linux/drivers/memory/renesas-rpc-if.c
Andrew Gabbasov 1869023e24 memory: renesas-rpc-if: Avoid unaligned bus access for HyperFlash
HyperFlash devices in Renesas SoCs use 2-bytes addressing, according
to HW manual paragraph 62.3.3 (which officially describes Serial Flash
access, but seems to be applicable to HyperFlash too). And 1-byte bus
read operations to 2-bytes unaligned addresses in external address space
read mode work incorrectly (returns the other byte from the same word).

Function memcpy_fromio(), used by the driver to read data from the bus,
in ARM64 architecture (to which Renesas cores belong) uses 8-bytes
bus accesses for appropriate aligned addresses, and 1-bytes accesses
for other addresses. This results in incorrect data read from HyperFlash
in unaligned cases.

This issue can be reproduced using something like the following commands
(where mtd1 is a parition on Hyperflash storage, defined properly
in a device tree):

[Correct fragment, read from Hyperflash]

    root@rcar-gen3:~# dd if=/dev/mtd1 of=/tmp/zz bs=32 count=1
    root@rcar-gen3:~# hexdump -C /tmp/zz
    00000000  f4 03 00 aa f5 03 01 aa  f6 03 02 aa f7 03 03 aa  |................|
    00000010  00 00 80 d2 40 20 18 d5  00 06 81 d2 a0 18 a6 f2  |....@ ..........|
    00000020

[Incorrect read of the same fragment: see the difference at offsets 8-11]

    root@rcar-gen3:~# dd if=/dev/mtd1 of=/tmp/zz bs=12 count=1
    root@rcar-gen3:~# hexdump -C /tmp/zz
    00000000  f4 03 00 aa f5 03 01 aa  03 03 aa aa              |............|
    0000000c

Fix this issue by creating a local replacement of the copying function,
that performs only properly aligned bus accesses, and is used for reading
from HyperFlash.

Fixes: ca7d8b980b ("memory: add Renesas RPC-IF driver")
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Gabbasov <andrew_gabbasov@mentor.com>
Link: https://lore.kernel.org/r/20210922184830.29147-1-andrew_gabbasov@mentor.com
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
2021-09-28 12:34:08 +02:00

679 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Renesas RPC-IF core driver
*
* Copyright (C) 2018-2019 Renesas Solutions Corp.
* Copyright (C) 2019 Macronix International Co., Ltd.
* Copyright (C) 2019-2020 Cogent Embedded, Inc.
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <memory/renesas-rpc-if.h>
#define RPCIF_CMNCR 0x0000 /* R/W */
#define RPCIF_CMNCR_MD BIT(31)
#define RPCIF_CMNCR_SFDE BIT(24) /* undocumented but must be set */
#define RPCIF_CMNCR_MOIIO3(val) (((val) & 0x3) << 22)
#define RPCIF_CMNCR_MOIIO2(val) (((val) & 0x3) << 20)
#define RPCIF_CMNCR_MOIIO1(val) (((val) & 0x3) << 18)
#define RPCIF_CMNCR_MOIIO0(val) (((val) & 0x3) << 16)
#define RPCIF_CMNCR_MOIIO_HIZ (RPCIF_CMNCR_MOIIO0(3) | \
RPCIF_CMNCR_MOIIO1(3) | \
RPCIF_CMNCR_MOIIO2(3) | RPCIF_CMNCR_MOIIO3(3))
#define RPCIF_CMNCR_IO3FV(val) (((val) & 0x3) << 14) /* undocumented */
#define RPCIF_CMNCR_IO2FV(val) (((val) & 0x3) << 12) /* undocumented */
#define RPCIF_CMNCR_IO0FV(val) (((val) & 0x3) << 8)
#define RPCIF_CMNCR_IOFV_HIZ (RPCIF_CMNCR_IO0FV(3) | RPCIF_CMNCR_IO2FV(3) | \
RPCIF_CMNCR_IO3FV(3))
#define RPCIF_CMNCR_BSZ(val) (((val) & 0x3) << 0)
#define RPCIF_SSLDR 0x0004 /* R/W */
#define RPCIF_SSLDR_SPNDL(d) (((d) & 0x7) << 16)
#define RPCIF_SSLDR_SLNDL(d) (((d) & 0x7) << 8)
#define RPCIF_SSLDR_SCKDL(d) (((d) & 0x7) << 0)
#define RPCIF_DRCR 0x000C /* R/W */
#define RPCIF_DRCR_SSLN BIT(24)
#define RPCIF_DRCR_RBURST(v) ((((v) - 1) & 0x1F) << 16)
#define RPCIF_DRCR_RCF BIT(9)
#define RPCIF_DRCR_RBE BIT(8)
#define RPCIF_DRCR_SSLE BIT(0)
#define RPCIF_DRCMR 0x0010 /* R/W */
#define RPCIF_DRCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPCIF_DRCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPCIF_DREAR 0x0014 /* R/W */
#define RPCIF_DREAR_EAV(c) (((c) & 0xF) << 16)
#define RPCIF_DREAR_EAC(c) (((c) & 0x7) << 0)
#define RPCIF_DROPR 0x0018 /* R/W */
#define RPCIF_DRENR 0x001C /* R/W */
#define RPCIF_DRENR_CDB(o) (u32)((((o) & 0x3) << 30))
#define RPCIF_DRENR_OCDB(o) (((o) & 0x3) << 28)
#define RPCIF_DRENR_ADB(o) (((o) & 0x3) << 24)
#define RPCIF_DRENR_OPDB(o) (((o) & 0x3) << 20)
#define RPCIF_DRENR_DRDB(o) (((o) & 0x3) << 16)
#define RPCIF_DRENR_DME BIT(15)
#define RPCIF_DRENR_CDE BIT(14)
#define RPCIF_DRENR_OCDE BIT(12)
#define RPCIF_DRENR_ADE(v) (((v) & 0xF) << 8)
#define RPCIF_DRENR_OPDE(v) (((v) & 0xF) << 4)
#define RPCIF_SMCR 0x0020 /* R/W */
#define RPCIF_SMCR_SSLKP BIT(8)
#define RPCIF_SMCR_SPIRE BIT(2)
#define RPCIF_SMCR_SPIWE BIT(1)
#define RPCIF_SMCR_SPIE BIT(0)
#define RPCIF_SMCMR 0x0024 /* R/W */
#define RPCIF_SMCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPCIF_SMCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPCIF_SMADR 0x0028 /* R/W */
#define RPCIF_SMOPR 0x002C /* R/W */
#define RPCIF_SMOPR_OPD3(o) (((o) & 0xFF) << 24)
#define RPCIF_SMOPR_OPD2(o) (((o) & 0xFF) << 16)
#define RPCIF_SMOPR_OPD1(o) (((o) & 0xFF) << 8)
#define RPCIF_SMOPR_OPD0(o) (((o) & 0xFF) << 0)
#define RPCIF_SMENR 0x0030 /* R/W */
#define RPCIF_SMENR_CDB(o) (((o) & 0x3) << 30)
#define RPCIF_SMENR_OCDB(o) (((o) & 0x3) << 28)
#define RPCIF_SMENR_ADB(o) (((o) & 0x3) << 24)
#define RPCIF_SMENR_OPDB(o) (((o) & 0x3) << 20)
#define RPCIF_SMENR_SPIDB(o) (((o) & 0x3) << 16)
#define RPCIF_SMENR_DME BIT(15)
#define RPCIF_SMENR_CDE BIT(14)
#define RPCIF_SMENR_OCDE BIT(12)
#define RPCIF_SMENR_ADE(v) (((v) & 0xF) << 8)
#define RPCIF_SMENR_OPDE(v) (((v) & 0xF) << 4)
#define RPCIF_SMENR_SPIDE(v) (((v) & 0xF) << 0)
#define RPCIF_SMRDR0 0x0038 /* R */
#define RPCIF_SMRDR1 0x003C /* R */
#define RPCIF_SMWDR0 0x0040 /* W */
#define RPCIF_SMWDR1 0x0044 /* W */
#define RPCIF_CMNSR 0x0048 /* R */
#define RPCIF_CMNSR_SSLF BIT(1)
#define RPCIF_CMNSR_TEND BIT(0)
#define RPCIF_DRDMCR 0x0058 /* R/W */
#define RPCIF_DMDMCR_DMCYC(v) ((((v) - 1) & 0x1F) << 0)
#define RPCIF_DRDRENR 0x005C /* R/W */
#define RPCIF_DRDRENR_HYPE(v) (((v) & 0x7) << 12)
#define RPCIF_DRDRENR_ADDRE BIT(8)
#define RPCIF_DRDRENR_OPDRE BIT(4)
#define RPCIF_DRDRENR_DRDRE BIT(0)
#define RPCIF_SMDMCR 0x0060 /* R/W */
#define RPCIF_SMDMCR_DMCYC(v) ((((v) - 1) & 0x1F) << 0)
#define RPCIF_SMDRENR 0x0064 /* R/W */
#define RPCIF_SMDRENR_HYPE(v) (((v) & 0x7) << 12)
#define RPCIF_SMDRENR_ADDRE BIT(8)
#define RPCIF_SMDRENR_OPDRE BIT(4)
#define RPCIF_SMDRENR_SPIDRE BIT(0)
#define RPCIF_PHYCNT 0x007C /* R/W */
#define RPCIF_PHYCNT_CAL BIT(31)
#define RPCIF_PHYCNT_OCTA(v) (((v) & 0x3) << 22)
#define RPCIF_PHYCNT_EXDS BIT(21)
#define RPCIF_PHYCNT_OCT BIT(20)
#define RPCIF_PHYCNT_DDRCAL BIT(19)
#define RPCIF_PHYCNT_HS BIT(18)
#define RPCIF_PHYCNT_STRTIM(v) (((v) & 0x7) << 15)
#define RPCIF_PHYCNT_WBUF2 BIT(4)
#define RPCIF_PHYCNT_WBUF BIT(2)
#define RPCIF_PHYCNT_PHYMEM(v) (((v) & 0x3) << 0)
#define RPCIF_PHYOFFSET1 0x0080 /* R/W */
#define RPCIF_PHYOFFSET1_DDRTMG(v) (((v) & 0x3) << 28)
#define RPCIF_PHYOFFSET2 0x0084 /* R/W */
#define RPCIF_PHYOFFSET2_OCTTMG(v) (((v) & 0x7) << 8)
#define RPCIF_PHYINT 0x0088 /* R/W */
#define RPCIF_PHYINT_WPVAL BIT(1)
#define RPCIF_DIRMAP_SIZE 0x4000000
static const struct regmap_range rpcif_volatile_ranges[] = {
regmap_reg_range(RPCIF_SMRDR0, RPCIF_SMRDR1),
regmap_reg_range(RPCIF_SMWDR0, RPCIF_SMWDR1),
regmap_reg_range(RPCIF_CMNSR, RPCIF_CMNSR),
};
static const struct regmap_access_table rpcif_volatile_table = {
.yes_ranges = rpcif_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(rpcif_volatile_ranges),
};
/*
* Custom accessor functions to ensure SMRDR0 and SMWDR0 are always accessed
* with proper width. Requires SMENR_SPIDE to be correctly set before!
*/
static int rpcif_reg_read(void *context, unsigned int reg, unsigned int *val)
{
struct rpcif *rpc = context;
if (reg == RPCIF_SMRDR0 || reg == RPCIF_SMWDR0) {
u32 spide = readl(rpc->base + RPCIF_SMENR) & RPCIF_SMENR_SPIDE(0xF);
if (spide == 0x8) {
*val = readb(rpc->base + reg);
return 0;
} else if (spide == 0xC) {
*val = readw(rpc->base + reg);
return 0;
} else if (spide != 0xF) {
return -EILSEQ;
}
}
*val = readl(rpc->base + reg);
return 0;
}
static int rpcif_reg_write(void *context, unsigned int reg, unsigned int val)
{
struct rpcif *rpc = context;
if (reg == RPCIF_SMRDR0 || reg == RPCIF_SMWDR0) {
u32 spide = readl(rpc->base + RPCIF_SMENR) & RPCIF_SMENR_SPIDE(0xF);
if (spide == 0x8) {
writeb(val, rpc->base + reg);
return 0;
} else if (spide == 0xC) {
writew(val, rpc->base + reg);
return 0;
} else if (spide != 0xF) {
return -EILSEQ;
}
}
writel(val, rpc->base + reg);
return 0;
}
static const struct regmap_config rpcif_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.reg_read = rpcif_reg_read,
.reg_write = rpcif_reg_write,
.fast_io = true,
.max_register = RPCIF_PHYINT,
.volatile_table = &rpcif_volatile_table,
};
int rpcif_sw_init(struct rpcif *rpc, struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct resource *res;
rpc->dev = dev;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
rpc->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(rpc->base))
return PTR_ERR(rpc->base);
rpc->regmap = devm_regmap_init(&pdev->dev, NULL, rpc, &rpcif_regmap_config);
if (IS_ERR(rpc->regmap)) {
dev_err(&pdev->dev,
"failed to init regmap for rpcif, error %ld\n",
PTR_ERR(rpc->regmap));
return PTR_ERR(rpc->regmap);
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap");
rpc->dirmap = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(rpc->dirmap))
rpc->dirmap = NULL;
rpc->size = resource_size(res);
rpc->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
return PTR_ERR_OR_ZERO(rpc->rstc);
}
EXPORT_SYMBOL(rpcif_sw_init);
void rpcif_hw_init(struct rpcif *rpc, bool hyperflash)
{
u32 dummy;
pm_runtime_get_sync(rpc->dev);
/*
* NOTE: The 0x260 are undocumented bits, but they must be set.
* RPCIF_PHYCNT_STRTIM is strobe timing adjustment bits,
* 0x0 : the delay is biggest,
* 0x1 : the delay is 2nd biggest,
* On H3 ES1.x, the value should be 0, while on others,
* the value should be 7.
*/
regmap_write(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_STRTIM(7) |
RPCIF_PHYCNT_PHYMEM(hyperflash ? 3 : 0) | 0x260);
/*
* NOTE: The 0x1511144 are undocumented bits, but they must be set
* for RPCIF_PHYOFFSET1.
* The 0x31 are undocumented bits, but they must be set
* for RPCIF_PHYOFFSET2.
*/
regmap_write(rpc->regmap, RPCIF_PHYOFFSET1, 0x1511144 |
RPCIF_PHYOFFSET1_DDRTMG(3));
regmap_write(rpc->regmap, RPCIF_PHYOFFSET2, 0x31 |
RPCIF_PHYOFFSET2_OCTTMG(4));
if (hyperflash)
regmap_update_bits(rpc->regmap, RPCIF_PHYINT,
RPCIF_PHYINT_WPVAL, 0);
regmap_write(rpc->regmap, RPCIF_CMNCR, RPCIF_CMNCR_SFDE |
RPCIF_CMNCR_MOIIO_HIZ | RPCIF_CMNCR_IOFV_HIZ |
RPCIF_CMNCR_BSZ(hyperflash ? 1 : 0));
/* Set RCF after BSZ update */
regmap_write(rpc->regmap, RPCIF_DRCR, RPCIF_DRCR_RCF);
/* Dummy read according to spec */
regmap_read(rpc->regmap, RPCIF_DRCR, &dummy);
regmap_write(rpc->regmap, RPCIF_SSLDR, RPCIF_SSLDR_SPNDL(7) |
RPCIF_SSLDR_SLNDL(7) | RPCIF_SSLDR_SCKDL(7));
pm_runtime_put(rpc->dev);
rpc->bus_size = hyperflash ? 2 : 1;
}
EXPORT_SYMBOL(rpcif_hw_init);
static int wait_msg_xfer_end(struct rpcif *rpc)
{
u32 sts;
return regmap_read_poll_timeout(rpc->regmap, RPCIF_CMNSR, sts,
sts & RPCIF_CMNSR_TEND, 0,
USEC_PER_SEC);
}
static u8 rpcif_bits_set(struct rpcif *rpc, u32 nbytes)
{
if (rpc->bus_size == 2)
nbytes /= 2;
nbytes = clamp(nbytes, 1U, 4U);
return GENMASK(3, 4 - nbytes);
}
static u8 rpcif_bit_size(u8 buswidth)
{
return buswidth > 4 ? 2 : ilog2(buswidth);
}
void rpcif_prepare(struct rpcif *rpc, const struct rpcif_op *op, u64 *offs,
size_t *len)
{
rpc->smcr = 0;
rpc->smadr = 0;
rpc->enable = 0;
rpc->command = 0;
rpc->option = 0;
rpc->dummy = 0;
rpc->ddr = 0;
rpc->xferlen = 0;
if (op->cmd.buswidth) {
rpc->enable = RPCIF_SMENR_CDE |
RPCIF_SMENR_CDB(rpcif_bit_size(op->cmd.buswidth));
rpc->command = RPCIF_SMCMR_CMD(op->cmd.opcode);
if (op->cmd.ddr)
rpc->ddr = RPCIF_SMDRENR_HYPE(0x5);
}
if (op->ocmd.buswidth) {
rpc->enable |= RPCIF_SMENR_OCDE |
RPCIF_SMENR_OCDB(rpcif_bit_size(op->ocmd.buswidth));
rpc->command |= RPCIF_SMCMR_OCMD(op->ocmd.opcode);
}
if (op->addr.buswidth) {
rpc->enable |=
RPCIF_SMENR_ADB(rpcif_bit_size(op->addr.buswidth));
if (op->addr.nbytes == 4)
rpc->enable |= RPCIF_SMENR_ADE(0xF);
else
rpc->enable |= RPCIF_SMENR_ADE(GENMASK(
2, 3 - op->addr.nbytes));
if (op->addr.ddr)
rpc->ddr |= RPCIF_SMDRENR_ADDRE;
if (offs && len)
rpc->smadr = *offs;
else
rpc->smadr = op->addr.val;
}
if (op->dummy.buswidth) {
rpc->enable |= RPCIF_SMENR_DME;
rpc->dummy = RPCIF_SMDMCR_DMCYC(op->dummy.ncycles /
op->dummy.buswidth);
}
if (op->option.buswidth) {
rpc->enable |= RPCIF_SMENR_OPDE(
rpcif_bits_set(rpc, op->option.nbytes)) |
RPCIF_SMENR_OPDB(rpcif_bit_size(op->option.buswidth));
if (op->option.ddr)
rpc->ddr |= RPCIF_SMDRENR_OPDRE;
rpc->option = op->option.val;
}
rpc->dir = op->data.dir;
if (op->data.buswidth) {
u32 nbytes;
rpc->buffer = op->data.buf.in;
switch (op->data.dir) {
case RPCIF_DATA_IN:
rpc->smcr = RPCIF_SMCR_SPIRE;
break;
case RPCIF_DATA_OUT:
rpc->smcr = RPCIF_SMCR_SPIWE;
break;
default:
break;
}
if (op->data.ddr)
rpc->ddr |= RPCIF_SMDRENR_SPIDRE;
if (offs && len)
nbytes = *len;
else
nbytes = op->data.nbytes;
rpc->xferlen = nbytes;
rpc->enable |= RPCIF_SMENR_SPIDB(rpcif_bit_size(op->data.buswidth));
}
}
EXPORT_SYMBOL(rpcif_prepare);
int rpcif_manual_xfer(struct rpcif *rpc)
{
u32 smenr, smcr, pos = 0, max = rpc->bus_size == 2 ? 8 : 4;
int ret = 0;
pm_runtime_get_sync(rpc->dev);
regmap_update_bits(rpc->regmap, RPCIF_PHYCNT,
RPCIF_PHYCNT_CAL, RPCIF_PHYCNT_CAL);
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MD, RPCIF_CMNCR_MD);
regmap_write(rpc->regmap, RPCIF_SMCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_SMOPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_SMDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_SMDRENR, rpc->ddr);
regmap_write(rpc->regmap, RPCIF_SMADR, rpc->smadr);
smenr = rpc->enable;
switch (rpc->dir) {
case RPCIF_DATA_OUT:
while (pos < rpc->xferlen) {
u32 bytes_left = rpc->xferlen - pos;
u32 nbytes, data[2];
smcr = rpc->smcr | RPCIF_SMCR_SPIE;
/* nbytes may only be 1, 2, 4, or 8 */
nbytes = bytes_left >= max ? max : (1 << ilog2(bytes_left));
if (bytes_left > nbytes)
smcr |= RPCIF_SMCR_SSLKP;
smenr |= RPCIF_SMENR_SPIDE(rpcif_bits_set(rpc, nbytes));
regmap_write(rpc->regmap, RPCIF_SMENR, smenr);
memcpy(data, rpc->buffer + pos, nbytes);
if (nbytes == 8) {
regmap_write(rpc->regmap, RPCIF_SMWDR1,
data[0]);
regmap_write(rpc->regmap, RPCIF_SMWDR0,
data[1]);
} else {
regmap_write(rpc->regmap, RPCIF_SMWDR0,
data[0]);
}
regmap_write(rpc->regmap, RPCIF_SMCR, smcr);
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
pos += nbytes;
smenr = rpc->enable &
~RPCIF_SMENR_CDE & ~RPCIF_SMENR_ADE(0xF);
}
break;
case RPCIF_DATA_IN:
/*
* RPC-IF spoils the data for the commands without an address
* phase (like RDID) in the manual mode, so we'll have to work
* around this issue by using the external address space read
* mode instead.
*/
if (!(smenr & RPCIF_SMENR_ADE(0xF)) && rpc->dirmap) {
u32 dummy;
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MD, 0);
regmap_write(rpc->regmap, RPCIF_DRCR,
RPCIF_DRCR_RBURST(32) | RPCIF_DRCR_RBE);
regmap_write(rpc->regmap, RPCIF_DRCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_DREAR,
RPCIF_DREAR_EAC(1));
regmap_write(rpc->regmap, RPCIF_DROPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_DRENR,
smenr & ~RPCIF_SMENR_SPIDE(0xF));
regmap_write(rpc->regmap, RPCIF_DRDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_DRDRENR, rpc->ddr);
memcpy_fromio(rpc->buffer, rpc->dirmap, rpc->xferlen);
regmap_write(rpc->regmap, RPCIF_DRCR, RPCIF_DRCR_RCF);
/* Dummy read according to spec */
regmap_read(rpc->regmap, RPCIF_DRCR, &dummy);
break;
}
while (pos < rpc->xferlen) {
u32 bytes_left = rpc->xferlen - pos;
u32 nbytes, data[2];
/* nbytes may only be 1, 2, 4, or 8 */
nbytes = bytes_left >= max ? max : (1 << ilog2(bytes_left));
regmap_write(rpc->regmap, RPCIF_SMADR,
rpc->smadr + pos);
smenr &= ~RPCIF_SMENR_SPIDE(0xF);
smenr |= RPCIF_SMENR_SPIDE(rpcif_bits_set(rpc, nbytes));
regmap_write(rpc->regmap, RPCIF_SMENR, smenr);
regmap_write(rpc->regmap, RPCIF_SMCR,
rpc->smcr | RPCIF_SMCR_SPIE);
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
if (nbytes == 8) {
regmap_read(rpc->regmap, RPCIF_SMRDR1,
&data[0]);
regmap_read(rpc->regmap, RPCIF_SMRDR0,
&data[1]);
} else {
regmap_read(rpc->regmap, RPCIF_SMRDR0,
&data[0]);
}
memcpy(rpc->buffer + pos, data, nbytes);
pos += nbytes;
}
break;
default:
regmap_write(rpc->regmap, RPCIF_SMENR, rpc->enable);
regmap_write(rpc->regmap, RPCIF_SMCR,
rpc->smcr | RPCIF_SMCR_SPIE);
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
}
exit:
pm_runtime_put(rpc->dev);
return ret;
err_out:
if (reset_control_reset(rpc->rstc))
dev_err(rpc->dev, "Failed to reset HW\n");
rpcif_hw_init(rpc, rpc->bus_size == 2);
goto exit;
}
EXPORT_SYMBOL(rpcif_manual_xfer);
static void memcpy_fromio_readw(void *to,
const void __iomem *from,
size_t count)
{
const int maxw = (IS_ENABLED(CONFIG_64BIT)) ? 8 : 4;
u8 buf[2];
if (count && ((unsigned long)from & 1)) {
*(u16 *)buf = __raw_readw((void __iomem *)((unsigned long)from & ~1));
*(u8 *)to = buf[1];
from++;
to++;
count--;
}
while (count >= 2 && !IS_ALIGNED((unsigned long)from, maxw)) {
*(u16 *)to = __raw_readw(from);
from += 2;
to += 2;
count -= 2;
}
while (count >= maxw) {
#ifdef CONFIG_64BIT
*(u64 *)to = __raw_readq(from);
#else
*(u32 *)to = __raw_readl(from);
#endif
from += maxw;
to += maxw;
count -= maxw;
}
while (count >= 2) {
*(u16 *)to = __raw_readw(from);
from += 2;
to += 2;
count -= 2;
}
if (count) {
*(u16 *)buf = __raw_readw(from);
*(u8 *)to = buf[0];
}
}
ssize_t rpcif_dirmap_read(struct rpcif *rpc, u64 offs, size_t len, void *buf)
{
loff_t from = offs & (RPCIF_DIRMAP_SIZE - 1);
size_t size = RPCIF_DIRMAP_SIZE - from;
if (len > size)
len = size;
pm_runtime_get_sync(rpc->dev);
regmap_update_bits(rpc->regmap, RPCIF_CMNCR, RPCIF_CMNCR_MD, 0);
regmap_write(rpc->regmap, RPCIF_DRCR, 0);
regmap_write(rpc->regmap, RPCIF_DRCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_DREAR,
RPCIF_DREAR_EAV(offs >> 25) | RPCIF_DREAR_EAC(1));
regmap_write(rpc->regmap, RPCIF_DROPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_DRENR,
rpc->enable & ~RPCIF_SMENR_SPIDE(0xF));
regmap_write(rpc->regmap, RPCIF_DRDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_DRDRENR, rpc->ddr);
if (rpc->bus_size == 2)
memcpy_fromio_readw(buf, rpc->dirmap + from, len);
else
memcpy_fromio(buf, rpc->dirmap + from, len);
pm_runtime_put(rpc->dev);
return len;
}
EXPORT_SYMBOL(rpcif_dirmap_read);
static int rpcif_probe(struct platform_device *pdev)
{
struct platform_device *vdev;
struct device_node *flash;
const char *name;
flash = of_get_next_child(pdev->dev.of_node, NULL);
if (!flash) {
dev_warn(&pdev->dev, "no flash node found\n");
return -ENODEV;
}
if (of_device_is_compatible(flash, "jedec,spi-nor")) {
name = "rpc-if-spi";
} else if (of_device_is_compatible(flash, "cfi-flash")) {
name = "rpc-if-hyperflash";
} else {
of_node_put(flash);
dev_warn(&pdev->dev, "unknown flash type\n");
return -ENODEV;
}
of_node_put(flash);
vdev = platform_device_alloc(name, pdev->id);
if (!vdev)
return -ENOMEM;
vdev->dev.parent = &pdev->dev;
platform_set_drvdata(pdev, vdev);
return platform_device_add(vdev);
}
static int rpcif_remove(struct platform_device *pdev)
{
struct platform_device *vdev = platform_get_drvdata(pdev);
platform_device_unregister(vdev);
return 0;
}
static const struct of_device_id rpcif_of_match[] = {
{ .compatible = "renesas,rcar-gen3-rpc-if", },
{},
};
MODULE_DEVICE_TABLE(of, rpcif_of_match);
static struct platform_driver rpcif_driver = {
.probe = rpcif_probe,
.remove = rpcif_remove,
.driver = {
.name = "rpc-if",
.of_match_table = rpcif_of_match,
},
};
module_platform_driver(rpcif_driver);
MODULE_DESCRIPTION("Renesas RPC-IF core driver");
MODULE_LICENSE("GPL v2");