|
|
}
|
|
|
|
static int sched__get_first_possible_cpu(pid_t pid, cpu_set_t **maskp,
|
|
size_t *sizep)
|
|
{
|
|
cpu_set_t *mask;
|
|
size_t size;
|
|
int i, cpu = -1, nrcpus = 1024;
|
|
realloc:
|
|
mask = CPU_ALLOC(nrcpus);
|
|
size = CPU_ALLOC_SIZE(nrcpus);
|
|
CPU_ZERO_S(size, mask);
|
|
|
|
if (sched_getaffinity(pid, size, mask) == -1) {
|
|
CPU_FREE(mask);
|
|
if (errno == EINVAL && nrcpus < (1024 << 8)) {
|
|
nrcpus = nrcpus << 2;
|
|
goto realloc;
|
|
}
|
|
perror("sched_getaffinity");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < nrcpus; i++) {
|
|
if (CPU_ISSET_S(i, size, mask)) {
|
|
if (cpu == -1) {
|
|
cpu = i;
|
|
*maskp = mask;
|
|
*sizep = size;
|
|
} else
|
|
CPU_CLR_S(i, size, mask);
|
|
}
|
|
}
|
|
|
|
if (cpu == -1)
|
|
CPU_FREE(mask);
|
|
|
|
return cpu;
|
|
}
|
|
|
|
static int test__PERF_RECORD(void)
|
|
{
|
|
struct perf_record_opts opts = {
|
|
.target = {
|
|
.uid = UINT_MAX,
|
|
.uses_mmap = true,
|
|
},
|
|
.no_delay = true,
|
|
.freq = 10,
|
|
.mmap_pages = 256,
|
|
};
|
|
cpu_set_t *cpu_mask = NULL;
|
|
size_t cpu_mask_size = 0;
|
|
struct perf_evlist *evlist = perf_evlist__new(NULL, NULL);
|
|
struct perf_evsel *evsel;
|
|
struct perf_sample sample;
|
|
const char *cmd = "sleep";
|
|
const char *argv[] = { cmd, "1", NULL, };
|
|
char *bname;
|
|
u64 sample_type, prev_time = 0;
|
|
bool found_cmd_mmap = false,
|
|
found_libc_mmap = false,
|
|
found_vdso_mmap = false,
|
|
found_ld_mmap = false;
|
|
int err = -1, errs = 0, i, wakeups = 0, sample_size;
|
|
u32 cpu;
|
|
int total_events = 0, nr_events[PERF_RECORD_MAX] = { 0, };
|
|
|
|
if (evlist == NULL || argv == NULL) {
|
|
pr_debug("Not enough memory to create evlist\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We need at least one evsel in the evlist, use the default
|
|
* one: "cycles".
|
|
*/
|
|
err = perf_evlist__add_default(evlist);
|
|
if (err < 0) {
|
|
pr_debug("Not enough memory to create evsel\n");
|
|
goto out_delete_evlist;
|
|
}
|
|
|
|
/*
|
|
* Create maps of threads and cpus to monitor. In this case
|
|
* we start with all threads and cpus (-1, -1) but then in
|
|
* perf_evlist__prepare_workload we'll fill in the only thread
|
|
* we're monitoring, the one forked there.
|
|
*/
|
|
err = perf_evlist__create_maps(evlist, &opts.target);
|
|
if (err < 0) {
|
|
pr_debug("Not enough memory to create thread/cpu maps\n");
|
|
goto out_delete_evlist;
|
|
}
|
|
|
|
/*
|
|
* Prepare the workload in argv[] to run, it'll fork it, and then wait
|
|
* for perf_evlist__start_workload() to exec it. This is done this way
|
|
* so that we have time to open the evlist (calling sys_perf_event_open
|
|
* on all the fds) and then mmap them.
|
|
*/
|
|
err = perf_evlist__prepare_workload(evlist, &opts, argv);
|
|
if (err < 0) {
|
|
pr_debug("Couldn't run the workload!\n");
|
|
goto out_delete_evlist;
|
|
}
|
|
|
|
/*
|
|
* Config the evsels, setting attr->comm on the first one, etc.
|
|
*/
|
|
evsel = list_entry(evlist->entries.next, struct perf_evsel, node);
|
|
evsel->attr.sample_type |= PERF_SAMPLE_CPU;
|
|
evsel->attr.sample_type |= PERF_SAMPLE_TID;
|
|
evsel->attr.sample_type |= PERF_SAMPLE_TIME;
|
|
perf_evlist__config_attrs(evlist, &opts);
|
|
|
|
err = sched__get_first_possible_cpu(evlist->workload.pid, &cpu_mask,
|
|
&cpu_mask_size);
|
|
if (err < 0) {
|
|
pr_debug("sched__get_first_possible_cpu: %s\n", strerror(errno));
|
|
goto out_delete_evlist;
|
|
}
|
|
|
|
cpu = err;
|
|
|
|
/*
|
|
* So that we can check perf_sample.cpu on all the samples.
|
|
*/
|
|
if (sched_setaffinity(evlist->workload.pid, cpu_mask_size, cpu_mask) < 0) {
|
|
pr_debug("sched_setaffinity: %s\n", strerror(errno));
|
|
goto out_free_cpu_mask;
|
|
}
|
|
|
|
/*
|
|
* Call sys_perf_event_open on all the fds on all the evsels,
|
|
* grouping them if asked to.
|
|
*/
|
|
err = perf_evlist__open(evlist, opts.group);
|
|
if (err < 0) {
|
|
pr_debug("perf_evlist__open: %s\n", strerror(errno));
|
|
goto out_delete_evlist;
|
|
}
|
|
|
|
/*
|
|
* mmap the first fd on a given CPU and ask for events for the other
|
|
* fds in the same CPU to be injected in the same mmap ring buffer
|
|
* (using ioctl(PERF_EVENT_IOC_SET_OUTPUT)).
|
|
*/
|
|
err = perf_evlist__mmap(evlist, opts.mmap_pages, false);
|
|
if (err < 0) {
|
|
pr_debug("perf_evlist__mmap: %s\n", strerror(errno));
|
|
goto out_delete_evlist;
|
|
}
|
|
|
|
/*
|
|
* We'll need these two to parse the PERF_SAMPLE_* fields in each
|
|
* event.
|
|
*/
|
|
sample_type = perf_evlist__sample_type(evlist);
|
|
sample_size = __perf_evsel__sample_size(sample_type);
|
|
|
|
/*
|
|
* Now that all is properly set up, enable the events, they will
|
|
* count just on workload.pid, which will start...
|
|
*/
|
|
perf_evlist__enable(evlist);
|
|
|
|
/*
|
|
* Now!
|
|
*/
|
|
perf_evlist__start_workload(evlist);
|
|
|
|
while (1) {
|
|
int before = total_events;
|
|
|
|
for (i = 0; i < evlist->nr_mmaps; i++) {
|
|
union perf_event *event;
|
|
|
|
while ((event = perf_evlist__mmap_read(evlist, i)) != NULL) {
|
|
const u32 type = event->header.type;
|
|
const char *name = perf_event__name(type);
|
|
|
|
++total_events;
|
|
if (type < PERF_RECORD_MAX)
|
|
nr_events[type]++;
|
|
|
|
err = perf_event__parse_sample(event, sample_type,
|
|
sample_size, true,
|
|
&sample, false);
|
|
if (err < 0) {
|
|
if (verbose)
|
|
perf_event__fprintf(event, stderr);
|
|
pr_debug("Couldn't parse sample\n");
|
|
goto out_err;
|
|
}
|
|
|
|
if (verbose) {
|
|
pr_info("%" PRIu64" %d ", sample.time, sample.cpu);
|
|
perf_event__fprintf(event, stderr);
|
|
}
|
|
|
|
if (prev_time > sample.time) {
|
|
pr_debug("%s going backwards in time, prev=%" PRIu64 ", curr=%" PRIu64 "\n",
|
|
name, prev_time, sample.time);
|
|
++errs;
|
|
}
|
|
|
|
prev_time = sample.time;
|
|
|
|
if (sample.cpu != cpu) {
|
|
pr_debug("%s with unexpected cpu, expected %d, got %d\n",
|
|
name, cpu, sample.cpu);
|
|
++errs;
|
|
}
|
|
|
|
if ((pid_t)sample.pid != evlist->workload.pid) {
|
|
pr_debug("%s with unexpected pid, expected %d, got %d\n",
|
|
name, evlist->workload.pid, sample.pid);
|
|
++errs;
|
|
}
|
|
|
|
if ((pid_t)sample.tid != evlist->workload.pid) {
|
|
pr_debug("%s with unexpected tid, expected %d, got %d\n",
|
|
name, evlist->workload.pid, sample.tid);
|
|
++errs;
|
|
}
|
|
|
|
if ((type == PERF_RECORD_COMM ||
|
|
type == PERF_RECORD_MMAP ||
|
|
type == PERF_RECORD_FORK ||
|
|
type == PERF_RECORD_EXIT) &&
|
|
(pid_t)event->comm.pid != evlist->workload.pid) {
|
|
pr_debug("%s with unexpected pid/tid\n", name);
|
|
++errs;
|
|
}
|
|
|
|
if ((type == PERF_RECORD_COMM ||
|
|
type == PERF_RECORD_MMAP) &&
|
|
event->comm.pid != event->comm.tid) {
|
|
pr_debug("%s with different pid/tid!\n", name);
|
|
++errs;
|
|
}
|
|
|
|
switch (type) {
|
|
case PERF_RECORD_COMM:
|
|
if (strcmp(event->comm.comm, cmd)) {
|
|
pr_debug("%s with unexpected comm!\n", name);
|
|
++errs;
|
|
}
|
|
break;
|
|
case PERF_RECORD_EXIT:
|
|
goto found_exit;
|
|
case PERF_RECORD_MMAP:
|
|
bname = strrchr(event->mmap.filename, '/');
|
|
if (bname != NULL) {
|
|
if (!found_cmd_mmap)
|
|
found_cmd_mmap = !strcmp(bname + 1, cmd);
|
|
if (!found_libc_mmap)
|
|
found_libc_mmap = !strncmp(bname + 1, "libc", 4);
|
|
if (!found_ld_mmap)
|
|
found_ld_mmap = !strncmp(bname + 1, "ld", 2);
|
|
} else if (!found_vdso_mmap)
|
|
found_vdso_mmap = !strcmp(event->mmap.filename, "[vdso]");
|
|
break;
|
|
|
|
case PERF_RECORD_SAMPLE:
|
|
/* Just ignore samples for now */
|
|
break;
|
|
default:
|
|
pr_debug("Unexpected perf_event->header.type %d!\n",
|
|
type);
|
|
++errs;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We don't use poll here because at least at 3.1 times the
|
|
* PERF_RECORD_{!SAMPLE} events don't honour
|
|
* perf_event_attr.wakeup_events, just PERF_EVENT_SAMPLE does.
|
|
*/
|
|
if (total_events == before && false)
|
|
poll(evlist->pollfd, evlist->nr_fds, -1);
|
|
|
|
sleep(1);
|
|
if (++wakeups > 5) {
|
|
pr_debug("No PERF_RECORD_EXIT event!\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
found_exit:
|
|
if (nr_events[PERF_RECORD_COMM] > 1) {
|
|
pr_debug("Excessive number of PERF_RECORD_COMM events!\n");
|
|
++errs;
|
|
}
|
|
|
|
if (nr_events[PERF_RECORD_COMM] == 0) {
|
|
pr_debug("Missing PERF_RECORD_COMM for %s!\n", cmd);
|
|
++errs;
|
|
}
|
|
|
|
if (!found_cmd_mmap) {
|
|
pr_debug("PERF_RECORD_MMAP for %s missing!\n", cmd);
|
|
++errs;
|
|
}
|
|
|
|
if (!found_libc_mmap) {
|
|
pr_debug("PERF_RECORD_MMAP for %s missing!\n", "libc");
|
|
++errs;
|
|
}
|
|
|
|
if (!found_ld_mmap) {
|
|
pr_debug("PERF_RECORD_MMAP for %s missing!\n", "ld");
|
|
++errs;
|
|
}
|
|
|
|
if (!found_vdso_mmap) {
|
|
pr_debug("PERF_RECORD_MMAP for %s missing!\n", "[vdso]");
|
|
++errs;
|
|
}
|
|
out_err:
|
|
perf_evlist__munmap(evlist);
|
|
out_free_cpu_mask:
|
|
CPU_FREE(cpu_mask);
|
|
out_delete_evlist:
|
|
perf_evlist__delete(evlist);
|
|
out:
|
|
return (err < 0 || errs > 0) ? -1 : 0;
|
|
}
|
|
|
|
|
|
#if defined(__x86_64__) || defined(__i386__)
|
|
|
|
#define barrier() asm volatile("" ::: "memory")
|
|
|
|
static u64 rdpmc(unsigned int counter)
|
|
{
|
|
unsigned int low, high;
|
|
|
|
asm volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (counter));
|
|
|
|
return low | ((u64)high) << 32;
|
|
}
|
|
|
|
static u64 rdtsc(void)
|
|
{
|
|
unsigned int low, high;
|
|
|
|
asm volatile("rdtsc" : "=a" (low), "=d" (high));
|
|
|
|
return low | ((u64)high) << 32;
|
|
}
|
|
|
|
static u64 mmap_read_self(void *addr)
|
|
{
|
|
struct perf_event_mmap_page *pc = addr;
|
|
u32 seq, idx, time_mult = 0, time_shift = 0;
|
|
u64 count, cyc = 0, time_offset = 0, enabled, running, delta;
|
|
|
|
do {
|
|
seq = pc->lock;
|
|
barrier();
|
|
|
|
enabled = pc->time_enabled;
|
|
running = pc->time_running;
|
|
|
|
if (enabled != running) {
|
|
cyc = rdtsc();
|
|
time_mult = pc->time_mult;
|
|
time_shift = pc->time_shift;
|
|
time_offset = pc->time_offset;
|
|
}
|
|
|
|
idx = pc->index;
|
|
count = pc->offset;
|
|
if (idx)
|
|
count += rdpmc(idx - 1);
|
|
|
|
barrier();
|
|
} while (pc->lock != seq);
|
|
|
|
if (enabled != running) {
|
|
u64 quot, rem;
|
|
|
|
quot = (cyc >> time_shift);
|
|
rem = cyc & ((1 << time_shift) - 1);
|
|
delta = time_offset + quot * time_mult +
|
|
((rem * time_mult) >> time_shift);
|
|
|
|
enabled += delta;
|
|
if (idx)
|
|
running += delta;
|
|
|
|
quot = count / running;
|
|
rem = count % running;
|
|
count = quot * enabled + (rem * enabled) / running;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* If the RDPMC instruction faults then signal this back to the test parent task:
|
|
*/
|
|
static void segfault_handler(int sig __used, siginfo_t *info __used, void *uc __used)
|
|
{
|
|
exit(-1);
|
|
}
|
|
|
|
static int __test__rdpmc(void)
|
|
{
|
|
long page_size = sysconf(_SC_PAGE_SIZE);
|
|
volatile int tmp = 0;
|
|
u64 i, loops = 1000;
|
|
int n;
|
|
int fd;
|
|
void *addr;
|
|
struct perf_event_attr attr = {
|
|
.type = PERF_TYPE_HARDWARE,
|
|
.config = PERF_COUNT_HW_INSTRUCTIONS,
|
|
.exclude_kernel = 1,
|
|
};
|
|
u64 delta_sum = 0;
|
|
struct sigaction sa;
|
|
|
|
sigfillset(&sa.sa_mask);
|
|
sa.sa_sigaction = segfault_handler;
|
|
sigaction(SIGSEGV, &sa, NULL);
|
|
|
|
fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
|
|
if (fd < 0) {
|
|
die("Error: sys_perf_event_open() syscall returned "
|
|
"with %d (%s)\n", fd, strerror(errno));
|
|
}
|
|
|
|
addr = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, 0);
|
|
if (addr == (void *)(-1)) {
|
|
die("Error: mmap() syscall returned "
|
|
"with (%s)\n", strerror(errno));
|
|
}
|
|
|
|
for (n = 0; n < 6; n++) {
|
|
u64 stamp, now, delta;
|
|
|
|
stamp = mmap_read_self(addr);
|
|
|
|
for (i = 0; i < loops; i++)
|
|
tmp++;
|
|
|
|
now = mmap_read_self(addr);
|
|
loops *= 10;
|
|
|
|
delta = now - stamp;
|
|
pr_debug("%14d: %14Lu\n", n, (long long)delta);
|
|
|
|
delta_sum += delta;
|
|
}
|
|
|
|
munmap(addr, page_size);
|
|
close(fd);
|
|
|
|
pr_debug(" ");
|
|
|
|
if (!delta_sum)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test__rdpmc(void)
|
|
{
|
|
int status = 0;
|
|
int wret = 0;
|
|
int ret;
|
|
int pid;
|
|
|
|
pid = fork();
|
|
if (pid < 0)
|
|
return -1;
|
|
|
|
if (!pid) {
|
|
ret = __test__rdpmc();
|
|
|
|
exit(ret);
|
|
}
|
|
|
|
wret = waitpid(pid, &status, 0);
|
|
if (wret < 0 || status)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int test__perf_pmu(void)
|
|
{
|
|
return perf_pmu__test();
|
|
}
|
|
|
|
static struct test {
|
|
const char *desc;
|
|
int (*func)(void);
|
|
} tests[] = {
|
|
{
|
|
.desc = "vmlinux symtab matches kallsyms",
|
|
.func = test__vmlinux_matches_kallsyms,
|
|
},
|
|
{
|
|
.desc = "detect open syscall event",
|
|
.func = test__open_syscall_event,
|
|
},
|
|
{
|
|
.desc = "detect open syscall event on all cpus",
|
|
.func = test__open_syscall_event_on_all_cpus,
|
|
},
|
|
{
|
|
.desc = "read samples using the mmap interface",
|
|
.func = test__basic_mmap,
|
|
},
|
|
{
|
|
.desc = "parse events tests",
|
|
.func = parse_events__test,
|
|
},
|
|
#if defined(__x86_64__) || defined(__i386__)
|
|
{
|
|
.desc = "x86 rdpmc test",
|
|
.func = test__rdpmc,
|
|
},
|
|
#endif
|
|
{
|
|
.desc = "Validate PERF_RECORD_* events & perf_sample fields",
|
|
.func = test__PERF_RECORD,
|
|
},
|
|
{
|
|
.desc = "Test perf pmu format parsing",
|
|
.func = test__perf_pmu,
|
|
},
|
|
{
|
|
.func = NULL,
|
|
},
|
|
};
|
|
|
|
static bool perf_test__matches(int curr, int argc, const char *argv[])
|
|
{
|
|
int i;
|
|
|
|
if (argc == 0)
|
|
return true;
|
|
|
|
for (i = 0; i < argc; ++i) {
|
|
char *end;
|
|
long nr = strtoul(argv[i], &end, 10);
|
|
|
|
if (*end == '\0') {
|
|
if (nr == curr + 1)
|
|
return true;
|
|
continue;
|
|
}
|
|
|
|
if (strstr(tests[curr].desc, argv[i]))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int __cmd_test(int argc, const char *argv[])
|
|
{
|
|
int i = 0;
|
|
|
|
while (tests[i].func) {
|
|
int curr = i++, err;
|
|
|
|
if (!perf_test__matches(curr, argc, argv))
|
|
continue;
|
|
|
|
pr_info("%2d: %s:", i, tests[curr].desc);
|
|
pr_debug("\n--- start ---\n");
|
|
err = tests[curr].func();
|
|
pr_debug("---- end ----\n%s:", tests[curr].desc);
|
|
pr_info(" %s\n", err ? "FAILED!\n" : "Ok");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int perf_test__list(int argc, const char **argv)
|
|
{
|
|
int i = 0;
|
|
|
|
while (tests[i].func) {
|
|
int curr = i++;
|
|
|
|
if (argc > 1 && !strstr(tests[curr].desc, argv[1]))
|
|
continue;
|
|
|
|
pr_info("%2d: %s\n", i, tests[curr].desc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cmd_test(int argc, const char **argv, const char *prefix __used)
|
|
{
|
|
const char * const test_usage[] = {
|
|
"perf test [<options>] [{list <test-name-fragment>|[<test-name-fragments>|<test-numbers>]}]",
|
|
NULL,
|
|
};
|
|
const struct option test_options[] = {
|
|
OPT_INCR('v', "verbose", &verbose,
|
|
"be more verbose (show symbol address, etc)"),
|
|
OPT_END()
|
|
};
|
|
|
|
argc = parse_options(argc, argv, test_options, test_usage, 0);
|
|
if (argc >= 1 && !strcmp(argv[0], "list"))
|
|
return perf_test__list(argc, argv);
|
|
|
|
symbol_conf.priv_size = sizeof(int);
|
|
symbol_conf.sort_by_name = true;
|
|
symbol_conf.try_vmlinux_path = true;
|
|
|
|
if (symbol__init() < 0)
|
|
return -1;
|
|
|
|
return __cmd_test(argc, argv);
|
|
}
|