mirror of
https://github.com/torvalds/linux.git
synced 2024-11-16 09:02:00 +00:00
69145635d4
Tulip is currently doing request_irq before it has done its initialization. This is usually not a problem because it hasn't enable interrupts yet, but with DEBUG_SHIRQ on, we call the irq handler when registering the interrupt as a sanity check. This can result in a NULL ptr dereference, so call tulip_init_ring before request_irq, and add a free_ring function to do the freeing now shared with tulip_close. Tested with a shell loop running ifup, ifdown in a loop a few hundred times with DEBUG_SHIRQ on. Signed-off-by: Kyle McMartin <kyle@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1874 lines
55 KiB
C
1874 lines
55 KiB
C
/* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.
|
|
|
|
Copyright 2000,2001 The Linux Kernel Team
|
|
Written/copyright 1994-2001 by Donald Becker.
|
|
|
|
This software may be used and distributed according to the terms
|
|
of the GNU General Public License, incorporated herein by reference.
|
|
|
|
Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
|
|
for more information on this driver.
|
|
|
|
Please submit bugs to http://bugzilla.kernel.org/ .
|
|
*/
|
|
|
|
|
|
#define DRV_NAME "tulip"
|
|
#ifdef CONFIG_TULIP_NAPI
|
|
#define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
|
|
#else
|
|
#define DRV_VERSION "1.1.15"
|
|
#endif
|
|
#define DRV_RELDATE "Feb 27, 2007"
|
|
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include "tulip.h"
|
|
#include <linux/init.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/crc32.h>
|
|
#include <asm/unaligned.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#ifdef CONFIG_SPARC
|
|
#include <asm/prom.h>
|
|
#endif
|
|
|
|
static char version[] __devinitdata =
|
|
"Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
|
|
|
|
|
|
/* A few user-configurable values. */
|
|
|
|
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
|
|
static unsigned int max_interrupt_work = 25;
|
|
|
|
#define MAX_UNITS 8
|
|
/* Used to pass the full-duplex flag, etc. */
|
|
static int full_duplex[MAX_UNITS];
|
|
static int options[MAX_UNITS];
|
|
static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
|
|
|
|
/* The possible media types that can be set in options[] are: */
|
|
const char * const medianame[32] = {
|
|
"10baseT", "10base2", "AUI", "100baseTx",
|
|
"10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
|
|
"100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
|
|
"10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
|
|
"MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
|
|
"","","","", "","","","", "","","","Transceiver reset",
|
|
};
|
|
|
|
/* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
|
|
#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
|
|
|| defined(CONFIG_SPARC) || defined(__ia64__) \
|
|
|| defined(__sh__) || defined(__mips__)
|
|
static int rx_copybreak = 1518;
|
|
#else
|
|
static int rx_copybreak = 100;
|
|
#endif
|
|
|
|
/*
|
|
Set the bus performance register.
|
|
Typical: Set 16 longword cache alignment, no burst limit.
|
|
Cache alignment bits 15:14 Burst length 13:8
|
|
0000 No alignment 0x00000000 unlimited 0800 8 longwords
|
|
4000 8 longwords 0100 1 longword 1000 16 longwords
|
|
8000 16 longwords 0200 2 longwords 2000 32 longwords
|
|
C000 32 longwords 0400 4 longwords
|
|
Warning: many older 486 systems are broken and require setting 0x00A04800
|
|
8 longword cache alignment, 8 longword burst.
|
|
ToDo: Non-Intel setting could be better.
|
|
*/
|
|
|
|
#if defined(__alpha__) || defined(__ia64__)
|
|
static int csr0 = 0x01A00000 | 0xE000;
|
|
#elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
|
|
static int csr0 = 0x01A00000 | 0x8000;
|
|
#elif defined(CONFIG_SPARC) || defined(__hppa__)
|
|
/* The UltraSparc PCI controllers will disconnect at every 64-byte
|
|
* crossing anyways so it makes no sense to tell Tulip to burst
|
|
* any more than that.
|
|
*/
|
|
static int csr0 = 0x01A00000 | 0x9000;
|
|
#elif defined(__arm__) || defined(__sh__)
|
|
static int csr0 = 0x01A00000 | 0x4800;
|
|
#elif defined(__mips__)
|
|
static int csr0 = 0x00200000 | 0x4000;
|
|
#else
|
|
#warning Processor architecture undefined!
|
|
static int csr0 = 0x00A00000 | 0x4800;
|
|
#endif
|
|
|
|
/* Operational parameters that usually are not changed. */
|
|
/* Time in jiffies before concluding the transmitter is hung. */
|
|
#define TX_TIMEOUT (4*HZ)
|
|
|
|
|
|
MODULE_AUTHOR("The Linux Kernel Team");
|
|
MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
module_param(tulip_debug, int, 0);
|
|
module_param(max_interrupt_work, int, 0);
|
|
module_param(rx_copybreak, int, 0);
|
|
module_param(csr0, int, 0);
|
|
module_param_array(options, int, NULL, 0);
|
|
module_param_array(full_duplex, int, NULL, 0);
|
|
|
|
#define PFX DRV_NAME ": "
|
|
|
|
#ifdef TULIP_DEBUG
|
|
int tulip_debug = TULIP_DEBUG;
|
|
#else
|
|
int tulip_debug = 1;
|
|
#endif
|
|
|
|
static void tulip_timer(unsigned long data)
|
|
{
|
|
struct net_device *dev = (struct net_device *)data;
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
|
|
if (netif_running(dev))
|
|
schedule_work(&tp->media_work);
|
|
}
|
|
|
|
/*
|
|
* This table use during operation for capabilities and media timer.
|
|
*
|
|
* It is indexed via the values in 'enum chips'
|
|
*/
|
|
|
|
struct tulip_chip_table tulip_tbl[] = {
|
|
{ }, /* placeholder for array, slot unused currently */
|
|
{ }, /* placeholder for array, slot unused currently */
|
|
|
|
/* DC21140 */
|
|
{ "Digital DS21140 Tulip", 128, 0x0001ebef,
|
|
HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
|
|
tulip_media_task },
|
|
|
|
/* DC21142, DC21143 */
|
|
{ "Digital DS21142/43 Tulip", 128, 0x0801fbff,
|
|
HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
|
|
| HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
|
|
|
|
/* LC82C168 */
|
|
{ "Lite-On 82c168 PNIC", 256, 0x0001fbef,
|
|
HAS_MII | HAS_PNICNWAY, pnic_timer, },
|
|
|
|
/* MX98713 */
|
|
{ "Macronix 98713 PMAC", 128, 0x0001ebef,
|
|
HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
|
|
|
|
/* MX98715 */
|
|
{ "Macronix 98715 PMAC", 256, 0x0001ebef,
|
|
HAS_MEDIA_TABLE, mxic_timer, },
|
|
|
|
/* MX98725 */
|
|
{ "Macronix 98725 PMAC", 256, 0x0001ebef,
|
|
HAS_MEDIA_TABLE, mxic_timer, },
|
|
|
|
/* AX88140 */
|
|
{ "ASIX AX88140", 128, 0x0001fbff,
|
|
HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
|
|
| IS_ASIX, tulip_timer, tulip_media_task },
|
|
|
|
/* PNIC2 */
|
|
{ "Lite-On PNIC-II", 256, 0x0801fbff,
|
|
HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
|
|
|
|
/* COMET */
|
|
{ "ADMtek Comet", 256, 0x0001abef,
|
|
HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
|
|
|
|
/* COMPEX9881 */
|
|
{ "Compex 9881 PMAC", 128, 0x0001ebef,
|
|
HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
|
|
|
|
/* I21145 */
|
|
{ "Intel DS21145 Tulip", 128, 0x0801fbff,
|
|
HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
|
|
| HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
|
|
|
|
/* DM910X */
|
|
{ "Davicom DM9102/DM9102A", 128, 0x0001ebef,
|
|
HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
|
|
tulip_timer, tulip_media_task },
|
|
|
|
/* RS7112 */
|
|
{ "Conexant LANfinity", 256, 0x0001ebef,
|
|
HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
|
|
|
|
};
|
|
|
|
|
|
static struct pci_device_id tulip_pci_tbl[] = {
|
|
{ 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
|
|
{ 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
|
|
{ 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
|
|
{ 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
|
|
{ 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
|
|
/* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
|
|
{ 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
|
|
{ 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
|
|
{ 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
|
|
{ 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
|
|
{ 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
|
|
{ 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
|
|
{ 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
|
|
{ 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
|
|
{ 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
|
|
{ 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
|
|
{ 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
|
|
{ } /* terminate list */
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
|
|
|
|
|
|
/* A full-duplex map for media types. */
|
|
const char tulip_media_cap[32] =
|
|
{0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
|
|
|
|
static void tulip_tx_timeout(struct net_device *dev);
|
|
static void tulip_init_ring(struct net_device *dev);
|
|
static void tulip_free_ring(struct net_device *dev);
|
|
static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
|
|
static int tulip_open(struct net_device *dev);
|
|
static int tulip_close(struct net_device *dev);
|
|
static void tulip_up(struct net_device *dev);
|
|
static void tulip_down(struct net_device *dev);
|
|
static struct net_device_stats *tulip_get_stats(struct net_device *dev);
|
|
static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
|
|
static void set_rx_mode(struct net_device *dev);
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
static void poll_tulip(struct net_device *dev);
|
|
#endif
|
|
|
|
static void tulip_set_power_state (struct tulip_private *tp,
|
|
int sleep, int snooze)
|
|
{
|
|
if (tp->flags & HAS_ACPI) {
|
|
u32 tmp, newtmp;
|
|
pci_read_config_dword (tp->pdev, CFDD, &tmp);
|
|
newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
|
|
if (sleep)
|
|
newtmp |= CFDD_Sleep;
|
|
else if (snooze)
|
|
newtmp |= CFDD_Snooze;
|
|
if (tmp != newtmp)
|
|
pci_write_config_dword (tp->pdev, CFDD, newtmp);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
static void tulip_up(struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
void __iomem *ioaddr = tp->base_addr;
|
|
int next_tick = 3*HZ;
|
|
u32 reg;
|
|
int i;
|
|
|
|
#ifdef CONFIG_TULIP_NAPI
|
|
napi_enable(&tp->napi);
|
|
#endif
|
|
|
|
/* Wake the chip from sleep/snooze mode. */
|
|
tulip_set_power_state (tp, 0, 0);
|
|
|
|
/* On some chip revs we must set the MII/SYM port before the reset!? */
|
|
if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
|
|
iowrite32(0x00040000, ioaddr + CSR6);
|
|
|
|
/* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
|
|
iowrite32(0x00000001, ioaddr + CSR0);
|
|
pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
|
|
udelay(100);
|
|
|
|
/* Deassert reset.
|
|
Wait the specified 50 PCI cycles after a reset by initializing
|
|
Tx and Rx queues and the address filter list. */
|
|
iowrite32(tp->csr0, ioaddr + CSR0);
|
|
pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
|
|
udelay(100);
|
|
|
|
if (tulip_debug > 1)
|
|
printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
|
|
|
|
iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
|
|
iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
|
|
tp->cur_rx = tp->cur_tx = 0;
|
|
tp->dirty_rx = tp->dirty_tx = 0;
|
|
|
|
if (tp->flags & MC_HASH_ONLY) {
|
|
u32 addr_low = get_unaligned_le32(dev->dev_addr);
|
|
u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
|
|
if (tp->chip_id == AX88140) {
|
|
iowrite32(0, ioaddr + CSR13);
|
|
iowrite32(addr_low, ioaddr + CSR14);
|
|
iowrite32(1, ioaddr + CSR13);
|
|
iowrite32(addr_high, ioaddr + CSR14);
|
|
} else if (tp->flags & COMET_MAC_ADDR) {
|
|
iowrite32(addr_low, ioaddr + 0xA4);
|
|
iowrite32(addr_high, ioaddr + 0xA8);
|
|
iowrite32(0, ioaddr + 0xAC);
|
|
iowrite32(0, ioaddr + 0xB0);
|
|
}
|
|
} else {
|
|
/* This is set_rx_mode(), but without starting the transmitter. */
|
|
u16 *eaddrs = (u16 *)dev->dev_addr;
|
|
u16 *setup_frm = &tp->setup_frame[15*6];
|
|
dma_addr_t mapping;
|
|
|
|
/* 21140 bug: you must add the broadcast address. */
|
|
memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
|
|
/* Fill the final entry of the table with our physical address. */
|
|
*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
|
|
*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
|
|
*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
|
|
|
|
mapping = pci_map_single(tp->pdev, tp->setup_frame,
|
|
sizeof(tp->setup_frame),
|
|
PCI_DMA_TODEVICE);
|
|
tp->tx_buffers[tp->cur_tx].skb = NULL;
|
|
tp->tx_buffers[tp->cur_tx].mapping = mapping;
|
|
|
|
/* Put the setup frame on the Tx list. */
|
|
tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
|
|
tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
|
|
tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
|
|
|
|
tp->cur_tx++;
|
|
}
|
|
|
|
tp->saved_if_port = dev->if_port;
|
|
if (dev->if_port == 0)
|
|
dev->if_port = tp->default_port;
|
|
|
|
/* Allow selecting a default media. */
|
|
i = 0;
|
|
if (tp->mtable == NULL)
|
|
goto media_picked;
|
|
if (dev->if_port) {
|
|
int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
|
|
(dev->if_port == 12 ? 0 : dev->if_port);
|
|
for (i = 0; i < tp->mtable->leafcount; i++)
|
|
if (tp->mtable->mleaf[i].media == looking_for) {
|
|
printk(KERN_INFO "%s: Using user-specified media %s.\n",
|
|
dev->name, medianame[dev->if_port]);
|
|
goto media_picked;
|
|
}
|
|
}
|
|
if ((tp->mtable->defaultmedia & 0x0800) == 0) {
|
|
int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
|
|
for (i = 0; i < tp->mtable->leafcount; i++)
|
|
if (tp->mtable->mleaf[i].media == looking_for) {
|
|
printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
|
|
dev->name, medianame[looking_for]);
|
|
goto media_picked;
|
|
}
|
|
}
|
|
/* Start sensing first non-full-duplex media. */
|
|
for (i = tp->mtable->leafcount - 1;
|
|
(tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
|
|
;
|
|
media_picked:
|
|
|
|
tp->csr6 = 0;
|
|
tp->cur_index = i;
|
|
tp->nwayset = 0;
|
|
|
|
if (dev->if_port) {
|
|
if (tp->chip_id == DC21143 &&
|
|
(tulip_media_cap[dev->if_port] & MediaIsMII)) {
|
|
/* We must reset the media CSRs when we force-select MII mode. */
|
|
iowrite32(0x0000, ioaddr + CSR13);
|
|
iowrite32(0x0000, ioaddr + CSR14);
|
|
iowrite32(0x0008, ioaddr + CSR15);
|
|
}
|
|
tulip_select_media(dev, 1);
|
|
} else if (tp->chip_id == DC21142) {
|
|
if (tp->mii_cnt) {
|
|
tulip_select_media(dev, 1);
|
|
if (tulip_debug > 1)
|
|
printk(KERN_INFO "%s: Using MII transceiver %d, status "
|
|
"%4.4x.\n",
|
|
dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
|
|
iowrite32(csr6_mask_defstate, ioaddr + CSR6);
|
|
tp->csr6 = csr6_mask_hdcap;
|
|
dev->if_port = 11;
|
|
iowrite32(0x0000, ioaddr + CSR13);
|
|
iowrite32(0x0000, ioaddr + CSR14);
|
|
} else
|
|
t21142_start_nway(dev);
|
|
} else if (tp->chip_id == PNIC2) {
|
|
/* for initial startup advertise 10/100 Full and Half */
|
|
tp->sym_advertise = 0x01E0;
|
|
/* enable autonegotiate end interrupt */
|
|
iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
|
|
iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
|
|
pnic2_start_nway(dev);
|
|
} else if (tp->chip_id == LC82C168 && ! tp->medialock) {
|
|
if (tp->mii_cnt) {
|
|
dev->if_port = 11;
|
|
tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
|
|
iowrite32(0x0001, ioaddr + CSR15);
|
|
} else if (ioread32(ioaddr + CSR5) & TPLnkPass)
|
|
pnic_do_nway(dev);
|
|
else {
|
|
/* Start with 10mbps to do autonegotiation. */
|
|
iowrite32(0x32, ioaddr + CSR12);
|
|
tp->csr6 = 0x00420000;
|
|
iowrite32(0x0001B078, ioaddr + 0xB8);
|
|
iowrite32(0x0201B078, ioaddr + 0xB8);
|
|
next_tick = 1*HZ;
|
|
}
|
|
} else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
|
|
&& ! tp->medialock) {
|
|
dev->if_port = 0;
|
|
tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
|
|
iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
|
|
} else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
|
|
/* Provided by BOLO, Macronix - 12/10/1998. */
|
|
dev->if_port = 0;
|
|
tp->csr6 = 0x01a80200;
|
|
iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
|
|
iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
|
|
} else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
|
|
/* Enable automatic Tx underrun recovery. */
|
|
iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
|
|
dev->if_port = tp->mii_cnt ? 11 : 0;
|
|
tp->csr6 = 0x00040000;
|
|
} else if (tp->chip_id == AX88140) {
|
|
tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
|
|
} else
|
|
tulip_select_media(dev, 1);
|
|
|
|
/* Start the chip's Tx to process setup frame. */
|
|
tulip_stop_rxtx(tp);
|
|
barrier();
|
|
udelay(5);
|
|
iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
|
|
|
|
/* Enable interrupts by setting the interrupt mask. */
|
|
iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
|
|
iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
|
|
tulip_start_rxtx(tp);
|
|
iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
|
|
|
|
if (tulip_debug > 2) {
|
|
printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
|
|
dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
|
|
ioread32(ioaddr + CSR6));
|
|
}
|
|
|
|
/* Set the timer to switch to check for link beat and perhaps switch
|
|
to an alternate media type. */
|
|
tp->timer.expires = RUN_AT(next_tick);
|
|
add_timer(&tp->timer);
|
|
#ifdef CONFIG_TULIP_NAPI
|
|
init_timer(&tp->oom_timer);
|
|
tp->oom_timer.data = (unsigned long)dev;
|
|
tp->oom_timer.function = oom_timer;
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
tulip_open(struct net_device *dev)
|
|
{
|
|
int retval;
|
|
|
|
tulip_init_ring (dev);
|
|
|
|
retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev);
|
|
if (retval)
|
|
goto free_ring;
|
|
|
|
tulip_up (dev);
|
|
|
|
netif_start_queue (dev);
|
|
|
|
return 0;
|
|
|
|
free_ring:
|
|
tulip_free_ring (dev);
|
|
return retval;
|
|
}
|
|
|
|
|
|
static void tulip_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
void __iomem *ioaddr = tp->base_addr;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave (&tp->lock, flags);
|
|
|
|
if (tulip_media_cap[dev->if_port] & MediaIsMII) {
|
|
/* Do nothing -- the media monitor should handle this. */
|
|
if (tulip_debug > 1)
|
|
printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
|
|
dev->name);
|
|
} else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
|
|
|| tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
|
|
|| tp->chip_id == DM910X) {
|
|
printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
|
|
"SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
|
|
dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
|
|
ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
|
|
tp->timeout_recovery = 1;
|
|
schedule_work(&tp->media_work);
|
|
goto out_unlock;
|
|
} else if (tp->chip_id == PNIC2) {
|
|
printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
|
|
"CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
|
|
dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
|
|
(int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
|
|
} else {
|
|
printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
|
|
"%8.8x, resetting...\n",
|
|
dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
|
|
dev->if_port = 0;
|
|
}
|
|
|
|
#if defined(way_too_many_messages)
|
|
if (tulip_debug > 3) {
|
|
int i;
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
|
|
int j;
|
|
printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
|
|
"%2.2x %2.2x %2.2x.\n",
|
|
i, (unsigned int)tp->rx_ring[i].status,
|
|
(unsigned int)tp->rx_ring[i].length,
|
|
(unsigned int)tp->rx_ring[i].buffer1,
|
|
(unsigned int)tp->rx_ring[i].buffer2,
|
|
buf[0], buf[1], buf[2]);
|
|
for (j = 0; buf[j] != 0xee && j < 1600; j++)
|
|
if (j < 100) printk(" %2.2x", buf[j]);
|
|
printk(" j=%d.\n", j);
|
|
}
|
|
printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
|
|
for (i = 0; i < RX_RING_SIZE; i++)
|
|
printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
|
|
printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
|
|
for (i = 0; i < TX_RING_SIZE; i++)
|
|
printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
|
|
printk("\n");
|
|
}
|
|
#endif
|
|
|
|
tulip_tx_timeout_complete(tp, ioaddr);
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore (&tp->lock, flags);
|
|
dev->trans_start = jiffies;
|
|
netif_wake_queue (dev);
|
|
}
|
|
|
|
|
|
/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
|
|
static void tulip_init_ring(struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
int i;
|
|
|
|
tp->susp_rx = 0;
|
|
tp->ttimer = 0;
|
|
tp->nir = 0;
|
|
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
tp->rx_ring[i].status = 0x00000000;
|
|
tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
|
|
tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
|
|
tp->rx_buffers[i].skb = NULL;
|
|
tp->rx_buffers[i].mapping = 0;
|
|
}
|
|
/* Mark the last entry as wrapping the ring. */
|
|
tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
|
|
tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
|
|
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
dma_addr_t mapping;
|
|
|
|
/* Note the receive buffer must be longword aligned.
|
|
dev_alloc_skb() provides 16 byte alignment. But do *not*
|
|
use skb_reserve() to align the IP header! */
|
|
struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
|
|
tp->rx_buffers[i].skb = skb;
|
|
if (skb == NULL)
|
|
break;
|
|
mapping = pci_map_single(tp->pdev, skb->data,
|
|
PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
|
|
tp->rx_buffers[i].mapping = mapping;
|
|
skb->dev = dev; /* Mark as being used by this device. */
|
|
tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
|
|
tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
|
|
}
|
|
tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
|
|
|
|
/* The Tx buffer descriptor is filled in as needed, but we
|
|
do need to clear the ownership bit. */
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
tp->tx_buffers[i].skb = NULL;
|
|
tp->tx_buffers[i].mapping = 0;
|
|
tp->tx_ring[i].status = 0x00000000;
|
|
tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
|
|
}
|
|
tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
|
|
}
|
|
|
|
static int
|
|
tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
int entry;
|
|
u32 flag;
|
|
dma_addr_t mapping;
|
|
|
|
spin_lock_irq(&tp->lock);
|
|
|
|
/* Calculate the next Tx descriptor entry. */
|
|
entry = tp->cur_tx % TX_RING_SIZE;
|
|
|
|
tp->tx_buffers[entry].skb = skb;
|
|
mapping = pci_map_single(tp->pdev, skb->data,
|
|
skb->len, PCI_DMA_TODEVICE);
|
|
tp->tx_buffers[entry].mapping = mapping;
|
|
tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
|
|
|
|
if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
|
|
flag = 0x60000000; /* No interrupt */
|
|
} else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
|
|
flag = 0xe0000000; /* Tx-done intr. */
|
|
} else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
|
|
flag = 0x60000000; /* No Tx-done intr. */
|
|
} else { /* Leave room for set_rx_mode() to fill entries. */
|
|
flag = 0xe0000000; /* Tx-done intr. */
|
|
netif_stop_queue(dev);
|
|
}
|
|
if (entry == TX_RING_SIZE-1)
|
|
flag = 0xe0000000 | DESC_RING_WRAP;
|
|
|
|
tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
|
|
/* if we were using Transmit Automatic Polling, we would need a
|
|
* wmb() here. */
|
|
tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
|
|
wmb();
|
|
|
|
tp->cur_tx++;
|
|
|
|
/* Trigger an immediate transmit demand. */
|
|
iowrite32(0, tp->base_addr + CSR1);
|
|
|
|
spin_unlock_irq(&tp->lock);
|
|
|
|
dev->trans_start = jiffies;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tulip_clean_tx_ring(struct tulip_private *tp)
|
|
{
|
|
unsigned int dirty_tx;
|
|
|
|
for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
|
|
dirty_tx++) {
|
|
int entry = dirty_tx % TX_RING_SIZE;
|
|
int status = le32_to_cpu(tp->tx_ring[entry].status);
|
|
|
|
if (status < 0) {
|
|
tp->stats.tx_errors++; /* It wasn't Txed */
|
|
tp->tx_ring[entry].status = 0;
|
|
}
|
|
|
|
/* Check for Tx filter setup frames. */
|
|
if (tp->tx_buffers[entry].skb == NULL) {
|
|
/* test because dummy frames not mapped */
|
|
if (tp->tx_buffers[entry].mapping)
|
|
pci_unmap_single(tp->pdev,
|
|
tp->tx_buffers[entry].mapping,
|
|
sizeof(tp->setup_frame),
|
|
PCI_DMA_TODEVICE);
|
|
continue;
|
|
}
|
|
|
|
pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
|
|
tp->tx_buffers[entry].skb->len,
|
|
PCI_DMA_TODEVICE);
|
|
|
|
/* Free the original skb. */
|
|
dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
|
|
tp->tx_buffers[entry].skb = NULL;
|
|
tp->tx_buffers[entry].mapping = 0;
|
|
}
|
|
}
|
|
|
|
static void tulip_down (struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
void __iomem *ioaddr = tp->base_addr;
|
|
unsigned long flags;
|
|
|
|
cancel_work_sync(&tp->media_work);
|
|
|
|
#ifdef CONFIG_TULIP_NAPI
|
|
napi_disable(&tp->napi);
|
|
#endif
|
|
|
|
del_timer_sync (&tp->timer);
|
|
#ifdef CONFIG_TULIP_NAPI
|
|
del_timer_sync (&tp->oom_timer);
|
|
#endif
|
|
spin_lock_irqsave (&tp->lock, flags);
|
|
|
|
/* Disable interrupts by clearing the interrupt mask. */
|
|
iowrite32 (0x00000000, ioaddr + CSR7);
|
|
|
|
/* Stop the Tx and Rx processes. */
|
|
tulip_stop_rxtx(tp);
|
|
|
|
/* prepare receive buffers */
|
|
tulip_refill_rx(dev);
|
|
|
|
/* release any unconsumed transmit buffers */
|
|
tulip_clean_tx_ring(tp);
|
|
|
|
if (ioread32 (ioaddr + CSR6) != 0xffffffff)
|
|
tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
|
|
|
|
spin_unlock_irqrestore (&tp->lock, flags);
|
|
|
|
init_timer(&tp->timer);
|
|
tp->timer.data = (unsigned long)dev;
|
|
tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
|
|
|
|
dev->if_port = tp->saved_if_port;
|
|
|
|
/* Leave the driver in snooze, not sleep, mode. */
|
|
tulip_set_power_state (tp, 0, 1);
|
|
}
|
|
|
|
static void tulip_free_ring (struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
int i;
|
|
|
|
/* Free all the skbuffs in the Rx queue. */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
struct sk_buff *skb = tp->rx_buffers[i].skb;
|
|
dma_addr_t mapping = tp->rx_buffers[i].mapping;
|
|
|
|
tp->rx_buffers[i].skb = NULL;
|
|
tp->rx_buffers[i].mapping = 0;
|
|
|
|
tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
|
|
tp->rx_ring[i].length = 0;
|
|
/* An invalid address. */
|
|
tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
|
|
if (skb) {
|
|
pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
|
|
PCI_DMA_FROMDEVICE);
|
|
dev_kfree_skb (skb);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
struct sk_buff *skb = tp->tx_buffers[i].skb;
|
|
|
|
if (skb != NULL) {
|
|
pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
|
|
skb->len, PCI_DMA_TODEVICE);
|
|
dev_kfree_skb (skb);
|
|
}
|
|
tp->tx_buffers[i].skb = NULL;
|
|
tp->tx_buffers[i].mapping = 0;
|
|
}
|
|
}
|
|
|
|
static int tulip_close (struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
void __iomem *ioaddr = tp->base_addr;
|
|
|
|
netif_stop_queue (dev);
|
|
|
|
tulip_down (dev);
|
|
|
|
if (tulip_debug > 1)
|
|
printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
|
|
dev->name, ioread32 (ioaddr + CSR5));
|
|
|
|
free_irq (dev->irq, dev);
|
|
|
|
tulip_free_ring (dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct net_device_stats *tulip_get_stats(struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
void __iomem *ioaddr = tp->base_addr;
|
|
|
|
if (netif_running(dev)) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave (&tp->lock, flags);
|
|
|
|
tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
|
|
|
|
spin_unlock_irqrestore(&tp->lock, flags);
|
|
}
|
|
|
|
return &tp->stats;
|
|
}
|
|
|
|
|
|
static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct tulip_private *np = netdev_priv(dev);
|
|
strcpy(info->driver, DRV_NAME);
|
|
strcpy(info->version, DRV_VERSION);
|
|
strcpy(info->bus_info, pci_name(np->pdev));
|
|
}
|
|
|
|
static const struct ethtool_ops ops = {
|
|
.get_drvinfo = tulip_get_drvinfo
|
|
};
|
|
|
|
/* Provide ioctl() calls to examine the MII xcvr state. */
|
|
static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
void __iomem *ioaddr = tp->base_addr;
|
|
struct mii_ioctl_data *data = if_mii(rq);
|
|
const unsigned int phy_idx = 0;
|
|
int phy = tp->phys[phy_idx] & 0x1f;
|
|
unsigned int regnum = data->reg_num;
|
|
|
|
switch (cmd) {
|
|
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
|
|
if (tp->mii_cnt)
|
|
data->phy_id = phy;
|
|
else if (tp->flags & HAS_NWAY)
|
|
data->phy_id = 32;
|
|
else if (tp->chip_id == COMET)
|
|
data->phy_id = 1;
|
|
else
|
|
return -ENODEV;
|
|
|
|
case SIOCGMIIREG: /* Read MII PHY register. */
|
|
if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
|
|
int csr12 = ioread32 (ioaddr + CSR12);
|
|
int csr14 = ioread32 (ioaddr + CSR14);
|
|
switch (regnum) {
|
|
case 0:
|
|
if (((csr14<<5) & 0x1000) ||
|
|
(dev->if_port == 5 && tp->nwayset))
|
|
data->val_out = 0x1000;
|
|
else
|
|
data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
|
|
| (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
|
|
break;
|
|
case 1:
|
|
data->val_out =
|
|
0x1848 +
|
|
((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
|
|
((csr12&0x06) == 6 ? 0 : 4);
|
|
data->val_out |= 0x6048;
|
|
break;
|
|
case 4:
|
|
/* Advertised value, bogus 10baseTx-FD value from CSR6. */
|
|
data->val_out =
|
|
((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
|
|
((csr14 >> 1) & 0x20) + 1;
|
|
data->val_out |= ((csr14 >> 9) & 0x03C0);
|
|
break;
|
|
case 5: data->val_out = tp->lpar; break;
|
|
default: data->val_out = 0; break;
|
|
}
|
|
} else {
|
|
data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
|
|
}
|
|
return 0;
|
|
|
|
case SIOCSMIIREG: /* Write MII PHY register. */
|
|
if (!capable (CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
if (regnum & ~0x1f)
|
|
return -EINVAL;
|
|
if (data->phy_id == phy) {
|
|
u16 value = data->val_in;
|
|
switch (regnum) {
|
|
case 0: /* Check for autonegotiation on or reset. */
|
|
tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
|
|
if (tp->full_duplex_lock)
|
|
tp->full_duplex = (value & 0x0100) ? 1 : 0;
|
|
break;
|
|
case 4:
|
|
tp->advertising[phy_idx] =
|
|
tp->mii_advertise = data->val_in;
|
|
break;
|
|
}
|
|
}
|
|
if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
|
|
u16 value = data->val_in;
|
|
if (regnum == 0) {
|
|
if ((value & 0x1200) == 0x1200) {
|
|
if (tp->chip_id == PNIC2) {
|
|
pnic2_start_nway (dev);
|
|
} else {
|
|
t21142_start_nway (dev);
|
|
}
|
|
}
|
|
} else if (regnum == 4)
|
|
tp->sym_advertise = value;
|
|
} else {
|
|
tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
|
|
}
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
|
|
/* Set or clear the multicast filter for this adaptor.
|
|
Note that we only use exclusion around actually queueing the
|
|
new frame, not around filling tp->setup_frame. This is non-deterministic
|
|
when re-entered but still correct. */
|
|
|
|
#undef set_bit_le
|
|
#define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
|
|
|
|
static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
u16 hash_table[32];
|
|
struct dev_mc_list *mclist;
|
|
int i;
|
|
u16 *eaddrs;
|
|
|
|
memset(hash_table, 0, sizeof(hash_table));
|
|
set_bit_le(255, hash_table); /* Broadcast entry */
|
|
/* This should work on big-endian machines as well. */
|
|
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
|
|
i++, mclist = mclist->next) {
|
|
int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
|
|
|
|
set_bit_le(index, hash_table);
|
|
|
|
}
|
|
for (i = 0; i < 32; i++) {
|
|
*setup_frm++ = hash_table[i];
|
|
*setup_frm++ = hash_table[i];
|
|
}
|
|
setup_frm = &tp->setup_frame[13*6];
|
|
|
|
/* Fill the final entry with our physical address. */
|
|
eaddrs = (u16 *)dev->dev_addr;
|
|
*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
|
|
*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
|
|
*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
|
|
}
|
|
|
|
static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
struct dev_mc_list *mclist;
|
|
int i;
|
|
u16 *eaddrs;
|
|
|
|
/* We have <= 14 addresses so we can use the wonderful
|
|
16 address perfect filtering of the Tulip. */
|
|
for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
|
|
i++, mclist = mclist->next) {
|
|
eaddrs = (u16 *)mclist->dmi_addr;
|
|
*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
|
|
*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
|
|
*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
|
|
}
|
|
/* Fill the unused entries with the broadcast address. */
|
|
memset(setup_frm, 0xff, (15-i)*12);
|
|
setup_frm = &tp->setup_frame[15*6];
|
|
|
|
/* Fill the final entry with our physical address. */
|
|
eaddrs = (u16 *)dev->dev_addr;
|
|
*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
|
|
*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
|
|
*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
|
|
}
|
|
|
|
|
|
static void set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
void __iomem *ioaddr = tp->base_addr;
|
|
int csr6;
|
|
|
|
csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
|
|
|
|
tp->csr6 &= ~0x00D5;
|
|
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
|
|
tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
|
|
csr6 |= AcceptAllMulticast | AcceptAllPhys;
|
|
} else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
|
|
/* Too many to filter well -- accept all multicasts. */
|
|
tp->csr6 |= AcceptAllMulticast;
|
|
csr6 |= AcceptAllMulticast;
|
|
} else if (tp->flags & MC_HASH_ONLY) {
|
|
/* Some work-alikes have only a 64-entry hash filter table. */
|
|
/* Should verify correctness on big-endian/__powerpc__ */
|
|
struct dev_mc_list *mclist;
|
|
int i;
|
|
if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
|
|
tp->csr6 |= AcceptAllMulticast;
|
|
csr6 |= AcceptAllMulticast;
|
|
} else {
|
|
u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
|
|
int filterbit;
|
|
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
|
|
i++, mclist = mclist->next) {
|
|
if (tp->flags & COMET_MAC_ADDR)
|
|
filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
|
|
else
|
|
filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
|
|
filterbit &= 0x3f;
|
|
mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
|
|
if (tulip_debug > 2)
|
|
printk(KERN_INFO "%s: Added filter for %pM"
|
|
" %8.8x bit %d.\n",
|
|
dev->name, mclist->dmi_addr,
|
|
ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
|
|
}
|
|
if (mc_filter[0] == tp->mc_filter[0] &&
|
|
mc_filter[1] == tp->mc_filter[1])
|
|
; /* No change. */
|
|
else if (tp->flags & IS_ASIX) {
|
|
iowrite32(2, ioaddr + CSR13);
|
|
iowrite32(mc_filter[0], ioaddr + CSR14);
|
|
iowrite32(3, ioaddr + CSR13);
|
|
iowrite32(mc_filter[1], ioaddr + CSR14);
|
|
} else if (tp->flags & COMET_MAC_ADDR) {
|
|
iowrite32(mc_filter[0], ioaddr + 0xAC);
|
|
iowrite32(mc_filter[1], ioaddr + 0xB0);
|
|
}
|
|
tp->mc_filter[0] = mc_filter[0];
|
|
tp->mc_filter[1] = mc_filter[1];
|
|
}
|
|
} else {
|
|
unsigned long flags;
|
|
u32 tx_flags = 0x08000000 | 192;
|
|
|
|
/* Note that only the low-address shortword of setup_frame is valid!
|
|
The values are doubled for big-endian architectures. */
|
|
if (dev->mc_count > 14) { /* Must use a multicast hash table. */
|
|
build_setup_frame_hash(tp->setup_frame, dev);
|
|
tx_flags = 0x08400000 | 192;
|
|
} else {
|
|
build_setup_frame_perfect(tp->setup_frame, dev);
|
|
}
|
|
|
|
spin_lock_irqsave(&tp->lock, flags);
|
|
|
|
if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
|
|
/* Same setup recently queued, we need not add it. */
|
|
} else {
|
|
unsigned int entry;
|
|
int dummy = -1;
|
|
|
|
/* Now add this frame to the Tx list. */
|
|
|
|
entry = tp->cur_tx++ % TX_RING_SIZE;
|
|
|
|
if (entry != 0) {
|
|
/* Avoid a chip errata by prefixing a dummy entry. */
|
|
tp->tx_buffers[entry].skb = NULL;
|
|
tp->tx_buffers[entry].mapping = 0;
|
|
tp->tx_ring[entry].length =
|
|
(entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
|
|
tp->tx_ring[entry].buffer1 = 0;
|
|
/* Must set DescOwned later to avoid race with chip */
|
|
dummy = entry;
|
|
entry = tp->cur_tx++ % TX_RING_SIZE;
|
|
|
|
}
|
|
|
|
tp->tx_buffers[entry].skb = NULL;
|
|
tp->tx_buffers[entry].mapping =
|
|
pci_map_single(tp->pdev, tp->setup_frame,
|
|
sizeof(tp->setup_frame),
|
|
PCI_DMA_TODEVICE);
|
|
/* Put the setup frame on the Tx list. */
|
|
if (entry == TX_RING_SIZE-1)
|
|
tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
|
|
tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
|
|
tp->tx_ring[entry].buffer1 =
|
|
cpu_to_le32(tp->tx_buffers[entry].mapping);
|
|
tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
|
|
if (dummy >= 0)
|
|
tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
|
|
if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
|
|
netif_stop_queue(dev);
|
|
|
|
/* Trigger an immediate transmit demand. */
|
|
iowrite32(0, ioaddr + CSR1);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&tp->lock, flags);
|
|
}
|
|
|
|
iowrite32(csr6, ioaddr + CSR6);
|
|
}
|
|
|
|
#ifdef CONFIG_TULIP_MWI
|
|
static void __devinit tulip_mwi_config (struct pci_dev *pdev,
|
|
struct net_device *dev)
|
|
{
|
|
struct tulip_private *tp = netdev_priv(dev);
|
|
u8 cache;
|
|
u16 pci_command;
|
|
u32 csr0;
|
|
|
|
if (tulip_debug > 3)
|
|
printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
|
|
|
|
tp->csr0 = csr0 = 0;
|
|
|
|
/* if we have any cache line size at all, we can do MRM and MWI */
|
|
csr0 |= MRM | MWI;
|
|
|
|
/* Enable MWI in the standard PCI command bit.
|
|
* Check for the case where MWI is desired but not available
|
|
*/
|
|
pci_try_set_mwi(pdev);
|
|
|
|
/* read result from hardware (in case bit refused to enable) */
|
|
pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
|
|
if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
|
|
csr0 &= ~MWI;
|
|
|
|
/* if cache line size hardwired to zero, no MWI */
|
|
pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
|
|
if ((csr0 & MWI) && (cache == 0)) {
|
|
csr0 &= ~MWI;
|
|
pci_clear_mwi(pdev);
|
|
}
|
|
|
|
/* assign per-cacheline-size cache alignment and
|
|
* burst length values
|
|
*/
|
|
switch (cache) {
|
|
case 8:
|
|
csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
|
|
break;
|
|
case 16:
|
|
csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
|
|
break;
|
|
case 32:
|
|
csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
|
|
break;
|
|
default:
|
|
cache = 0;
|
|
break;
|
|
}
|
|
|
|
/* if we have a good cache line size, we by now have a good
|
|
* csr0, so save it and exit
|
|
*/
|
|
if (cache)
|
|
goto out;
|
|
|
|
/* we don't have a good csr0 or cache line size, disable MWI */
|
|
if (csr0 & MWI) {
|
|
pci_clear_mwi(pdev);
|
|
csr0 &= ~MWI;
|
|
}
|
|
|
|
/* sane defaults for burst length and cache alignment
|
|
* originally from de4x5 driver
|
|
*/
|
|
csr0 |= (8 << BurstLenShift) | (1 << CALShift);
|
|
|
|
out:
|
|
tp->csr0 = csr0;
|
|
if (tulip_debug > 2)
|
|
printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
|
|
pci_name(pdev), cache, csr0);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Chips that have the MRM/reserved bit quirk and the burst quirk. That
|
|
* is the DM910X and the on chip ULi devices
|
|
*/
|
|
|
|
static int tulip_uli_dm_quirk(struct pci_dev *pdev)
|
|
{
|
|
if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static const struct net_device_ops tulip_netdev_ops = {
|
|
.ndo_open = tulip_open,
|
|
.ndo_start_xmit = tulip_start_xmit,
|
|
.ndo_tx_timeout = tulip_tx_timeout,
|
|
.ndo_stop = tulip_close,
|
|
.ndo_get_stats = tulip_get_stats,
|
|
.ndo_do_ioctl = private_ioctl,
|
|
.ndo_set_multicast_list = set_rx_mode,
|
|
.ndo_change_mtu = eth_change_mtu,
|
|
.ndo_set_mac_address = eth_mac_addr,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = poll_tulip,
|
|
#endif
|
|
};
|
|
|
|
static int __devinit tulip_init_one (struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct tulip_private *tp;
|
|
/* See note below on the multiport cards. */
|
|
static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
|
|
static struct pci_device_id early_486_chipsets[] = {
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
|
|
{ },
|
|
};
|
|
static int last_irq;
|
|
static int multiport_cnt; /* For four-port boards w/one EEPROM */
|
|
int i, irq;
|
|
unsigned short sum;
|
|
unsigned char *ee_data;
|
|
struct net_device *dev;
|
|
void __iomem *ioaddr;
|
|
static int board_idx = -1;
|
|
int chip_idx = ent->driver_data;
|
|
const char *chip_name = tulip_tbl[chip_idx].chip_name;
|
|
unsigned int eeprom_missing = 0;
|
|
unsigned int force_csr0 = 0;
|
|
|
|
#ifndef MODULE
|
|
static int did_version; /* Already printed version info. */
|
|
if (tulip_debug > 0 && did_version++ == 0)
|
|
printk (KERN_INFO "%s", version);
|
|
#endif
|
|
|
|
board_idx++;
|
|
|
|
/*
|
|
* Lan media wire a tulip chip to a wan interface. Needs a very
|
|
* different driver (lmc driver)
|
|
*/
|
|
|
|
if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
|
|
printk (KERN_ERR PFX "skipping LMC card.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Early DM9100's need software CRC and the DMFE driver
|
|
*/
|
|
|
|
if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
|
|
{
|
|
/* Read Chip revision */
|
|
if (pdev->revision < 0x30)
|
|
{
|
|
printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Looks for early PCI chipsets where people report hangs
|
|
* without the workarounds being on.
|
|
*/
|
|
|
|
/* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
|
|
aligned. Aries might need this too. The Saturn errata are not
|
|
pretty reading but thankfully it's an old 486 chipset.
|
|
|
|
2. The dreaded SiS496 486 chipset. Same workaround as Intel
|
|
Saturn.
|
|
*/
|
|
|
|
if (pci_dev_present(early_486_chipsets)) {
|
|
csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
|
|
force_csr0 = 1;
|
|
}
|
|
|
|
/* bugfix: the ASIX must have a burst limit or horrible things happen. */
|
|
if (chip_idx == AX88140) {
|
|
if ((csr0 & 0x3f00) == 0)
|
|
csr0 |= 0x2000;
|
|
}
|
|
|
|
/* PNIC doesn't have MWI/MRL/MRM... */
|
|
if (chip_idx == LC82C168)
|
|
csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
|
|
|
|
/* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
|
|
if (tulip_uli_dm_quirk(pdev)) {
|
|
csr0 &= ~0x01f100ff;
|
|
#if defined(CONFIG_SPARC)
|
|
csr0 = (csr0 & ~0xff00) | 0xe000;
|
|
#endif
|
|
}
|
|
/*
|
|
* And back to business
|
|
*/
|
|
|
|
i = pci_enable_device(pdev);
|
|
if (i) {
|
|
printk (KERN_ERR PFX
|
|
"Cannot enable tulip board #%d, aborting\n",
|
|
board_idx);
|
|
return i;
|
|
}
|
|
|
|
irq = pdev->irq;
|
|
|
|
/* alloc_etherdev ensures aligned and zeroed private structures */
|
|
dev = alloc_etherdev (sizeof (*tp));
|
|
if (!dev) {
|
|
printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
|
|
printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
|
|
"aborting\n", pci_name(pdev),
|
|
(unsigned long long)pci_resource_len (pdev, 0),
|
|
(unsigned long long)pci_resource_start (pdev, 0));
|
|
goto err_out_free_netdev;
|
|
}
|
|
|
|
/* grab all resources from both PIO and MMIO regions, as we
|
|
* don't want anyone else messing around with our hardware */
|
|
if (pci_request_regions (pdev, "tulip"))
|
|
goto err_out_free_netdev;
|
|
|
|
ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
|
|
|
|
if (!ioaddr)
|
|
goto err_out_free_res;
|
|
|
|
/*
|
|
* initialize private data structure 'tp'
|
|
* it is zeroed and aligned in alloc_etherdev
|
|
*/
|
|
tp = netdev_priv(dev);
|
|
tp->dev = dev;
|
|
|
|
tp->rx_ring = pci_alloc_consistent(pdev,
|
|
sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
|
|
sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
|
|
&tp->rx_ring_dma);
|
|
if (!tp->rx_ring)
|
|
goto err_out_mtable;
|
|
tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
|
|
tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
|
|
|
|
tp->chip_id = chip_idx;
|
|
tp->flags = tulip_tbl[chip_idx].flags;
|
|
tp->pdev = pdev;
|
|
tp->base_addr = ioaddr;
|
|
tp->revision = pdev->revision;
|
|
tp->csr0 = csr0;
|
|
spin_lock_init(&tp->lock);
|
|
spin_lock_init(&tp->mii_lock);
|
|
init_timer(&tp->timer);
|
|
tp->timer.data = (unsigned long)dev;
|
|
tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
|
|
|
|
INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
|
|
|
|
dev->base_addr = (unsigned long)ioaddr;
|
|
|
|
#ifdef CONFIG_TULIP_MWI
|
|
if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
|
|
tulip_mwi_config (pdev, dev);
|
|
#endif
|
|
|
|
/* Stop the chip's Tx and Rx processes. */
|
|
tulip_stop_rxtx(tp);
|
|
|
|
pci_set_master(pdev);
|
|
|
|
#ifdef CONFIG_GSC
|
|
if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
|
|
switch (pdev->subsystem_device) {
|
|
default:
|
|
break;
|
|
case 0x1061:
|
|
case 0x1062:
|
|
case 0x1063:
|
|
case 0x1098:
|
|
case 0x1099:
|
|
case 0x10EE:
|
|
tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
|
|
chip_name = "GSC DS21140 Tulip";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Clear the missed-packet counter. */
|
|
ioread32(ioaddr + CSR8);
|
|
|
|
/* The station address ROM is read byte serially. The register must
|
|
be polled, waiting for the value to be read bit serially from the
|
|
EEPROM.
|
|
*/
|
|
ee_data = tp->eeprom;
|
|
memset(ee_data, 0, sizeof(tp->eeprom));
|
|
sum = 0;
|
|
if (chip_idx == LC82C168) {
|
|
for (i = 0; i < 3; i++) {
|
|
int value, boguscnt = 100000;
|
|
iowrite32(0x600 | i, ioaddr + 0x98);
|
|
do {
|
|
value = ioread32(ioaddr + CSR9);
|
|
} while (value < 0 && --boguscnt > 0);
|
|
put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
|
|
sum += value & 0xffff;
|
|
}
|
|
} else if (chip_idx == COMET) {
|
|
/* No need to read the EEPROM. */
|
|
put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
|
|
put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
|
|
for (i = 0; i < 6; i ++)
|
|
sum += dev->dev_addr[i];
|
|
} else {
|
|
/* A serial EEPROM interface, we read now and sort it out later. */
|
|
int sa_offset = 0;
|
|
int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
|
|
int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
|
|
|
|
if (ee_max_addr > sizeof(tp->eeprom))
|
|
ee_max_addr = sizeof(tp->eeprom);
|
|
|
|
for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
|
|
u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
|
|
ee_data[i] = data & 0xff;
|
|
ee_data[i + 1] = data >> 8;
|
|
}
|
|
|
|
/* DEC now has a specification (see Notes) but early board makers
|
|
just put the address in the first EEPROM locations. */
|
|
/* This does memcmp(ee_data, ee_data+16, 8) */
|
|
for (i = 0; i < 8; i ++)
|
|
if (ee_data[i] != ee_data[16+i])
|
|
sa_offset = 20;
|
|
if (chip_idx == CONEXANT) {
|
|
/* Check that the tuple type and length is correct. */
|
|
if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
|
|
sa_offset = 0x19A;
|
|
} else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
|
|
ee_data[2] == 0) {
|
|
sa_offset = 2; /* Grrr, damn Matrox boards. */
|
|
multiport_cnt = 4;
|
|
}
|
|
#ifdef CONFIG_MIPS_COBALT
|
|
if ((pdev->bus->number == 0) &&
|
|
((PCI_SLOT(pdev->devfn) == 7) ||
|
|
(PCI_SLOT(pdev->devfn) == 12))) {
|
|
/* Cobalt MAC address in first EEPROM locations. */
|
|
sa_offset = 0;
|
|
/* Ensure our media table fixup get's applied */
|
|
memcpy(ee_data + 16, ee_data, 8);
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_GSC
|
|
/* Check to see if we have a broken srom */
|
|
if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
|
|
/* pci_vendor_id and subsystem_id are swapped */
|
|
ee_data[0] = ee_data[2];
|
|
ee_data[1] = ee_data[3];
|
|
ee_data[2] = 0x61;
|
|
ee_data[3] = 0x10;
|
|
|
|
/* HSC-PCI boards need to be byte-swaped and shifted
|
|
* up 1 word. This shift needs to happen at the end
|
|
* of the MAC first because of the 2 byte overlap.
|
|
*/
|
|
for (i = 4; i >= 0; i -= 2) {
|
|
ee_data[17 + i + 3] = ee_data[17 + i];
|
|
ee_data[16 + i + 5] = ee_data[16 + i];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < 6; i ++) {
|
|
dev->dev_addr[i] = ee_data[i + sa_offset];
|
|
sum += ee_data[i + sa_offset];
|
|
}
|
|
}
|
|
/* Lite-On boards have the address byte-swapped. */
|
|
if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
|
|
&& dev->dev_addr[1] == 0x00)
|
|
for (i = 0; i < 6; i+=2) {
|
|
char tmp = dev->dev_addr[i];
|
|
dev->dev_addr[i] = dev->dev_addr[i+1];
|
|
dev->dev_addr[i+1] = tmp;
|
|
}
|
|
/* On the Zynx 315 Etherarray and other multiport boards only the
|
|
first Tulip has an EEPROM.
|
|
On Sparc systems the mac address is held in the OBP property
|
|
"local-mac-address".
|
|
The addresses of the subsequent ports are derived from the first.
|
|
Many PCI BIOSes also incorrectly report the IRQ line, so we correct
|
|
that here as well. */
|
|
if (sum == 0 || sum == 6*0xff) {
|
|
#if defined(CONFIG_SPARC)
|
|
struct device_node *dp = pci_device_to_OF_node(pdev);
|
|
const unsigned char *addr;
|
|
int len;
|
|
#endif
|
|
eeprom_missing = 1;
|
|
for (i = 0; i < 5; i++)
|
|
dev->dev_addr[i] = last_phys_addr[i];
|
|
dev->dev_addr[i] = last_phys_addr[i] + 1;
|
|
#if defined(CONFIG_SPARC)
|
|
addr = of_get_property(dp, "local-mac-address", &len);
|
|
if (addr && len == 6)
|
|
memcpy(dev->dev_addr, addr, 6);
|
|
#endif
|
|
#if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
|
|
if (last_irq)
|
|
irq = last_irq;
|
|
#endif
|
|
}
|
|
|
|
for (i = 0; i < 6; i++)
|
|
last_phys_addr[i] = dev->dev_addr[i];
|
|
last_irq = irq;
|
|
dev->irq = irq;
|
|
|
|
/* The lower four bits are the media type. */
|
|
if (board_idx >= 0 && board_idx < MAX_UNITS) {
|
|
if (options[board_idx] & MEDIA_MASK)
|
|
tp->default_port = options[board_idx] & MEDIA_MASK;
|
|
if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
|
|
tp->full_duplex = 1;
|
|
if (mtu[board_idx] > 0)
|
|
dev->mtu = mtu[board_idx];
|
|
}
|
|
if (dev->mem_start & MEDIA_MASK)
|
|
tp->default_port = dev->mem_start & MEDIA_MASK;
|
|
if (tp->default_port) {
|
|
printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
|
|
board_idx, medianame[tp->default_port & MEDIA_MASK]);
|
|
tp->medialock = 1;
|
|
if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
|
|
tp->full_duplex = 1;
|
|
}
|
|
if (tp->full_duplex)
|
|
tp->full_duplex_lock = 1;
|
|
|
|
if (tulip_media_cap[tp->default_port] & MediaIsMII) {
|
|
u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
|
|
tp->mii_advertise = media2advert[tp->default_port - 9];
|
|
tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
|
|
}
|
|
|
|
if (tp->flags & HAS_MEDIA_TABLE) {
|
|
sprintf(dev->name, "tulip%d", board_idx); /* hack */
|
|
tulip_parse_eeprom(dev);
|
|
strcpy(dev->name, "eth%d"); /* un-hack */
|
|
}
|
|
|
|
if ((tp->flags & ALWAYS_CHECK_MII) ||
|
|
(tp->mtable && tp->mtable->has_mii) ||
|
|
( ! tp->mtable && (tp->flags & HAS_MII))) {
|
|
if (tp->mtable && tp->mtable->has_mii) {
|
|
for (i = 0; i < tp->mtable->leafcount; i++)
|
|
if (tp->mtable->mleaf[i].media == 11) {
|
|
tp->cur_index = i;
|
|
tp->saved_if_port = dev->if_port;
|
|
tulip_select_media(dev, 2);
|
|
dev->if_port = tp->saved_if_port;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Find the connected MII xcvrs.
|
|
Doing this in open() would allow detecting external xcvrs
|
|
later, but takes much time. */
|
|
tulip_find_mii (dev, board_idx);
|
|
}
|
|
|
|
/* The Tulip-specific entries in the device structure. */
|
|
dev->netdev_ops = &tulip_netdev_ops;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
#ifdef CONFIG_TULIP_NAPI
|
|
netif_napi_add(dev, &tp->napi, tulip_poll, 16);
|
|
#endif
|
|
SET_ETHTOOL_OPS(dev, &ops);
|
|
|
|
if (register_netdev(dev))
|
|
goto err_out_free_ring;
|
|
|
|
printk(KERN_INFO "%s: %s rev %d at "
|
|
#ifdef CONFIG_TULIP_MMIO
|
|
"MMIO"
|
|
#else
|
|
"Port"
|
|
#endif
|
|
" %#llx,", dev->name, chip_name, pdev->revision,
|
|
(unsigned long long) pci_resource_start(pdev, TULIP_BAR));
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
if (eeprom_missing)
|
|
printk(" EEPROM not present,");
|
|
printk(" %pM", dev->dev_addr);
|
|
printk(", IRQ %d.\n", irq);
|
|
|
|
if (tp->chip_id == PNIC2)
|
|
tp->link_change = pnic2_lnk_change;
|
|
else if (tp->flags & HAS_NWAY)
|
|
tp->link_change = t21142_lnk_change;
|
|
else if (tp->flags & HAS_PNICNWAY)
|
|
tp->link_change = pnic_lnk_change;
|
|
|
|
/* Reset the xcvr interface and turn on heartbeat. */
|
|
switch (chip_idx) {
|
|
case DC21140:
|
|
case DM910X:
|
|
default:
|
|
if (tp->mtable)
|
|
iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
|
|
break;
|
|
case DC21142:
|
|
if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
|
|
iowrite32(csr6_mask_defstate, ioaddr + CSR6);
|
|
iowrite32(0x0000, ioaddr + CSR13);
|
|
iowrite32(0x0000, ioaddr + CSR14);
|
|
iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
|
|
} else
|
|
t21142_start_nway(dev);
|
|
break;
|
|
case PNIC2:
|
|
/* just do a reset for sanity sake */
|
|
iowrite32(0x0000, ioaddr + CSR13);
|
|
iowrite32(0x0000, ioaddr + CSR14);
|
|
break;
|
|
case LC82C168:
|
|
if ( ! tp->mii_cnt) {
|
|
tp->nway = 1;
|
|
tp->nwayset = 0;
|
|
iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
|
|
iowrite32(0x30, ioaddr + CSR12);
|
|
iowrite32(0x0001F078, ioaddr + CSR6);
|
|
iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
|
|
}
|
|
break;
|
|
case MX98713:
|
|
case COMPEX9881:
|
|
iowrite32(0x00000000, ioaddr + CSR6);
|
|
iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
|
|
iowrite32(0x00000001, ioaddr + CSR13);
|
|
break;
|
|
case MX98715:
|
|
case MX98725:
|
|
iowrite32(0x01a80000, ioaddr + CSR6);
|
|
iowrite32(0xFFFFFFFF, ioaddr + CSR14);
|
|
iowrite32(0x00001000, ioaddr + CSR12);
|
|
break;
|
|
case COMET:
|
|
/* No initialization necessary. */
|
|
break;
|
|
}
|
|
|
|
/* put the chip in snooze mode until opened */
|
|
tulip_set_power_state (tp, 0, 1);
|
|
|
|
return 0;
|
|
|
|
err_out_free_ring:
|
|
pci_free_consistent (pdev,
|
|
sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
|
|
sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
|
|
tp->rx_ring, tp->rx_ring_dma);
|
|
|
|
err_out_mtable:
|
|
kfree (tp->mtable);
|
|
pci_iounmap(pdev, ioaddr);
|
|
|
|
err_out_free_res:
|
|
pci_release_regions (pdev);
|
|
|
|
err_out_free_netdev:
|
|
free_netdev (dev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
|
|
if (!dev)
|
|
return -EINVAL;
|
|
|
|
if (!netif_running(dev))
|
|
goto save_state;
|
|
|
|
tulip_down(dev);
|
|
|
|
netif_device_detach(dev);
|
|
free_irq(dev->irq, dev);
|
|
|
|
save_state:
|
|
pci_save_state(pdev);
|
|
pci_disable_device(pdev);
|
|
pci_set_power_state(pdev, pci_choose_state(pdev, state));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int tulip_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
int retval;
|
|
|
|
if (!dev)
|
|
return -EINVAL;
|
|
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
pci_restore_state(pdev);
|
|
|
|
if (!netif_running(dev))
|
|
return 0;
|
|
|
|
if ((retval = pci_enable_device(pdev))) {
|
|
printk (KERN_ERR "tulip: pci_enable_device failed in resume\n");
|
|
return retval;
|
|
}
|
|
|
|
if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
|
|
printk (KERN_ERR "tulip: request_irq failed in resume\n");
|
|
return retval;
|
|
}
|
|
|
|
netif_device_attach(dev);
|
|
|
|
if (netif_running(dev))
|
|
tulip_up(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_PM */
|
|
|
|
|
|
static void __devexit tulip_remove_one (struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata (pdev);
|
|
struct tulip_private *tp;
|
|
|
|
if (!dev)
|
|
return;
|
|
|
|
tp = netdev_priv(dev);
|
|
unregister_netdev(dev);
|
|
pci_free_consistent (pdev,
|
|
sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
|
|
sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
|
|
tp->rx_ring, tp->rx_ring_dma);
|
|
kfree (tp->mtable);
|
|
pci_iounmap(pdev, tp->base_addr);
|
|
free_netdev (dev);
|
|
pci_release_regions (pdev);
|
|
pci_set_drvdata (pdev, NULL);
|
|
|
|
/* pci_power_off (pdev, -1); */
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
/*
|
|
* Polling 'interrupt' - used by things like netconsole to send skbs
|
|
* without having to re-enable interrupts. It's not called while
|
|
* the interrupt routine is executing.
|
|
*/
|
|
|
|
static void poll_tulip (struct net_device *dev)
|
|
{
|
|
/* disable_irq here is not very nice, but with the lockless
|
|
interrupt handler we have no other choice. */
|
|
disable_irq(dev->irq);
|
|
tulip_interrupt (dev->irq, dev);
|
|
enable_irq(dev->irq);
|
|
}
|
|
#endif
|
|
|
|
static struct pci_driver tulip_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = tulip_pci_tbl,
|
|
.probe = tulip_init_one,
|
|
.remove = __devexit_p(tulip_remove_one),
|
|
#ifdef CONFIG_PM
|
|
.suspend = tulip_suspend,
|
|
.resume = tulip_resume,
|
|
#endif /* CONFIG_PM */
|
|
};
|
|
|
|
|
|
static int __init tulip_init (void)
|
|
{
|
|
#ifdef MODULE
|
|
printk (KERN_INFO "%s", version);
|
|
#endif
|
|
|
|
/* copy module parms into globals */
|
|
tulip_rx_copybreak = rx_copybreak;
|
|
tulip_max_interrupt_work = max_interrupt_work;
|
|
|
|
/* probe for and init boards */
|
|
return pci_register_driver(&tulip_driver);
|
|
}
|
|
|
|
|
|
static void __exit tulip_cleanup (void)
|
|
{
|
|
pci_unregister_driver (&tulip_driver);
|
|
}
|
|
|
|
|
|
module_init(tulip_init);
|
|
module_exit(tulip_cleanup);
|