mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 05:11:48 +00:00
1f948b43f7
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
1404 lines
34 KiB
C
1404 lines
34 KiB
C
/*
|
|
* MTD map driver for AMD compatible flash chips (non-CFI)
|
|
*
|
|
* Author: Jonas Holmberg <jonas.holmberg@axis.com>
|
|
*
|
|
* $Id: amd_flash.c,v 1.28 2005/11/07 11:14:22 gleixner Exp $
|
|
*
|
|
* Copyright (c) 2001 Axis Communications AB
|
|
*
|
|
* This file is under GPL.
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mtd/map.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/flashchip.h>
|
|
|
|
/* There's no limit. It exists only to avoid realloc. */
|
|
#define MAX_AMD_CHIPS 8
|
|
|
|
#define DEVICE_TYPE_X8 (8 / 8)
|
|
#define DEVICE_TYPE_X16 (16 / 8)
|
|
#define DEVICE_TYPE_X32 (32 / 8)
|
|
|
|
/* Addresses */
|
|
#define ADDR_MANUFACTURER 0x0000
|
|
#define ADDR_DEVICE_ID 0x0001
|
|
#define ADDR_SECTOR_LOCK 0x0002
|
|
#define ADDR_HANDSHAKE 0x0003
|
|
#define ADDR_UNLOCK_1 0x0555
|
|
#define ADDR_UNLOCK_2 0x02AA
|
|
|
|
/* Commands */
|
|
#define CMD_UNLOCK_DATA_1 0x00AA
|
|
#define CMD_UNLOCK_DATA_2 0x0055
|
|
#define CMD_MANUFACTURER_UNLOCK_DATA 0x0090
|
|
#define CMD_UNLOCK_BYPASS_MODE 0x0020
|
|
#define CMD_PROGRAM_UNLOCK_DATA 0x00A0
|
|
#define CMD_RESET_DATA 0x00F0
|
|
#define CMD_SECTOR_ERASE_UNLOCK_DATA 0x0080
|
|
#define CMD_SECTOR_ERASE_UNLOCK_DATA_2 0x0030
|
|
|
|
#define CMD_UNLOCK_SECTOR 0x0060
|
|
|
|
/* Manufacturers */
|
|
#define MANUFACTURER_AMD 0x0001
|
|
#define MANUFACTURER_ATMEL 0x001F
|
|
#define MANUFACTURER_FUJITSU 0x0004
|
|
#define MANUFACTURER_ST 0x0020
|
|
#define MANUFACTURER_SST 0x00BF
|
|
#define MANUFACTURER_TOSHIBA 0x0098
|
|
|
|
/* AMD */
|
|
#define AM29F800BB 0x2258
|
|
#define AM29F800BT 0x22D6
|
|
#define AM29LV800BB 0x225B
|
|
#define AM29LV800BT 0x22DA
|
|
#define AM29LV160DT 0x22C4
|
|
#define AM29LV160DB 0x2249
|
|
#define AM29BDS323D 0x22D1
|
|
|
|
/* Atmel */
|
|
#define AT49xV16x 0x00C0
|
|
#define AT49xV16xT 0x00C2
|
|
|
|
/* Fujitsu */
|
|
#define MBM29LV160TE 0x22C4
|
|
#define MBM29LV160BE 0x2249
|
|
#define MBM29LV800BB 0x225B
|
|
|
|
/* ST - www.st.com */
|
|
#define M29W800T 0x00D7
|
|
#define M29W160DT 0x22C4
|
|
#define M29W160DB 0x2249
|
|
|
|
/* SST */
|
|
#define SST39LF800 0x2781
|
|
#define SST39LF160 0x2782
|
|
|
|
/* Toshiba */
|
|
#define TC58FVT160 0x00C2
|
|
#define TC58FVB160 0x0043
|
|
|
|
#define D6_MASK 0x40
|
|
|
|
struct amd_flash_private {
|
|
int device_type;
|
|
int interleave;
|
|
int numchips;
|
|
unsigned long chipshift;
|
|
// const char *im_name;
|
|
struct flchip chips[0];
|
|
};
|
|
|
|
struct amd_flash_info {
|
|
const __u16 mfr_id;
|
|
const __u16 dev_id;
|
|
const char *name;
|
|
const u_long size;
|
|
const int numeraseregions;
|
|
const struct mtd_erase_region_info regions[4];
|
|
};
|
|
|
|
|
|
|
|
static int amd_flash_read(struct mtd_info *, loff_t, size_t, size_t *,
|
|
u_char *);
|
|
static int amd_flash_write(struct mtd_info *, loff_t, size_t, size_t *,
|
|
const u_char *);
|
|
static int amd_flash_erase(struct mtd_info *, struct erase_info *);
|
|
static void amd_flash_sync(struct mtd_info *);
|
|
static int amd_flash_suspend(struct mtd_info *);
|
|
static void amd_flash_resume(struct mtd_info *);
|
|
static void amd_flash_destroy(struct mtd_info *);
|
|
static struct mtd_info *amd_flash_probe(struct map_info *map);
|
|
|
|
|
|
static struct mtd_chip_driver amd_flash_chipdrv = {
|
|
.probe = amd_flash_probe,
|
|
.destroy = amd_flash_destroy,
|
|
.name = "amd_flash",
|
|
.module = THIS_MODULE
|
|
};
|
|
|
|
|
|
|
|
static const char im_name[] = "amd_flash";
|
|
|
|
|
|
|
|
static inline __u32 wide_read(struct map_info *map, __u32 addr)
|
|
{
|
|
if (map->buswidth == 1) {
|
|
return map_read8(map, addr);
|
|
} else if (map->buswidth == 2) {
|
|
return map_read16(map, addr);
|
|
} else if (map->buswidth == 4) {
|
|
return map_read32(map, addr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void wide_write(struct map_info *map, __u32 val, __u32 addr)
|
|
{
|
|
if (map->buswidth == 1) {
|
|
map_write8(map, val, addr);
|
|
} else if (map->buswidth == 2) {
|
|
map_write16(map, val, addr);
|
|
} else if (map->buswidth == 4) {
|
|
map_write32(map, val, addr);
|
|
}
|
|
}
|
|
|
|
static inline __u32 make_cmd(struct map_info *map, __u32 cmd)
|
|
{
|
|
const struct amd_flash_private *private = map->fldrv_priv;
|
|
if ((private->interleave == 2) &&
|
|
(private->device_type == DEVICE_TYPE_X16)) {
|
|
cmd |= (cmd << 16);
|
|
}
|
|
|
|
return cmd;
|
|
}
|
|
|
|
static inline void send_unlock(struct map_info *map, unsigned long base)
|
|
{
|
|
wide_write(map, (CMD_UNLOCK_DATA_1 << 16) | CMD_UNLOCK_DATA_1,
|
|
base + (map->buswidth * ADDR_UNLOCK_1));
|
|
wide_write(map, (CMD_UNLOCK_DATA_2 << 16) | CMD_UNLOCK_DATA_2,
|
|
base + (map->buswidth * ADDR_UNLOCK_2));
|
|
}
|
|
|
|
static inline void send_cmd(struct map_info *map, unsigned long base, __u32 cmd)
|
|
{
|
|
send_unlock(map, base);
|
|
wide_write(map, make_cmd(map, cmd),
|
|
base + (map->buswidth * ADDR_UNLOCK_1));
|
|
}
|
|
|
|
static inline void send_cmd_to_addr(struct map_info *map, unsigned long base,
|
|
__u32 cmd, unsigned long addr)
|
|
{
|
|
send_unlock(map, base);
|
|
wide_write(map, make_cmd(map, cmd), addr);
|
|
}
|
|
|
|
static inline int flash_is_busy(struct map_info *map, unsigned long addr,
|
|
int interleave)
|
|
{
|
|
|
|
if ((interleave == 2) && (map->buswidth == 4)) {
|
|
__u32 read1, read2;
|
|
|
|
read1 = wide_read(map, addr);
|
|
read2 = wide_read(map, addr);
|
|
|
|
return (((read1 >> 16) & D6_MASK) !=
|
|
((read2 >> 16) & D6_MASK)) ||
|
|
(((read1 & 0xffff) & D6_MASK) !=
|
|
((read2 & 0xffff) & D6_MASK));
|
|
}
|
|
|
|
return ((wide_read(map, addr) & D6_MASK) !=
|
|
(wide_read(map, addr) & D6_MASK));
|
|
}
|
|
|
|
static inline void unlock_sector(struct map_info *map, unsigned long sect_addr,
|
|
int unlock)
|
|
{
|
|
/* Sector lock address. A6 = 1 for unlock, A6 = 0 for lock */
|
|
int SLA = unlock ?
|
|
(sect_addr | (0x40 * map->buswidth)) :
|
|
(sect_addr & ~(0x40 * map->buswidth)) ;
|
|
|
|
__u32 cmd = make_cmd(map, CMD_UNLOCK_SECTOR);
|
|
|
|
wide_write(map, make_cmd(map, CMD_RESET_DATA), 0);
|
|
wide_write(map, cmd, SLA); /* 1st cycle: write cmd to any address */
|
|
wide_write(map, cmd, SLA); /* 2nd cycle: write cmd to any address */
|
|
wide_write(map, cmd, SLA); /* 3rd cycle: write cmd to SLA */
|
|
}
|
|
|
|
static inline int is_sector_locked(struct map_info *map,
|
|
unsigned long sect_addr)
|
|
{
|
|
int status;
|
|
|
|
wide_write(map, CMD_RESET_DATA, 0);
|
|
send_cmd(map, sect_addr, CMD_MANUFACTURER_UNLOCK_DATA);
|
|
|
|
/* status is 0x0000 for unlocked and 0x0001 for locked */
|
|
status = wide_read(map, sect_addr + (map->buswidth * ADDR_SECTOR_LOCK));
|
|
wide_write(map, CMD_RESET_DATA, 0);
|
|
return status;
|
|
}
|
|
|
|
static int amd_flash_do_unlock(struct mtd_info *mtd, loff_t ofs, size_t len,
|
|
int is_unlock)
|
|
{
|
|
struct map_info *map;
|
|
struct mtd_erase_region_info *merip;
|
|
int eraseoffset, erasesize, eraseblocks;
|
|
int i;
|
|
int retval = 0;
|
|
int lock_status;
|
|
|
|
map = mtd->priv;
|
|
|
|
/* Pass the whole chip through sector by sector and check for each
|
|
sector if the sector and the given interval overlap */
|
|
for(i = 0; i < mtd->numeraseregions; i++) {
|
|
merip = &mtd->eraseregions[i];
|
|
|
|
eraseoffset = merip->offset;
|
|
erasesize = merip->erasesize;
|
|
eraseblocks = merip->numblocks;
|
|
|
|
if (ofs > eraseoffset + erasesize)
|
|
continue;
|
|
|
|
while (eraseblocks > 0) {
|
|
if (ofs < eraseoffset + erasesize && ofs + len > eraseoffset) {
|
|
unlock_sector(map, eraseoffset, is_unlock);
|
|
|
|
lock_status = is_sector_locked(map, eraseoffset);
|
|
|
|
if (is_unlock && lock_status) {
|
|
printk("Cannot unlock sector at address %x length %xx\n",
|
|
eraseoffset, merip->erasesize);
|
|
retval = -1;
|
|
} else if (!is_unlock && !lock_status) {
|
|
printk("Cannot lock sector at address %x length %x\n",
|
|
eraseoffset, merip->erasesize);
|
|
retval = -1;
|
|
}
|
|
}
|
|
eraseoffset += erasesize;
|
|
eraseblocks --;
|
|
}
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
static int amd_flash_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
|
|
{
|
|
return amd_flash_do_unlock(mtd, ofs, len, 1);
|
|
}
|
|
|
|
static int amd_flash_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
|
|
{
|
|
return amd_flash_do_unlock(mtd, ofs, len, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Reads JEDEC manufacturer ID and device ID and returns the index of the first
|
|
* matching table entry (-1 if not found or alias for already found chip).
|
|
*/
|
|
static int probe_new_chip(struct mtd_info *mtd, __u32 base,
|
|
struct flchip *chips,
|
|
struct amd_flash_private *private,
|
|
const struct amd_flash_info *table, int table_size)
|
|
{
|
|
__u32 mfr_id;
|
|
__u32 dev_id;
|
|
struct map_info *map = mtd->priv;
|
|
struct amd_flash_private temp;
|
|
int i;
|
|
|
|
temp.device_type = DEVICE_TYPE_X16; // Assume X16 (FIXME)
|
|
temp.interleave = 2;
|
|
map->fldrv_priv = &temp;
|
|
|
|
/* Enter autoselect mode. */
|
|
send_cmd(map, base, CMD_RESET_DATA);
|
|
send_cmd(map, base, CMD_MANUFACTURER_UNLOCK_DATA);
|
|
|
|
mfr_id = wide_read(map, base + (map->buswidth * ADDR_MANUFACTURER));
|
|
dev_id = wide_read(map, base + (map->buswidth * ADDR_DEVICE_ID));
|
|
|
|
if ((map->buswidth == 4) && ((mfr_id >> 16) == (mfr_id & 0xffff)) &&
|
|
((dev_id >> 16) == (dev_id & 0xffff))) {
|
|
mfr_id &= 0xffff;
|
|
dev_id &= 0xffff;
|
|
} else {
|
|
temp.interleave = 1;
|
|
}
|
|
|
|
for (i = 0; i < table_size; i++) {
|
|
if ((mfr_id == table[i].mfr_id) &&
|
|
(dev_id == table[i].dev_id)) {
|
|
if (chips) {
|
|
int j;
|
|
|
|
/* Is this an alias for an already found chip?
|
|
* In that case that chip should be in
|
|
* autoselect mode now.
|
|
*/
|
|
for (j = 0; j < private->numchips; j++) {
|
|
__u32 mfr_id_other;
|
|
__u32 dev_id_other;
|
|
|
|
mfr_id_other =
|
|
wide_read(map, chips[j].start +
|
|
(map->buswidth *
|
|
ADDR_MANUFACTURER
|
|
));
|
|
dev_id_other =
|
|
wide_read(map, chips[j].start +
|
|
(map->buswidth *
|
|
ADDR_DEVICE_ID));
|
|
if (temp.interleave == 2) {
|
|
mfr_id_other &= 0xffff;
|
|
dev_id_other &= 0xffff;
|
|
}
|
|
if ((mfr_id_other == mfr_id) &&
|
|
(dev_id_other == dev_id)) {
|
|
|
|
/* Exit autoselect mode. */
|
|
send_cmd(map, base,
|
|
CMD_RESET_DATA);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (private->numchips == MAX_AMD_CHIPS) {
|
|
printk(KERN_WARNING
|
|
"%s: Too many flash chips "
|
|
"detected. Increase "
|
|
"MAX_AMD_CHIPS from %d.\n",
|
|
map->name, MAX_AMD_CHIPS);
|
|
|
|
return -1;
|
|
}
|
|
|
|
chips[private->numchips].start = base;
|
|
chips[private->numchips].state = FL_READY;
|
|
chips[private->numchips].mutex =
|
|
&chips[private->numchips]._spinlock;
|
|
private->numchips++;
|
|
}
|
|
|
|
printk("%s: Found %d x %ldMiB %s at 0x%x\n", map->name,
|
|
temp.interleave, (table[i].size)/(1024*1024),
|
|
table[i].name, base);
|
|
|
|
mtd->size += table[i].size * temp.interleave;
|
|
mtd->numeraseregions += table[i].numeraseregions;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Exit autoselect mode. */
|
|
send_cmd(map, base, CMD_RESET_DATA);
|
|
|
|
if (i == table_size) {
|
|
printk(KERN_DEBUG "%s: unknown flash device at 0x%x, "
|
|
"mfr id 0x%x, dev id 0x%x\n", map->name,
|
|
base, mfr_id, dev_id);
|
|
map->fldrv_priv = NULL;
|
|
|
|
return -1;
|
|
}
|
|
|
|
private->device_type = temp.device_type;
|
|
private->interleave = temp.interleave;
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
|
|
static struct mtd_info *amd_flash_probe(struct map_info *map)
|
|
{
|
|
static const struct amd_flash_info table[] = {
|
|
{
|
|
.mfr_id = MANUFACTURER_AMD,
|
|
.dev_id = AM29LV160DT,
|
|
.name = "AMD AM29LV160DT",
|
|
.size = 0x00200000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
|
|
{ .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_AMD,
|
|
.dev_id = AM29LV160DB,
|
|
.name = "AMD AM29LV160DB",
|
|
.size = 0x00200000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
|
|
{ .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_TOSHIBA,
|
|
.dev_id = TC58FVT160,
|
|
.name = "Toshiba TC58FVT160",
|
|
.size = 0x00200000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
|
|
{ .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_FUJITSU,
|
|
.dev_id = MBM29LV160TE,
|
|
.name = "Fujitsu MBM29LV160TE",
|
|
.size = 0x00200000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
|
|
{ .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_TOSHIBA,
|
|
.dev_id = TC58FVB160,
|
|
.name = "Toshiba TC58FVB160",
|
|
.size = 0x00200000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
|
|
{ .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_FUJITSU,
|
|
.dev_id = MBM29LV160BE,
|
|
.name = "Fujitsu MBM29LV160BE",
|
|
.size = 0x00200000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
|
|
{ .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_AMD,
|
|
.dev_id = AM29LV800BB,
|
|
.name = "AMD AM29LV800BB",
|
|
.size = 0x00100000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
|
|
{ .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_AMD,
|
|
.dev_id = AM29F800BB,
|
|
.name = "AMD AM29F800BB",
|
|
.size = 0x00100000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
|
|
{ .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_AMD,
|
|
.dev_id = AM29LV800BT,
|
|
.name = "AMD AM29LV800BT",
|
|
.size = 0x00100000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
|
|
{ .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_AMD,
|
|
.dev_id = AM29F800BT,
|
|
.name = "AMD AM29F800BT",
|
|
.size = 0x00100000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
|
|
{ .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_AMD,
|
|
.dev_id = AM29LV800BB,
|
|
.name = "AMD AM29LV800BB",
|
|
.size = 0x00100000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
|
|
{ .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_FUJITSU,
|
|
.dev_id = MBM29LV800BB,
|
|
.name = "Fujitsu MBM29LV800BB",
|
|
.size = 0x00100000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
|
|
{ .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_ST,
|
|
.dev_id = M29W800T,
|
|
.name = "ST M29W800T",
|
|
.size = 0x00100000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
|
|
{ .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_ST,
|
|
.dev_id = M29W160DT,
|
|
.name = "ST M29W160DT",
|
|
.size = 0x00200000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
|
|
{ .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_ST,
|
|
.dev_id = M29W160DB,
|
|
.name = "ST M29W160DB",
|
|
.size = 0x00200000,
|
|
.numeraseregions = 4,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 },
|
|
{ .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 },
|
|
{ .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 },
|
|
{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_AMD,
|
|
.dev_id = AM29BDS323D,
|
|
.name = "AMD AM29BDS323D",
|
|
.size = 0x00400000,
|
|
.numeraseregions = 3,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 48 },
|
|
{ .offset = 0x300000, .erasesize = 0x10000, .numblocks = 15 },
|
|
{ .offset = 0x3f0000, .erasesize = 0x02000, .numblocks = 8 },
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_ATMEL,
|
|
.dev_id = AT49xV16x,
|
|
.name = "Atmel AT49xV16x",
|
|
.size = 0x00200000,
|
|
.numeraseregions = 2,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x02000, .numblocks = 8 },
|
|
{ .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
|
|
}
|
|
}, {
|
|
.mfr_id = MANUFACTURER_ATMEL,
|
|
.dev_id = AT49xV16xT,
|
|
.name = "Atmel AT49xV16xT",
|
|
.size = 0x00200000,
|
|
.numeraseregions = 2,
|
|
.regions = {
|
|
{ .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
|
|
{ .offset = 0x1F0000, .erasesize = 0x02000, .numblocks = 8 }
|
|
}
|
|
}
|
|
};
|
|
|
|
struct mtd_info *mtd;
|
|
struct flchip chips[MAX_AMD_CHIPS];
|
|
int table_pos[MAX_AMD_CHIPS];
|
|
struct amd_flash_private temp;
|
|
struct amd_flash_private *private;
|
|
u_long size;
|
|
unsigned long base;
|
|
int i;
|
|
int reg_idx;
|
|
int offset;
|
|
|
|
mtd = (struct mtd_info*)kmalloc(sizeof(*mtd), GFP_KERNEL);
|
|
if (!mtd) {
|
|
printk(KERN_WARNING
|
|
"%s: kmalloc failed for info structure\n", map->name);
|
|
return NULL;
|
|
}
|
|
memset(mtd, 0, sizeof(*mtd));
|
|
mtd->priv = map;
|
|
|
|
memset(&temp, 0, sizeof(temp));
|
|
|
|
printk("%s: Probing for AMD compatible flash...\n", map->name);
|
|
|
|
if ((table_pos[0] = probe_new_chip(mtd, 0, NULL, &temp, table,
|
|
sizeof(table)/sizeof(table[0])))
|
|
== -1) {
|
|
printk(KERN_WARNING
|
|
"%s: Found no AMD compatible device at location zero\n",
|
|
map->name);
|
|
kfree(mtd);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
chips[0].start = 0;
|
|
chips[0].state = FL_READY;
|
|
chips[0].mutex = &chips[0]._spinlock;
|
|
temp.numchips = 1;
|
|
for (size = mtd->size; size > 1; size >>= 1) {
|
|
temp.chipshift++;
|
|
}
|
|
switch (temp.interleave) {
|
|
case 2:
|
|
temp.chipshift += 1;
|
|
break;
|
|
case 4:
|
|
temp.chipshift += 2;
|
|
break;
|
|
}
|
|
|
|
/* Find out if there are any more chips in the map. */
|
|
for (base = (1 << temp.chipshift);
|
|
base < map->size;
|
|
base += (1 << temp.chipshift)) {
|
|
int numchips = temp.numchips;
|
|
table_pos[numchips] = probe_new_chip(mtd, base, chips,
|
|
&temp, table, sizeof(table)/sizeof(table[0]));
|
|
}
|
|
|
|
mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) *
|
|
mtd->numeraseregions, GFP_KERNEL);
|
|
if (!mtd->eraseregions) {
|
|
printk(KERN_WARNING "%s: Failed to allocate "
|
|
"memory for MTD erase region info\n", map->name);
|
|
kfree(mtd);
|
|
map->fldrv_priv = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
reg_idx = 0;
|
|
offset = 0;
|
|
for (i = 0; i < temp.numchips; i++) {
|
|
int dev_size;
|
|
int j;
|
|
|
|
dev_size = 0;
|
|
for (j = 0; j < table[table_pos[i]].numeraseregions; j++) {
|
|
mtd->eraseregions[reg_idx].offset = offset +
|
|
(table[table_pos[i]].regions[j].offset *
|
|
temp.interleave);
|
|
mtd->eraseregions[reg_idx].erasesize =
|
|
table[table_pos[i]].regions[j].erasesize *
|
|
temp.interleave;
|
|
mtd->eraseregions[reg_idx].numblocks =
|
|
table[table_pos[i]].regions[j].numblocks;
|
|
if (mtd->erasesize <
|
|
mtd->eraseregions[reg_idx].erasesize) {
|
|
mtd->erasesize =
|
|
mtd->eraseregions[reg_idx].erasesize;
|
|
}
|
|
dev_size += mtd->eraseregions[reg_idx].erasesize *
|
|
mtd->eraseregions[reg_idx].numblocks;
|
|
reg_idx++;
|
|
}
|
|
offset += dev_size;
|
|
}
|
|
mtd->type = MTD_NORFLASH;
|
|
mtd->flags = MTD_CAP_NORFLASH;
|
|
mtd->name = map->name;
|
|
mtd->erase = amd_flash_erase;
|
|
mtd->read = amd_flash_read;
|
|
mtd->write = amd_flash_write;
|
|
mtd->sync = amd_flash_sync;
|
|
mtd->suspend = amd_flash_suspend;
|
|
mtd->resume = amd_flash_resume;
|
|
mtd->lock = amd_flash_lock;
|
|
mtd->unlock = amd_flash_unlock;
|
|
|
|
private = kmalloc(sizeof(*private) + (sizeof(struct flchip) *
|
|
temp.numchips), GFP_KERNEL);
|
|
if (!private) {
|
|
printk(KERN_WARNING
|
|
"%s: kmalloc failed for private structure\n", map->name);
|
|
kfree(mtd);
|
|
map->fldrv_priv = NULL;
|
|
return NULL;
|
|
}
|
|
memcpy(private, &temp, sizeof(temp));
|
|
memcpy(private->chips, chips,
|
|
sizeof(struct flchip) * private->numchips);
|
|
for (i = 0; i < private->numchips; i++) {
|
|
init_waitqueue_head(&private->chips[i].wq);
|
|
spin_lock_init(&private->chips[i]._spinlock);
|
|
}
|
|
|
|
map->fldrv_priv = private;
|
|
|
|
map->fldrv = &amd_flash_chipdrv;
|
|
|
|
__module_get(THIS_MODULE);
|
|
return mtd;
|
|
}
|
|
|
|
|
|
|
|
static inline int read_one_chip(struct map_info *map, struct flchip *chip,
|
|
loff_t adr, size_t len, u_char *buf)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
unsigned long timeo = jiffies + HZ;
|
|
|
|
retry:
|
|
spin_lock_bh(chip->mutex);
|
|
|
|
if (chip->state != FL_READY){
|
|
printk(KERN_INFO "%s: waiting for chip to read, state = %d\n",
|
|
map->name, chip->state);
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
|
|
spin_unlock_bh(chip->mutex);
|
|
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
|
|
if(signal_pending(current)) {
|
|
return -EINTR;
|
|
}
|
|
|
|
timeo = jiffies + HZ;
|
|
|
|
goto retry;
|
|
}
|
|
|
|
adr += chip->start;
|
|
|
|
chip->state = FL_READY;
|
|
|
|
map_copy_from(map, buf, adr, len);
|
|
|
|
wake_up(&chip->wq);
|
|
spin_unlock_bh(chip->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
static int amd_flash_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct amd_flash_private *private = map->fldrv_priv;
|
|
unsigned long ofs;
|
|
int chipnum;
|
|
int ret = 0;
|
|
|
|
if ((from + len) > mtd->size) {
|
|
printk(KERN_WARNING "%s: read request past end of device "
|
|
"(0x%lx)\n", map->name, (unsigned long)from + len);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Offset within the first chip that the first read should start. */
|
|
chipnum = (from >> private->chipshift);
|
|
ofs = from - (chipnum << private->chipshift);
|
|
|
|
*retlen = 0;
|
|
|
|
while (len) {
|
|
unsigned long this_len;
|
|
|
|
if (chipnum >= private->numchips) {
|
|
break;
|
|
}
|
|
|
|
if ((len + ofs - 1) >> private->chipshift) {
|
|
this_len = (1 << private->chipshift) - ofs;
|
|
} else {
|
|
this_len = len;
|
|
}
|
|
|
|
ret = read_one_chip(map, &private->chips[chipnum], ofs,
|
|
this_len, buf);
|
|
if (ret) {
|
|
break;
|
|
}
|
|
|
|
*retlen += this_len;
|
|
len -= this_len;
|
|
buf += this_len;
|
|
|
|
ofs = 0;
|
|
chipnum++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
static int write_one_word(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, __u32 datum)
|
|
{
|
|
unsigned long timeo = jiffies + HZ;
|
|
struct amd_flash_private *private = map->fldrv_priv;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
int ret = 0;
|
|
int times_left;
|
|
|
|
retry:
|
|
spin_lock_bh(chip->mutex);
|
|
|
|
if (chip->state != FL_READY){
|
|
printk("%s: waiting for chip to write, state = %d\n",
|
|
map->name, chip->state);
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
|
|
spin_unlock_bh(chip->mutex);
|
|
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
printk(KERN_INFO "%s: woke up to write\n", map->name);
|
|
if(signal_pending(current))
|
|
return -EINTR;
|
|
|
|
timeo = jiffies + HZ;
|
|
|
|
goto retry;
|
|
}
|
|
|
|
chip->state = FL_WRITING;
|
|
|
|
adr += chip->start;
|
|
ENABLE_VPP(map);
|
|
send_cmd(map, chip->start, CMD_PROGRAM_UNLOCK_DATA);
|
|
wide_write(map, datum, adr);
|
|
|
|
times_left = 500000;
|
|
while (times_left-- && flash_is_busy(map, adr, private->interleave)) {
|
|
if (need_resched()) {
|
|
spin_unlock_bh(chip->mutex);
|
|
schedule();
|
|
spin_lock_bh(chip->mutex);
|
|
}
|
|
}
|
|
|
|
if (!times_left) {
|
|
printk(KERN_WARNING "%s: write to 0x%lx timed out!\n",
|
|
map->name, adr);
|
|
ret = -EIO;
|
|
} else {
|
|
__u32 verify;
|
|
if ((verify = wide_read(map, adr)) != datum) {
|
|
printk(KERN_WARNING "%s: write to 0x%lx failed. "
|
|
"datum = %x, verify = %x\n",
|
|
map->name, adr, datum, verify);
|
|
ret = -EIO;
|
|
}
|
|
}
|
|
|
|
DISABLE_VPP(map);
|
|
chip->state = FL_READY;
|
|
wake_up(&chip->wq);
|
|
spin_unlock_bh(chip->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
static int amd_flash_write(struct mtd_info *mtd, loff_t to , size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct amd_flash_private *private = map->fldrv_priv;
|
|
int ret = 0;
|
|
int chipnum;
|
|
unsigned long ofs;
|
|
unsigned long chipstart;
|
|
|
|
*retlen = 0;
|
|
if (!len) {
|
|
return 0;
|
|
}
|
|
|
|
chipnum = to >> private->chipshift;
|
|
ofs = to - (chipnum << private->chipshift);
|
|
chipstart = private->chips[chipnum].start;
|
|
|
|
/* If it's not bus-aligned, do the first byte write. */
|
|
if (ofs & (map->buswidth - 1)) {
|
|
unsigned long bus_ofs = ofs & ~(map->buswidth - 1);
|
|
int i = ofs - bus_ofs;
|
|
int n = 0;
|
|
u_char tmp_buf[4];
|
|
__u32 datum;
|
|
|
|
map_copy_from(map, tmp_buf,
|
|
bus_ofs + private->chips[chipnum].start,
|
|
map->buswidth);
|
|
while (len && i < map->buswidth)
|
|
tmp_buf[i++] = buf[n++], len--;
|
|
|
|
if (map->buswidth == 2) {
|
|
datum = *(__u16*)tmp_buf;
|
|
} else if (map->buswidth == 4) {
|
|
datum = *(__u32*)tmp_buf;
|
|
} else {
|
|
return -EINVAL; /* should never happen, but be safe */
|
|
}
|
|
|
|
ret = write_one_word(map, &private->chips[chipnum], bus_ofs,
|
|
datum);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
ofs += n;
|
|
buf += n;
|
|
(*retlen) += n;
|
|
|
|
if (ofs >> private->chipshift) {
|
|
chipnum++;
|
|
ofs = 0;
|
|
if (chipnum == private->numchips) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We are now aligned, write as much as possible. */
|
|
while(len >= map->buswidth) {
|
|
__u32 datum;
|
|
|
|
if (map->buswidth == 1) {
|
|
datum = *(__u8*)buf;
|
|
} else if (map->buswidth == 2) {
|
|
datum = *(__u16*)buf;
|
|
} else if (map->buswidth == 4) {
|
|
datum = *(__u32*)buf;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = write_one_word(map, &private->chips[chipnum], ofs, datum);
|
|
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
ofs += map->buswidth;
|
|
buf += map->buswidth;
|
|
(*retlen) += map->buswidth;
|
|
len -= map->buswidth;
|
|
|
|
if (ofs >> private->chipshift) {
|
|
chipnum++;
|
|
ofs = 0;
|
|
if (chipnum == private->numchips) {
|
|
return 0;
|
|
}
|
|
chipstart = private->chips[chipnum].start;
|
|
}
|
|
}
|
|
|
|
if (len & (map->buswidth - 1)) {
|
|
int i = 0, n = 0;
|
|
u_char tmp_buf[2];
|
|
__u32 datum;
|
|
|
|
map_copy_from(map, tmp_buf,
|
|
ofs + private->chips[chipnum].start,
|
|
map->buswidth);
|
|
while (len--) {
|
|
tmp_buf[i++] = buf[n++];
|
|
}
|
|
|
|
if (map->buswidth == 2) {
|
|
datum = *(__u16*)tmp_buf;
|
|
} else if (map->buswidth == 4) {
|
|
datum = *(__u32*)tmp_buf;
|
|
} else {
|
|
return -EINVAL; /* should never happen, but be safe */
|
|
}
|
|
|
|
ret = write_one_word(map, &private->chips[chipnum], ofs, datum);
|
|
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
(*retlen) += n;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
static inline int erase_one_block(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, u_long size)
|
|
{
|
|
unsigned long timeo = jiffies + HZ;
|
|
struct amd_flash_private *private = map->fldrv_priv;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
retry:
|
|
spin_lock_bh(chip->mutex);
|
|
|
|
if (chip->state != FL_READY){
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
|
|
spin_unlock_bh(chip->mutex);
|
|
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
|
|
if (signal_pending(current)) {
|
|
return -EINTR;
|
|
}
|
|
|
|
timeo = jiffies + HZ;
|
|
|
|
goto retry;
|
|
}
|
|
|
|
chip->state = FL_ERASING;
|
|
|
|
adr += chip->start;
|
|
ENABLE_VPP(map);
|
|
send_cmd(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA);
|
|
send_cmd_to_addr(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA_2, adr);
|
|
|
|
timeo = jiffies + (HZ * 20);
|
|
|
|
spin_unlock_bh(chip->mutex);
|
|
msleep(1000);
|
|
spin_lock_bh(chip->mutex);
|
|
|
|
while (flash_is_busy(map, adr, private->interleave)) {
|
|
|
|
if (chip->state != FL_ERASING) {
|
|
/* Someone's suspended the erase. Sleep */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
|
|
spin_unlock_bh(chip->mutex);
|
|
printk(KERN_INFO "%s: erase suspended. Sleeping\n",
|
|
map->name);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
|
|
if (signal_pending(current)) {
|
|
return -EINTR;
|
|
}
|
|
|
|
timeo = jiffies + (HZ*2); /* FIXME */
|
|
spin_lock_bh(chip->mutex);
|
|
continue;
|
|
}
|
|
|
|
/* OK Still waiting */
|
|
if (time_after(jiffies, timeo)) {
|
|
chip->state = FL_READY;
|
|
spin_unlock_bh(chip->mutex);
|
|
printk(KERN_WARNING "%s: waiting for erase to complete "
|
|
"timed out.\n", map->name);
|
|
DISABLE_VPP(map);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
spin_unlock_bh(chip->mutex);
|
|
|
|
if (need_resched())
|
|
schedule();
|
|
else
|
|
udelay(1);
|
|
|
|
spin_lock_bh(chip->mutex);
|
|
}
|
|
|
|
/* Verify every single word */
|
|
{
|
|
int address;
|
|
int error = 0;
|
|
__u8 verify;
|
|
|
|
for (address = adr; address < (adr + size); address++) {
|
|
if ((verify = map_read8(map, address)) != 0xFF) {
|
|
error = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (error) {
|
|
chip->state = FL_READY;
|
|
spin_unlock_bh(chip->mutex);
|
|
printk(KERN_WARNING
|
|
"%s: verify error at 0x%x, size %ld.\n",
|
|
map->name, address, size);
|
|
DISABLE_VPP(map);
|
|
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
DISABLE_VPP(map);
|
|
chip->state = FL_READY;
|
|
wake_up(&chip->wq);
|
|
spin_unlock_bh(chip->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
static int amd_flash_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct amd_flash_private *private = map->fldrv_priv;
|
|
unsigned long adr, len;
|
|
int chipnum;
|
|
int ret = 0;
|
|
int i;
|
|
int first;
|
|
struct mtd_erase_region_info *regions = mtd->eraseregions;
|
|
|
|
if (instr->addr > mtd->size) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((instr->len + instr->addr) > mtd->size) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check that both start and end of the requested erase are
|
|
* aligned with the erasesize at the appropriate addresses.
|
|
*/
|
|
|
|
i = 0;
|
|
|
|
/* Skip all erase regions which are ended before the start of
|
|
the requested erase. Actually, to save on the calculations,
|
|
we skip to the first erase region which starts after the
|
|
start of the requested erase, and then go back one.
|
|
*/
|
|
|
|
while ((i < mtd->numeraseregions) &&
|
|
(instr->addr >= regions[i].offset)) {
|
|
i++;
|
|
}
|
|
i--;
|
|
|
|
/* OK, now i is pointing at the erase region in which this
|
|
* erase request starts. Check the start of the requested
|
|
* erase range is aligned with the erase size which is in
|
|
* effect here.
|
|
*/
|
|
|
|
if (instr->addr & (regions[i].erasesize-1)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Remember the erase region we start on. */
|
|
|
|
first = i;
|
|
|
|
/* Next, check that the end of the requested erase is aligned
|
|
* with the erase region at that address.
|
|
*/
|
|
|
|
while ((i < mtd->numeraseregions) &&
|
|
((instr->addr + instr->len) >= regions[i].offset)) {
|
|
i++;
|
|
}
|
|
|
|
/* As before, drop back one to point at the region in which
|
|
* the address actually falls.
|
|
*/
|
|
|
|
i--;
|
|
|
|
if ((instr->addr + instr->len) & (regions[i].erasesize-1)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
chipnum = instr->addr >> private->chipshift;
|
|
adr = instr->addr - (chipnum << private->chipshift);
|
|
len = instr->len;
|
|
|
|
i = first;
|
|
|
|
while (len) {
|
|
ret = erase_one_block(map, &private->chips[chipnum], adr,
|
|
regions[i].erasesize);
|
|
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
adr += regions[i].erasesize;
|
|
len -= regions[i].erasesize;
|
|
|
|
if ((adr % (1 << private->chipshift)) ==
|
|
((regions[i].offset + (regions[i].erasesize *
|
|
regions[i].numblocks))
|
|
% (1 << private->chipshift))) {
|
|
i++;
|
|
}
|
|
|
|
if (adr >> private->chipshift) {
|
|
adr = 0;
|
|
chipnum++;
|
|
if (chipnum >= private->numchips) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
static void amd_flash_sync(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct amd_flash_private *private = map->fldrv_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
int ret = 0;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
for (i = 0; !ret && (i < private->numchips); i++) {
|
|
chip = &private->chips[i];
|
|
|
|
retry:
|
|
spin_lock_bh(chip->mutex);
|
|
|
|
switch(chip->state) {
|
|
case FL_READY:
|
|
case FL_STATUS:
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_SYNCING;
|
|
/* No need to wake_up() on this state change -
|
|
* as the whole point is that nobody can do anything
|
|
* with the chip now anyway.
|
|
*/
|
|
case FL_SYNCING:
|
|
spin_unlock_bh(chip->mutex);
|
|
break;
|
|
|
|
default:
|
|
/* Not an idle state */
|
|
add_wait_queue(&chip->wq, &wait);
|
|
|
|
spin_unlock_bh(chip->mutex);
|
|
|
|
schedule();
|
|
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
/* Unlock the chips again */
|
|
for (i--; i >= 0; i--) {
|
|
chip = &private->chips[i];
|
|
|
|
spin_lock_bh(chip->mutex);
|
|
|
|
if (chip->state == FL_SYNCING) {
|
|
chip->state = chip->oldstate;
|
|
wake_up(&chip->wq);
|
|
}
|
|
spin_unlock_bh(chip->mutex);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static int amd_flash_suspend(struct mtd_info *mtd)
|
|
{
|
|
printk("amd_flash_suspend(): not implemented!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
|
|
static void amd_flash_resume(struct mtd_info *mtd)
|
|
{
|
|
printk("amd_flash_resume(): not implemented!\n");
|
|
}
|
|
|
|
|
|
|
|
static void amd_flash_destroy(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct amd_flash_private *private = map->fldrv_priv;
|
|
kfree(private);
|
|
}
|
|
|
|
int __init amd_flash_init(void)
|
|
{
|
|
register_mtd_chip_driver(&amd_flash_chipdrv);
|
|
return 0;
|
|
}
|
|
|
|
void __exit amd_flash_exit(void)
|
|
{
|
|
unregister_mtd_chip_driver(&amd_flash_chipdrv);
|
|
}
|
|
|
|
module_init(amd_flash_init);
|
|
module_exit(amd_flash_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Jonas Holmberg <jonas.holmberg@axis.com>");
|
|
MODULE_DESCRIPTION("Old MTD chip driver for AMD flash chips");
|