linux/include/asm-powerpc/system.h
Nathan Lynch 5db9fa9593 [POWERPC] Fix gettimeofday inaccuracies
There are two problems in the powerpc gettimeofday code which can
cause incorrect results to be returned.

The first is that there is a race between do_gettimeofday and the
timer interrupt:

1. do_gettimeofday does get_tb()

2. decrementer exception on boot cpu which runs timer_recalc_offset,
   which also samples the timebase and updates the do_gtod structure
   with a greater timebase value.

3. do_gettimeofday calls __do_gettimeofday, which leads to the
   negative result from tb_val - temp_varp->tb_orig_stamp.

The second is caused by taking the boot cpu offline, which can cause
the value of tb_last_jiffy to be increased past the currently
available timebase, causing the same underflow as above.

[paulus@samba.org - define and use data_barrier() instead of mb().]

Signed-off-by: Nathan Lynch <ntl@pobox.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-08-23 15:51:18 +10:00

446 lines
12 KiB
C

/*
* Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
*/
#ifndef _ASM_POWERPC_SYSTEM_H
#define _ASM_POWERPC_SYSTEM_H
#include <linux/kernel.h>
#include <asm/hw_irq.h>
#include <asm/atomic.h>
/*
* Memory barrier.
* The sync instruction guarantees that all memory accesses initiated
* by this processor have been performed (with respect to all other
* mechanisms that access memory). The eieio instruction is a barrier
* providing an ordering (separately) for (a) cacheable stores and (b)
* loads and stores to non-cacheable memory (e.g. I/O devices).
*
* mb() prevents loads and stores being reordered across this point.
* rmb() prevents loads being reordered across this point.
* wmb() prevents stores being reordered across this point.
* read_barrier_depends() prevents data-dependent loads being reordered
* across this point (nop on PPC).
*
* We have to use the sync instructions for mb(), since lwsync doesn't
* order loads with respect to previous stores. Lwsync is fine for
* rmb(), though. Note that lwsync is interpreted as sync by
* 32-bit and older 64-bit CPUs.
*
* For wmb(), we use sync since wmb is used in drivers to order
* stores to system memory with respect to writes to the device.
* However, smp_wmb() can be a lighter-weight eieio barrier on
* SMP since it is only used to order updates to system memory.
*/
#define mb() __asm__ __volatile__ ("sync" : : : "memory")
#define rmb() __asm__ __volatile__ ("lwsync" : : : "memory")
#define wmb() __asm__ __volatile__ ("sync" : : : "memory")
#define read_barrier_depends() do { } while(0)
#define set_mb(var, value) do { var = value; mb(); } while (0)
#ifdef __KERNEL__
#ifdef CONFIG_SMP
#define smp_mb() mb()
#define smp_rmb() rmb()
#define smp_wmb() __asm__ __volatile__ ("eieio" : : : "memory")
#define smp_read_barrier_depends() read_barrier_depends()
#else
#define smp_mb() barrier()
#define smp_rmb() barrier()
#define smp_wmb() barrier()
#define smp_read_barrier_depends() do { } while(0)
#endif /* CONFIG_SMP */
/*
* This is a barrier which prevents following instructions from being
* started until the value of the argument x is known. For example, if
* x is a variable loaded from memory, this prevents following
* instructions from being executed until the load has been performed.
*/
#define data_barrier(x) \
asm volatile("twi 0,%0,0; isync" : : "r" (x) : "memory");
struct task_struct;
struct pt_regs;
#ifdef CONFIG_DEBUGGER
extern int (*__debugger)(struct pt_regs *regs);
extern int (*__debugger_ipi)(struct pt_regs *regs);
extern int (*__debugger_bpt)(struct pt_regs *regs);
extern int (*__debugger_sstep)(struct pt_regs *regs);
extern int (*__debugger_iabr_match)(struct pt_regs *regs);
extern int (*__debugger_dabr_match)(struct pt_regs *regs);
extern int (*__debugger_fault_handler)(struct pt_regs *regs);
#define DEBUGGER_BOILERPLATE(__NAME) \
static inline int __NAME(struct pt_regs *regs) \
{ \
if (unlikely(__ ## __NAME)) \
return __ ## __NAME(regs); \
return 0; \
}
DEBUGGER_BOILERPLATE(debugger)
DEBUGGER_BOILERPLATE(debugger_ipi)
DEBUGGER_BOILERPLATE(debugger_bpt)
DEBUGGER_BOILERPLATE(debugger_sstep)
DEBUGGER_BOILERPLATE(debugger_iabr_match)
DEBUGGER_BOILERPLATE(debugger_dabr_match)
DEBUGGER_BOILERPLATE(debugger_fault_handler)
#ifdef CONFIG_XMON
extern void xmon_init(int enable);
#endif
#else
static inline int debugger(struct pt_regs *regs) { return 0; }
static inline int debugger_ipi(struct pt_regs *regs) { return 0; }
static inline int debugger_bpt(struct pt_regs *regs) { return 0; }
static inline int debugger_sstep(struct pt_regs *regs) { return 0; }
static inline int debugger_iabr_match(struct pt_regs *regs) { return 0; }
static inline int debugger_dabr_match(struct pt_regs *regs) { return 0; }
static inline int debugger_fault_handler(struct pt_regs *regs) { return 0; }
#endif
extern int set_dabr(unsigned long dabr);
extern void print_backtrace(unsigned long *);
extern void show_regs(struct pt_regs * regs);
extern void flush_instruction_cache(void);
extern void hard_reset_now(void);
extern void poweroff_now(void);
#ifdef CONFIG_6xx
extern long _get_L2CR(void);
extern long _get_L3CR(void);
extern void _set_L2CR(unsigned long);
extern void _set_L3CR(unsigned long);
#else
#define _get_L2CR() 0L
#define _get_L3CR() 0L
#define _set_L2CR(val) do { } while(0)
#define _set_L3CR(val) do { } while(0)
#endif
extern void via_cuda_init(void);
extern void read_rtc_time(void);
extern void pmac_find_display(void);
extern void giveup_fpu(struct task_struct *);
extern void disable_kernel_fp(void);
extern void enable_kernel_fp(void);
extern void flush_fp_to_thread(struct task_struct *);
extern void enable_kernel_altivec(void);
extern void giveup_altivec(struct task_struct *);
extern void load_up_altivec(struct task_struct *);
extern int emulate_altivec(struct pt_regs *);
extern void giveup_spe(struct task_struct *);
extern void load_up_spe(struct task_struct *);
extern int fix_alignment(struct pt_regs *);
extern void cvt_fd(float *from, double *to, struct thread_struct *thread);
extern void cvt_df(double *from, float *to, struct thread_struct *thread);
#ifndef CONFIG_SMP
extern void discard_lazy_cpu_state(void);
#else
static inline void discard_lazy_cpu_state(void)
{
}
#endif
#ifdef CONFIG_ALTIVEC
extern void flush_altivec_to_thread(struct task_struct *);
#else
static inline void flush_altivec_to_thread(struct task_struct *t)
{
}
#endif
#ifdef CONFIG_SPE
extern void flush_spe_to_thread(struct task_struct *);
#else
static inline void flush_spe_to_thread(struct task_struct *t)
{
}
#endif
extern int call_rtas(const char *, int, int, unsigned long *, ...);
extern void cacheable_memzero(void *p, unsigned int nb);
extern void *cacheable_memcpy(void *, const void *, unsigned int);
extern int do_page_fault(struct pt_regs *, unsigned long, unsigned long);
extern void bad_page_fault(struct pt_regs *, unsigned long, int);
extern int die(const char *, struct pt_regs *, long);
extern void _exception(int, struct pt_regs *, int, unsigned long);
#ifdef CONFIG_BOOKE_WDT
extern u32 booke_wdt_enabled;
extern u32 booke_wdt_period;
#endif /* CONFIG_BOOKE_WDT */
/* EBCDIC -> ASCII conversion for [0-9A-Z] on iSeries */
extern unsigned char e2a(unsigned char);
extern unsigned char* strne2a(unsigned char *dest,
const unsigned char *src, size_t n);
struct device_node;
extern void note_scsi_host(struct device_node *, void *);
extern struct task_struct *__switch_to(struct task_struct *,
struct task_struct *);
#define switch_to(prev, next, last) ((last) = __switch_to((prev), (next)))
struct thread_struct;
extern struct task_struct *_switch(struct thread_struct *prev,
struct thread_struct *next);
/*
* On SMP systems, when the scheduler does migration-cost autodetection,
* it needs a way to flush as much of the CPU's caches as possible.
*
* TODO: fill this in!
*/
static inline void sched_cacheflush(void)
{
}
extern unsigned int rtas_data;
extern int mem_init_done; /* set on boot once kmalloc can be called */
extern unsigned long memory_limit;
extern unsigned long klimit;
extern int powersave_nap; /* set if nap mode can be used in idle loop */
/*
* Atomic exchange
*
* Changes the memory location '*ptr' to be val and returns
* the previous value stored there.
*/
static __inline__ unsigned long
__xchg_u32(volatile void *p, unsigned long val)
{
unsigned long prev;
__asm__ __volatile__(
LWSYNC_ON_SMP
"1: lwarx %0,0,%2 \n"
PPC405_ERR77(0,%2)
" stwcx. %3,0,%2 \n\
bne- 1b"
ISYNC_ON_SMP
: "=&r" (prev), "+m" (*(volatile unsigned int *)p)
: "r" (p), "r" (val)
: "cc", "memory");
return prev;
}
#ifdef CONFIG_PPC64
static __inline__ unsigned long
__xchg_u64(volatile void *p, unsigned long val)
{
unsigned long prev;
__asm__ __volatile__(
LWSYNC_ON_SMP
"1: ldarx %0,0,%2 \n"
PPC405_ERR77(0,%2)
" stdcx. %3,0,%2 \n\
bne- 1b"
ISYNC_ON_SMP
: "=&r" (prev), "+m" (*(volatile unsigned long *)p)
: "r" (p), "r" (val)
: "cc", "memory");
return prev;
}
#endif
/*
* This function doesn't exist, so you'll get a linker error
* if something tries to do an invalid xchg().
*/
extern void __xchg_called_with_bad_pointer(void);
static __inline__ unsigned long
__xchg(volatile void *ptr, unsigned long x, unsigned int size)
{
switch (size) {
case 4:
return __xchg_u32(ptr, x);
#ifdef CONFIG_PPC64
case 8:
return __xchg_u64(ptr, x);
#endif
}
__xchg_called_with_bad_pointer();
return x;
}
#define xchg(ptr,x) \
({ \
__typeof__(*(ptr)) _x_ = (x); \
(__typeof__(*(ptr))) __xchg((ptr), (unsigned long)_x_, sizeof(*(ptr))); \
})
#define tas(ptr) (xchg((ptr),1))
/*
* Compare and exchange - if *p == old, set it to new,
* and return the old value of *p.
*/
#define __HAVE_ARCH_CMPXCHG 1
static __inline__ unsigned long
__cmpxchg_u32(volatile unsigned int *p, unsigned long old, unsigned long new)
{
unsigned int prev;
__asm__ __volatile__ (
LWSYNC_ON_SMP
"1: lwarx %0,0,%2 # __cmpxchg_u32\n\
cmpw 0,%0,%3\n\
bne- 2f\n"
PPC405_ERR77(0,%2)
" stwcx. %4,0,%2\n\
bne- 1b"
ISYNC_ON_SMP
"\n\
2:"
: "=&r" (prev), "+m" (*p)
: "r" (p), "r" (old), "r" (new)
: "cc", "memory");
return prev;
}
#ifdef CONFIG_PPC64
static __inline__ unsigned long
__cmpxchg_u64(volatile unsigned long *p, unsigned long old, unsigned long new)
{
unsigned long prev;
__asm__ __volatile__ (
LWSYNC_ON_SMP
"1: ldarx %0,0,%2 # __cmpxchg_u64\n\
cmpd 0,%0,%3\n\
bne- 2f\n\
stdcx. %4,0,%2\n\
bne- 1b"
ISYNC_ON_SMP
"\n\
2:"
: "=&r" (prev), "+m" (*p)
: "r" (p), "r" (old), "r" (new)
: "cc", "memory");
return prev;
}
#endif
/* This function doesn't exist, so you'll get a linker error
if something tries to do an invalid cmpxchg(). */
extern void __cmpxchg_called_with_bad_pointer(void);
static __inline__ unsigned long
__cmpxchg(volatile void *ptr, unsigned long old, unsigned long new,
unsigned int size)
{
switch (size) {
case 4:
return __cmpxchg_u32(ptr, old, new);
#ifdef CONFIG_PPC64
case 8:
return __cmpxchg_u64(ptr, old, new);
#endif
}
__cmpxchg_called_with_bad_pointer();
return old;
}
#define cmpxchg(ptr,o,n) \
({ \
__typeof__(*(ptr)) _o_ = (o); \
__typeof__(*(ptr)) _n_ = (n); \
(__typeof__(*(ptr))) __cmpxchg((ptr), (unsigned long)_o_, \
(unsigned long)_n_, sizeof(*(ptr))); \
})
#ifdef CONFIG_PPC64
/*
* We handle most unaligned accesses in hardware. On the other hand
* unaligned DMA can be very expensive on some ppc64 IO chips (it does
* powers of 2 writes until it reaches sufficient alignment).
*
* Based on this we disable the IP header alignment in network drivers.
* We also modify NET_SKB_PAD to be a cacheline in size, thus maintaining
* cacheline alignment of buffers.
*/
#define NET_IP_ALIGN 0
#define NET_SKB_PAD L1_CACHE_BYTES
#endif
#define arch_align_stack(x) (x)
/* Used in very early kernel initialization. */
extern unsigned long reloc_offset(void);
extern unsigned long add_reloc_offset(unsigned long);
extern void reloc_got2(unsigned long);
#define PTRRELOC(x) ((typeof(x)) add_reloc_offset((unsigned long)(x)))
static inline void create_instruction(unsigned long addr, unsigned int instr)
{
unsigned int *p;
p = (unsigned int *)addr;
*p = instr;
asm ("dcbst 0, %0; sync; icbi 0,%0; sync; isync" : : "r" (p));
}
/* Flags for create_branch:
* "b" == create_branch(addr, target, 0);
* "ba" == create_branch(addr, target, BRANCH_ABSOLUTE);
* "bl" == create_branch(addr, target, BRANCH_SET_LINK);
* "bla" == create_branch(addr, target, BRANCH_ABSOLUTE | BRANCH_SET_LINK);
*/
#define BRANCH_SET_LINK 0x1
#define BRANCH_ABSOLUTE 0x2
static inline void create_branch(unsigned long addr,
unsigned long target, int flags)
{
unsigned int instruction;
if (! (flags & BRANCH_ABSOLUTE))
target = target - addr;
/* Mask out the flags and target, so they don't step on each other. */
instruction = 0x48000000 | (flags & 0x3) | (target & 0x03FFFFFC);
create_instruction(addr, instruction);
}
static inline void create_function_call(unsigned long addr, void * func)
{
unsigned long func_addr;
#ifdef CONFIG_PPC64
/*
* On PPC64 the function pointer actually points to the function's
* descriptor. The first entry in the descriptor is the address
* of the function text.
*/
func_addr = *(unsigned long *)func;
#else
func_addr = (unsigned long)func;
#endif
create_branch(addr, func_addr, BRANCH_SET_LINK);
}
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
extern void account_system_vtime(struct task_struct *);
#endif
#endif /* __KERNEL__ */
#endif /* _ASM_POWERPC_SYSTEM_H */