linux/fs/jbd2/recovery.c
Linus Torvalds 27bc50fc90 - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any negative
   reports (or any positive ones, come to that).
 
 - Also the Maple Tree from Liam R.  Howlett.  An overlapping range-based
   tree for vmas.  It it apparently slight more efficient in its own right,
   but is mainly targeted at enabling work to reduce mmap_lock contention.
 
   Liam has identified a number of other tree users in the kernel which
   could be beneficially onverted to mapletrees.
 
   Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
   (https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
   This has yet to be addressed due to Liam's unfortunately timed
   vacation.  He is now back and we'll get this fixed up.
 
 - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer.  It uses
   clang-generated instrumentation to detect used-unintialized bugs down to
   the single bit level.
 
   KMSAN keeps finding bugs.  New ones, as well as the legacy ones.
 
 - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
   memory into THPs.
 
 - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
   file/shmem-backed pages.
 
 - userfaultfd updates from Axel Rasmussen
 
 - zsmalloc cleanups from Alexey Romanov
 
 - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
 
 - Huang Ying adds enhancements to NUMA balancing memory tiering mode's
   page promotion, with a new way of detecting hot pages.
 
 - memcg updates from Shakeel Butt: charging optimizations and reduced
   memory consumption.
 
 - memcg cleanups from Kairui Song.
 
 - memcg fixes and cleanups from Johannes Weiner.
 
 - Vishal Moola provides more folio conversions
 
 - Zhang Yi removed ll_rw_block() :(
 
 - migration enhancements from Peter Xu
 
 - migration error-path bugfixes from Huang Ying
 
 - Aneesh Kumar added ability for a device driver to alter the memory
   tiering promotion paths.  For optimizations by PMEM drivers, DRM
   drivers, etc.
 
 - vma merging improvements from Jakub Matěn.
 
 - NUMA hinting cleanups from David Hildenbrand.
 
 - xu xin added aditional userspace visibility into KSM merging activity.
 
 - THP & KSM code consolidation from Qi Zheng.
 
 - more folio work from Matthew Wilcox.
 
 - KASAN updates from Andrey Konovalov.
 
 - DAMON cleanups from Kaixu Xia.
 
 - DAMON work from SeongJae Park: fixes, cleanups.
 
 - hugetlb sysfs cleanups from Muchun Song.
 
 - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
 joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
 bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
 =xfWx
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
   linux-next for a couple of months without, to my knowledge, any
   negative reports (or any positive ones, come to that).

 - Also the Maple Tree from Liam Howlett. An overlapping range-based
   tree for vmas. It it apparently slightly more efficient in its own
   right, but is mainly targeted at enabling work to reduce mmap_lock
   contention.

   Liam has identified a number of other tree users in the kernel which
   could be beneficially onverted to mapletrees.

   Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
   at [1]. This has yet to be addressed due to Liam's unfortunately
   timed vacation. He is now back and we'll get this fixed up.

 - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
   clang-generated instrumentation to detect used-unintialized bugs down
   to the single bit level.

   KMSAN keeps finding bugs. New ones, as well as the legacy ones.

 - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
   memory into THPs.

 - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
   support file/shmem-backed pages.

 - userfaultfd updates from Axel Rasmussen

 - zsmalloc cleanups from Alexey Romanov

 - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
   memory-failure

 - Huang Ying adds enhancements to NUMA balancing memory tiering mode's
   page promotion, with a new way of detecting hot pages.

 - memcg updates from Shakeel Butt: charging optimizations and reduced
   memory consumption.

 - memcg cleanups from Kairui Song.

 - memcg fixes and cleanups from Johannes Weiner.

 - Vishal Moola provides more folio conversions

 - Zhang Yi removed ll_rw_block() :(

 - migration enhancements from Peter Xu

 - migration error-path bugfixes from Huang Ying

 - Aneesh Kumar added ability for a device driver to alter the memory
   tiering promotion paths. For optimizations by PMEM drivers, DRM
   drivers, etc.

 - vma merging improvements from Jakub Matěn.

 - NUMA hinting cleanups from David Hildenbrand.

 - xu xin added aditional userspace visibility into KSM merging
   activity.

 - THP & KSM code consolidation from Qi Zheng.

 - more folio work from Matthew Wilcox.

 - KASAN updates from Andrey Konovalov.

 - DAMON cleanups from Kaixu Xia.

 - DAMON work from SeongJae Park: fixes, cleanups.

 - hugetlb sysfs cleanups from Muchun Song.

 - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.

Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]

* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
  hugetlb: allocate vma lock for all sharable vmas
  hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
  hugetlb: fix vma lock handling during split vma and range unmapping
  mglru: mm/vmscan.c: fix imprecise comments
  mm/mglru: don't sync disk for each aging cycle
  mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
  mm: memcontrol: use do_memsw_account() in a few more places
  mm: memcontrol: deprecate swapaccounting=0 mode
  mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
  mm/secretmem: remove reduntant return value
  mm/hugetlb: add available_huge_pages() func
  mm: remove unused inline functions from include/linux/mm_inline.h
  selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
  selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
  selftests/vm: add thp collapse shmem testing
  selftests/vm: add thp collapse file and tmpfs testing
  selftests/vm: modularize thp collapse memory operations
  selftests/vm: dedup THP helpers
  mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
  mm/madvise: add file and shmem support to MADV_COLLAPSE
  ...
2022-10-10 17:53:04 -07:00

937 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* linux/fs/jbd2/recovery.c
*
* Written by Stephen C. Tweedie <sct@redhat.com>, 1999
*
* Copyright 1999-2000 Red Hat Software --- All Rights Reserved
*
* Journal recovery routines for the generic filesystem journaling code;
* part of the ext2fs journaling system.
*/
#ifndef __KERNEL__
#include "jfs_user.h"
#else
#include <linux/time.h>
#include <linux/fs.h>
#include <linux/jbd2.h>
#include <linux/errno.h>
#include <linux/crc32.h>
#include <linux/blkdev.h>
#endif
/*
* Maintain information about the progress of the recovery job, so that
* the different passes can carry information between them.
*/
struct recovery_info
{
tid_t start_transaction;
tid_t end_transaction;
int nr_replays;
int nr_revokes;
int nr_revoke_hits;
};
static int do_one_pass(journal_t *journal,
struct recovery_info *info, enum passtype pass);
static int scan_revoke_records(journal_t *, struct buffer_head *,
tid_t, struct recovery_info *);
#ifdef __KERNEL__
/* Release readahead buffers after use */
static void journal_brelse_array(struct buffer_head *b[], int n)
{
while (--n >= 0)
brelse (b[n]);
}
/*
* When reading from the journal, we are going through the block device
* layer directly and so there is no readahead being done for us. We
* need to implement any readahead ourselves if we want it to happen at
* all. Recovery is basically one long sequential read, so make sure we
* do the IO in reasonably large chunks.
*
* This is not so critical that we need to be enormously clever about
* the readahead size, though. 128K is a purely arbitrary, good-enough
* fixed value.
*/
#define MAXBUF 8
static int do_readahead(journal_t *journal, unsigned int start)
{
int err;
unsigned int max, nbufs, next;
unsigned long long blocknr;
struct buffer_head *bh;
struct buffer_head * bufs[MAXBUF];
/* Do up to 128K of readahead */
max = start + (128 * 1024 / journal->j_blocksize);
if (max > journal->j_total_len)
max = journal->j_total_len;
/* Do the readahead itself. We'll submit MAXBUF buffer_heads at
* a time to the block device IO layer. */
nbufs = 0;
for (next = start; next < max; next++) {
err = jbd2_journal_bmap(journal, next, &blocknr);
if (err) {
printk(KERN_ERR "JBD2: bad block at offset %u\n",
next);
goto failed;
}
bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
if (!bh) {
err = -ENOMEM;
goto failed;
}
if (!buffer_uptodate(bh) && !buffer_locked(bh)) {
bufs[nbufs++] = bh;
if (nbufs == MAXBUF) {
bh_readahead_batch(nbufs, bufs, 0);
journal_brelse_array(bufs, nbufs);
nbufs = 0;
}
} else
brelse(bh);
}
if (nbufs)
bh_readahead_batch(nbufs, bufs, 0);
err = 0;
failed:
if (nbufs)
journal_brelse_array(bufs, nbufs);
return err;
}
#endif /* __KERNEL__ */
/*
* Read a block from the journal
*/
static int jread(struct buffer_head **bhp, journal_t *journal,
unsigned int offset)
{
int err;
unsigned long long blocknr;
struct buffer_head *bh;
*bhp = NULL;
if (offset >= journal->j_total_len) {
printk(KERN_ERR "JBD2: corrupted journal superblock\n");
return -EFSCORRUPTED;
}
err = jbd2_journal_bmap(journal, offset, &blocknr);
if (err) {
printk(KERN_ERR "JBD2: bad block at offset %u\n",
offset);
return err;
}
bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
if (!bh)
return -ENOMEM;
if (!buffer_uptodate(bh)) {
/*
* If this is a brand new buffer, start readahead.
* Otherwise, we assume we are already reading it.
*/
bool need_readahead = !buffer_req(bh);
bh_read_nowait(bh, 0);
if (need_readahead)
do_readahead(journal, offset);
wait_on_buffer(bh);
}
if (!buffer_uptodate(bh)) {
printk(KERN_ERR "JBD2: Failed to read block at offset %u\n",
offset);
brelse(bh);
return -EIO;
}
*bhp = bh;
return 0;
}
static int jbd2_descriptor_block_csum_verify(journal_t *j, void *buf)
{
struct jbd2_journal_block_tail *tail;
__be32 provided;
__u32 calculated;
if (!jbd2_journal_has_csum_v2or3(j))
return 1;
tail = (struct jbd2_journal_block_tail *)((char *)buf +
j->j_blocksize - sizeof(struct jbd2_journal_block_tail));
provided = tail->t_checksum;
tail->t_checksum = 0;
calculated = jbd2_chksum(j, j->j_csum_seed, buf, j->j_blocksize);
tail->t_checksum = provided;
return provided == cpu_to_be32(calculated);
}
/*
* Count the number of in-use tags in a journal descriptor block.
*/
static int count_tags(journal_t *journal, struct buffer_head *bh)
{
char * tagp;
journal_block_tag_t tag;
int nr = 0, size = journal->j_blocksize;
int tag_bytes = journal_tag_bytes(journal);
if (jbd2_journal_has_csum_v2or3(journal))
size -= sizeof(struct jbd2_journal_block_tail);
tagp = &bh->b_data[sizeof(journal_header_t)];
while ((tagp - bh->b_data + tag_bytes) <= size) {
memcpy(&tag, tagp, sizeof(tag));
nr++;
tagp += tag_bytes;
if (!(tag.t_flags & cpu_to_be16(JBD2_FLAG_SAME_UUID)))
tagp += 16;
if (tag.t_flags & cpu_to_be16(JBD2_FLAG_LAST_TAG))
break;
}
return nr;
}
/* Make sure we wrap around the log correctly! */
#define wrap(journal, var) \
do { \
unsigned long _wrap_last = \
jbd2_has_feature_fast_commit(journal) ? \
(journal)->j_fc_last : (journal)->j_last; \
\
if (var >= _wrap_last) \
var -= (_wrap_last - (journal)->j_first); \
} while (0)
static int fc_do_one_pass(journal_t *journal,
struct recovery_info *info, enum passtype pass)
{
unsigned int expected_commit_id = info->end_transaction;
unsigned long next_fc_block;
struct buffer_head *bh;
int err = 0;
next_fc_block = journal->j_fc_first;
if (!journal->j_fc_replay_callback)
return 0;
while (next_fc_block <= journal->j_fc_last) {
jbd2_debug(3, "Fast commit replay: next block %ld\n",
next_fc_block);
err = jread(&bh, journal, next_fc_block);
if (err) {
jbd2_debug(3, "Fast commit replay: read error\n");
break;
}
err = journal->j_fc_replay_callback(journal, bh, pass,
next_fc_block - journal->j_fc_first,
expected_commit_id);
brelse(bh);
next_fc_block++;
if (err < 0 || err == JBD2_FC_REPLAY_STOP)
break;
err = 0;
}
if (err)
jbd2_debug(3, "Fast commit replay failed, err = %d\n", err);
return err;
}
/**
* jbd2_journal_recover - recovers a on-disk journal
* @journal: the journal to recover
*
* The primary function for recovering the log contents when mounting a
* journaled device.
*
* Recovery is done in three passes. In the first pass, we look for the
* end of the log. In the second, we assemble the list of revoke
* blocks. In the third and final pass, we replay any un-revoked blocks
* in the log.
*/
int jbd2_journal_recover(journal_t *journal)
{
int err, err2;
journal_superblock_t * sb;
struct recovery_info info;
memset(&info, 0, sizeof(info));
sb = journal->j_superblock;
/*
* The journal superblock's s_start field (the current log head)
* is always zero if, and only if, the journal was cleanly
* unmounted.
*/
if (!sb->s_start) {
jbd2_debug(1, "No recovery required, last transaction %d\n",
be32_to_cpu(sb->s_sequence));
journal->j_transaction_sequence = be32_to_cpu(sb->s_sequence) + 1;
return 0;
}
err = do_one_pass(journal, &info, PASS_SCAN);
if (!err)
err = do_one_pass(journal, &info, PASS_REVOKE);
if (!err)
err = do_one_pass(journal, &info, PASS_REPLAY);
jbd2_debug(1, "JBD2: recovery, exit status %d, "
"recovered transactions %u to %u\n",
err, info.start_transaction, info.end_transaction);
jbd2_debug(1, "JBD2: Replayed %d and revoked %d/%d blocks\n",
info.nr_replays, info.nr_revoke_hits, info.nr_revokes);
/* Restart the log at the next transaction ID, thus invalidating
* any existing commit records in the log. */
journal->j_transaction_sequence = ++info.end_transaction;
jbd2_journal_clear_revoke(journal);
err2 = sync_blockdev(journal->j_fs_dev);
if (!err)
err = err2;
/* Make sure all replayed data is on permanent storage */
if (journal->j_flags & JBD2_BARRIER) {
err2 = blkdev_issue_flush(journal->j_fs_dev);
if (!err)
err = err2;
}
return err;
}
/**
* jbd2_journal_skip_recovery - Start journal and wipe exiting records
* @journal: journal to startup
*
* Locate any valid recovery information from the journal and set up the
* journal structures in memory to ignore it (presumably because the
* caller has evidence that it is out of date).
* This function doesn't appear to be exported..
*
* We perform one pass over the journal to allow us to tell the user how
* much recovery information is being erased, and to let us initialise
* the journal transaction sequence numbers to the next unused ID.
*/
int jbd2_journal_skip_recovery(journal_t *journal)
{
int err;
struct recovery_info info;
memset (&info, 0, sizeof(info));
err = do_one_pass(journal, &info, PASS_SCAN);
if (err) {
printk(KERN_ERR "JBD2: error %d scanning journal\n", err);
++journal->j_transaction_sequence;
} else {
#ifdef CONFIG_JBD2_DEBUG
int dropped = info.end_transaction -
be32_to_cpu(journal->j_superblock->s_sequence);
jbd2_debug(1,
"JBD2: ignoring %d transaction%s from the journal.\n",
dropped, (dropped == 1) ? "" : "s");
#endif
journal->j_transaction_sequence = ++info.end_transaction;
}
journal->j_tail = 0;
return err;
}
static inline unsigned long long read_tag_block(journal_t *journal,
journal_block_tag_t *tag)
{
unsigned long long block = be32_to_cpu(tag->t_blocknr);
if (jbd2_has_feature_64bit(journal))
block |= (u64)be32_to_cpu(tag->t_blocknr_high) << 32;
return block;
}
/*
* calc_chksums calculates the checksums for the blocks described in the
* descriptor block.
*/
static int calc_chksums(journal_t *journal, struct buffer_head *bh,
unsigned long *next_log_block, __u32 *crc32_sum)
{
int i, num_blks, err;
unsigned long io_block;
struct buffer_head *obh;
num_blks = count_tags(journal, bh);
/* Calculate checksum of the descriptor block. */
*crc32_sum = crc32_be(*crc32_sum, (void *)bh->b_data, bh->b_size);
for (i = 0; i < num_blks; i++) {
io_block = (*next_log_block)++;
wrap(journal, *next_log_block);
err = jread(&obh, journal, io_block);
if (err) {
printk(KERN_ERR "JBD2: IO error %d recovering block "
"%lu in log\n", err, io_block);
return 1;
} else {
*crc32_sum = crc32_be(*crc32_sum, (void *)obh->b_data,
obh->b_size);
}
put_bh(obh);
}
return 0;
}
static int jbd2_commit_block_csum_verify(journal_t *j, void *buf)
{
struct commit_header *h;
__be32 provided;
__u32 calculated;
if (!jbd2_journal_has_csum_v2or3(j))
return 1;
h = buf;
provided = h->h_chksum[0];
h->h_chksum[0] = 0;
calculated = jbd2_chksum(j, j->j_csum_seed, buf, j->j_blocksize);
h->h_chksum[0] = provided;
return provided == cpu_to_be32(calculated);
}
static int jbd2_block_tag_csum_verify(journal_t *j, journal_block_tag_t *tag,
journal_block_tag3_t *tag3,
void *buf, __u32 sequence)
{
__u32 csum32;
__be32 seq;
if (!jbd2_journal_has_csum_v2or3(j))
return 1;
seq = cpu_to_be32(sequence);
csum32 = jbd2_chksum(j, j->j_csum_seed, (__u8 *)&seq, sizeof(seq));
csum32 = jbd2_chksum(j, csum32, buf, j->j_blocksize);
if (jbd2_has_feature_csum3(j))
return tag3->t_checksum == cpu_to_be32(csum32);
else
return tag->t_checksum == cpu_to_be16(csum32);
}
static int do_one_pass(journal_t *journal,
struct recovery_info *info, enum passtype pass)
{
unsigned int first_commit_ID, next_commit_ID;
unsigned long next_log_block;
int err, success = 0;
journal_superblock_t * sb;
journal_header_t * tmp;
struct buffer_head * bh;
unsigned int sequence;
int blocktype;
int tag_bytes = journal_tag_bytes(journal);
__u32 crc32_sum = ~0; /* Transactional Checksums */
int descr_csum_size = 0;
int block_error = 0;
bool need_check_commit_time = false;
__u64 last_trans_commit_time = 0, commit_time;
/*
* First thing is to establish what we expect to find in the log
* (in terms of transaction IDs), and where (in terms of log
* block offsets): query the superblock.
*/
sb = journal->j_superblock;
next_commit_ID = be32_to_cpu(sb->s_sequence);
next_log_block = be32_to_cpu(sb->s_start);
first_commit_ID = next_commit_ID;
if (pass == PASS_SCAN)
info->start_transaction = first_commit_ID;
jbd2_debug(1, "Starting recovery pass %d\n", pass);
/*
* Now we walk through the log, transaction by transaction,
* making sure that each transaction has a commit block in the
* expected place. Each complete transaction gets replayed back
* into the main filesystem.
*/
while (1) {
int flags;
char * tagp;
journal_block_tag_t tag;
struct buffer_head * obh;
struct buffer_head * nbh;
cond_resched();
/* If we already know where to stop the log traversal,
* check right now that we haven't gone past the end of
* the log. */
if (pass != PASS_SCAN)
if (tid_geq(next_commit_ID, info->end_transaction))
break;
jbd2_debug(2, "Scanning for sequence ID %u at %lu/%lu\n",
next_commit_ID, next_log_block,
jbd2_has_feature_fast_commit(journal) ?
journal->j_fc_last : journal->j_last);
/* Skip over each chunk of the transaction looking
* either the next descriptor block or the final commit
* record. */
jbd2_debug(3, "JBD2: checking block %ld\n", next_log_block);
err = jread(&bh, journal, next_log_block);
if (err)
goto failed;
next_log_block++;
wrap(journal, next_log_block);
/* What kind of buffer is it?
*
* If it is a descriptor block, check that it has the
* expected sequence number. Otherwise, we're all done
* here. */
tmp = (journal_header_t *)bh->b_data;
if (tmp->h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER)) {
brelse(bh);
break;
}
blocktype = be32_to_cpu(tmp->h_blocktype);
sequence = be32_to_cpu(tmp->h_sequence);
jbd2_debug(3, "Found magic %d, sequence %d\n",
blocktype, sequence);
if (sequence != next_commit_ID) {
brelse(bh);
break;
}
/* OK, we have a valid descriptor block which matches
* all of the sequence number checks. What are we going
* to do with it? That depends on the pass... */
switch(blocktype) {
case JBD2_DESCRIPTOR_BLOCK:
/* Verify checksum first */
if (jbd2_journal_has_csum_v2or3(journal))
descr_csum_size =
sizeof(struct jbd2_journal_block_tail);
if (descr_csum_size > 0 &&
!jbd2_descriptor_block_csum_verify(journal,
bh->b_data)) {
/*
* PASS_SCAN can see stale blocks due to lazy
* journal init. Don't error out on those yet.
*/
if (pass != PASS_SCAN) {
pr_err("JBD2: Invalid checksum recovering block %lu in log\n",
next_log_block);
err = -EFSBADCRC;
brelse(bh);
goto failed;
}
need_check_commit_time = true;
jbd2_debug(1,
"invalid descriptor block found in %lu\n",
next_log_block);
}
/* If it is a valid descriptor block, replay it
* in pass REPLAY; if journal_checksums enabled, then
* calculate checksums in PASS_SCAN, otherwise,
* just skip over the blocks it describes. */
if (pass != PASS_REPLAY) {
if (pass == PASS_SCAN &&
jbd2_has_feature_checksum(journal) &&
!need_check_commit_time &&
!info->end_transaction) {
if (calc_chksums(journal, bh,
&next_log_block,
&crc32_sum)) {
put_bh(bh);
break;
}
put_bh(bh);
continue;
}
next_log_block += count_tags(journal, bh);
wrap(journal, next_log_block);
put_bh(bh);
continue;
}
/* A descriptor block: we can now write all of
* the data blocks. Yay, useful work is finally
* getting done here! */
tagp = &bh->b_data[sizeof(journal_header_t)];
while ((tagp - bh->b_data + tag_bytes)
<= journal->j_blocksize - descr_csum_size) {
unsigned long io_block;
memcpy(&tag, tagp, sizeof(tag));
flags = be16_to_cpu(tag.t_flags);
io_block = next_log_block++;
wrap(journal, next_log_block);
err = jread(&obh, journal, io_block);
if (err) {
/* Recover what we can, but
* report failure at the end. */
success = err;
printk(KERN_ERR
"JBD2: IO error %d recovering "
"block %ld in log\n",
err, io_block);
} else {
unsigned long long blocknr;
J_ASSERT(obh != NULL);
blocknr = read_tag_block(journal,
&tag);
/* If the block has been
* revoked, then we're all done
* here. */
if (jbd2_journal_test_revoke
(journal, blocknr,
next_commit_ID)) {
brelse(obh);
++info->nr_revoke_hits;
goto skip_write;
}
/* Look for block corruption */
if (!jbd2_block_tag_csum_verify(
journal, &tag, (journal_block_tag3_t *)tagp,
obh->b_data, be32_to_cpu(tmp->h_sequence))) {
brelse(obh);
success = -EFSBADCRC;
printk(KERN_ERR "JBD2: Invalid "
"checksum recovering "
"data block %llu in "
"log\n", blocknr);
block_error = 1;
goto skip_write;
}
/* Find a buffer for the new
* data being restored */
nbh = __getblk(journal->j_fs_dev,
blocknr,
journal->j_blocksize);
if (nbh == NULL) {
printk(KERN_ERR
"JBD2: Out of memory "
"during recovery.\n");
err = -ENOMEM;
brelse(bh);
brelse(obh);
goto failed;
}
lock_buffer(nbh);
memcpy(nbh->b_data, obh->b_data,
journal->j_blocksize);
if (flags & JBD2_FLAG_ESCAPE) {
*((__be32 *)nbh->b_data) =
cpu_to_be32(JBD2_MAGIC_NUMBER);
}
BUFFER_TRACE(nbh, "marking dirty");
set_buffer_uptodate(nbh);
mark_buffer_dirty(nbh);
BUFFER_TRACE(nbh, "marking uptodate");
++info->nr_replays;
unlock_buffer(nbh);
brelse(obh);
brelse(nbh);
}
skip_write:
tagp += tag_bytes;
if (!(flags & JBD2_FLAG_SAME_UUID))
tagp += 16;
if (flags & JBD2_FLAG_LAST_TAG)
break;
}
brelse(bh);
continue;
case JBD2_COMMIT_BLOCK:
/* How to differentiate between interrupted commit
* and journal corruption ?
*
* {nth transaction}
* Checksum Verification Failed
* |
* ____________________
* | |
* async_commit sync_commit
* | |
* | GO TO NEXT "Journal Corruption"
* | TRANSACTION
* |
* {(n+1)th transanction}
* |
* _______|______________
* | |
* Commit block found Commit block not found
* | |
* "Journal Corruption" |
* _____________|_________
* | |
* nth trans corrupt OR nth trans
* and (n+1)th interrupted interrupted
* before commit block
* could reach the disk.
* (Cannot find the difference in above
* mentioned conditions. Hence assume
* "Interrupted Commit".)
*/
commit_time = be64_to_cpu(
((struct commit_header *)bh->b_data)->h_commit_sec);
/*
* If need_check_commit_time is set, it means we are in
* PASS_SCAN and csum verify failed before. If
* commit_time is increasing, it's the same journal,
* otherwise it is stale journal block, just end this
* recovery.
*/
if (need_check_commit_time) {
if (commit_time >= last_trans_commit_time) {
pr_err("JBD2: Invalid checksum found in transaction %u\n",
next_commit_ID);
err = -EFSBADCRC;
brelse(bh);
goto failed;
}
ignore_crc_mismatch:
/*
* It likely does not belong to same journal,
* just end this recovery with success.
*/
jbd2_debug(1, "JBD2: Invalid checksum ignored in transaction %u, likely stale data\n",
next_commit_ID);
brelse(bh);
goto done;
}
/*
* Found an expected commit block: if checksums
* are present, verify them in PASS_SCAN; else not
* much to do other than move on to the next sequence
* number.
*/
if (pass == PASS_SCAN &&
jbd2_has_feature_checksum(journal)) {
struct commit_header *cbh =
(struct commit_header *)bh->b_data;
unsigned found_chksum =
be32_to_cpu(cbh->h_chksum[0]);
if (info->end_transaction) {
journal->j_failed_commit =
info->end_transaction;
brelse(bh);
break;
}
/* Neither checksum match nor unused? */
if (!((crc32_sum == found_chksum &&
cbh->h_chksum_type ==
JBD2_CRC32_CHKSUM &&
cbh->h_chksum_size ==
JBD2_CRC32_CHKSUM_SIZE) ||
(cbh->h_chksum_type == 0 &&
cbh->h_chksum_size == 0 &&
found_chksum == 0)))
goto chksum_error;
crc32_sum = ~0;
}
if (pass == PASS_SCAN &&
!jbd2_commit_block_csum_verify(journal,
bh->b_data)) {
chksum_error:
if (commit_time < last_trans_commit_time)
goto ignore_crc_mismatch;
info->end_transaction = next_commit_ID;
if (!jbd2_has_feature_async_commit(journal)) {
journal->j_failed_commit =
next_commit_ID;
brelse(bh);
break;
}
}
if (pass == PASS_SCAN)
last_trans_commit_time = commit_time;
brelse(bh);
next_commit_ID++;
continue;
case JBD2_REVOKE_BLOCK:
/*
* Check revoke block crc in pass_scan, if csum verify
* failed, check commit block time later.
*/
if (pass == PASS_SCAN &&
!jbd2_descriptor_block_csum_verify(journal,
bh->b_data)) {
jbd2_debug(1, "JBD2: invalid revoke block found in %lu\n",
next_log_block);
need_check_commit_time = true;
}
/* If we aren't in the REVOKE pass, then we can
* just skip over this block. */
if (pass != PASS_REVOKE) {
brelse(bh);
continue;
}
err = scan_revoke_records(journal, bh,
next_commit_ID, info);
brelse(bh);
if (err)
goto failed;
continue;
default:
jbd2_debug(3, "Unrecognised magic %d, end of scan.\n",
blocktype);
brelse(bh);
goto done;
}
}
done:
/*
* We broke out of the log scan loop: either we came to the
* known end of the log or we found an unexpected block in the
* log. If the latter happened, then we know that the "current"
* transaction marks the end of the valid log.
*/
if (pass == PASS_SCAN) {
if (!info->end_transaction)
info->end_transaction = next_commit_ID;
} else {
/* It's really bad news if different passes end up at
* different places (but possible due to IO errors). */
if (info->end_transaction != next_commit_ID) {
printk(KERN_ERR "JBD2: recovery pass %d ended at "
"transaction %u, expected %u\n",
pass, next_commit_ID, info->end_transaction);
if (!success)
success = -EIO;
}
}
if (jbd2_has_feature_fast_commit(journal) && pass != PASS_REVOKE) {
err = fc_do_one_pass(journal, info, pass);
if (err)
success = err;
}
if (block_error && success == 0)
success = -EIO;
return success;
failed:
return err;
}
/* Scan a revoke record, marking all blocks mentioned as revoked. */
static int scan_revoke_records(journal_t *journal, struct buffer_head *bh,
tid_t sequence, struct recovery_info *info)
{
jbd2_journal_revoke_header_t *header;
int offset, max;
unsigned csum_size = 0;
__u32 rcount;
int record_len = 4;
header = (jbd2_journal_revoke_header_t *) bh->b_data;
offset = sizeof(jbd2_journal_revoke_header_t);
rcount = be32_to_cpu(header->r_count);
if (jbd2_journal_has_csum_v2or3(journal))
csum_size = sizeof(struct jbd2_journal_block_tail);
if (rcount > journal->j_blocksize - csum_size)
return -EINVAL;
max = rcount;
if (jbd2_has_feature_64bit(journal))
record_len = 8;
while (offset + record_len <= max) {
unsigned long long blocknr;
int err;
if (record_len == 4)
blocknr = be32_to_cpu(* ((__be32 *) (bh->b_data+offset)));
else
blocknr = be64_to_cpu(* ((__be64 *) (bh->b_data+offset)));
offset += record_len;
err = jbd2_journal_set_revoke(journal, blocknr, sequence);
if (err)
return err;
++info->nr_revokes;
}
return 0;
}